ICS843002BKI-72LFT [IDT]

Clock Generator, 122.88MHz, 5 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32;
ICS843002BKI-72LFT
型号: ICS843002BKI-72LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 122.88MHz, 5 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32

时钟 外围集成电路 晶体
文件: 总18页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEMTOCLOCKS™ VCXO BASED WCDMA  
CLOCK GENERATOR/JITTER ATTENUATOR  
ICS843002I-72  
GENERAL DESCRIPTION  
FEATURES  
The ICS843002I-72 is  
ICS  
a
member of the  
Two differential LVPECL outputs  
HiperClockS™ family of high performance clock  
solutions from IDT. The ICS843002I-72 is a  
PLL based synchronous clock generator that is  
optimized for WCDMA channel card applications  
CLK input accepts the following input levels:  
LVCMOS or LVTTL levels  
HiPerClockS™  
Output frequency: 122.88MHz (typical)  
where jitter attenuation and frequency translation is needed.  
The device contains two internal PLL stages that are cascaded  
in series. The first PLL stage uses a VCXO which is optimized  
to provide reference clock jitter attenuation and to be jitter  
tolerant, and to provide a stable reference clock for the second  
PLL stage.The second PLL stage provides additional frequency  
multiplication (x32), and it maintains low output jitter by using a  
low phase noise FemtoClockVCO. The device performance  
and the PLL multiplication ratios are optimized to support  
WCDMA applications. The VCXO requires the use of an  
external, inexpensive pullable crystal. VCXO PLL uses external  
passive loop filter components which are used to optimize the  
PLL loop bandwidth and damping characteristics for the given  
application.  
FemtoClock VCO frequency range: 490MHz - 680MHz  
RMS phase jitter @ 122.88MHz, using a 19.2MHz crystal  
(1.875MHz to 10MHz): 0.49ps (typical)  
Deterministic jitter: 30fs (typical)  
Random jitter, RMS: 2.2ps (typical)  
Full 3.3V or mixed 3.3V core/2.5V output supply voltage  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
The ICS843002I-72 can accept a single-ended input. LOCK_DT  
reports the lock status of VCXO PLL loop. If the reference clock  
input is lost, it will set LOCK_DT to logic LOW.  
Typical ICS843002I-72 configuration in WCDMA Systems:  
19.2MHz pullable crystal  
Input Reference clock frequency: 3.84MHz  
Output clock frequency: 122.88MHz  
PIN ASSIGNMENT  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
LF1  
LF0  
ISET  
VCC  
LOCK_DT  
VEE  
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
VCCO  
VCCO  
nQ1  
VCC  
VEE  
VEE  
Q1  
CLK  
VEE  
9
10 11 12 13 14 15 16  
ICS843002I-72  
32-Lead VFQFN  
5mm x 5mm x 0.925 package body  
K Package  
Top View  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
1
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
BLOCK DIAGRAM  
122.88MHz  
Q0  
3.84MHz  
FemtoClock  
nQ0  
Pulldown  
x32  
CLK  
XTAL_IN  
Q1  
19.2MHz  
Charge  
Pump  
Phase  
Detect  
5
÷
VCXO  
LF  
nQ1  
Pullable Xtal  
XTAL_OUT  
Pulldown  
nOE  
External  
Loop  
Components  
LF0  
LF1  
ISET  
LOCK_DT  
NOTE 1: 19.2MHz pullable crystal shown is typical for WCDMA device applications.  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
2
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Analog  
Input/Output  
Description  
1, 2  
LF1, LF0  
Loop filter connection node pins.  
Analog  
Input/Output  
3
ISET  
VCC  
Charge pump current setting pin.  
Core power supply pins.  
4, 5, 22, 28,  
29, 30  
Power  
6, 7, 9, 10, 13,  
17, 23, 26, 27  
VEE  
Power  
Input  
Input  
Negative supply pins.  
8
CLK  
nOE  
Pulldown Single-ended clock input. LVCMOS/LVTTL interface levels.  
Output enable pin. When LOW, output is enabled.  
Pulldown  
11  
LVCMOS/LVTTL interface levels. See Table 3.  
12  
14, 20, 21  
15, 16  
18, 19  
24  
VCCA  
VCCO  
Power  
Power  
Analog supply pin.  
Output power supply pin.  
Q0, nQ0  
Q1, nQ1  
LOCK_DT  
nc  
Output  
Output  
Output  
Unused  
Differential clock output pair. LVPECL interface levels.  
Differential clock output pair. LVPECL interface levels.  
Lock detect. Logic HIGH when VCXO PLL loop is locked.  
No connect.  
25  
31,  
32  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_OUT is the output.  
XTAL_IN is the input.  
Input  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
RPULLDOWN Input Pulldown Resistor  
50  
kΩ  
TABLE 3. INPUT REFERENCE SELECTION FUNCTION TABLE  
