ICS843002BY-31T [IDT]

PLL/Frequency Synthesis Circuit;
ICS843002BY-31T
型号: ICS843002BY-31T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL/Frequency Synthesis Circuit

时钟 外围集成电路
文件: 总28页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCKS™ VCXO BASED  
FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
ICS843002-31  
GENERAL DESCRIPTION  
FEATURES  
The ICS843002-31 is  
a member of the  
Outputs:  
ICS  
HiPerClockS™  
HiperClockS™ family of high performance clock  
solutions from IDT. This monolithic device is a high-  
performance, PLL-based synchronous clock  
generator and jitter attenuation circuit. The  
Two high frequency differential LVPECL outputs  
Output frequency: up to 700MHz  
One LVCMOS/LVTTL VCXO PLL output with output enable  
One Reference clock output with output enable  
One LOCK detect output  
ICS843002-31 contains two clock multiplication stages that are  
cascaded in series. The first stage is a VCXO-based PLL that  
is optimized to provide reference clock jitter attenuation, to be  
jitter tolerant, and to provide a stable reference clock for the  
second multiplication stage.The second stage is the proprietary  
IDT FemtoClock™circuit which is a high-frequency, sub-  
picosecond clock multiplier.  
Input mux supports 3 selectable inputs: one differential input  
pair and two LVCMOS/LVTTL input clocks  
13-bit VCXO PLL feedback and reference dividers provide  
wide range of frequency translation ratio options  
FemtoClock frequency multiplier supports rate of:  
The VCXO PLL has an on-chip VCXO circuit that uses an  
external, inexpensive pullable crystal in the 17.5 to 25MHz  
range. The PLL includes 13 bit reference and feedback  
dividers supporting complex PLL multiplication ratios and  
input reference clock rates as low as 2.3kHz. External loop  
filter components are used (two resistors and two capacitors)  
to achieve the low loop bandwidth needed for jitter atten-  
uation of a recovered data clock.  
560MHz - 700MHz  
‘Lock Detect’ output reports lock status of VCXO PLL  
VCXO PLL circuit provides jitter attenuation with  
loop bandwidth of 250Hz and below (user adjustable)  
RMS phase jitter, random at 12kHz to 20MHz:  
<1ps (design target)  
The FemtoClock circuit can multiply the VCXO crystal frequency  
by a factor of 28 or 32 (selectable) and provide a clock output of  
up to 700MHz.  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Clock Input/Output Configuration:  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
• Clock Inputs - one differential pair, two singled ended  
(mux selected)  
• Differential input pair can support LVPECL, LVDS,  
LVHSTL, SSTL, HCSL or single-ended LVCMOS  
or LVTTL levels  
PIN ASSIGNMENT  
• Singled ended inputs can support LVCMOS or  
LVTTL levels  
64 63 62 61 60 59 58 57 56 55 54 53 52 5150 49  
• Clock Outputs, FemtoClockS two LVPECL pairs  
(selectable output dividers)  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VEE  
LF1  
LF0  
2
REF_CLK  
VCLK  
LOCK  
VCCO_CMOS  
nQB  
3
• Clock Output, VCXO – one single ended output  
(at VCXO crystal frequency)  
ISET  
VEE  
4
5
NV1  
• Clock Output, other – VCXO reference clock  
6
NV0  
ICS843002-31  
64-Lead TQFP, EPAD  
10mm x 10mm x 1.0mm  
package body  
7
QB  
VCC  
8
VEE  
MR  
Example Applications:  
9
nQA  
CLK0  
nCLK0  
OE_REF  
CLK1  
VCC  
• SONET/SDH line card clock generator (up to 622.08MHz  
for OC-48) using 8kHz frame clock as input reference  
10  
11  
QA  
Y package  
Top View  
VCCO_PECL  
MP  
• Jitter attenuation of a recovered communications clock  
12  
13  
14  
NPB0  
NPB1  
NPB2  
VCCA  
• Complex-ratio clock frequency translation between  
various communication protocols, such as:  
• For telecom, OC-12 to E3 rate conversion, 622.08MHz  
to 34.368MHz, PLL ratio of 179/32  
