ICS843002AKI-41LF [IDT]

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32;
ICS843002AKI-41LF
型号: ICS843002AKI-41LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32

时钟 外围集成电路 晶体
文件: 总24页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700MHZ, FEMTOCLOCKTM VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
ICS843002I-41  
General Description  
Features  
The ICS843002I-41 is a member of the  
Two Differential LVPECL outputs  
S
IC  
HiperClockS™ family of high performance clock  
solutions from IDT. The ICS843002I-41 is a PLL  
based synchronous clock generator that is  
Selectable CLKx, nCLKx differential input pairs  
HiPerClockS™  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL or  
single-ended LVCMOS or LVTTL levels  
optimized for SONET/SDH line card applications  
where jitter attenuation and frequency translation is needed. The  
device contains two internal PLL stages that are cascaded in  
series. The first PLL stage uses a VCXO which is optimized to  
provide reference clock jitter attenuation and to be jitter tolerant,  
and to provide a stable reference clock for the 2nd PLL stage  
(typically 19.44MHz). The second PLL stage provides additional  
frequency multiplication (x32), and it maintains low output jitter by  
using a low phase noise FemtoClock™VCO. PLL multiplication  
ratios are selected from internal lookup tables using device input  
selection pins. The device performance and the PLL multiplication  
ratios are optimized to support non-FEC (non-Forward Error  
Correction) SONET/SDH applications with rates up to OC-48  
(SONET) or STM-16 (SDH). The VCXO requires the use of an  
external, inexpensive pullable crystal. VCXO PLL uses external  
passive loop filter components which are used to optimize the PLL  
loop bandwidth and damping characteristics for the given  
line card application.  
Maximum output frequency: 700MHz  
FemtoClock VCO frequency range: 560MHz - 700MHz  
RMS phase jitter @ 155.52MHz, using a 19.44MHz crystal  
(12kHz to 20MHz): 0.81ps (typical)  
Full 3.3V or mixed 3.3V core/2.5V output operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
The ICS843002I-41 includes two clock input ports. Each one can  
accept either a single-ended or differential input. Each input port  
also includes an activity detector circuit, which reports input clock  
activity through the LOR0 and LOR1 logic output pins. The two  
input ports feed an input selection mux. “Hitless switching” is  
accomplished through proper filter tuning. Jitter transfer and  
wander characteristics are influenced by loop filter tuning, and  
phase transient performance is influenced by both loop filter  
tuning and alignment error between the two reference clocks.  
32 31 30 29 28 27 26 25  
1
2
3
24  
23  
22  
LF1  
LF0  
LOR0  
LOR1  
nc  
ISET  
Typical ICS843002I-41 configuration in SONET/SDH Systems:  
VCXO 19.44MHz crystal  
VCC  
VCCO_LVCMOS  
VCCO_LVPECL  
nQB  
4
5
21  
20  
CLK0  
nCLK0  
CLK_SEL  
QA_SEL2  
6
7
8
19  
18  
17  
QB  
Loop bandwidth: 50Hz - 250Hz  
VEE  
Input Reference clock frequency selections:  
19.44MHz, 38.88MHz, 77.76MHz, 155.52MHz, 311.04MHz,  
622.08MHz  
9
10 11 12 13 14 15 16  
Output clock frequency selections:  
19.44MHz, 77.76MHz, 155.52MHz, 311.04MHz, 622.08MHz,  
Hi-Z  
ICS843002I-41  
32-Lead VFQFN  
5mm x 5mm x 0.925mm package body  
K Package  
Top View  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
1
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Block Diagram  
19.44 MHz  
Pullable  
xtal  
External  
Loop  
Components  
ISET  
ICS843002I-41  
LF0  
LF1  
Phase  
Detector  
VCCO_LVCMOS  
Charge  
Pump  
and Loop  
Filter  
R Divider =  
1, 2, 4, 8,  
16 or 32  
19.44 MHz  
Divide  
by 32  
VCXO  
CLK1  
nCLK1  
Activity  
Detector  
1
0
LOR1  
Divide  
by 32  
CLK0  
nCLK0  
Activity  
Detector  
VCXO Jitter Attenuation PLL  
LOR0  
VCCO_PECL  
622.08 MHz  
QA  
nQA  
Cx Divider =  
1,2,4,8,16,32,  
HiZ or Disable  
110  
110  
CLK_SEL  
FemtoClock  
PLL  
111  
111  
x32  
3
3
QA_SEL2:0  
QB  
nQB  
Cx Divider =  
1,2,4,8,16,32,  
HiZ or Disable  
3
R_SEL2:0  
QB_SEL2:0  
NOTE: 19.44MHz VCXO crystal shown is typical for SONET/SDH device applications.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
2
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
Analog  
Input/Output  
1, 2  
LF1, LF0  
Loop filter connection node pins.  
Analog  
Input/Output  
3
ISET  
Charge pump current setting pin.  
4
5
VCC  
Power  
Input  
Core power supply pin.  
CLK0  
Pulldown Non-inverting differential clock input.  
Pullup  
6
7
8
nCLK0  
Input  
Input  
Input  