Inputs  
Outputs  
Q0/nQ0, Q1/nQ1  
Enabled  
nOE  
0
1
Hi-Z  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
3
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
37°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.3  
3.3  
3.3  
3.465  
VCC  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.13  
3.135  
3.465  
140  
V
mA  
mA  
ICCA  
13  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC  
= 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.3  
3.3  
2.5  
3.465  
VCC  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.13  
2.375  
2.625  
140  
V
mA  
mA  
ICCA  
13  
TABLE 4C. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VCCO = 3.3V 5ꢀ OR 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
Input High Current CLK, nOE  
VCC = VIN = 3.465V  
150  
µA  
µA  
IIL  
InputLow Current  
CLK, nOE  
VCC = 3.465V, VIN = 0V  
-5  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V. See "Parameter Measurement Information" section,  
"Output Load Test Circuit" diagrams.  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
4
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.4  
VCCO - 0.9  
VCCO - 1.5  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V. See "Parameter Measurement Information" section,  
"Output Load Test Circuit" diagrams.  
TABLE 5A. AC CHARACTERISTICS, VCC = VCCO = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
122.88  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
122.88MHz, Integration range:  
1.875MHz - 10MHz  
tjit(ø)  
0.49  
ps  
tDJ  
Deterministic Jitter; NOTE 2  
Random Jitter, RMS; NOTE 2  
Output Skew; NOTE 3, 4  
Output Rise/Fall Time  
30  
fs  
tRJ  
2.2  
ps  
ps  
ps  
tsk(o)  
tR / tF  
odc  
50  
550  
51  
20ꢀ to 80ꢀ  
300  
49  
Output Duty Cycle  
See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Measured using Wavecrest SIA-3000.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 5B. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VCCO = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
122.88  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
122.88MHz, Integration range:  
1.875MHz - 10MHz  
tjit(ø)  
0.49  
ps  
tDJ  
Deterministic Jitter; NOTE 2  
Random Jitter, RMS; NOTE 2  
Output Skew; NOTE 3, 4  
Output Rise/Fall Time  
30  
fs  
tRJ  
2.2  
ps  
ps  
ps  
tsk(o)  
tR / tF  
odc  
50  
550  
51  
20ꢀ to 80ꢀ  
300  
49  
Output Duty Cycle  
See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Measured using Wavecrest SIA-3000.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
5
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
TYPICAL PHASE NOISE AT 122.88MHZ @ 3.3V/3.3V  
122.88MHz  
RMS Phase Jitter (Random)  
1.875MHz to 10MHz = 0.49ps (typical)  
10Gb Ethernet Filter  
Raw Phase Noise Data  
Phase Noise Result by adding  
10Gb Ethernet Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
6
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
PARAMETER MEASUREMENT INFORMATION  
2.8V 0.04V  
2V  
2V  
2.8V 0.04V  
2V  
,
SCOPE  
V
SCOPE  
CC  
V
V
CC  
V
CCO  
Qx  
Qx  
CCO  
VCCA  
VCCA  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V CORE/3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
Phase Noise Plot  
nQx  
Qx  
Phase Noise Mask  
nQy  
Qy  
Offset Frequency  
tsk(o)  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
PHASE JITTER  
OUTPUT SKEW  
nQ0, nQ1  
80ꢀ  
tF  
80ꢀ  
tR  
Q0, Q1  
VSWING  
20ꢀ  
tPW  
tPERIOD  
Clock  
Outputs  
20ꢀ  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
7
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perfor-  
mance, power supply isolation is required. The ICS843002I-72  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO  
3.3V or 2.5V  
VCC  
.01µF  
10Ω  
should be individually connected to the power supply  
VCCA  
plane through vias, and 0.01µF bypass capacitors should be used  
for each pin. Figure 1 illustrates this for a generic VCC pin and  
also shows that VCCA requires that an additional10Ω resistor  
along with a 10µF bypass capacitor be connected to the VCCA pin.  
.01µF  
10µF  
FIGURE 1. POWER SUPPLY FILTERING  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 2A and 2B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
8
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50Ω to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 5B can be eliminated and the termination  
