HAT1038R [HITACHI]

Silicon P Channel Power MOS FET High Speed Power Switching; 硅P沟道功率MOS FET高速电源开关
HAT1038R
型号: HAT1038R
厂家: HITACHI SEMICONDUCTOR    HITACHI SEMICONDUCTOR
描述:

Silicon P Channel Power MOS FET High Speed Power Switching
硅P沟道功率MOS FET高速电源开关

晶体 开关 晶体管 功率场效应晶体管 脉冲 电源开关 光电二极管
文件: 总10页 (文件大小:63K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HAT1038R/HAT1038RJ  
Silicon P Channel Power MOS FET  
High Speed Power Switching  
ADE-208-663C (Z)  
4th. Edition  
February 1999  
Features  
For Automotive Application ( at Type Code “J “)  
Low on-resistance  
Capable of 4 V gate drive  
High density mounting  
Outline  
SOP–8  
5
6
7
8
4
3
2
1
6
5
7 8  
D D  
D D  
4
G
2
G
1, 3  
2, 4  
Source  
Gate  
5, 6, 7, 8 Drain  
S 3  
1
S
MOS2  
MOS1  
HAT1038R/HAT1038RJ  
Absolute Maximum Ratings (Ta = 25°C)  
Item  
Symbol  
Ratings  
– 60  
± 20  
– 3.5  
– 28  
– 3.5  
Unit  
V
Drain to source voltage  
Gate to source voltage  
Drain current  
VDSS  
VGSS  
ID  
V
A
Note1  
Drain peak current  
Body-drain diode reverse drain current  
ID(pulse)  
IDR  
A
A
Note4  
Avalanche current  
HAT1038R  
IAP  
A
HAT1038RJ  
HAT1038R  
HAT1038RJ  
– 3.5  
Note4  
Avalanche energy  
EAR  
mJ  
W
W
°C  
°C  
1.05  
2
Channel dissipation  
Channel dissipation  
Channel temperature  
Storage temperature  
Pch Note2  
Pch Note3  
Tch  
3
150  
Tstg  
– 55 to + 150  
Note: 1. PW 10 µs, duty cycle 1 %  
2. 1 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW10 s  
3. 2 Drive operation : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW10 s  
4. Value at Tch = 25°C, Rg 50 Ω  
2
HAT1038R/HAT1038RJ  
Electrical Characteristics (Ta = 25°C)  
Item  
Symbol Min  
Typ  
Max  
Unit  
V
Test Conditions  
Drain to source breakdown voltage V(BR)DSS – 60  
ID = – 10 mA, VGS = 0  
IG = ± 100 µA, VDS = 0  
VGS = ± 16 V, VDS = 0  
VDS = – 60 V, VGS = 0  
Gate to source breakdown voltage V(BR)GSS ± 20  
V
Gate to source leak current  
IGSS  
– 1.2  
3
± 10  
– 1  
µA  
µA  
Zero gate voltage  
drain current  
HAT1038R IDSS  
HAT1038RJ IDSS  
HAT1038R IDSS  
HAT1038RJ IDSS  
– 0.1 µA  
Zero gate voltage  
drain current  
µA  
µA  
V
VDS = – 48 V, VGS = 0  
Ta=125°C  
–10  
– 2.2  
0.15  
0.23  
Gate to source cutoff voltage  
Static drain to source on state  
resistance  
VGS(off)  
RDS(on)  
RDS(on)  
|yfs|  
VDS = – 10 V, I D = – 1 mA  
ID = – 2 A, VGS = – 10 VNote5  
ID = – 2 A, VGS = – 4 VNote5  
ID = – 2 A, VDS = – 10 VNote5  
VDS = –10 V  
0.12  
0.16  
4.5  
600  
290  
75  
Forward transfer admittance  
Input capacitance  
S
Ciss  
Coss  
Crss  
td(on)  
tr  
pF  
pF  
pF  
ns  
ns  
ns  
ns  
V
Output capacitance  
Reverse transfer capacitance  
Turn-on delay time  
VGS = 0  
f = 1MHz  
11  
VGS = –10 V, ID = – 2 A  
VDD – 30 V  
Rise time  
30  
Turn-off delay time  
td(off)  
tf  
100  
55  
Fall time  
Body–drain diode forward voltage  
VDF  
– 0.98 – 1.28  
70  
IF = – 3. 5 A, VGS = 0Note5  
Body–drain diode reverse  
recovery time  
trr  
ns  
IF = – 3. 5 A, VGS = 0  
diF/ dt = 50A/µs  
Note: 5. Pulse test  
3
HAT1038R/HAT1038RJ  
Main Characteristics  
Power vs. Temperature Derating  
Maximum Safe Operation Area  
10 µs  
–100  
–30  
4.0  
3.0  
2.0  
1.0  
Test Condition :  
When using the glass epoxy board  
(FR4 40x40x1.6 mm), PW < 10 s  
–10  
–3  
–1  
–0.3  
–0.1  
Operation in  
this area is  
limited by R  
DS(on)  
–0.03  
–0.01  
Ta = 25 °C  
1 shot pulse  
0
50  
100  
150  
200  
–0.1 –0.3 –1  
–3  
–10 –30 –100  
(V)  
Drain to Source Voltage  
V
DS  
Ambient Temperature Ta (°C)  
Note 6 :  
When using the glass epoxy board  
(FR4 40x40x1.6 mm)  
Typical Transfer Characteristics  
Typical Output Characteristics  
–10 V  
–10  
–8  
–6  
–4  
–2  
–10  
–8  
–6  
–4  
–2  
V
= 10 V  
DS  
Pulse Test  
–5 V  
–3.5 V  
–4 V  
Pulse Test  
–3 V  
25 °C  
–25 °C  
–4  
Tc = 75 °C  
V
= –2.5 V  
–8  
GS  
0
–1  
–2  
–3  
–5  
(V)  
0
–2  
–4  
–6  
–10  
Gate to Source Voltage  
V
GS  
Drain to Source Voltage  
V
(V)  
DS  
4
HAT1038R/HAT1038RJ  
Drain to Source Saturation Voltage vs.  
Gate to Source Voltage  
Static Drain to Source on State Resistance  
vs. Drain Current  
1
–0.5  
–0.4  
–0.3  
–0.2  
–0.1  
Pulse Test  
Pulse Test  
0.5  
0.2  
V
GS  
= –4 V  
I
= –2 A  
–1 A  
D
0.1  
–10 V  
0.05  
–0.5 A  
0.02  
0.01  
0
–4  
–8  
–12  
–16  
–20  
–0.1 –0.3  
–1  
–3  
–10 –30 –100  
(A)  
Gate to Source Voltage  
V
(V)  
GS  
Drain Current  
I
D
Static Drain to Source on State Resistance  
vs. Temperature  
Forward Transfer Admittance vs.  
Drain Current  
20  
10  
5
0.5  
Pulse Test  
V
= 10 V  
DS  
Pulse Test  
0.4  
0.3  
0.2  
0.1  
Ta = –25 °C  
I
= –2 A  
D
25 °C  
–1 A  
2
–0.5 A  
75 °C  
V
= –4 V  
GS  
1
–2 A  
0.5  
–0.5, –1 A  
–10 V  
0
0.2  
–40  
0
40  
80  
120  
160  
–0.1 –0.2  
–0.5 –1 –2  
–5 –10  
Case Temperature Tc (°C)  
Drain Current  
I
(A)  
D
5
HAT1038R/HAT1038RJ  
Body–Drain Diode Reverse  
Typical Capacitance vs.  
Drain to Source Voltage  
Recovery Time  
2000  
1000  
500  
500  
V
= 0  
GS  
f = 1 MHz  
200  
100  
50  
Ciss  
200  
100  
Coss  
20  
50  
Crss  
–30  
di / dt = 50 A / µs  
= 0, Ta = 25 °C  
10  
5
20  
10  
V
GS  
–0.1 –0.2 –0.5 –1 –2  
–5 –10  
(A)  
0
–10  
–20  
–40  
DS  
–50  
Reverse Drain Current  
I
DR  
Drain to Source Voltage  
V
(V)  
Switching Characteristics  
= –10 V, V = –30 V  
Dynamic Input Characteristics  
1000  
0
–20  
–40  
–60  
0
V
I
= –3.5 A  
V
= –10 V  
–25 V  
D
DD  
DD  
GS  
Pw = 5 µs, duty < 1 %  
300  
100  
–50 V  
–4  
–8  
–12  
t
d(off)  
t
f
V
GS  
30  
10  
V
t
DS  
r
t
d(on)  
V
= –50 V  
–25 V  
DD  
–80  
–16  
–20  
3
1
–10 V  
–100  
0
32  
Gate Charge Qg (nc)  
–0.1 –0.2  
–0.5 –1 –2  
Drain Current  
–5  
(A)  
8
16  
24  
40  
–10  
I
D
6
HAT1038R/HAT1038RJ  
Maximun Avalanche Energy vs.  
Channel Temperature Derating  
Reverse Drain Current vs.  
Source to Drain Voltage  
–10  
–8  
–6  
–4  
–2  
2.5  
2.0  
1.5  
1.0  
I
V
= –3.5 A  
AP  
= –25 V  
DD  
L = 100 µH  
duty < 0.1 %  
Rg > 50  
–10 V  
V
= 0, 5 V  
GS  
–5 V  
0.5  
0
Pulse Test  
0
–0.4 –0.8 –1.2  
–1.6  
–2.0  
(V)  
25  
50  
75  
100  
125  
150  
Channel Temperature Tch (°C)  
Source to Drain Voltage  
V
SD  
Avalanche Waveform  
Avalanche Test Circuit  
L
V
DSS  
– V  
1
2
2
E
=
• L • I  
AP  
AR  
V
DSS  
DD  
V
DS  
Monitor  
I
AP  
Monitor  
V
(BR)DSS  
I
AP  
Rg  
V
V
DD  
D. U. T  
DS  
I
D
Vin  
-15 V  
50Ω  
V
DD  
0
Switching Time Test Circuit  
Switching Time Waveform  
10%  
Vout  
Monitor  
Vin Monitor  
Vin  
D.U.T.  
R
L
90%  
90%  
V
DD  
= –30 V  
Vin  
-10 V  
90%  
10%  
50Ω  
10%  
Vout  
td(off)  
tr  
td(on)  
t
f
7
HAT1038R/HAT1038RJ  
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation)  
10  
D = 1  
0.5  
1
0.1  
0.1  
θ
θ
γ
θ
ch – f(t) = s (t) • ch – f  
ch – f = 125 °C/W, Ta = 25 °C  
0.01  
0.001  
When using the glass epoxy board  
(FR4 40x40x1.6 mm)  
PW  
T
P
DM  
D =  
PW  
T
0.0001  
100 µ  
1 m  
10 m  
100 m  
1
10  
100  
1000  
10000  
10 µ  
Pulse Width PW (S)  
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation)  
10  
D = 1  
0.5  
1
0.1  
0.1  
θ
θ
γ
θ
ch – f(t) = s (t) • ch – f  
ch – f = 166 °C/W, Ta = 25 °C  
0.01  
0.001  
When using the glass epoxy board  
(FR4 40x40x1.6 mm)  
PW  
T
P
DM  
D =  
PW  
T
0.0001  
100 µ  
1 m  
10 m  
100 m  
1
10  
100  
1000  
10000  
10 µ  
Pulse Width PW (S)  
8
HAT1038R/HAT1038RJ  
Package Dimensions  
Unit: mm  
5.0 Max  
5
8
1
4
6.2 Max  
0 – 8°  
1.27 Max  
1.27  
0.51 Max  
0.15  
0.25  
FP–8DA  
Hitachi code  
EIAJ  
M
MS-012AA  
JEDEC  
9
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Stra§e 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.  

相关型号:

HAT1038R-EL-E

Silicon P Channel Power MOS FET High Speed Power Switching
RENESAS

HAT1038RJ

Silicon P Channel Power MOS FET High Speed Power Switching
HITACHI

HAT1038RJ

Silicon P Channel Power MOS FET High Speed Power Switching
RENESAS

HAT1038RJ-EL-E

Silicon P Channel Power MOS FET High Speed Power Switching
RENESAS

HAT1038R_09

Silicon P Channel Power MOS FET High Speed Power Switching
RENESAS

HAT1041T

Silicon P Channel Power MOS FET High Speed Power Switching
RENESAS

HAT1043

Silicon P Channel Power MOS FET Power Switching
HITACHI

HAT1043M

Silicon P Channel Power MOS FET Power Switching
HITACHI

HAT1043M

Silicon P Channel Power MOS FET Power Switching
RENESAS

HAT1043M-EL-E

Silicon P Channel Power MOS FET Power Switching
RENESAS

HAT1044M

Silicon P Channel Power MOS FET Power Switching
HITACHI