SEL1  
SEL0  
CLK2  
15  
16  
1718 19 20 2122 23 2425 26 27 28 29 30 31 32  
• For digital video, ITU-R601 to SMPTE 252M/59.94,  
27MHz to 74.17582MHz, PLL ratio of 250/91  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
1
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
BLOCK DIAGRAM - NOMINAL SYSTEM CONFIGURATION  
3
NPB[2:0]  
3
NPA[2:0]  
2
NV[1:0]  
VCXO PLL Output  
Divider NV[1:0]  
ISET  
VCLK  
Charge Pump Current  
00: ÷1  
01: ÷12  
10: ÷16  
11: Disabled Drive Low  
External Loop  
Filter Connection  
LF0 LF1  
CLK0  
00  
17.5 - 25MHz  
nCLK0  
QA Output  
Divider NPA[2:0]  
CLK1  
CLK2  
01  
10  
000: ÷1  
001: ÷2  
010: ÷4  
011: ÷8  
100: ÷12  
101: ÷14  
110: ÷16  
111: Disabled  
Drive Low  
FemtoClock™  
Frequency  
Multiplier  
Input Divider  
QA  
nQA  
XOIN[12:0]  
÷1 to ÷8191  
VCXO PLL  
0: x32  
1: x28  
QB Output  
Divider NPB[2:0]  
11 Bypass  
VCXO PLL  
Feedback Divider  
000: QA ÷1  
001: QA ÷2  
010: QA ÷4  
011: QA ÷8  
QB  
nQB  
SEL1  
SEL0  
XOFB[12:0]  
÷1 to ÷8191  
100: XOIN Output  
101: OFB Output  
110: MP Output  
111: Disabled  
Drive Low  
13  
>1  
1
XOIN[12:0]  
XOFB[12:0]  
MP  
13  
REF_CLK  
LOCK  
OE_REF  
LOCK Detect  
NOTE 1: For application configuration (non-test/bypass modes).  
NOTE 2: Bold lines  
are primary clock paths (non-control/non-feedback lines).  
Not all control lines and signal paths are shown in this simplified block diagram.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
2
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
SIMPLIFIED BLOCK DIAGRAM - CLOCK SIGNAL PATHS IN BYPASS MODE  
VCXO PLL Output  
Divider NV[1:0]  
ISET  
Charge Pump  
Current  
VCLK  
00: ÷1  
01: ÷12  
10: ÷16  
External Loop  
Filter Connection  
11: Disabled Drive Low  
17.5 - 25MHz  
QA Output  
Divider NPA[2:0]  
LF0 LF1  
CLK0  
1 1 Bypass  
NPA[2:0]  
000: ÷1  
nCLK0  
001: ÷2  
010: ÷4  
011: ÷8  
100: ÷12  
101: ÷14  
110: ÷16  
111: Disabled Drive Low  
CLK1  
CLK2  
0 1  
1 0  
QA  
FemtoClock™  
Frequency  
Multiplier  
Input Divider  
XOIN[12:0]  
÷1 to ÷8191  
nQA  
VCXO PLL  
000: ÷1  
001: ÷2  
QB  
010: ÷4  
nQB  
011: ÷8  
111: Disabled  
FemtoClock™  
Feedback Divider  
VCXO PLL  
Feedback Divider  
XOFB[12:0]  
MP  
0: ÷32  
1: ÷28  
110: MP  
÷1 to ÷8191  
101: XOFB  
100: XOIN  
NPB2  
NPB1  
NPB0  
NOTE 1: Setting SEL1:SEL0 = 11 enables bypass mode.  
Only clock signals on the CLK0/nCLK0 input pair are routed  
to the device in bypass mode.  
NOTE 2: Bold lines  
show clock bypass paths.  
Not all control lines and signal paths are shown in this  
simplified block diagram.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
3
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT PAGE)  
Number  
Name  
Type  
Analog  
Input/Output  
Description  
1, 2  
LF1, LF0  
Loop filter connection pins.  
Analog  
Input/Output  
3
ISET  
VEE  
Charge pump current setting pin.  
4, 41, 48  
5, 6  
Power  
Negative supply pins. Normally connected to ground.  
VCXO PLL output divider control pins.  
LVCMOS/LVTTL interface levels.  
NV1, NV0  
VCC  
Input  
Pullup  
7, 13  
Power  
Core power supply pins.  
Master Reset. When HIGH, resets all internal dividers and  
8
MR  
Input  
Pulldown LVCMOS outputs are in high impedance.  
LVCMOS / LVTTL interface levels.  
9
CLK0  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup/ Inverting differential clock input.  
Pulldown VCC/2 bias voltage when left floating.  
10  
nCLK0  
Output enable control for reference clock output. When logic LOW,  
Pulldown the reference clock output is in high impedance. When logic HIGH,  
the output is enabled. LVCMOS/LVTTL interface levels.  
11  
OE_REF  
Input  
12  
14, 15  
16  
CLK1  
SEL1, SEL0  
CLK2  
Input  
Input  
Input  
Pulldown Clock input. LVCMOS/LVTTL interface levels.  