Inverting differential clock input. VCC/2 bias voltage when left floating.  
Pulldown  
CLK_SEL  
QA_SEL2  
Pulldown Input clock select. LVCMOS/LVTTL interface levels. See Table 3A.  
Output divider control for QA/nQA LVPECL outputs.  
Pulldown  
LVCMOS/LVTTL interface levels.See Table 3C.  
9,  
10  
QA_SEL1,  
QA_SEL0  
Output divider control for QA/nQA LVPECL outputs.  
Pullup  
Input  
Input  
Input  
LVCMOS/LVTTL interface levels.See Table 3C.  
Output divider control for QB/nQB LVPECL outputs.  
Pulldown  
11  
QB_SEL2  
LVCMOS/LVTTL interface levels.See Table 3C.  
12,  
13  
QB_SEL1,  
QB_SEL0  
Output divider control for QB/nQB LVPECL outputs.  
Pullup  
LVCMOS/LVTTL interface levels.See Table 3C.  
14  
15, 16  
17, 27  
18, 19  
20  
VCCA  
QA, nQA  
VEE  
Power  
Output  
Power  
Output  
Power  
Power  
Unused  
Analog supply pin.  
Differential clock output pair. LVPECL interface levels.  
Negative supply pins.  
QB, nQB  
VCCO_LVPECL  
VCCO_LVCMOS  
nc  
Differential clock output pair. LVPECL interface levels.  
Output supply pin for LVPECL outputs.  
Output supply pin for LVCMOS/LVTTL outputs.  
No connect.  
21  
22  
Alarm output, loss of reference for CLK1/nCLK1.  
LVCMOS/LVTTL interface levels.  
23  
24  
LOR1  
LOR0  
Output  
Output  
Alarm output, loss of reference for CLK0/nCLK0.  
LVCMOS/LVTTL interface levels.  
Pullup  
25  
26  
nCLK1  
CLK1  
Input  
Input  
Inverting differential clock input. VCC/2 bias voltage when left floating.  
Pulldown  
Pulldown Non-inverting differential clock input.  
28,  
29,  
30  
R_SEL0,  
R_SEL1,  
R_SEL2  
Input  
Input  
Pulldown Input divider selection. LVCMOS/LVTTL interface levels. See Table 3B.  
31,  
32  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. The XTAL_IN is the input.  
XTAL_OUT is the output.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
3
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
50  
50  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
Function Tables  
Table 3A. Input Reference Selection Function Table  
Input  
Function  
Input Selected  
CLK0/nCLK0  
CLK1/nCLK1  
CLK_SEL  
0
1
Table 3B. Input Reference Divider Selection Function Table  
Inputs  
Function  
R_SEL2  
R_SEL1  
R_SEL0  
R Divider Value or State  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
bypass VCXO PLL  
bypass VCXO and FemtoClock PLLs  
Table 3B. Output Divider Selection Function Table  
Inputs  
Function  
QX_SEL2  
QX_SEL1  
QX_SEL0  
Output Divider Value or State  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Output QX/nQX (Hi-Z)  
÷32  
÷8  
÷4  
÷16  
÷2  
÷1  
Output QX at LVPECL VOL, Output nQX at LVPECL VOH  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
4
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCCO_LVCMOS + 0.5V  
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
37°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5ꢀ, VCCO_LVCMOS, VCCO_LVPECL = 3.3V 5ꢀ or 2.5V 5ꢀ, VEE = 0V,  
TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
VCC  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
VCCA  
VCC – 0.15  
3.135  
3.3  
V
3.3  
3.465  
2.625  
210  
V
VCCO_LVCMOS,  
VCCO_LVPECL  
Output Supply Voltage  
2.375  
2.5  
V
IEE  
Power Supply Current  
Analog Supply Current  
mA  
mA  
ICCA  
15  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
5
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5ꢀ, VCCO_LVCMOS = 3.3V 5ꢀ or 2.5V 5ꢀ, VEE = 0V,  
TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
-0.3  
QA_SEL[0:1],  
QB_SEL[0:1]  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
5
µA  
µA  
µA  
µA  
CLK_SEL,  
QA_SEL2,  
QB_SEL2,  
R_SEL[0:2]  
IIH  
Input High Current  
150  
QA_SEL[0:1],  
QB_SEL[0:1]  
V
-150  
-5  
CLK_SEL,  
QA_SEL2,  
QB_SEL2,  
R_SEL[0:2]  
IIL  
Input Low Current  
VCC = 3.465V, VIN = 0V  
V
CCO_LVCMOS = 3.465V,  
IOH = 1mA  
2.6  
1.8  
V
V
V
VOH  
Output High Voltage  
Output Low Voltage  
LOR0, LOR1  
LOR0, LOR1  
VCCO_LVCMOS = 2.625V,  
IOH = 1mA  
VCCO_LVCMOS = 3.465V or  
2.625V, IOL= -1mA  
VOL  
0.5  
Table 4C. Differential DC Characteristics, VCC = 3.3V 5ꢀ, VCCO_LVPECL = 3.3V 5ꢀ or 2.5V 5ꢀ, VEE = 0V,  
TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CLK0/nCLK0,  
CLK1/nCLK1  
IIH Input High Current  
VCC = VIN = 3.465V  
150  
µA  
CLK0, CLK1  
V
CC = 3.465V, VIN = 0V  
-5  
-150  
µA  
µA  
V
IIL  
Input Low Current  
nCLK0, nCLK1  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC – 0.85  
V
NOTE 1: VIL cannot be less than -0.3V  
NOTE 2: Common mode input voltage is defined as VIH.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
6