is shown in Figure 5C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVPECL OUTPUTS  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
9
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
VFQFN EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 4. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadfame Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”.The number of vias (i.e. “heat pipes”)  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
FIGURE 4. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
10  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
LAYOUT GUIDELINE  
Figure 5 shows an example of ICS843002I-72 application  
examples of LVPECL terminations are shown in this schematic.  
Additional termination approaches are shown in the LVPECL  
Termination Application Note.  
schematic. In this example, the device is operated at V = 3.3V.  
The 19.2MHz pullable crystal is used. The bypass capacitor  
should be placed as close as possible to the power pins. Two  
CC  
Logic Control Input Examples  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
RU2  
Not Install  
VCC  
VCC  
XTAL_OUT  
C1  
SP  
VCC  
RU1  
1K  
X1  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
XTAL_IN  
C2  
RD1  
Not Install  
RD2  
1K  
SP  
R1  
LOCK_DT  
U1  
2.7K  
LD1  
3.3V  
2-pole loop filter for Mid Bandwidth setting  
VCC  
R3  
133  
R4  
133  
LF  
LF  
1
24  
23  
22  
21  
20  
19  
18  
17  
VCCO  
LF1  
LF0  
LOCK_DT  
VEE  
2
3
4
5
6
7
8
Zo = 50 Ohm  
Zo = 50 Ohm  
Q1  
VCC  
R6  
VCC  
ISET  
VCC  
VCC  
VEE  
VEE  
CLK  
VCC  
VCCO  
VCC  
VCC  
VCCO  
VCCO  
nQ1  
Q1  
VEE  
+
-
C3  
100K  
C5  
VCCO  
VEE  
CLK  
nQ1  
0.0001uF  
0.1uF  
R7  
8K  
R8  
82.5  
R9  
82.5  
VCC=3.3V  
VCCO=3.3V  
ICS843002I_72  
Zo = 50 Ohm  
Zo = 50 Ohm  
Q0  
+
-
VCC  
R10 10  
VCCA  
nQ0  
VCC  
C6  
10u  
C7  
VCCO  
R11  
50  
R12  
50  
0.01u  
C8  
0.1u  
R13  
50  
Optional  
Y-Termination  
(U1:4)  
(U1:5)  
(U1:22)  
VCC  
(U1:28)  
(U1:29)  
(U1:30)  
VCC  
(U1:14)  
(U1:20) (U1:21)  
VCCO  
VCCO  
VCC  
VCC  
VCC  
C9  
0.1uF  
C10  
0.1uF  
C11  
0.1uF  
C12  
0.1uF  
C13  
0.1uF  
C14  
0.1uF  
C15  
0.1uF  
C16  
0.1uF  
C17  
0.1uF  
FIGURE 5. SCHEMATIC OF RECOMMENDED LAYOUT  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
11  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
VCXO-PLL EXTERNAL COMPONENTS  
Choosing the correct external components and having a proper  
printed circuit board (PCB) layout is a key task for quality  
operation of the VCXO-PLL. In choosing a crystal, special  
precaution must be taken with the package and load  
capacitance (C ). In addition, frequency, accuracy and  
temperature rangLe must also be considered. Since the pulling  
range of a crystal also varies with the package, it is  
recommended that a metal-canned package like HC49 be used.  
Generally, a metal-canned package has a larger pulling range  
than a surface mounted device (SMD). For crystal selection  
information, refer to the VCXO Crystal Selection Application  
Note.  
the crystal specification. In either case, the absolute tuning  
range is reduced. The correct value of C is dependent on the  
L
characteristics of the VCXO.The recommended C in the Crystal  
Parameter Table balances the tuning range by Lcentering the  
tuning curve.  
The VCXO-PLL Loop Bandwidth Selection Table shows R , C  
S
S
and C values for recommended high, mid and low loop  
P
bandwidth configurations. The device has been characterized  
using these parameters. For other configurations, refer to the  
Loop Filter Component Selection for VCXO Based PLLs  
Application Note.  
LF0  
LF1  
ISET  
The crystal and external loop  
filter components should be  
kept as close as possible to the  
The crystal’s load capacitance C characteristic determines its  
L
resonating frequency and is closely related to the VCXO tuning  
range. The total external capacitance seen by the crystal when  
installed on a board is the sum of the stray board capacitance,  
IC package lead capacitance, internal varactor capacitance and  
RS RSET  
device. Loop filter and crystal  
CP CS  
traces should be kept short and  
separated from each other.  
any installed tuning capacitors (C ).  
TUNE  
Other signal traces should be  
XTAL_IN  
If the crystal’s C is greater than the total external capacitance,  
the VCXO will oLscillate at a higher frequency than the crystal  
kept separate and not run  
underneath the device, loop  
filter or crystal components.  
CTUNE  
19.2MHz  
specification. If the crystal’s C is lower than the total external  
XTAL_OUT  
L
CTUNE  
capacitance, the VCXO will oscillate at a lower frequency than  
VCXO CHARACTERISTICS TABLE  
Symbol Parameter  
Typical  
Unit  
kHz/V  
pF  
kVCXO  
VCXO Gain  
7.8  
2
CV_LOW  
CV_HIGH  
Low Varactor Capacitance  
High Varactor Capacitance  
8
pF  
VCXO-PLL APPROXIMATE LOOP BANDWIDTH SELECTION TABLE  
Bandwidth  
75Hz (Low)  
500Hz (Mid)  
1kHz (High)  
Crystal Frequency (MHz)  
19.2MHz  
RS (kΩ)  
15  
CS (µF)  
1.0  
CP (µF)  
0.01  
RSET (kΩ)  
8
8
4
19.2MHz  
100  
0.1  
0.0001  
0.0001  
19.2MHz  
100  
0.1  
CRYSTAL CHARACTERISTICS  
Symbol Parameter  
Mode of Operation  
Minimum Typical  
Maximum  
Units  
Fundamental  
fN  
fT  
fS  
Frequency  
19.2  
MHz  
ppm  
ppm  
°C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
20  
20  
-40  
85  
CL  
12  
4
pF  
CO  
pF  
CO/C1  
ESR  
220  
240  
Equivalent Series Resistance  
Drive Level  
20  
1
Ω
mW  
ppm  
Aging @ 25°C  
3 per year  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
12  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843002I-72.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843002I-72 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 140mA = 485.15mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 485.1mW + 60mW = 545.1mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 37°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.541W * 37°C/W = 105.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and  
the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 32-PIN VFQFN, FORCED CONVECTION  
JA  
θ vs. Air Flow (Meters per Second)  
JA  
0
1
2.5  
29.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
13  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
– V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
– V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
CCO  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V – (V – 2V))/R ] * (V  
– V  
) = [(2V – (V  
/R ] * (V  
– V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
14  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 32 LEAD VFQFN  
JA  
θ vs. Air Flow (Meters per Second)  
JA  
0
1
2.5  
29.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843002I-72 is: 3199  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
15  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
PACKAGE OUTLINE - K SUFFIX FOR 32 LEAD VFQFN  
(Ref.)  
N & N  
Seating Plane  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
(Ref.)  
OR  
E2  
2
TopView  
b
e
Thermal  
Base  
A
(Ref.)  
D2  
D
N &N  
Odd  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package.This draw-  
ing is not intended to convey the actual pin count or pin layout of  
this device.The pin count and pinout are shown on the front page.  
The package dimensions are in Table 11 below.  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS (VHHD -2/ -4)  
SYMBOL  
Minimum  
Maximum  
N
A
32  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
8
8
NE  
D, E  
D2, E2  
L
5.0 BASIC  
3.0  
3.3  
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
16  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
843002BKI-72LF  
843002BKI-72LFT  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS002BI72L  
ICS002BI72L  
32 lead "Lead-Free" VFQFN  
32 lead "Lead-Free" VFQFN  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSWCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
17  
ICS843002BKI-72 REV. A NOVEMBER 21, 2007  
ICS843002I-72  
FEMTOCLOCKS™ VCXO BASED WCDMA CLOCK GENERATOR/JITTER ATTENUATOR  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS843002BY-31

PLL/Frequency Synthesis Circuit
IDT

ICS843002BY-31LF

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31LFT

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31T

PLL/Frequency Synthesis Circuit
IDT

ICS843002CY-31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LF

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LFT

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31T

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002I

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002I-01

FEMTOCLOCKS-TM CRYSTAL-TO- 3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002I-40

175MHZ, FEMTOCLOCKTM VCXO BASED SONET/SDH JITTER ATTENUATOR
IDT