Pulldown Input clock select. LVCMOS/LVTTL interface levels.  
Pulldown Clock input. LVCMOS/LVTTL interface levels.  
17, 18,  
19, 20,  
21, 22,  
23, 24,  
25, 26,  
27, 28  
VCXO PLL input divider control input.  
Pulldown  
XOIN12:XOIN1  
XOIN0  
Input  
LVCMOS/LVTTL interface levels.  
VCXO PLL input divider control input.  
Pullup  
29  
Input  
LVCMOS/LVTTL interface levels.  
30, 31,  
32  
NPA2, NPA1,  
NPA0  
LVPECL output divider control for QA/nQA outputs.  
LVCMOS/LVTTL interface levels.  
Input  
Power  
Input  
Pulldown  
33  
VCCA  
Analog supply pin.  
34, 35,  
36  
NPB2, NPB1,  
NPB0  
LVPECL output divider control for QB/nQB outputs.  
Pulldown  
LVCMOS/LVTTL interface levels.  
FemtoClock™ circuit clock multiplication control input.  
Pulldown When HIGH, selects 28. When LOW, selects 32.  
LVCMOS/LVTTL interface levels.  
37  
MP  
Input  
38,  
39, 40  
42, 43  
44  
VCCO_PECL  
QA, nQA  
QB, nQB  
VCCO_CMOS  
LOCK  
Power  
Output  
Output  
Power  
Output  
Output  
Output  
Output power supply pin for LVPECL clock outputs.  
Differential clock output pair. LVPECL interface levels.  
Differential clock output pair. LVPECL interface levels.  
Output power supply pin for LVCMOS outputs.  
45  
Lock detect output. LVCMOS/LVTTL interface levels.  
VCXO PLL clock output. LVCMOS/LVTTL interface levels.  
Reference clock output. LVCMOS/LVTTL interface levels.  
46  
VCLK  
47  
REF_CLK  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
4
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS (CONTINUED FROM PREVIOUS PAGE)  
Number  
Name  
Type  
Description  
49, 50,  
51, 52,  
53, 54,  
55, 56,  
57, 58,  
59. 60  
VCXO feedback divider control input.  
LVCMOS/LVTTL interface levels.  
XOFB12:XOFB1  
Input  
Input  
Pulldown  
VCXO feedback divider control input.  
LVCMOS/LVTTL interface levels.  
61  
XOFB0  
Pullup  
XTAL_OUT,  
XTAL_IN  
VCXO crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
62, 63  
64  
Input  
VCCA_XO  
Power  
Analog power supply pin for VCXO.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
V
CC, VCCA, VCCA_XO, VCCO_CMOS,  
VCCO_PECL = 3.465V  
Power Dissipation Capacitance  
(per LVCMOS output)  
CPD  
TBD  
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
7
kΩ  
kΩ  
Ω
RPULLDOWN Input Pulldown Resistor  
ROUT Output Impedance  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
5
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
SECTION 1. FREQUENCY TRANSLATION  
The ICS843002-31 is a two stage device, a VCXO PLL stage  
followed by a low phase noise FemtoClock multiplier stage. The  
VCXO uses a pullable crystal to lock to the reference clock and  
can provide an output frequency up to 25MHz on the single-  
ended VCLK output. For higher frequencies, the low phase noise  
FemtoClock can multiply the VCXO PLL output clock up to  
700MHz on 2 differential LVPECL output pairs (QA/nQA, QB/  
nQB).  
Set the QB/nQB output divider control pins,  
NPB[2:0] = 010 for divide by 4. This sets the QB/nQB  
LVPECL output pair for 155.52MHz.  
2. T1 to T3. (1.544MHz to two 44.736MHz outputs)  
Since 44.736MHz is slightly higher than the maximum VCXO  
output frequency, the FemtoClock circuit will have to be used.  
Using a pullable 22.368MHz on XTAL_IN/XTAL_OUT,  
setthe VCXO PLL feedback divider pins, XOFB[12:0]  
to 2796 and the input divider pins, XOIN[12:0] to 193.  
This multiplies the 1.544MHz reference to 22.368MHz  
(1.544MHz * 2796/193 = 22.368MHz).  
The VCXO PLL stage has a 13-bit input divider and a 13-bit  
feedback divider to generate large integer ratios needed for  
some frequency translation applications. When configuring  
the device is to use pullable crystals in the 17.5MHz – 25MHz  
range on the VCXO PLL stage, and ensure that the  
FemtoClock PLL is kept within its range of 560MHz to 700MHz.  
Set the FemtoClock multiplication control pin, MP, to  
28 which sets the VCO at 626.304MHz.  
Set the QA/nQA output divider control pins,  
NPA[2:0] = 101 for divide by 14. This sets the QA/nQA  
LVPECL output pair for 44.736MHz.  
Below are 3 examples:  
1. 8kHz to 622.08MHz and 155.52MHz  
Set the QB/nQB output divider control pins,  
NPB[2:0] = 000 for divide by 1. This sets the QB/nQB  
LVPECL output pair for 44.736MHz  
This frequency translation requires use of both the VCXO PLL  
and the FemtoClock circuit. The VCXO PLL can be used to  
multiply up to 19.44MHz for use as a reference clock for the  
FemtoClock which will do the multiplication from 19.44MHz to  
622.08MHz.  
3. T1 to E1. (1.544MHz to two 2.048MHz outputs)  
The 2.048MHz output frequency requirement is low enough  
that the FemtoClock circuit is not required. Only the VCXO stage  
is used for this frequency translation.  
Using a 19.44MHz pullable crystal on XTAL_IN/  
XTAL_OUT, set the VCXO PLL feedback divider pins,  
XOFB[12:0], to 2430. This multiplies the 8kHz refer-  
ence clock to 19.44MHz.  
Using a pullable 24.576MHz on XTAL_IN/XTAL_OUT,  
setthe VCXO PLL feedback divider pins, XOFB[12:0]  
to 3072 and the input divider pins, XOIN[12:0] to 193.  
This multiplies the 1.544MHz reference to 2.048MHz  
(1.544MHz * 3072/193 = 24.576MHz).  
Set the FemtoClock multiplication control pin, MP, to  
0 which sets the multiplication factor to 32. This sets  
the FemtoClock VCO to 622.08MHz.  
Set the QA/nQA output divider control pins,  
NPA[2:0] = 000 for divide by 1. This sets the QA/nQA  
LVPECL output pair for 622.08MHz.  
Set the VCXO PLL Output Divider control pins,  
NV[1:0] = 01 for /12. This divides the 24.576MHz VCXO  
PLL frequency down to 2.048MHz.  
SECTION 2. FREQUENCY CONFIGURATION  
The Frequency Configuration Table Examples (see the following  
pages) are intended to show the most common frequency  
translation requirements. It is sorted in order of descending  
input frequency. It is not intended to be an exhaustive configur-  
ation table because that would be impractical with almost 3  
billion possible configurations. As far as configuration is  
concerned, frequencies <= 25MHz can be generated with the  
VCXO PLL while frequencies > 25MHz require the use of the  
downstream FemtoClock which can multiply the VCXO PLL  
output up to 700MHz. Complex integer ratios are handled with  
the VCXO PLL stage and the FemtoClock circuit can be  
configured to multiply the VCXO PLL output by 32 or 28. The  
following example will illustrate the configuration process.  
this means there are 2 viable VCXO PLL crystal choices which  
fall within its 17.5MHz – 15MHz range: 22.217143MHz (/28  
feedback divider) or 19.44MHz (/32 feedback divider). Use of  
the /28 feedback divider for the FemtoClock multiplier will give  
slightly better phase noise, but in this case 22.217143/1.544  
cannot be exactly achieved with the 13-bit input and feedback  
VCXO PLL dividers. Using the x32 setting of the FemtoClock  
allows a ratio of 19.44/1.544 = 2430/193 which is easily  
achievable. So the FemtoClock would be set for x32 and a  
19.44MHz crystal would be used. The VCXO PLL input divider  
would be set for 193 and the VCXO PLL feedback divider would  
be set for 2430. To double check the solution, perform the  
following calculation: 1.544 * 2430 * 32/193 = 622.08MHz.  
nd  
Assume you have a 1.544MHz T1 clock which needs to be  
multiplied up to 622.08MHz (OC12). Obviously, the FemtoClock  
multiplier will be needed to achieve 622.08MHz. Since the  
FemtoClock has a selectable multiplication factor of 28 or 32,  
The 2 FemtoClock multiplier output, QB/nQB, can be set to equal  
the QA/nQA output frequency or a fraction of its frequency. The  
following fractional values are available: /1, /2, /4, /8.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
6
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
7
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
8
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
9
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 10  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 11  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
-0.5V to VCCO + 0.5V  
I
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
22.3°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCC  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VCCA, VCCA_XO Analog Supply Voltage  
VCCO_CMOS,  
Output Supply Voltage  
VCCO_PECL  
3.135  
3.3  
3.465  
V
IEE  
Power Supply Current  
Analog Supply Current  
395  
15  
mA  
mA  
ICCA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
MP, MR, OE_REF, SEL0, SEL1,  
2
VCC + 0.3  
0.8  
V
V
-0.3  
XOIN[12:1], NPA[2:0], NPB[2:0],  
CLK1, CLK2, XOFB[12:1]  
V
CC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
NV0, NV1, XOIN0, XOFB0  
VCC = VIN = 3.465V  
VCC = 3.465V,  
MP, MR, OE_REF, SEL0, SEL1,  
XOIN[12:1], NPA[2:0], NPB[2:0],  
CLK1, CLK2, XOFB[12:1]  
-5  
V
IN = 0V  
VCC = 3.465V,  
IN = 0V  
Input  
Low Current  
IIL  
NV0, NV1, XOIN0, XOFB0  
-150  
2.6  
µA  
V
V
Output  
REF_CLK, VCLK, LOCK;  
High Voltage NOTE 1  
VOH  
VOL  
Output  
REF_CLK, VCLK, LOCK;  
Low Voltage NOTE 1  
0.5  
V
NOTE 1: Outputs terminated with 50Ω to VCCO_CMOS/2.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 12  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
Minimum Typical Maximum Units  
CLK0  
nCLK0  
CLK0  
150  
5
µA  
µA  
µA  
IIH Input High Current  
V
-150  
-5  
IIL  
Input Low Current  
nCLK0  
VIN = 0V, VCC = 3.465V  
µA  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 is VCC + 0.3V.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_PECL = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO_PECL - 2V. See "Parameter Measurement Information" section,  
"3.3V Output Load Test Circuit".  
TABLE 5. CRYSTAL CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fN  
fT  
fS  
Nominal Frequency  
19.44  
MHz  
ppm  
ppm  
°C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
TBD  
TBD  
70  
0
CL  
12  
4
pF  
CO  
Shunt Capacitance  
Pullability Ratio  
pF  
CO/C1  
ESR  
220  
240  
50  
1
Equivalent Series Resistance  
Drive Level  
Ω
mW  
Mode of Operation  
Fundamental  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 13  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
35  
Typical  
Maximum  
700  
Units  
MHz  
MHz  
MHz  
MHz  
ps  
QA/nQA  
QB/nQB  
VCLK  
4.375  
700  
fOUT  
Output Frequency  
1.1875  
25  
REF_CLK  
200  
Random jitter  
1.3  
0.75  
1.5  
3.5  
1
OC-48 mask (12kHz - 20MHz)  
19.44MHz input, into CLK0  
622.08MHz output;  
Deterministic jitter  
ps  
ps  
Total jitter  
NOTE 1, 2  
mUI  
ps  
Random jitter  
OC-12 mask (250kHz - 5MHz)  
19.44MHz input, into CLK0  
155.52MHz output;  
Deterministic jitter  
0.5  
1.1  
0.7  
1
ps  
ps  
Total jitter  
NOTE 1, 3  
mUI  
ps  
t(J)  
Timing Jitter, RMS  
Random jitter  
OC-48 mask (12kHz - 20MHz)  
8kHz input, into CLK2  
622.08MHz output;  
NOTE 1, 2  
Deterministic jitter  
0.3  
1.1  
2.7  
0.9  
0.19  
0.9  
0.6  
ps  
ps  
Total jitter  
mUI  
ps  
Random jitter  
OC-12 mask (250kHz - 5MHz)  
8kHz input, into CLK2  
155.52MHz output;  
NOTE 1, 3  
Deterministic jitter  
ps  
ps  
Total jitter  
mUI  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
PLL Lock Time  
20ꢀ to 80ꢀ  
200  
700  
QA/QB @ 622.08MHz  
50  
50  
VCLK, REF_CLK @ 19.44MHz  
tLOCK  
100  
ms  
See Parameter Measurement Information section.  
NOTE 1: External crystal is 19.44MHz Eliptek ECX-5451.  
NOTE 2: Loop bandwidth (-3dB) = 180Hz; Loop Damping Factor = 5.3 (see Applications Section, Example Loop Filter Component Value,  
example case #4).  
NOTE 3: Loop bandwidth (-3dB) = 19Hz; Loop Damping Factor = 2.8 (see Applications Section, Example Loop Filter Component Value  
example case #2).  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 14  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
1.65V 5ꢀ  
SCOPE  
,
SCOPE  
,
VCC  
VCC  
Qx  
,
,
VCCA  
VCCA  
VCCA_XO,  
VCCO_CMOS  
LVCMOS  
VCCA_XO,  
VCCO_PECL  
Qx  
LVPECL  
nQx  
GND  
VEE  
-1.65V 5ꢀ  
-1.3V 0.165V  
3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
nQA  
QA  
VDDO  
VCLK  
2
nQB  
VDDO  
REF_CLK  
2
QB  
tsk(o)  
tsk(o)  
LVPECL OUTPUT SKEW  
LVCMOS OUTPUT SKEW  
80ꢀ  
tF  
80ꢀ  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
20ꢀ  
20ꢀ  
Clock  
Outputs  
20ꢀ  
Clock  
Outputs  
tR  
LVPECL OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT RISE/FALL TIME  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 15  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
Phase Noise Plot  
nQA, nQB  
QA, QB  
tPW  
Phase Noise Mask  
tPERIOD  
tPW  
Offset Frequency  
odc =  
x 100ꢀ  
f1  
f2  
tPERIOD  
RMS Jitter = Area Under the Masked Phase Noise Plot  
PHASE JITTER  
LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD  
VCCO_LVCMOS  
2
VCLK,  
REF_CLK  
tPW  
tPERIOD  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 16  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
APPLICATION INFORMATION  
DESCRIPTION OF THE PLL STAGES  
The above equation calculates the “normalized” loop bandwidth  
(denoted as “NBW”) which is approximately equal to the -3dB  
bandwidth. NBW does not take into account the effects of damp-  
ing factor or the second pole imposed by CP. It does, however,  
provide a useful approximation of filter performance.  
The ICS843002-31 is a two stage frequency multiplication device,  
a VCXO PLL followed by a low phase noise FemtoClock frequency  
multiplier. The VCXO uses an external pullable crystal which can  
be pulled 100ppm by the VCXO PLL circuitry to phase lock it to  
the input reference frequency. The output frequency of the VCXO  
PLL is equal to that of the external pullable crystal, which is in the  
range of 17.5MHz to 25MHz. The loop bandwidth VCXO PLL is  
typically set in the range of 10-250Hz which provides attenuation  
of input reference clock jitter.Since the VCXO is a high-Q oscillator  
circuit, it has low intrinsic output jitter and phase noise.The VCXO  
PLL output clock is available from the VCLK pin.  
To prevent jitter on VCLK due to modulation of the VCXO PLL by  
the phase detector frequency, the following general rule should  
be observed:  
ƒ (Phase Detector)  
NBW (VCXO PLL) ≤  
20  
The FemtoClock frequency multiplier has an effective control  
bandwidth of about 800kHz which means it will track the VCXO  
PLL clock output.  
ƒ(Phase Detector) = Input Frequency ÷ XOIN  
The PLL loop damping factor is determined by:  
VCXO PLL LOOP RESPONSE CONSIDERATIONS  
Loop response characteristics of the VCXO PLL is affected  
by the setting of the VCXO feedback divider value (XOFB) and  
by the external loop filter components. A practical range of loop  
bandwidth for many applications is 25Hz to 1kHz. A bandwidth  
of less than 10Hz requires careful component selection and  
possible metal shielding to prevent clock output wander. A damp-  
ing factor of 0.7 or greater should be used to ensure loop stability.  
When a passband peaking of <0.1dB is desired for SONET/SDH  
loop timing application, the damping factor should be 6 or higher.  
RS  
2
ICP x CS x KO  
DF (VCLK) =  
x
XOFB Divider  
WHERE:  
CS = Value of capacitor CS in loop filter in Farads  
optional  
optional  
A PC base PLL bandwidth calculator is also under development.  
For assistance with loop filter bandwidth and component selec-  
tion suggestions, please contact your IDT sales representative.  
64  
1
63  
62  
LFR  
LF  
2
3
RS  
CS  
ISET  
SETTING THE VCXO PLL LOOP RESPONSE  
CP  
The VCXO PLL loop response is determined both by fixed  
device characteristics and by other characteristics set by the  
user. This includes the values of RS, CS, CP and RSET as shown  
in the External VCXO PLL Components figure on this page.  
RSET  
The VCXO PLL loop bandwidth is approximated by:  
RS x ICP x KO  
NBW (VCXO PLL) =  
32  
FIGURE 1. EXTERNAL VCXO PLL COMPONENTS  
WHERE:  
RS = Value of resistor RS in loop filter in Ohms  
ICP = Charge pump current in amps (see table on page 17)  
KO = VCXO Gain in Hz/V (see table on page 18)  
XOFB Divider = 1 to 8191  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 17  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
NOTES ON SETTING THE VALUE OF CP  
As another general rule, the following relationship should be  
maintained between components CS and CP in the loop filter:  
The best way to set the value of CP is to use the filter response  
software under development from ICS (please refer to the follow-  
ing section). CP should be increased in value until it just starts  
affecting the passband peak.  
CS  
CP =  
20  
NOTES ON EXTERNAL CRYSTAL LOAD CAPACITORS  
CP establishes a second pole in the VCXO PLL loop filter. For  
higher damping factors (> 1), calculate the value of CP based on  
a CS value that would be used for a damping factor of 1. This will  
minimize baseband peaking and loop instability that can lead to  
output jitter.  
In the loop filter schematic diagram, capacitors are shown between  
pins 62 to ground and between pins 63 to ground. These are  
optional crystal load capacitors which can be used to center tune  
the external pullable crystal (the crystal frequency can only be  
lowered by adding capacitance, it cannot be raised). Note that  
the addition of external load capacitors will decrease the crystal  
pull range and the Kvco value.  
CP also dampens VCXO PLL input voltage modulation by the  
charge pump correction pulses. A CP value that is too low will  
result in increased output phase noise at the phase detector  
frequency due to this. In extreme cases where input jitter is high,  
charge pump current is high, and CP is too small, the VCXO PLL  
input voltage can hit the supply or ground rail resulting in non-  
linear loop response.  
NOTES ON SETTING CHARGE PUMP CURRENT  
CHARGE PUMP CURRENT, EXAMPLE SETTINGS  
The recommended range for the charge pump current is 50μA  
to 500μA. Below 50μA, loop filter charge leakage, due to PCB  
or capacitor leakage, can become a problem. This loop filter  
leakage can cause locking problems, output clock cycle slips,  
or low frequency phase noise.  
RSET  
17.6K  
8.8K  
4.4K  
2.2K  
Charge Pump Current (ICP)  
62.5µA  
125µA  
250µA  
500µA  
As can be seen in the loop bandwidth and damping factor  
equations or by using the filter response software available  
from ICS, increasing charge pump current (ICP) increases both  
bandwidth and damping factor.  
1E-3  
100E-6  
10E-6  
1k  
10k  
100k  
RSET, Ω  
FIGURE 2. CHARGE PUMP CURRENT VS. VALUE OF RSET  
(EXTERNAL RESISTOR) GRAPH  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 18  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
VCXO GAIN (KO) VS. XTAL FREQUENCY  
9000  
8000  
7000  
KVCO  
(Hz/V)  
6000  
5000  
4000  
16  
18  
20  
22  
24  
26  
XTAL Frequency (MHz)  
EXAMPLE LOOP FILTER COMPONENT VALUE  
Device Configuration  
Loop Filter Component Selection  
VCXO PLL Performance  
Example  
Case  
Number  
Input  
Reference  
Clock  
XTAL  
Frequency  
(MHz)  
RSET  
RS  
CS  
CP  
Loop BW  
(-3dB)  
(MHz)  
Loop Passband  
Damping Peaking  
XOIN  
XOFB  
MP  
Resistor Resistor Cap  
Cap  
(µF)  
Divider Divider Divider  
(kΩ)  
(kΩ)  
(µF)  
Factor  
(dB)  
1
2
3
4
8kHz  
8kHz  
19.44  
19.44  
19.44  
19.44  
1
1
2430  
2430  
32  
0
0
0
0
4.5  
150  
10  
0.01  
18  
19  
5.8  
0.1  
4.5  
150  
11  
2.2 0.01  
2.8  
2.7  
5.3  
0.3  
0.3  
0.1  
19.44kHz  
19.44MHz  
32  
8
9.09  
9.09  
10  
10  
0.01  
0.01  
65  
8
11  
180  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 19  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS843002-31 provides  
3.3V  
VCC  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VCC, VCCA, VCCA_XO, and  
VCCO_X should be individually connected to the power supply  
plane through vias, and bypass capacitors should be used for  
each pin. To achieve optimum jitter performance, power supply  
isolation is required. Figure 3 illustrates how a 10Ω resistor  
along with a 10μF and a .01μF bypass capacitor should be  
connected to each VCCA pin.  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 3. POWER SUPPLY FILTERING  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK0 /nCLK0 accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 4A to 4D show interface  
examples for the HiPerClockS CLK0/nCLK0 input driven by the  
most common driver types. The input interfaces suggested here  
are examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 4A, the input termination applies for IDT  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
IDT HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 20  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
DIFFERENTIAL CLOCK INPUT CIRCUIT  
USING THE DIFFERENTIAL INTERFACE FOR SINGLE-ENDED CLOCKS  
The differential interface (CLK0/nCLK0) can be used as a third  
single-ended input to support an LVCMOS or LVTTL clock  
driver. The clock input is connected to the CLK0 input pin,  
and the nCLK0 pin is left unconnected. To help reduce interfer-  
ence with the internal VCO circuits, an external resistor can be  
placed in series with the clock signal near the CLK0 input pin.  
Combined with the input pin capacitance, this resistor acts as  
a low pass signal filter. The typical value of this optional series  
filter resistor is 100Ω. This will lower both the amplitude and  
edge rate of the clock input signal. In the case of a very short  
clock trace a series termination register may not be needed.  
Optional  
Series  
3.3V  
3.3V  
Filter  
Resistor  
Series  
Termination  
CLK0  
CLK  
LVTTL  
or LVCMOS  
Logic Output  
51k  
51k  
nCLK0  
(no connection)  
nCLK  
Differential  
Input Stage  
51k  
External Circuitry  
Internal Device Circuitry  
FIGURE 5. SINGLE-ENDED CLOCK INPUT INTERFACE  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS OUTPUT:  
CRYSTAL INPUT:  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
All unused LVCMOS output can be left floating. We recommend  
that there is no trace attached.  
LVPECL OUTPUT  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK INPUT:  
For applications not requiring the use of a clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the CLK input to ground.  
CLK/nCLK INPUT:  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kΩ resistor can be tied from CLK to  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 21  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
THERMAL RELEASE PATH  
The exposed metal pad provides heat transfer from the  
device to the P.C. board. The exposed metal pad is ground pad  
connected to ground plane through thermal via.The exposed pad  
on the device to the exposed metal pad on the PCB is contacted  
through solder as shown in Figure 6. For further information,  
please refer to the Application Note on Surface Mount Assembly  
of Amkor’s Thermally /Electrically Enhance Leadframe Base  
Package, Amkor Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
FIGURE 6. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 7A and 7B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 7A. LVPECL OUTPUT TERMINATION  
FIGURE 7B. LVPECL OUTPUT TERMINATION  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 22  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843002-31.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843002-31 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 395mA = 1368.67mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 1368.67mW + 60mW = 1428.67mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 17.2°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 1.429W * 17.2°C/W = 94.6°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 64-PIN TQFP, E-PAD FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 23  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
L
L
[(2V - 0.9V)/50Ω) * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 24  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 64 LEAD TQFP, E-PAD  
JA  
θ vs. 0 Air Flow (Linear Feet per Minute)  
JA  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
22.3°C/W  
17.2°C/W  
15.1°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843002-31 is: 10,095  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 25  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, EPAD (32 pin package depicted to define Table 9 dimension symbols)  
TABLE 9. PACKAGE DIMENSIONS FOR 64 LEAD TQFP, EPAD  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
ACD-HD  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
64  
A
--  
--  
0.10  
1.20  
0.15  
1.05  
0.27  
0.20  
A1  
0.05  
0.95  
0.17  
0.09  
A2  
1.0  
b
0.22  
c
--  
D
12.00 BASIC  
10.00 BASIC  
7.50 Ref.  
12.00 BASIC  
10.00 BASIC  
7.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
θ
0.45  
0.75  
--  
0°  
7°  
ccc  
--  
4.5  
--  
0.08  
5.5  
D3 & E3  
5.0  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 26  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
ICS843002BY-31  
Marking  
Package  
Shipping Packaging Temperature  
ICS843002BY31  
ICS843002BY31  
ICS843002BY31L  
ICS843002BY31L  
64 Lead TQFP, EPAD  
tray  
0°C to 70°C  
ICS843002BY-31T  
ICS843002BY-31LF  
ICS843002BY-31LFT  
64 Lead TQFP, EPAD  
500 tape & reel  
tray  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
64 Lead "Lead-Free" TQFP, EPAD  
64 Lead "Lead-Free" TQFP, EPAD  
500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT/ ICSVCXO FREQUENCY TRANSLATOR/JITTER ATTENUATOR 27  
ICS843002BY-31 REV. C JULY 13, 2007  
ICS843002-31  
FEMTOCLOCKS™ VCXO BASED FREQUENCY TRANSLATOR/JITTER ATTENUATOR  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS843002CY-31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LF

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LFT

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31T

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002I

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002I-01

FEMTOCLOCKS-TM CRYSTAL-TO- 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002I-40

175MHZ, FEMTOCLOCKTM VCXO BASED SONET/SDH JITTER ATTENUATOR
IDT

ICS843002I-40

175MHZ, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002I-41

700MHZ, FEMTOCLOCKTM VCXO BASED SONET/SDH JITTER ATTENUATOR
IDT

ICS843002I-41

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002I-72

FEMTOCLOCKS⑩ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR
IDT