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Table 4D. LVPECL DC Characteristics, VCC = VCCO_LVPECL = 3.3V 5ꢀ, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO – 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL – 2V. See Parameter Measurement Information section, Output Load Test Circuit  
diagram.  
Table 4E. LVPECL DC Characteristics, VCC = 3.3V 5ꢀ, VCCO_LVPECL = 2.5V 5ꢀ, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO – 2.0  
0.4  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.5  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL – 2V. See Parameter Measurement Information section, Output Load  
Test Circuit diagram.  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 3.3V 5ꢀ, VCCO_LVCMOS = VCCO_LVPECL = 3.3V 5ꢀ or 2.5V 5ꢀ, VEE = 0V,  
TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
700  
Units  
MHz  
ps  
fOUT  
Output Frequency  
19.44  
tsk(o)  
Output Skew; NOTE 1, 2  
150  
RMS Phase Jitter (Random);  
NOTE 3  
155.52MHz,  
Integration Range: 12kHz – 20MHz  
tjit(Ø)  
0.81  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
100  
45  
800  
55  
ps  
See Parameter Measurement Information section.  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
NOTE 1: Defined as skew between outputs at the same supply voltage, same frequency, and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Please refer to the Phase Noise plots.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
7
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Typical Phase Noise at 155.52MHz  
Filter  
155.52MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.81ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding a  
filter to raw data  
Offset Frequency (Hz)  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
8
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Parameter Measurement Information  
2.8V¬ 0.04  
2V  
2V  
2.8V¬ 0.04  
2V  
V
SCOPE  
CC,  
V
CC,  
SCOPE  
Qx  
Qx  
V
V
V
CCO_LVCMOS  
CCO_LVPECL,  
CCO_LVCMOS  
V
CCA  
V
V
CCO_LVPECLLVPECL  
LVPECL  
CCA  
nQx  
nQx  
VEE  
VEE  
-1.3V¬ 0.165  
-0.5V¬ 0.125  
3.3V Core/3.3V LVPECL Output Load AC Test Circuit  
3.3V Core/2.5V LVPECL Output Load AC Test Circuit  
V
CC  
nQx  
Qx  
nCLK0, nCLK1  
CLK0, CLK1  
VPP  
VCMR  
Cross Points  
nQy  
Qy  
tsk(o)  
V
EE  
Differential Input Level  
Output Skew  
Phase Noise Plot  
nQA, nQB  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
Phase Noise Mask  
20ꢀ  
QA, QB  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
Output Rise/Fall Time  
RMS Phase Jitter  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
9
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
nQA, nQB  
QA, QB  
tPW  
tPERIOD  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Application Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVPECL Outputs  
For applications not requiring the use of the differential input, both  
CLKx and nCLKx can be left floating. Though not required, but for  
additional protection, a 1kΩ resistor can be tied from CLKx to  
ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS Outputs  
LVCMOS Control Pins  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
10  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter  
performance, power supply isolation is required. The  
3.3V  
ICS843002I-41 provides separate power supplies to isolate any  
high switching noise from the outputs to the internal PLL. VCC,  
VCCA, VCCO_LVPECL and VCCO_LVCMOS should be individually  
connected to the power supply plane through vias, and 0.01µF  
bypass capacitors should be used for each pin. Figure 1 illustrates  
this for a generic VCC pin and also shows that VCCA requires that  
an additional 10Ω resistor along with a 10μF bypass capacitor be  
connected to the VCCA pin.  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
Figure 1. Power Supply Filtering  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and  
VCC  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
11  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
12  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended to  
determine the minimum number needed. Maximum thermal and  
electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as many  
vias connected to ground as possible. It is also recommended that  
the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz  
copper via barrel plating. This is desirable to avoid any solder  
wicking inside the via during the soldering process which may  
result in voids in solder between the exposed pad/slug and the  
thermal land. Precautions should be taken to eliminate any solder  
voids between the exposed heat slug and the land pattern. Note:  
