MB89P665 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P665
型号: MB89P665
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总48页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12519-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89660 Series  
MB89663/665/P665/W665  
DESCRIPTION  
The MB89660 series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as  
timers, a UART, a serial interface, an 8-bit A/D converter, an input capture, an output compare, and an external  
interrupt. The MB89660 series is applicable to a wide range of applications from welfare products to industrial  
equipment.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• Package expansion  
QFP package  
SDIP package  
(Continued)  
PACKAGE  
64-pin Ceramic SH-DIP  
64-pin Plastic QFP  
64-pin Plastic SH-DIP  
(DIP-64C-A06)  
(FPT-64P-M06)  
(DIP-64P-M01)  
MB89660 Series  
(Continued)  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• Three types of timers  
8-bit PWM timer  
8/16-bit timer/counter  
20-bit time-base timer  
• Functions that permit communications with a variety of devices  
UART which permits selection of synchronous/asynchronous communications  
A serial interface that permits selection of the transfer direction  
• 8-bit A/D converter: 8 channels  
Sense mode function capable of performing compare operation in 5 µs  
Activation by external input possible  
• Real-time control  
Input capture: 2 channels  
Output compare: 2 channels  
• External interrupt: 4 channels  
Two channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
Hardware standby mode (Wake-up from this mode and activation by pin input only.)  
2
MB89660 Series  
PRODUCT LINEUP  
Part number  
MB89665  
MB89W665  
MB89P665  
MB89663  
Parameter  
Classification  
Mass production products  
(mask ROM products)  
One-time PROM product,  
also used for evaluation  
EPROM product  
ROM size  
8 K × 8 bits 16 K × 8 bits  
(internal mask ROM) (internal mask ROM) (internal PROM,  
16 K × 8 bits  
16 K × 8 bits  
(internal PROM,  
programming with  
general-purpose  
programming with  
general-purpose  
EPROM programmer) EPROM programmer)  
RAM size  
256 × 8 bits  
Number of instructions:  
512 × 8 bits  
CPU functions  
136  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
8 bits  
1 to 3 bytes  
1,8, 16 bits  
0.4 µs/10 MHz  
3.6 µs/10 MHz  
Ports  
Output ports (CMOS):  
Output ports (N-ch open-drain):  
I/O ports (CMOS):  
Total:  
8
8 (All also serve as peripherals.)  
36 (19 ports also serve as peripherals.)  
52  
8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs, 6.4 µs, 25.6 µs)  
8-bit resolution PWM operation (conversion cycle: 102 µs, 1.6 ms, 6.6 ms)  
8-bit PWM timer  
8/16-bit timer/  
counter  
Independent 8-bit reload timer/counter operation: 2 channels  
Single 16-bit event counter (cascade connection): 1 channel  
One clock selectable from four transfer clocks  
(one external shift clock, three internal clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
UART  
8 bits  
Full-duplex double buffer  
Synchronous and asynchronous data transfer  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectability  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
8-bit A/D  
converter  
8-bit resolution × 8 channels  
A/D conversion mode (conversion time: 18 µs at 10 MHz)  
Sense mode (conversion time: 5 µs at 10 MHz)  
Continuous activation by an external activation or an internal timer capable  
Reference voltage input  
Real-time I/O  
16-bit timer: operating clock cycle (0.4 µs, 0.8 µs, 1.6 µs, 3.2 µs)  
overflow interrupt  
Input capture: 16 bits × 2 channels (External trigger edge selectability)  
Output compare: 16 bits × 2 channels  
(Continued)  
3
MB89660 Series  
(Continued)  
Part number  
MB89665  
MB89W665  
MB89P665  
MB89663  
Parameter  
External interrupt  
4 channels (edge selection, interrupt vector, source flag)  
Rising edge/falling edge/both edges selectability  
Used also for wake-up from stop/sleep mode.  
(Edge detection is also permitted in stop mode.)  
(Wake-up from hardware standby mode is not possible)  
Standby mode  
Process  
Sleep mode, stop mode, and hardware standby mode  
CMOS  
Operating voltage*  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89663  
Package  
MB89665  
MB89W665  
MB89P665  
DIP-64P-M01  
×
DIP-64C-A06  
FPT-64P-M06  
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89660 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the OTPROM (one-time PROM) product (also used for evaluation), verify its differences  
from the product that will actually be used: Take particular care on the following points:  
• On the MB89663, register bank from 16 to 32 cannot be used.  
• On the MB89P665, address BFF0H to BFF6H comprise the option setting area, option settings can be read by  
reading these addresses.  
• The stack area, etc., is used.  
2. Current Consumption  
• When operated at low speed, the product with an OTPROM or an EPROM will consume more current than  
the product with a mask ROM.  
• However, the current comsumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• On the MB89P665, a pull-up resistor must be selected in a group of four pins for P54 to P57.  
• For all products, P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.  
5
MB89660 Series  
PIN ASSIGNMENT  
(Top view)  
1
VCC  
P36/RTO1  
P37/ADST  
P40/SCK1  
P41/SO1  
P42/SI1  
P43/SCK2  
P44/SO2  
P45/SI2  
P46/PTO  
P47  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
P35/RTO0  
P34/RTI1  
P33/RTI0  
P32/TO2  
P31/TO1  
P30/EC  
VSS  
3
4
5
6
7
8
9
P00  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
HST  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
RST  
P23  
MOD0  
P24  
MOD1  
P25  
X0  
P26  
X1  
P27  
VSS  
(DIP-64P-M01)  
(DIP-64C-A06)  
(Top view)  
P45/SI2  
P46/PTO  
P47  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P30/EC  
VSS  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
HST  
(FPT-64P-M06)  
6
MB89660 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
X0  
Function  
DIP*1  
30  
QFP*2  
23  
A
Crystal oscillator pins  
31  
24  
X1  
28  
21  
MOD0  
MOD1  
B
Operating mode selection pins  
Connect directly to VCC or VSS.  
A pull-down resistor is selectable as an option for mask  
ROM products.  
29  
22  
27  
26  
20  
19  
RST  
C
Reset I/O pin  
This port is an N-ch open-drain output type with pull-up  
resistor and a hysteresis input type. “L” is output from this  
pin by an internal reset source. The internal circuit is  
initialized by the input of “L”.  
HST  
G
D
Hardware standby input pin  
Connect directly to VCC when hardware standby is not  
used.  
56 to 49  
48 to 41  
40 to 33  
58  
49 to 42  
41 to 34  
33 to 26  
51  
P00 to P07  
P10 to P17  
P20 to P27  
P30/EC  
General-purpose I/O ports  
F
E
General-purpose output ports  
General-purpose I/O port  
Also serves as an external clock input for an 8/16-bit  
timer/counter.  
This pin is a hysteresis input type and with a noise  
canceller.  
59  
60  
52  
53  
P31/TO1  
P32/TO2  
E
E
E
E
E
General-purpose high-current I/O port  
Also serves as an 8/16-bit timer/counter output. This pin  
is a hysteresis input type and with a noise canceller.  
General-purpose I/O port  
Also serves as an 8/16-bit timer/counter output. This pin  
is a hysteresis input type and with a noise canceller.  
61  
62  
54  
55  
P33/RTI0  
P34/RTI1  
General-purpose I/O ports  
Also serve as the data input for the input capture. This pin  
is a hysteresis input type and with a noise canceller.  
63  
1
56  
58  
P35/RTO0  
P36/RTO1  
General-purpose I/O ports  
Also serve as the data output for the output compare. This  
pin is a hysteresis input type and with a noise canceller.  
2
59  
P37/ADST  
General-purpose heavy-current I/O port  
Also serves as the external activation input for the A/D  
converter. This pin is a hysteresis input type and with a  
noise canceller.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-64P-M06  
(Continued)  
7
MB89660 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
Also serves as the clock I/O for the UART. This pin is a  
hysteresis input type and with a noise canceller.  
DIP*1  
QFP*2  
3
60  
P40/SCK1  
E
E
E
E
4
5
6
61  
62  
63  
P41/SO1  
P42/SI1  
General-purpose I/O port  
Also serves as the data output for the UART. This pin is a  
hysteresis input type and with a noise canceller.  
General-purpose I/O port  
Also serves as the data input for the UART. This pin is a  
hysteresis input type and with a noise canceller.  
P43/SCK2  
General-purpose I/O port  
Also serves as the clock I/O for the 8-bit serial I/O  
interface. This pin is a hysteresis input type and with a  
noise canceller.  
7
8
64  
1
P44/SO2  
P45/SI2  
P46/PTO  
P47  
E
E
E
E
General-purpose I/O port  
Also serves as the data output for the 8-bit serial I/O  
interface. This pin is a hysteresis input type and with a  
noise canceller.  
General-purpose I/O port  
Also serves as the data input for the 8-bit serial I/O  
interface. This pin is a hysteresis input type and with a  
noise canceller.  
9
2
General-purpose I/O port  
Also serves as a toggle output for an 8-bit PWM timer.  
This pin is a hysteresis input type and with a noise  
canceller.  
10  
3
General-purpose I/O port  
This pin is a hysteresis input type and with a noise  
canceller.  
11 to 18  
22 to 25  
4 to 11  
P50/AN0 to  
P57/AN7  
H
E
N-ch open-drain output-only ports  
Also serve as the analog input for the A/D converter.  
15 to 18  
P60/INT0 to  
P63/INT3  
General-purpose I/O ports  
These pins also serve as an external interrupt input.  
These pins are a hysteresis input type and with a noise  
canceller.  
64  
57  
VCC  
Power supply pin  
32  
57  
25  
50  
VSS  
Power supply (GND) pins  
19  
20  
21  
12  
13  
14  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-64P-M06  
8
MB89660 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• External clock input selection versions of crystal or  
ceramic oscillation type  
X1  
• At an oscillation feedback resistor of approximately  
1 M/5.0 V  
X0  
Standby control signal  
B
C
• CMOS input  
• Built-in pull-down resistor (mask ROM products only)  
• At an output pull-up resistor (P-ch) of approximately  
R
50 k/5.0 V  
P-ch  
• Hysteresis input  
N-ch  
D
• CMOS output  
• CMOS input  
• Pull-up resistor optional  
R
P-ch  
P-ch  
N-ch  
E
• CMOS output  
• Hysteresis input  
• Pull-up resistor optional  
R
P-ch  
P-ch  
N-ch  
F
• CMOS output  
P-ch  
N-ch  
(Continued)  
9
MB89660 Series  
(Continued)  
Type  
Circuit  
Remarks  
G
• Hysteresis input  
H
• N-ch open-drain output  
• Analog input  
R
• Pull-up resistor optional  
P-ch  
P-ch  
N-ch  
Analog input  
10  
MB89660 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- or high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “ Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D Converters  
Connect to be AVCC = VCC and AVSS = AVR = VSS if the A/D converters are not in use.  
4. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency(50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
5. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
11  
MB89660 Series  
PROGRAMMING TO THE EPROM ON THE MB89P665  
The MB89P665 is an OTPROM version of the MB89660 series.  
1. Features  
• 16-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0280H  
RAM  
Not available  
0000H  
Vacancy  
(Read value FFH)  
BFF0H  
BFF7H  
C000H  
3FF0H  
Option area  
Not available  
Not availble  
3FF7H  
Vacancy  
(Read value FFH)  
4000H  
PROM  
16 KB  
EPROM  
16 KB  
FFFFH  
7FFFH  
12  
MB89660 Series  
3. Programming to the PROM  
In EPROM mode, the MB89P665A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH  
while operating as a single chip assign to 4000H to 7FFFH in EPROM mode).  
Load option data into addresses 3FF0H to 3FF6H of the EPROM programmer. (For information about each  
corresponding option, see “8. Setting OTPROM Options.”)  
(3) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
13  
MB89660 Series  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. Erasure Procedure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minuites. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
7. EPROM Programmer Socket Adapter  
Package  
FPT-64P-M06  
DIP-64P-M01  
Compatible socket adapter  
ROM-64QF-28DP-8L  
ROM-64SD-28DP-8L  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
Note: Connect the adapter jumper pin to VSS when using.  
14  
MB89660 Series  
8. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
OTPROM option bit map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reset pin Power-on  
Oscillation  
stabilization  
time  
1: Crystal  
0: Ceramic  
output  
reset  
Readableand Readableand Readableand  
writable  
Readableand Readable and  
writable  
3FF0H  
writable  
writable  
writable  
1: Yes  
0: No  
1: Yes  
0: No  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
1: Yes  
Pull-up  
1: No  
1: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
3FF5H  
3FF6H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P57 to P54 P53  
Pull-up  
1: No  
P52  
P51  
P50  
Vacancy  
Vacancy  
Vacancy  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readableand Readableand Readableand  
writable  
writable  
writable  
0: Yes  
Vacancy  
P63  
P62  
P61  
P60  
Vacancy  
Vacancy  
Vacancy  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
and  
writable  
Readableand Readableand Readableand  
writable writable writable  
Note: • Set each bit to erase.  
• Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
15  
MB89660 Series  
BLOCK DIAGRAM  
X0  
X1  
Oscillator  
21-bit time-base timer  
8-bit PWM timer  
P47  
P46/PTO  
Clock controller  
Reset circuit  
(WDT)  
P45/SI2  
RST  
HST  
8-bit serial I/O  
UART  
P44/SO2  
P43/SCK2  
Hardware standby  
CMOS I/O port  
P42/SI1  
P41/SO1  
P40/SCK1  
8
8
P00 to P07  
P10 to P17  
CMOS I/O port  
CMOS I/O port  
P37/ADST  
P36/RTO1  
P35/RTO0  
Output compare  
16-bit timer  
8
P20 to P27  
P34/RTI1  
P33/RTI0  
Input capture  
Real-time I/O  
CMOS output port  
P32/TO2  
8/16-bit  
timer/counter  
P31/TO1  
P30/EC  
RAM  
N-ch open-drain output port  
F2MC-8L  
CPU  
8
8
4
P50/AN0  
8-bit A/D converter  
to P57/AN7  
ROM  
AVR  
AVCC  
AVSS  
4
P60/INT0  
to P63/INT3  
External interrupt  
Other pins  
VCC, VSS × 2  
CMOS I/O port  
MOD0, MOD1  
16  
MB89660 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89660 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89660 series is structured as illustrated below.  
Memory Space  
MB89663  
I/O  
MB89665  
MB89W665  
MB89P665  
0000H  
0080H  
0000H  
0080H  
0100H  
I/O  
RAM  
256 B  
RAM  
512 B  
0100H  
0180H  
Register  
Register  
0200H  
0280H  
Not available  
Not available  
C000H  
ROM*  
16 KB  
E000H  
FFFFH  
ROM  
8 KB  
FFFFH  
*: When the MB89P665 is used for evaluation, the internal ROM cannot be used.  
17  
MB89660 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy  
Vacancy  
PS  
RP  
Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
18  
MB89660 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
19  
MB89660 Series  
The following general-purpose registers are provided:  
General-purpose registers: an 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers. Up to a total of 16 banks can be used on the MB89663 and a total of 32 banks can be used on  
the MB89665/P665/W665. The bank currently in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
32 banks  
Memory area  
20  
MB89660 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
PDR2  
Vacancy  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
STBC  
WDTC  
TBTC  
Standby control register  
Watchdog timer control register  
Watch interrupt control register  
Vacancy  
(R/W)  
(W)  
PDR3  
DDR3  
PDR4  
DDR4  
PDR5  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
(R/W)  
(W)  
Port 4 data direction register  
Port 5 data register  
(R/W)  
Vacancy  
(R/W)  
(W)  
PDR6  
DDR6  
Port 6 data register  
Port 6 data direction register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
ADC1  
ADC2  
ADCD  
T2CR  
T1CR  
T2DR  
T1DR  
CNTR  
COMR  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
8/16-bit timer 2 control register  
8/16-bit timer 1 control register  
8/16-bit timer 2 data register  
8/16-bit timer 1 data register  
PWM control register  
PWM compare register  
Vacancy  
Vacancy  
(Continued)  
21  
MB89660 Series  
(Continued)  
Address  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
7CH  
7DH  
7EH  
7FH  
Read/write  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
Register name  
SMC  
Register description  
UART serial mode control register  
UART serial rate control register  
UART serial status/data register  
UART serial data register  
Serial mode register  
SRC  
SSD  
SIDR/SODR  
SMR  
SDR  
Serial data register  
EIC1  
External interrupt control register 1  
External interrupt control register 2  
Timer control register  
EIC2  
TMCR  
TCHR  
TCLR  
Timer count register (H)  
Timer count register (L)  
(R)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
OPCR  
CPR0H  
CPR0L  
CPR1H  
CPR1L  
ICCR  
Output control register  
Output compare register 0 (H)  
Output compare register 0 (L)  
Output compare register 1 (H)  
Output compare register 1 (L)  
Input capture control register  
Input capture interrupt control register  
Input capture register 0 (H)  
Input capture register 0 (L)  
Input capture register 1 (H)  
Input capture register 1 (L)  
Vacancy  
ICIC  
ICR0H  
ICR0L  
ICR1H  
ICR1L  
(R)  
(R)  
(R)  
Vacancy  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
Note: Do not use vacancies.  
22  
MB89660 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min.  
Max.  
VCC  
AVCC  
VSS – 0.3  
VSS + 7.0  
V
*
Power supply voltage  
AVR must not exceed AVCC + 0.3 V  
AVR  
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
VCC + 0.3  
V
V
V
Input voltage  
Output voltage  
VO  
“L” level maximum output  
current  
IOL  
20  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
“L” level average output  
current  
Average value (operating  
current × operating rate)  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
“L” level total maximum output  
current  
100  
40  
“L” level total average output  
current  
Average value (operating  
current × operating rate)  
“H” level maximum output  
current  
–20  
–4  
“H” level average output  
current  
Average value (operating  
current × operating rate)  
IOHAV  
ΣIOH  
ΣIOHAV  
“H” level total maximum output  
current  
–50  
–20  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set at the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to the conditions as detailed in the operational sections of  
this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
23  
MB89660 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min.  
Max.  
Normal operation assurance  
range*  
2.2*  
6.0*  
V
MB89663/665  
VCC  
AVCC  
Normal operation assurance  
range*  
MB89P665  
2.7*  
1.5  
6.0*  
6.0  
V
V
Power supply voltage  
Operating temperature  
Retains the RAM state in stop  
mode  
AVR  
TA  
0.0  
AVCC  
+85  
V
–40  
°C  
* : These values vary with the operating frequency and analog assurance range. See Figure. 1 and “5. A/D Converter  
Electrical Characteristics.”  
6
5
Analog accuracy assured in the  
AVCC = VCC = 3.5 to 6.0 V range  
Operation assurance range  
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
Main clock operating frequency (MHz)  
Note: The shaded area is assured only for the MB89663/665.  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MHz)  
24  
MB89660 Series  
3. DC characteristics  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P10 to P17  
VIH  
0.7 VCC  
VCC + 0.3  
V
“H” level input  
voltage  
RST, HST  
P30 to P37,  
P40 to P47,  
P60 to P63  
VIHS  
VIL  
0.8 VCC  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
V
V
V
P00 to P07,  
P10 to P17  
“L” level input  
voltage*1  
RST, HST  
P30 to P37,  
P40 to P47,  
P60 to P63  
VILS  
Open-drain  
output pin  
application  
voltage  
VD  
P50 to P57  
VSS – 0.3  
VCC + 0.3  
V
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30,  
P32 to P36,  
P40 to P47,  
P60 to P63  
IOH = –2.0 mA  
IOH = –15 mA  
2.4  
2.4  
V
V
VOH1  
“H” level output  
voltage  
VOH2  
P31, P37  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30,  
P32 to P36,  
P40 to P47,  
P50 to P57,  
P60 to P63  
IOL = +1.8 mA  
VOL1  
0.4  
V
“L” level output  
voltage  
IOL = +12 mA  
IOL = +4.0 mA  
VOL2  
P31, P37  
RST  
0.4  
0.4  
V
V
VOL3  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P47,  
P60 to P63  
Input leakage  
current (Hi-z  
output leakage  
current)  
0.45 V  
Withoutpull-up  
resistor  
ILI1  
±5  
µA  
kΩ  
< VI < VCC  
RST,  
Pull-up  
resistance  
option  
RPULU  
VI = 0.0 V  
25  
50  
100  
selection pin  
(Continued)  
25  
MB89660 Series  
(Continued)  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pull-down  
Pin  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
Mask ROM  
products only  
RPULD  
MOD0, MOD1 VI = +5.0 mA  
5
20  
60  
kΩ  
resistance  
MB89663/665  
15  
17  
18  
20  
mA  
mA  
FC = 10 MHz  
tinst*3 = 0.4 µs  
Normal mode  
ICC  
MB89P665/  
W665  
FC = 10 MHz  
ICCS  
tinst*3 = 0.4 µs  
6
8
mA  
VCC  
Sleep mode  
Also  
TA = +25°C  
tinst*3 = 0.4 µs  
Stop mode  
applicable to  
the hardware  
standby mode.  
ICCH  
10  
µA  
Power supply  
current  
FC = 10 MHz,  
when A/D  
conversion is  
activated  
IA  
2.5  
4.5  
mA  
AVCC  
FC = 10 MHz,  
TA = +25°C,  
when A/D  
conversion is  
stopped  
IAH  
5
µA  
Other than  
AVCC, AVSS, VCC,  
and VSS  
Input  
capacitance  
CIN  
f = 1 MHz  
10  
pF  
*1: Fix MOD0 and MOD1 to VSS.  
*2: The power supply current is measured at the external clock.  
*3: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
26  
MB89660 Series  
4. AC Characteristics  
(1) Reset Timing, Hardware Standby Timing  
(VCC = +5.0 V±10%, AVSS =VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
RST “L” pulse width  
HST “L” pulse width  
tZLZH  
tHLHH  
16 tXCYL  
16 tXCYL  
ns  
ns  
* : tXCYL is the oscillation cycle (1/FC) to input to the X0 pin.  
tZLZH  
RST  
HST  
0.2 VCC  
0.2 VCC  
tHLHH  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Values  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms  
ms  
Due to repeated  
operations  
tOFF  
1
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
VCC  
0.2 V  
0.2 V  
27  
MB89660 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min.  
1
Typ.  
Max.  
10  
Clock frequency  
Clock cycle time  
FC  
X0, X1  
X0, X1  
MHz  
ns  
tXCYL  
100  
1000  
Input clock pulse  
width  
PWH  
PWL  
External clock  
External clock  
X0  
X0  
20  
ns  
ns  
Input clock rising/  
falling time  
tCR  
tCF  
10  
X0 and X1 Timing and Conditions  
tXCYL  
PWL  
PWH  
tCF  
tCR  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
When operating at FC = 10 MHz  
Instruction cycle  
(minimum execution  
time)  
tinst  
4/FC  
µs  
28  
MB89660 Series  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR series)  
X0  
X1  
FAR*  
C1  
C2  
*: Fujitsu Acoustic Resonator  
C1 = C2 = 20 pF±8 pF (built-in FAR)  
Initial deviation of  
FAR frequency  
(TA = +25°C)  
Temperature characteristic of  
FAR frequency  
FAR part number  
(built-in capacitor type)  
Frequency  
(TA = –20°C to +60°C)  
FAR-C4CB-08000-M02  
FAR-C4CB-10000-M02  
8.00 MHz  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
10.00 MHz  
Inquiry: FUJITSU LIMITED  
29  
MB89660 Series  
Sample Application of Ceramic Resonator  
X0  
X1  
*
C1  
C2  
Resonator manufacturer*  
Kyocera Corporation  
Resonator  
Frequency  
7.68 MHz  
8.0 MHz  
C1 (pF)  
33  
C2 (pF)  
33  
R (k)  
KBR-7.68MWS  
KBR-8.0MWS  
CSA8.00MTZ  
33  
33  
Murata Mfg. Co., Ltd.  
8.0 MHz  
30  
30  
Inquiry: Kyocera Corporation  
AVX Corporation  
North American Sales Headquarters: TEL 1-803-448-9411  
AVX Limited  
European Sales Headquarters: TEL 44-1252-770000  
AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters: TEL 852-363-3303  
Murata Mfg. Co., Ltd.  
Murata Electronics North America, Inc.: TEL 1-404-436-1300  
Murata Europe Management GmbH: TEL 49-911-66870  
Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
30  
MB89660 Series  
(6) Serial I/O Timing and UART Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
SCK1,  
Condition  
Unit  
Remarks  
Min.  
Max.  
Serial clock cycle time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
2 tinst*  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK2  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
SCK1, SO1  
SCK2, SO2  
–200  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
200  
Internal  
shift clock  
mode  
Valid SI1 SCK1 ↑  
Valid SI1 SCK1 ↑  
SI1, SCK1  
SI2, SCK2  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
SCK1,  
SCK2  
Serial clock “H” pulse width tSHSL  
Serial clock “L” pulse width tSLSH  
SCK1,  
SCK2  
External  
shift clock  
mode  
SCK1 ↓ → SO1 time  
tSLOV  
SCK1, SO1  
SCK2, SO2  
200  
SCK2 ↓ → SO2 time  
Valid SI1 SCK1 ↑  
tIVSH  
SI1, SCK1  
SI2, SCK2  
1/2 tinst*  
1/2 tinst*  
Valid SI2 SCK2 ↑  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
tSHIX  
SCK2 ↑ → valid SI2 hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
31  
MB89660 Series  
Serial I/O Timing and UART Timing (Internal Shift Clock Mode)  
tSCYC  
2.4 V  
SCK1  
SCK2  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
Serial I/O Timing and UART Timing (External Shift Clock Mode)  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK1  
SCK2  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
32  
MB89660 Series  
(7) Peripheral Input Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
Peripheral input “H” pulse  
width 1  
tILIH1  
tIHIL1  
tILIH2  
tIHIL2  
tILIH3  
tIHIL3  
tILIH3  
tIHIL3  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
RTI0, 1  
INT0 to INT3  
2 tinst*  
Peripheral input “L” pulse  
width 1  
Peripheral input “H” pulse  
width 2  
EC  
1 tinst*  
32 tinst*  
8 tinst*  
Peripheral input “L” pulse  
width 2  
Peripheral input “H” pulse  
width 3  
A/D mode  
Peripheral input “L” pulse  
width 3  
ADST  
Peripheral input “H” pulse  
width 3  
Sense mode  
Peripheral input “L” pulse  
width 3  
* : For information on tinst, see “(4) Instruction cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
INT0 to 3  
RTI0, 1  
0.2 VCC  
tIHIL2  
tILIH2  
0.8 VCC  
0.2 VCC  
EC  
0.2 VCC  
tIHIL3  
tILIH3  
0.8 VCC  
0.2 VCC  
ADST  
0.2 VCC  
33  
MB89660 Series  
(8) Noise Filter  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
P30 to P37,  
P40 to P47,  
P60 to P63  
During port  
operation  
Noise filter width 1  
Noise filter width 2  
tINF1  
15  
ns  
ns  
During external  
interrupt  
tINF2  
P60 to P63  
60  
tINF 1,  
2
tINF 1,  
2
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
Input waveform  
34  
MB89660 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to 6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Resolution  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
8
bit  
Total error  
±2.0  
LSB  
LSB  
LSB  
Linearity error  
±1.0  
±0.9  
Differential linearity error  
AVSS –  
AVSS+  
AVSS+  
AVR = AVCC  
Zero transition voltage  
VOT  
mV  
mV  
1.5 LSB 0.5 LSB 2.5 LSB  
Full-scale transition  
voltage  
AVR –  
AVR –  
AVR +  
VFST  
3.5 LSB 1.5 LSB 0.5 LSB  
Interchannel disparity  
1
LSB  
A/D mode conversion time  
44 tisnt*  
µs  
Sense mode conversion  
time  
12 tinst*  
µs  
Analog port input circuit  
Analog input voltage  
Reference voltage  
IAIN  
0
10  
µA  
V
AN0 to AN7  
AVR  
AVCC  
0
V
AVR = 5.0 V  
when A/D  
conversion is  
activated  
IR  
150  
5
µA  
µA  
AVR  
Reference voltage  
supply current  
AVR = 5.0 V  
when A/D  
conversion is  
stopped  
IRH  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
(1) A/D Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
35  
MB89660 Series  
Digital output  
1111 1111  
1111 1110  
Theoretical conversion value  
Actual conversion value  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T VNT  
Differential linearity error =  
1  
1 LSB  
Linearity error  
VNT (1 LSB × N + 1 LSB)  
Total error =  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V( N+I )T  
VFST  
Analog input  
(2) Precautions  
• Input impedance of analog input pins  
The A/D converter used for the MB89660 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series  
to 2 kor less.  
When the impedance cannot be kept low, the following two methods are recommended. One is to activate the  
A/D converter continuously for obtaining the pseudo long sampling time by using software. The other is to  
connect the external capacitor of approx. 0.1 µs to the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
=
C
33 pF  
.
Analog input pin  
Comparator  
.
=
R
6 kΩ  
.
If the output impedance of  
the external circuit is high, it  
is recommended to connect  
an external capacitor of  
approx. 0.1 µF.  
Closes for 8 instruction cycles  
after activating A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
36  
MB89660 Series  
EXAMPLES CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
P00 to P07, P10 to P17,P20 to P27, P30, P32 to  
P36, P40 to P47, P50 to P57, P60 to P63  
P00 to P07, P10 to P17, P20 to P27, P30, P32  
to P36, P40 to P47, P60 to P63  
VOL vs. IOL  
VCC - VOH VS. IOH  
VDD - VOH(V)  
VOL (V)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
TA = +25°C  
TA = +25°C  
VCC = 2.5 V  
0.5  
VCC = 3.0 V  
0.4  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.3  
0.2  
0.1  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
IOH(mA)  
(4) “H” Level Output Voltage  
P31, P37  
(3) “L” Level Output Voltage  
P31, P37  
VCC - VOH2 vs. IOH2  
VDD - VOH2(V)  
VOL2 vs. IOL2  
VOL2(V)  
3.0  
2.0  
1.0  
0
TA = +25°C  
VCC = 3.0 V  
0.6  
0.4  
0.2  
0
TA = +25°C  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0
–5  
–10  
–15  
–20  
IOH2(mA)  
0
–5  
–10  
–15  
–20  
IOL2(mA)  
37  
MB89660 Series  
(5) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(6) “H” Level Input Voltage/“L” Level  
Input Voltage (Hysteresis Input)  
VIN(V)  
5.0  
VIN vs. VCC  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIN(V)  
5.0  
VIN vs. VCC  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIHS  
VILS  
0.0  
0
1
2
3
4
5
6
7
VCC(V)  
0.0  
0
Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
Threshold when input voltage in hysteresis  
VIHS:  
VILS:  
1
2
3
4
5
6
7
VCC(V)  
characteristics is set to “L” level  
(7) Power Supply Current (External Clock)  
ICCS(mA)  
ICC(mA)  
16  
ICCS vs. VCC  
TA = +25°C  
ICC vs. VCC  
5
4
3
2
1
0
TA = +25°C  
14  
12  
10  
8
FC = 10 MHz  
FC = 10 MHz  
FC = 8 MHz  
FC = 8 MHz  
FC = 4 MHz  
FC = 1 MHz  
6
FC = 4 MHz  
FC = 1 MHz  
4
2
0
1
2
3
4
5
6
1
2
3
4
5
6
7
7
VCC(v)  
VCC(v)  
38  
MB89660 Series  
(8) Pull-up Resistance  
RPULU vs. VCC  
RPULU (k)  
1000  
TA = +25°C  
100  
1
1
2
3
4
5
6
VCC(V)  
39  
MB89660 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
40  
MB89660 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
41  
MB89660 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
42  
MB89660 Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
43  
MB89660 Series  
INSTRUCTION MAP  
44  
MB89660 Series  
MASK OPTIONS  
MB89663  
MB89665  
MB89P665  
MB89W665  
Part number  
Specifying procedure  
Power-on reset selection  
No.  
Specify when ordering  
masking  
Set with EPROM  
programmer  
1
With power-on reset  
Without power-on reset  
Selectable  
Selectable  
Selectable  
Setting possible  
Setting possible  
Setting possible  
Selection of the oscillation stabilization  
time  
Crystal oscillator  
2
(26.2 ms/10 MHz)  
Ceramic oscillator  
(1.64 ms/10 MHz)  
Reset pin output  
With reset output  
Without reset output  
3
4
Can be selected per pin.  
(P50 to P57 are available for  
without pull-up resistors  
when an A/D converter is  
used.)  
Pull-up resistors  
Can be set per pin.  
(P54 to P57 must have the  
same setting)  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P50 to P57, P60 to P63  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89663P-SH  
MB89665P-SH  
MB89P665P-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
MB89663PF  
MB89665PF  
MB89P665PF  
64-pin Plastic SH-DIP  
(FPT-64P-M06)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
MB89W665C-SH  
45  
MB89660 Series  
PACKAGE DIMENSIONS  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
58.00+00..5252  
+.008  
2.283–.022  
INDEX-1  
INDEX-2  
17.00±0.25  
(.669±.010)  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
+0.50  
1.00–0  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
TYP  
+.020  
15°MAX  
.039–0  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64001S-3C-4  
Dimensions in mm (inches)  
64-pin Plastic QFP  
(FPT-64P-M06)  
24.70±0.40(.972±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
51  
33  
0.05(.002)MIN  
(STAND OFF)  
52  
32  
14.00±0.20 18.70±0.40  
(.551±.008) (.736±.016)  
12.00(.472)  
REF  
16.30±0.40  
(.642±.016)  
INDEX  
64  
20  
"A"  
1
19  
LEAD No.  
0.15±0.05(.006±.002)  
Details of "B" part  
1.00(.0394)  
TYP  
0.40±0.10  
(.016±.004)  
M
0.20(.008)  
Details of "A" part  
0.25(.010)  
"B"  
0.30(.012)  
0.18(.007)MAX  
0.63(.025)MAX  
0.10(.004)  
18.00(.709)REF  
22.30±0.40(.878±.016)  
0
10°  
1.20±0.20  
(.047±.008)  
C
1994 FUJITSU LIMITED F64013S-3C-2  
Dimensions in mm (inches)  
46  
MB89660 Series  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
0.25±0.05  
(.010±.004)  
3.40±0.36  
(.134±.014)  
+0.13  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46–0.08  
19.05±0.25  
(.750±.010)  
.018+..000035  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
C
1994 FUJITSU LIMITED D64006SC-1-2  
Dimensions in mm (inches)  
47  
MB89660 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F9602  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89P665P-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89P665PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P665RP-SH

Microcontroller, 8-Bit, UVPROM, F2MC-8L CPU, 10MHz, CMOS, PDIP64
FUJITSU

MB89P670ACF

8-bit Proprietary Microcontroller
FUJITSU

MB89P677A

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APF

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
CYPRESS

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
SPANSION

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
FUJITSU

MB89P689

8-bit Proprietary Microcontroller
FUJITSU

MB89P689PF

8-bit Proprietary Microcontroller
FUJITSU