These recommendations are to be used as a guideline only. For  
further information, please refer to the Application Note on the  
Surface Mount Assembly of Amkor’s Thermally/Electrically  
Enhance Leadframe Base Package, Amkor Technology.  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 4. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias. The  
vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
13  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 5A and 5B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Z
Z
o = 50Ω  
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 5A. 3.3V LVPECL Output Termination  
Figure 5B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
14  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Termination for 2.5V LVPECL Outputs  
Figure 6A and Figure 6B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50Ω to VCCO – 2V. For VCCO = 2.5V, the VCCO – 2V is very close to  
ground level. The R3 in Figure 6B can be eliminated and the  
termination is shown in Figure 6C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
R1  
R3  
50Ω  
250  
250  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 6A. 2.5V LVPECL Driver Termination Example  
Figure 6B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 6C. 2.5V LVPECL Driver Termination Example  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
15  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Schematic Example  
Figure 7 shows a schematic example of the ICS843002I-41  
application schematic. In this example, the device is operated at  
VCC = 3.3V. The decoupling capacitors should be located as close  
as possible to the power pin. The input is driven by a 3.3V LVPECL  
driver. The 2-pole filter example is used in this schematic. Please  
refer to the ICS843002I-41 datasheet for additional loop filter  
recommendations.  
Figure 7. ICS843002I-41 Schematic Example  
Loss of Reference Indicator (LOR0 and LOR1) Output Pins  
The LOR0 and LOR1 pins are controlled by the internal clock  
activity monitor circuits. The clock activity monitor circuits are  
clocked by the VCXO PLL phase detector feedback clock. The  
LOR output is asserted high if there are three consecutive  
feedback clock edges without any reference clock edges (in both  
cases, either a negative or positive transition is counted as an  
“edge”). The LOR output will otherwise be low. In a phase detector  
observation interval, the activity monitor does not flag excessive  
reference transitions as an error. The monitor only distinguishes  
between transitions occurring and no transitions occurring.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
16  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
VCXO-PLL EXTERNAL COMPONENTS  
Choosing the correct external components and having a proper  
printed circuit board (PCB) layout is a key task for quality operation  
of the VCXO-PLL. In choosing a crystal, special precaution must  
be taken with the package and load capacitance (CL). In addition,  
frequency, accuracy and temperature range must also be  
considered. Since the pulling range of a crystal also varies with  
the package, it is recommended that a metal-canned package like  
HC49 be used. Generally, a metal-canned package has a larger  
pulling range than a surface mounted device (SMD). For crystal  
selection information, refer to the VCXO Crystal Selection  
Application Note.  
reduced. The correct value of CL is dependant on the  
characteristics of the VCXO. The recommended CL in the Crystal  
Parameter Table balances the tuning range by centering the  
tuning curve.  
The VCXO-PLL Loop Bandwidth Selection Table shows RS, CS  
and CP values for recommended high, mid and low loop bandwidth  
configurations. The device has been characterized using these  
parameters. For other configurations, refer to the Loop Filter  
Component Selection for VCXO Based PLLs Application Note.  
The crystal and external loop  
LF0  
filter components should be  
kept as close as possible to the  
device. Loop filter and crystal  
traces should be kept short and  
separated from each other.  
Other signal traces should be  
kept separate and not run  
LF1  
The crystal’s load capacitance CL characteristic determines it  
resonating frequency and is closely related to the VCXO tuning  
range. The total external capacitance seen by the crystal when  
installed on a board is the sum of the stray board capacitance, IC  
package lead capacitance, internal varactor capacitance and any  
installed tuning capacitors (CTUNE).  
ISET  
RS RSET  
CP CS  
XTAL_IN  
If the crystal CL is greater than the total external capacitance, the  
VCXO will oscillate at a higher frequency than the crystal  
specification. If the crystal (CL) is lower than the total external  
capacitance, the VCXO will oscillate at a lower frequency than the  
crystal specification. In either case, the absolute tuning range is  
underneath the device, loop  
filter or crystal components.  
CTUNE  
19.44MHz  
CTUNE  
XTAL_OUT  
VCXO Characteristics Table  
Symbol  
kVCXO  
Parameter  
Typical  
5800  
12.6  
Units  
Hz/V  
pF  
VCXO Gain  
CV_LOW  
CV_HIGH  
Low Varactor Capacitance  
High Varactor Capacitance  
24.5  
pF  
VCXO-PLL Loop Bandwidth Selection Table  
Bandwidth  
10Hz (Low)  
70Hz (Mid)  
100Hz (High)  
Crystal Frequency (MHz)  
RS (kΩ)  
CS (µF)  
1.0  
CP (µF)  
0.10  
RSET (kΩ)  
9.5  
19.44  
19.44  
19.44  
5
10  
15  
1.0  
0.01  
4.75  
1.0  
0.01  
4.75  
Crystal Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
19.44  
fN  
fT  
fS  
MHz  
ppm  
ppm  
0C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
20  
20  
-40  
+85  
CL  
12  
4
pF  
CO  
pF  
CO / C1  
ESR  
220  
240  
Equivalent Series Resistance  
50  
1
Ω
Drive Level  
Aging @ 25 0C  
mW  
ppm  
3 per year  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
17  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS843002I-41.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843002I-41 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 210mA = 727.65mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.3V, with all outputs switching) = 727.65mW + 60mW = 787.65mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 37°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.788W * 37°C/W = 114.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resistance θJA for 48 Lead TQFP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
18  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage  
of VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCCO_MAX 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50Ω] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
19  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 32 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
Transistor Count  
The transistor count for ICS843002I-41 is: 5536  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
20  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 32-Lead VFQFN  
(Ref.)  
Seating Plane  
(N -1)x e  
N & N  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
E2  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not  
intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package  
dimensions are in Table 8 below.  
Table 8. Package Dimensions  
JEDEC Variation: VHHD-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
0.25  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
8
5.00 Basic  
3.0  
3.3  
0.50 Basic  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
21  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
843002AKI-41  
843002AKI-41T  
843002AKI-41LF  
843002AKI-41LFT  
Marking  
Package  
32 Lead VFQFN  
32 Lead VFQFN  
Shipping Packaging  
Tray  
2500 Tape & Reel  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS43002A41  
ICS43002A41  
ICS002AI41L  
ICS002AI41L  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
22  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Revision History Sheet  
Rev  
A
Table  
T4B  
5
Page  
Description of Change  
Date  
1/22/09  
4/7/09  
6
7
LVCMOS DC Characteristics Table - added conditions to VOH and VOL  
.
B
AC Characteristics Table - changed output skew from 50 to 150  
IDT™ / ICS™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
23  
ICS843002AKI-41 REV. B  
APRIL 7, 2009  
ICS843002I-41  
700MHZ, FEMTOCLOCK™ VCXO BASED SONET/SDH JITTER ATTENUATOR  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
+480-763-2056  
United States  
www.IDT.com/go/contactIDT  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

ICS843002AKI-41LFT

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-41T

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002ALF

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002BKI-72LFT

Clock Generator, 122.88MHz, 5 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002BY-31

PLL/Frequency Synthesis Circuit
IDT

ICS843002BY-31LF

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31LFT

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31T

PLL/Frequency Synthesis Circuit
IDT

ICS843002CY-31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LF

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LFT

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31T

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI