MB89P670ACF [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P670ACF
型号: MB89P670ACF
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总59页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12514-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89670/A Series  
MB89673/677A/P677A/PV670A  
DESCRIPTION  
The MB89670/A series has been developed as a line of proprietary 8-bit, single-chip microcontrollers.  
In addition to the F2MC*-8L CPU core which can operate at low voltage but at high speed, the microcontrollers  
contain pheripheral functions such as timers, a serial interface, an A/D converter, a UART, an up/down counter,  
and an external interrupt.  
TheMB89670/Aseriesisapplicabletoawiderangeofapplicationsfromwelfareproductstoindustrialequipment,  
including portable devices.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• High-speed processing at low voltage  
• Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V, 2.0 µs/2.2 V  
• I/O ports: max. 69 channels  
(Continued)  
PACKAGE  
80-pin Plastic QFP  
80-pin Plastic QFP  
80-pin Ceramic MQFP  
(FPT-80P-M11)  
(FPT-80P-M06)  
(MQP-80C-P01)  
MB89670/A Series  
(Continued)  
• Timers: 9 channels (MB89670A: 12 channels)  
8-bit PWM timer: 3 channels (MB89670A: 6 channels) (also usable as a reload timer)  
16-bit timer/counter  
21-bit time-base timer  
8/16-bit timer (8 bits × 2 channels or 16 bits)  
8/16-bit up/down counter timer (8 bits × 2 channels or 16 bits)  
Two serial interfaces  
8-bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various  
equipment.)  
UART: 1 channel (with full-duplex double buffer)  
• External interrupts: 8 channels  
Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Buzzer output  
• 10-bit A/D converter  
8-channel input  
• Low-power consumption modes  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
• Bus interface function  
Including hold and ready functions  
2
MB89670/A Series  
PRODUCT LINEUP  
Part number  
MB89673*1  
MB89677A  
MB89P677A  
MB89PV670A  
Parameter  
Piggyback/ evaluation  
One-time PROM product  
(for development)  
Classification  
Mass production products  
(mask ROM products)  
product (for development)  
ROM size  
8 K × 8 bits 32 K × 8 bits  
(internal mask ROM) (internal mask ROM)  
32 K × 8 bits  
(internal PROM)  
48 K × 8 bits  
(external ROM)  
RAM size  
384 × 8 bits  
1 K × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
0.4 µs/10 MHz to 6.4 µs/10 MHz  
3.6 µs/10 MHz to 57.6 µs/10 MHz  
Ports  
Output ports (N-channel open-drain): 14 (12 also serve as peripherals.)  
Output ports (CMOS):  
I/O ports (N-channels open-drain):  
I/O ports (CMOS):  
Input ports:  
8 (All also serve as peripherals.)  
7 (All also serve as peripherals.)  
32 (All also serve as peripherals.)  
8 (All also serve as peripherals.)  
69  
Total:  
Option  
Set with EPROM  
programmer  
Specify when ordering masking  
Setting not possible  
21-bit time-  
base timer  
21 bits (0.81 ms, 3.27 ms, 26.21 ms, 419 ms/10 MHz)  
8/16-bit up/  
down counter  
8 bits × 2 channels or 16 bits × 1 channel  
Timer operation  
Up/down counter operation  
Phase difference counting (successive double mode, quadruple mode)  
16-bit timer/  
counter  
16-bit timer operation  
16-bit event counter operation (edge selectability)  
8/16-bit timer  
counter  
8 bits × 2 channels or 16 bits × 1 channel  
Reload timer operation (toggled output capable)  
Event counter operation  
8-bit PWM  
timer 1,  
8-bit PWM  
timer 2  
8 bits × 2 channels reload timer operation (toggled output capable)  
8 bits × 2 channels PWM operation (four fixed frequency)  
8 bits × 1 channel PPG operation (variable frequency)  
Capable of output switching between 2 channels  
8-bit PWM  
timer 3,  
8-bit PWM  
timer 4, 5, 6  
8-bit reload timer operation (toggled output capable)  
8-bit PWM operation (four fixed frequency)  
Capable of output switching between 2 channels  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectability  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks)  
(Continued)  
3
MB89670/A Series  
(Continued)  
Part number  
MB89673*1  
MB89677A  
MB89P677A  
MB89PV670A  
Parameter  
UART  
Variable data length (7 or 8 bits)  
Internal baud rate generator  
Error detection function  
Intenal full-duplex double buffer  
NRZ transfer format  
CLK synchrnous/asynchronous data transfer capable  
10-bit A/D  
converter  
10 bit × 8 channels  
External  
interrupt  
8 channels (Rising edge/falling edge)  
Operating  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
voltage*2  
EPROM for use  
MBM27C512-20TV  
(LCC package)  
*1: 8-bit PWM timer 4, 5, and 6 is not provided for the MB89673.  
*2: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89673  
Package  
MB89677A  
MB89PV670A  
MB89P677A  
FPT-80P-M06  
FPT-80P-M11  
MQP-80C-P01  
×
×*  
×
: Available  
× : Not available  
* : Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available  
80QF-80QF2-8L-UP  
+ (MQP-80C-P01 or FPT-80P-M06) for conversion to FPT-80P-M11  
80QF-80QF2-8L-DWN  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89670/A Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• On the MB89P677A, the program area starts from address 8007H but on the MB89677A and MB89PV670A  
starts from 8000H.  
(On the MB89P677A, addresses 8000H to 8006H comprise the option setting area, option settings can be read  
by reading these addresses. On the MB89677A and MB89PV670A, addresses 8000H to 8006H could also be  
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the  
MB89P677A.)  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external area is used.  
2. Current Consumption  
• InthecaseoftheMB89PV670A,addthecurrentconsumedbytheEPROMwhichisconnectedtothetopsocket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following point:  
• Options are fixed on the MB89PV670A.  
CORRESPONDENCE BETWEEN THE MB89670/A AND MB89670R/AR SERIES  
• The MB89670R/AR series is the reduction version of the MB89670/A series.  
For their differences, refer to the MB89670R/AR series data sheet.  
MB89670/A series  
MB89673  
MB89677A  
MB89P677A  
MB89PV670A  
MB89670R/AR series  
MB89673R  
MB89675R  
MB89677AR  
5
MB89670/A Series  
PIN ASSIGNMENT  
(Top view)  
P73/UI  
P72/UO  
P71/UCK  
P70/BZ1  
P83  
P82  
P81  
P80  
MOD0  
MOD1  
X0  
X1  
VSS  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P66/INT6  
P67/INT7  
P84  
P85  
VSS  
P40/PWM00  
P41/PWM01  
VCC  
P42/PWM10/BZ2  
P43/PWM11  
P44/TCI  
P45/TCO1  
P46/TCO2  
P47/EC  
P30/PWM20  
P31/PWM21  
P32/UDZ1  
P33/UDB1  
P34/UDA1  
P35/UDZ2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RST  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
(FPT-80P-M11)  
6
MB89670/A Series  
(Top view)  
P75/SO  
P74/SCK  
P73/UI  
P72/UO  
P71/UCK  
P70/BZ1  
P83  
P82  
P81  
P80  
MOD0  
MOD1  
X0  
X1  
VSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P64/INT4  
P65/INT5  
P66/INT6  
P67/INT7  
P84  
P85  
VSS  
101  
102  
103  
104  
105  
106  
107  
108  
109  
93  
92  
91  
90  
89  
88  
87  
86  
85  
P40/PWM00  
P41/PWM01  
VCC  
P42/PWM10/BZ2  
P43/PWM11  
P44/TCI  
P45/TCO1  
P46/TCO2  
P47/EC  
P30/PWM20  
P31/PWM21  
P32/UDZ1  
P33/UDB1  
P34/UDA1  
P35/UDZ2  
P36/UDB2  
P37/UDA2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
RST  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
Each pin inside the dashed line  
is for the MB89PV670A only.  
(FPT-80P-M06)  
(MQP-80C-P01)  
• Pin assignment on package top (MB89PV670A only)  
Pin no.  
81  
Pin name  
N.C.  
A15  
A12  
A7  
Pin no.  
89  
Pin name  
A2  
Pin no.  
97  
Pin name  
N.C.  
O4  
Pin no.  
105  
Pin name  
OE/VPP  
N.C.  
A11  
82  
90  
A1  
98  
106  
83  
91  
A0  
99  
O5  
107  
84  
92  
N.C.  
O1  
100  
101  
102  
103  
104  
O6  
108  
A9  
85  
A6  
93  
O7  
109  
A8  
86  
A5  
94  
O2  
O8  
110  
A13  
87  
A4  
95  
O3  
CE  
111  
A14  
88  
A3  
96  
VSS  
A10  
112  
VCC  
N.C.: Internally connected. Do not use.  
7
MB89670/A Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
QFP*2  
Pin name  
Function  
QFP*1  
MQFP*3  
11  
12  
9
13  
14  
11  
12  
16  
X0  
X1  
A
B
C
Clock oscillator pins  
MOD0  
MOD1  
RST  
Operating mode selection pins  
Connect directly to VCC or VSS.  
10  
14  
Reset I/O pin  
This pin is an N-ch open-drain output type with pull-up  
resistor and a hysteresis input.  
“L” is output from this pin by an internal reset source.  
The internal circuit is initialized by the input of “L”.  
38 to 31  
30 to 23  
22  
40 to 33  
32 to 25  
24  
P00/AD0 to  
P07/AD7  
D
General-purpose I/O ports  
When an external bus is used, these ports function as  
multiplex pins of lower address output and data I/O.  
P10/A08 to  
P17/A15  
General-purpose I/O ports  
When an external bus is used, these ports function as  
upper address output pins.  
P20/BUFC  
P21/HAK  
F
F
General-purpose output port  
When an external bus is used, this port can also be  
used as a buffer control output by setting the BCTR.  
21  
23  
General-purpose output port  
When an external bus is used, this port can also be  
used as a hold acknowledge output by setting the  
BCTR.  
20  
19  
18  
17  
16  
15  
22  
21  
20  
19  
18  
17  
P22/HRQ  
P23/RDY  
P24/CLK  
P25/WR  
P26/RD  
D
D
F
F
F
F
General-purpose output port  
When an external bus is used, this port can also be  
used as a hold request input by setting the BCTR.  
General-purpose output port  
When an external bus is used, this port functions as a  
ready input.  
General-purpose output port  
When an external bus is used, this port functions as a  
clock output.  
General-purpose output port  
When an external bus is used, this port functions as a  
write signal output.  
General-purpose output port  
When an external bus is used, this port functions as a  
read signal output.  
P27/ALE  
General-purpose output port  
When an external bus is used, this port functions as an  
address latch signal output.  
(Continued)  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
8
MB89670/A Series  
Pin no.  
Circuit  
type  
QFP*2  
Pin name  
Function  
QFP*1  
MQFP*3  
46  
48  
P30/PWM20  
D
D
E
E
E
E
E
E
D
D
D
D
E
D
General-purpose I/O port  
Also serves as the PWM20 output for the 8-bit PWM  
timer.  
45  
44  
43  
42  
41  
40  
39  
55  
54  
52  
51  
50  
49  
47  
46  
45  
44  
43  
42  
41  
57  
56  
54  
53  
52  
51  
P31/PWM21  
P32/UDZ1  
P33/UDB1  
P34/UDA1  
P35/UDZ2  
P36/UDB2  
P37/UDA2  
P40/PWM00  
P41/PWM01  
General-purpose I/O port  
Also serves as the PWM21 output for the 8-bit PWM  
timer.  
General-purpose I/O port  
Also serves as the Z-phase input for the 16-bit up/down  
counter/timer.  
General-purpose I/O port  
Also serves as the B-phase input for the 16-bit timer/  
counter.  
General-purpose I/O ports  
Also serves as the A-phase input for the 16-bit up/down  
counter/timer.  
General-purpose I/O port  
Also serves as the Z-phase input for the 16-bit up/down  
counter/timer.  
General-purpose I/O port  
Also serves as the B-phase input for the 16-bit up/down  
counter/timer.  
General-purpose I/O port  
Also serves as the A-phase input for the 16-bit up/down  
counter/timer.  
General-purpose I/O port  
Also serves as the PWM00 output for the 8-bit PWM  
timer.  
General-purpose I/O port  
Also serves as the PWM01 output for the 8-bit PWM  
timer.  
P42/PWM10/  
BZ2  
General-purpose I/O port  
Also serves as the PWM10 and the BZ2 output for the 8-  
bit PWM timer.  
P43/PWM11  
P44/TCI  
General-purpose I/O port  
Also serves as the PWM11 output for the 8-bit PWM  
timer.  
General-purpose I/O port  
Also serves as the TCI input for the 8/16-bit timer/  
counter.  
P45/TCO1  
General-purpose I/O port  
Also serves as the TCO1 output for the 8/16-bit timer/  
counter.  
(Continued)  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
9
MB89670/A Series  
(Continued)  
Pin no.  
Circuit  
type  
QFP*2  
Pin name  
P46/TCO2  
Function  
General-purpose I/O port  
Also serves as the TCO2 output for the 8/16-bit timer/  
counter.  
QFP*1  
MQFP*3  
48  
50  
D
47  
49  
P47/EC  
E
General-purpose I/O port  
Also serves as input for the16-bit timer/counter.  
The EC input is a hysteresis input type.  
74 to 67  
66  
76 to 69 P50/AN0 to  
P57/AN7  
I
N-ch open-drain output ports  
Also serve as the analog input for the A/D converter.  
68  
P60/INT0/  
ADST  
J
General-purpose input port  
The software pull-up resistor is provided.  
Also serves as an external interrupt input (INT0) and an  
A/D converter external activation.  
This port is a hysteresis input type.  
65 to 59  
67 to 61 P61/INT1 to  
P67/INT7  
J
General-purpose input ports  
A software pull-up resistor is provided.  
Also serve as an external interrupt input (INT1 to INT7).  
These ports are a hysteresis input type.  
4
3
6
P70/BZ1  
P71/UCK  
G
K
N-ch open-drain I/O port  
Also serves as a buzzer output.  
5
N-ch open-drain I/O port  
Also serves as a UART clock I/O (UCK) switchable to  
CMOS.  
2
4
P72/UO  
K
N-ch open-drain I/O port  
Also serves as a UART data output (UO) switchable to  
CMOS.  
1
3
2
P73/UI  
G
K
N-ch open-drain I/O port  
Also serves as a UART data input (UI).  
80  
P74/SCK  
N-ch open-drain I/O port  
Also serves as the clock I/O for the serial I/O (SCK)  
switchable to CMOS.  
79  
78  
1
P75/SO  
P76/SI  
K
N-ch open-drain I/O port  
Also serves as the data output (SO) for the serial I/O  
switchable to CMOS.  
80  
G
H
N-ch open-drain I/O port  
Also serves as the data input (SI) for the serial I/O.  
8 to 5  
57,  
10 to 7  
59,  
P80 to P83  
P85,  
N-ch open-drain output ports  
58  
60  
P84  
53  
13, 56  
75  
55  
15, 58  
77  
VCC  
Power supply pin  
VSS  
Power supply (GND) pin  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
76  
78  
77  
79  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: FPT-80P-M11  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
10  
MB89670/A Series  
• External EPROM pins (MB89PV670A only)  
Pin no.  
Pin name  
A15  
I/O  
Function  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
O
Address output pins  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
93  
94  
95  
O1  
O2  
O3  
I
Data input pins  
96  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
98  
99  
100  
101  
102  
O4  
O5  
O6  
O7  
O8  
103  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
104  
105  
A10  
O
O
Address output pin  
OE/VPP  
ROM output enable pin  
Outputs “L” at all times.  
107  
108  
109  
A11  
A9  
A8  
O
Address output pins  
110  
111  
112  
A13  
A14  
VCC  
O
O
O
81  
92  
N.C.  
Internally connected pins  
Be sure to leave them open.  
97  
106  
11  
MB89670/A Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
Crystal or ceramic oscillation type  
• At an oscillation feedback resistor of approximately  
1 M/5.0 V  
X1  
X0  
Standby control signal  
B
C
• At an output pull-up resistor (P-ch) of approximately  
R
50 k/5.0 V  
• Hysteresis input  
P-ch  
N-ch  
D
• CMOS output  
• CMOS inout  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional (except P22 and P23)  
E
• CMOS output  
• CMOS input  
• The peripheral is a hysteresis input type.  
R
P-ch  
P-ch  
N-ch  
Peripheral  
Port  
• Pull-up resistor optional  
(Continued)  
12  
MB89670/A Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
P-ch  
N-ch  
G
• N-ch open-drain output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
• N-ch open-drain output  
H
I
N-ch  
• N-ch open-drain output  
• Analog input  
P-ch  
N-ch  
Analog input  
J
• Hysteresis input  
• With software pull-up resistor  
R
P-ch  
Pull-up control  
signal  
K
• CMOS output  
• Hysteresis input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
13  
MB89670/A Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
14  
MB89670/A Series  
PROGRAMMING TO THE EPROM ON THE MB89P677A  
The MB89P677A is an OTPROM version of the MB89670/A series.  
1. Features  
• 32-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in the EPROM mode is diagrammed below.  
Normal operating mode  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0000H  
0080H  
0100H  
0200H  
Register  
RAM  
0480H  
8000H  
8007H  
External area  
Option area  
0000H  
Option area  
0007H  
PROM  
Program area  
(EPROM)  
FFFFH  
7FFFH  
15  
MB89670/A Series  
3. Programming to the EPROM  
In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH  
while operating as a normal operating mode assign to 0007H to 7FFFH in EPROM mode).  
Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each  
corresponding option, see “7. Bit Map for PROM Options.”)  
(3) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter  
Package  
Compatible socket adapter  
ROM-80QF2-28DP-8L  
FPT-80P-M11  
FPT-80P-M06  
ROM-80QF-28DP-8L2  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or  
VCC and VSS can stabilize programming operations.  
16  
MB89670/A Series  
7. PROM Option Bit Map  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Oscillation stabilization time  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reset pin  
output  
1: Yes  
Power-on  
reset  
1: Yes  
0: No  
00: 24/FC  
10: 217/FC  
01: 214/FC  
11: 218/FC  
0000H  
0001H  
0002H  
0003H  
0004H  
0005H  
0006H  
Readable  
Readable  
Readable  
Readable  
0: No  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Vacancy  
Vacancy  
Vacancy  
P74  
P73  
P72  
P71  
P70  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P04 to P07 P00 to P03 P76  
Pull-up  
1: No  
P75  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
Readable  
0: Yes  
Notes: Set each bit to 1 to erase.  
Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
17  
MB89670/A Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C512-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Adapter socket part number  
LCC-32(Rectangle) ROM-32LC-28DP-YG  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
3. Memory Space  
Memory space in each mode is diagrammed below.  
Address  
0000H  
Normal operating mode  
I/O  
Corresponding address on the EPROM programmer  
0000H  
0080H  
Not available  
RAM  
0480H  
4000H  
External area  
4000H  
8000H  
8007H  
8000H  
*
*
8007H  
PROM  
48 KB  
EPROM  
48 KB  
FFFFH  
FFFFH  
*: Note that for the MB89P677A this area comprise an option setting area.  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C512.  
(2) Load program data into the EPROM programmer at 4000H to FFFFH.  
(3) Program to 4000H to FFFFH with the EPROM programmer.  
18  
MB89670/A Series  
BLOCK DIAGRAM  
1. MB89673  
X0  
X1  
Time-base timer  
Oscillator  
Clock controller  
CMOS I/O port  
16-bit up/down counter  
Reset circuit  
(WDT)  
RST  
P37/UDA2  
P36/UDB2  
P35/UDZ2  
8-bit up/down  
counter  
RAM  
P34/UDA1  
P33/UDB1  
P32/UDZ1  
8-bit up/down  
counter  
F2MC-8L  
CPU  
P47/EC  
16-bit timer/counter  
ROM  
8/16-bit timer  
8-bit timer  
P46/TCO2  
CMOS I/O port  
P45/TCO1  
P44/TCI  
8
P00/AD0 to  
P07/AD7  
8-bit timer  
8
2-channel 8-bit  
PWM timer  
P10/A08 to  
P17/A15  
P43/PWM11  
MOD0  
MOD1  
8-bit timer #2  
8-bit timer #1  
External bus  
interface  
P42/PWM10/BZ2  
P41/PWM01  
P40/PWM00  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
P31/PWM21  
P30/PWM20  
8-bit PWM timer #3  
CMOS output port  
P76/SI  
P75/SO  
P74/SCK  
8-bit serial  
UART  
6
N-ch open-drain  
output port  
P80 to P85  
8
P50/AN0 to  
P57/AN7  
8
P73/UI  
P72/UO  
P71/UCK  
10-bit A/D converter  
AVR  
AVCC  
AVSS  
Buzzer output  
P70/BZ1  
Input port  
N-ch open-drain I/O port  
8
8
P60/INT0/ADST to  
P67/INT7  
External interrupt  
19  
MB89670/A Series  
2. MB89677A/89P677A/89PV670A  
Time-base timer  
X0  
X1  
Oscillator  
CMOS I/O port  
Clock controller  
16-bit up/down counter  
Reset circuit  
(WDT)  
RST  
P37/UDA2  
P36/UDB2  
P35/UDZ2  
8-bit up/down  
counter  
P34/UDA1  
P33/UDB1  
P32/UDZ1  
RAM  
8-bit up/down  
counter  
F2MC-8L  
CPU  
P47/EC  
16-bit timer/counter  
8/16-bit timer  
8-bit timer  
ROM  
P46/TCO2  
P45/TCO1  
P44/TCI  
8-bit timer  
CMOS I/O port  
8
8
P00/AD0 to  
P07/AD7  
P30/PWM20  
P31/PWM21  
P41/PWM01  
P43/PWM11  
8-bit PWM timer #3  
8-bit PWM timer #4  
8-bit PWM timer #5  
8-bit PWM timer #6  
P10/A08 to  
P17/A15  
MOD0  
MOD1  
External bus  
interface  
P27/ALE  
P26/RD  
P25/WR  
P24/CLK  
P23/RDY  
P22/HRQ  
P21/HAK  
P20/BUFC  
2-channel 8-bit  
PWM timer  
P40/PWM00  
P42/PWM10/BZ2  
8-bit timer #1  
8-bit timer #2  
CMOS output port  
6
8
N-ch open-drain  
output port  
P80 to P85  
P76/SI  
P75/SO  
P74/SCK  
8-bit serial  
UART  
8
P50/AN0 to  
P57/AN7  
10-bit AD converter  
AVR  
AVCC  
AVSS  
P73/UI  
P72/UO  
P71/UCK  
Input port  
P70/BZ1  
Buzzer output  
8
8
P60/INT0/ADST to  
P67/INT7  
External interrupt  
N-ch open-drain I/O port  
20  
MB89670/A Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89670/A series offer a memory space of 64 Kbytes for storing all of I/O, data,  
and program areas. The I/O area is located at the lowest address. The data area is provided immediately above  
the I/O area. The data area can be divided into register, stack, and direct areas according to the application.  
The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables  
of interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89670/A series is structured as illustrated below.  
Memory Space  
MB89673  
MB89P677A  
MB89677A  
MB89PV670A  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
I/O  
I/O  
RAM  
I/O  
RAM  
RAM  
0100H  
0200H  
0100H  
0200H  
0100H  
0200H  
Register  
Register  
Register  
0480H  
4000H  
0480H  
External area  
External area  
External area  
8000H  
8007H  
8000H  
8007H  
8000H  
8007H  
Option PROM (One-time  
PROM product)*  
*
*
Programmable  
ROM  
Programmable  
ROM  
E000H  
FFFFH  
ROM  
FFFFH  
FFFFH  
*: Since addresses 8000H to 8006H for the MB89P677A comprise an option  
area, do not use this area for the other products in this series.  
21  
MB89670/A Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whenthe instructionisan8-bitdataprocessinginstruction,thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
22  
MB89670/A Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
23  
MB89670/A Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89677A. On the MB89673, there are 16  
banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to  
addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank  
pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
24  
MB89670/A Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Initial value  
Port 0 data register  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X 0 1 B  
DDR0  
Port 0 data direction register  
Port 1 data register  
(R/W)  
(W)  
PDR1  
DDR1  
Port 1 data direction register  
Port 2 data register  
(R/W)  
(W)  
PDR2  
BCTR  
External bus pin control register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SYCC  
STBC  
WDTE  
TBCR  
System clock control register  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
Vacancy  
X – – M MX 0 0 B  
0 0 0 1 X X X X B  
X X X X X X X X B  
0 0 X X X 0 0 0 B  
(R/W)  
(W)  
PDR3  
DDR3  
PDR4  
DDR4  
PDR5  
PDR6  
PPCR  
PDR7  
PDR8  
BUZR  
CNTR  
COMP  
TMCR  
TCHR  
TCLR  
Port 3 data register  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
1 1 1 1 1 1 1 1 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X 1 1 1 1 1 1 1 B  
0 0 1 1 1 1 1 1 B  
X X X X X 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Port 3 data direction register  
Port 4 data register  
(R/W)  
(W)  
Port 4 data direction register  
Port 5 data register  
(R/W)  
(R)  
Port 6 data register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
Port 6 pull-up control register  
Port 7 data register  
Port 8 data/port 7 swiching register  
Buzzer control register  
PWM control register #3  
PWM compare register #3  
16-bit timer control register  
16-bit timer count register H  
16-bit timer count register L  
Vacancy  
(R/W)  
(R/W)  
SMR  
SDR  
Serial mode register  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
Serial data register  
Vacancy  
Vacancy  
–: Unused, X: Undefined, M: Set using the mask option  
(Continued)  
25  
MB89670/A Series  
Address  
20H  
Read/write  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
Register name  
ADC1  
Register description  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register H  
A/D converter data register L  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
Initial value  
0 0 0 0 0 0 0 0 B  
X 0 0 0 0 0 0 1 B  
– – – – – – X X B  
X X X X X X X X B  
X 0 0 0 X X X 0 B  
X 0 0 0 X X X 0 B  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X 0 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
21H  
ADC2  
22H  
ADCH  
23H  
ADCL  
24H  
T2CR  
25H  
T1CR  
26H  
T2DR  
27H  
T1DR  
Timer 1 data register  
28H  
CNTR1  
CNTR2  
CNTR3  
COMR2  
COMR1  
PWM timer control register 1  
PWM timer control register 2  
PWM timer control register 3  
PWM timer compare register 2  
PWM timer compare register 1  
Vacancy  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
(W)  
Vacancy  
Vacancy  
(R)  
(W)  
UDCR1  
RCR1  
Up/down counter register 1  
Reload compare register1  
X X X X X X X X B  
X X X X X X X X B  
30H  
31H  
(R)  
(W)  
UDCR2  
RCR2  
Up/down counter register 2  
Reload compare register2  
X X X X X X X X B  
X X X X X X X X B  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
CCRA1  
CCRA2  
CCRB1  
CCRB2  
CSR1  
CSR2  
EIC1  
Counter control register A1  
Counter control register A2  
Counter control register B1  
Counter control register B2  
Counter status register 1  
Counter status register 2  
External interrupt 1 control register 1  
External interrupt 1 control register 2  
External interrupt 2 enable register  
External interrupt 2 flag register  
Vacancy  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X X X X 0 0 0 0 B  
EIC2  
EIE2  
EIF2  
Vacancy  
Vacancy  
Vacancy  
–: Unused, X: Undefined, M: Set using the mask option  
(Continued)  
26  
MB89670/A Series  
(Continued)  
Address  
40H  
Read/write  
(R/W)  
Register name  
USMR  
Register description  
Initial value  
UART mode register  
UART control register  
UART status register  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 1 X X X B  
41H  
(R/W)  
USCR  
42H  
(R/W)  
USTR  
(R)  
(W)  
RXDR  
TXDR  
UART receiver data register  
UART transmitter data register  
X X X X X X X X B  
X X X X X X X X B  
43H  
44H  
45H  
Vacancy  
(R/W)  
RRDR  
Baud rate generator reload data register  
Vacancy  
X X X X X X X X B  
46H  
47H  
Vacancy  
48H*  
49H*  
4AH*  
4BH*  
4CH*  
4DH*  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
CNTR #4  
COMP #4  
CNTR #5  
COMP #5  
CNTR #6  
COMP #6  
PWM timer control register #4  
PWM timer compare register #4  
PWM timer control register #5  
PWM timer compare register #5  
PWM timer control register #6  
PWM timer compare register #6  
0 X 0 0 0 0 0 0 B  
X X X X X X X X B  
0 X 0 0 0 0 0 0 B  
X X X X X X X X B  
0 X 0 0 0 0 0 0 B  
X X X X X X X X B  
4E to  
7AH  
Vacancy  
7BH  
7CH  
7DH  
7EH  
7FH  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
–: Unused, X: Undefined, M: Set using the mask option  
* : For the MB89673, these are vacancies.  
Note: Do not use vacancies.  
27  
MB89670/A Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
V
V
Power supply voltage  
*
AVCC  
A/D converter reference input  
voltage  
AVR must not exceed  
AVCC + 0.3 V.  
AVR  
VSS – 0.3  
VCC + 0.3  
V
Input voltage  
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
VCC + 0.3  
VSS + 7.0  
V
V
V
VO1  
VO2  
Except P80 to P85  
P80 to P85  
Output voltage  
“L” level maximum output  
current  
IOL  
20  
4
mA  
mA  
Average value (operating  
current × operating rate)  
IOLAV1  
“L” level average output current  
Average value (operating  
IOLAV2  
8
mA current × operating rate)  
P80 to P85  
“L” level total maximum output  
current  
IOL  
100  
40  
mA  
“L” level total average output  
current  
Average value (operating  
mA  
IOLAV  
IOH  
current × operating rate)  
“H” level maximum output  
current  
–20  
–4  
mA  
Average value (operating  
mA  
“H” level average output current  
IOHAV  
IOH  
IOHAV  
current × operating rate)  
“H” level total maximum output  
current  
–50  
–20  
mA  
“H” level total average output  
current  
Average value (operating  
mA  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set at the same voltage.  
Take care so that AVR does not exceed AVCC + 0.3 V and AVCC does not exceed VCC, such as when power is  
turned on.  
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Func-  
tional operation should be restricted to the conditions as detailed in the operational sections of this  
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
28  
MB89670/A Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance range  
MB89673/677A  
2.2*  
6.0  
V
Power supply voltage  
VCC  
Normal operation assurance range  
MB89PV670A/P677A  
2.7*  
1.5  
6.0  
6.0  
V
V
Retains the RAM state in stop mode  
A/D converter reference input  
voltage  
AVR  
TA  
0.0  
AVCC  
+85  
V
Operating temperature  
–40  
°C  
* : These values vary with the operating frequency, and analog assurance range. See Figure 1 and “5. A/D Converter  
Electrical Characteristics.”  
6
5
A/D converter accuracy assured in the  
Operation assurance range  
VCC = AVCC = 3.5 V to 6.0 V range.  
4
3
2
1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Clock operating frequency (MHz)  
4.0 2.0  
0.8  
0.4  
Minimum execution time (µs)  
Note: The shaded area is assured only for the MB89673/677A.  
Figure 1 Operating Voltage vs. Clock Operating Frequency  
Figure 1 indicates the operating frequency of the external oscillator at an minimum execution time of 4/FC.  
Since the operating voltage range is dependent on the minimum execution time, see minimum execution time  
if the operating speed is switched using a gear.  
29  
MB89670/A Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P32 to P37,  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47  
VCC + 0.3  
P44, and P47  
are port input.  
P32 to P37,  
P44, and P47  
are peripheral  
input.  
VIH  
0.7 VCC  
V
V
V
“H” level input voltage  
RST, MOD0, MOD1,  
P32 to P37, P44, P47,  
P60 to P67, P70 to P76  
VCC + 0.3  
0.3 VCC  
VIHS  
VIL  
0.8 VCC  
P32 to P37,  
P44, and P47  
are port input.  
P32 to P37,  
P44, and P47  
are peripheral  
input.  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47  
VSS 0.3  
“L” level input voltage  
RST, MOD0, MOD1,  
P32 to P37, P44, P47,  
P60 to P67, P70 to P76  
VSS 0.3  
VSS 0.3  
4.0  
VILS  
VD  
0.2 VCC  
VSS + 6.0  
V
V
V
Open-drain output  
pin application voltage  
P80 to P85  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P71, P72,  
P74, P75  
“H” level output  
voltage  
VOH  
IOH = –2.0 mA  
IOL = 4.0 mA  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P70 to P76  
VOL1  
0.4  
V
“L” level output  
voltage  
VOL2  
VOL3  
P80 to P85  
RST  
IOL = 10 mA  
IOL = 4.0 mA  
0.5  
0.4  
V
V
P00 to P07, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, P70 to P76,  
MOD0, MOD1  
Input leakage current  
(Hi-z output leakage  
current)  
ILI1  
0.0 V < VI < VCC  
±5  
µA  
Without pull-  
up resistor  
0.0 V < VI < VCC  
VI = 0.0 V  
ILI2  
P80 to P85  
±1  
µA  
kΩ  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P60 to P67, P70 to P76,  
RST  
With pull-up  
resistor  
Pull-up resistance  
RPULL  
25  
50  
100  
(Continued)  
30  
MB89670/A Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
FC = 10 MHz  
VCC = 5.0 V  
tinst*2 = 0.4 µs  
ICC1  
12  
20  
mA  
MB89673  
FC = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
MB89677A  
1
1.5  
3
2
2.5  
7
mA  
mA  
mA  
ICC2  
MB89PV670A  
MB89P677A  
FC = 10 MHz  
VCC = 5.0 V  
tinst*2 = 0.4 µs  
FC = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
VCC  
ICCS1  
ICCS2  
ICCH  
Power supply  
current*1  
1
6
1.5  
1
mA  
mA  
mA  
VCC = 3.0 V  
TA = +25°C  
Stop mode  
FC = 10 MHz  
When A/D  
IA  
8
converter starts  
AVCC  
FC = 10 MHz  
TA = +25°C  
IAH  
1
µA  
When A/D  
converter stops  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
f = 1 MHz  
10  
pF  
*1: The measurement conditions of the power supply current are as follows: the external clock and open output pins.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
31  
MB89670/A Series  
4. AC Characteristics  
(1) Reset Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL  
ns  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Min. Max.  
Symbol Condition  
Unit  
Remarks  
Power supply rising time  
Power supply cut-off time  
tR  
1
50  
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tR  
tOFF  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
VCC  
32  
MB89670/A Series  
(3) Clock Timing  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Min.  
1
Max.  
10  
Clock frequency  
Clock cycle time  
FC  
X0, X1  
X0, X1  
MHz  
ns  
tXCYL  
100  
1000  
PWH  
PWL  
Input clock pulse width  
X0  
X0  
20  
ns  
ns  
External clock  
External clock  
Input clock rising/falling  
time  
tCR  
tCF  
10  
X0 and X1 Timing and Conditions  
tXCYL  
PWH  
PWL  
tCF  
tCR  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
FC  
Open  
C1  
C2  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
Instruction cycle  
(minimum execution time)  
(4/FC) tinst = 0.4 µs when operating at  
FC = 10 MHz  
tinst  
4/FC, 8/FC, 16/FC, 64/FC  
µs  
33  
MB89670/A Series  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR series)  
X 0  
X 1  
F A R *  
C 1  
C 2  
*: Fujitsu Acoustic Resonator  
C1 = C2 = 20 pF±8 pF (built-in FAR)  
Initial deviation of  
FAR frequency  
(TA = +25°C)  
Temperature characteristics of  
FAR frequency  
FAR part number  
(built-in capacitor type)  
Frequency  
(TA = –20°C to +60°C)  
FAR-C4CB-08000-M02  
FAR-C4CB-10000-M02  
8.00 MHz  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
10.00 MHz  
Inquiry: FUJITSU LIMITED  
34  
MB89670/A Series  
Sample Application of Ceramic Resonator  
X 0  
X 1  
*
C 1  
C 2  
Resonator manufacturer*  
Kyocera Corporation  
Resonator  
Frequency  
7.68 MHz  
8.0 MHz  
C1 (pF)  
33  
C2 (pF)  
33  
R (k)  
KBR-7.68MWS  
KBR-8.0MWS  
CSA8.00MTZ  
33  
33  
Murata Mfg. Co., Ltd.  
8.0 MHz  
30  
30  
Inquiry: Kyocera Corporation  
AVX Corporation  
North American Sales Headquarters: TEL 1-803-448-9411  
AVX Limited  
European Sales Headquarters: TEL 44-1252-770000  
AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters: TEL 852-363-3303  
Murata Mfg. Co., Ltd.  
Murata Electronics North America, Inc.: TEL 1-404-436-1300  
Murata Europe Management GmbH: TEL 49-911-66870  
Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233  
35  
MB89670/A Series  
(6) Clock Output Timing  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Cycle time  
CLK ↑ → CLK ↓  
tCYC  
tCHCL  
CLK  
CLK  
1/2 tinst*  
µs  
µs  
1/4 tinst – 0.07  
1/4 tinst  
* : For information on tinst, see “(4) Instruction Cycle.”  
tCYC  
tCHCL  
2.4 V  
2.4 V  
CLK  
0.8 V  
36  
MB89670/A Series  
(7) Bus Read Timing  
Parameter  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
1/4 tinst* – 0.06  
1/2 tinst *– 0.02  
Max.  
RD, A15 to 08,  
AD7 to 0  
Valid address RD  
time  
tAVRL  
tRLRH  
tAVDV  
µs  
RD pulse width  
RD  
µs  
Valid address Data  
read time  
AD7 to 0,  
A15 to 08  
1/2 tinst *  
µs Wait  
RD, AD7 to 0  
AD7 to 0, RD  
RD, ALE  
1/2 t  
inst *– 0.08  
RD ↓ → Data read time tRLDV  
RD ↑ → Data hold time tRHDX  
0
µs No wait  
ns  
µs  
µs  
µs  
ns  
ns  
1/4 tinst* – 0.04  
RD ↑ → ALE time  
RD ↑ → Address loss time  
RD ↓ → CLK time  
CLK ↓ → RD time  
RD ↓ → BUFC time  
tRHLH  
tRHAX  
tRLCH  
tCLRH  
tRLBL  
RD, A15 to 08  
RD, CLK  
1/4 t  
inst* – 0.04  
1/4 tinst* – 0.04  
RD, CLK  
0
RD, BUFC  
–5  
A15 to 08,  
AD7 to 0,  
BUFC  
BUFC ↑ → Valid  
address time  
tBHAV  
5
ns  
* : For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
0.8 V  
tRHLH  
ALE  
0.8 V  
0.7 VCC  
0.7 VCC  
0.3 VCC  
2.4 V  
2.4 V  
AD  
0.8 V  
0.8 V  
0.3 VCC  
tAVDV  
tRHDX  
2.4 V  
2.4 V  
2.4 V  
0.8 V  
A
tRLCH  
tCLRH  
0.8 V  
0.8 V  
tAVRL  
tRLDV  
tRLRH  
tRHAX  
2.4 V  
RD  
0.8 V  
tRLBL  
tBHAV  
2.4 V  
BUFC  
0.8 V  
37  
MB89670/A Series  
(8) Bus Write Timing  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
AD7 to 0, ALE,  
A15 to 08  
Valid address ALE  
time  
1/4 tinst* 2 – 0.064  
tAVLL  
tLLAX  
µs  
AD7 to 0, ALE,  
A15 to 08  
ALE time →  
Address loss time  
5*1  
ns  
Valid address WR time  
WR pulse width  
1/4 tinst* 2 – 0.06  
1/2 tinst* 2 – 0.02  
1/2 tinst* 2 – 0.06  
tAVWL  
tWLWH  
tDVWL  
tWHAX  
tWHDX  
tWHLH  
tWLCH  
tCLWH  
tLHLL  
WR, ALE  
WR  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
Writing data WR time  
WR ↑ → Address loss time  
WR ↑ → Data hold time  
WR ↑ → ALE time  
WR ↓ → CLK time  
CLK ↓ → WR time  
ALE pulse width  
AD7 to 0, WR  
WR, A15 to 08  
AD7 to 0, WR  
WR, ALE  
WR, CLK  
WR, CLK  
ALE  
inst* 2 – 0.04  
1/4 t  
1/4 tinst* 2 – 0.04  
1/4 tinst* – 0.04  
1/4 tinst* 2 – 0.04  
0
1/4 tinst* 2 – 0.035  
1/4 tinst* 2 – 0.03  
ALE ↓ → CLK time  
tLLCH  
ALE, CLK  
*1: These characteristics are also applicable to the bus read timing.  
*2: For information on tinst, see “(4) Instruction Cycle.”  
2.4 V  
CLK  
ALE  
0.8 V  
tLHLL  
tLLCH  
tWHLH  
2.4 V  
0.8 V  
0.8 V  
tAVLL  
tLLAX  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
0.8 V  
AD  
A
0.8 V  
0.8 V  
0.8 V  
tWHDX  
tDVWH  
2.4 V  
0.8 V  
2.4 V  
tCLWH  
tWLCH  
0.8 V  
tAVWL  
tWHAX  
tWLWH  
2.4 V  
WR  
0.8 V  
38  
MB89670/A Series  
(9) Ready Input Timing  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tYVCH  
tCHYX  
Pin  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
RDY valid CLK  
time  
RDY, CLK  
RDY, CLK  
60  
ns  
ns  
*
*
CLK ↑ → RDY invalid  
0
time  
* : These characteristics are also applicable to the read cycle.  
2.4 V  
2.4 V  
CLK  
ALE  
AD  
A
Address  
Data  
WR  
tYVCH tCHYX  
RDY  
tYVCH tCHYX  
Note: The bus cycle is also extended in the read cycle in the same manner.  
39  
MB89670/A Series  
(10) Serial I/O Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
SCK  
Condition  
Unit Remarks  
Parameter  
Min.  
2 tinst*  
–200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK, SO  
SI, SCK  
SCK, SI  
SCK  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
SCK ↑ → valid SI hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
tSCYC  
Internal Shift Clock Mode  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SI  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SI  
40  
MB89670/A Series  
(11) Peripheral Input Timing  
Parameter  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
1 tinst*  
1 tinst*  
Max.  
Peripheral input “H” pulse width 1 tILIH1  
Peripheral input “L” pulse width 1 tIHIL1  
TCI  
TCI  
EC,  
µs  
µs  
Peripheral input “H” pulse width 2 tILIH2  
Peripheral input “L” pulse width 2  
2 tinst*  
2 tinst*  
µs  
µs  
INT0 to INT7  
EC,  
tIHIL2  
INT0 to INT7  
Peripheral input “H” pulse width 3 tILIH3  
Peripheral input “L” pulse width 3 tIHIL3  
Peripheral input “H” pulse width 3 tILIH3  
Peripheral input “L” pulse width 3  
ADST  
ADST  
ADST  
ADST  
64 tinst*  
64 tinst*  
64 tinst*  
64 tinst*  
µs  
µs  
µs  
µs  
A/D  
mode  
Sense  
mode  
tIHIL3  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.8 VCC  
TCI  
0.2 VCC  
0.2 VCC  
tIHIL2  
tILIH2  
0.8 VCC  
EC  
INT0 to INT7  
0.2 VCC  
0.2 VCC  
tIHIL3  
tILIH3  
0.8 VCC  
ADST  
0.2 VCC  
0.2 VCC  
41  
MB89670/A Series  
(12) Up/down Counter Input Timing  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Condition  
Unit  
Remarks  
Parameter  
Min.  
2 tinst*  
2 tinst*  
2 tinst*  
2 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
1 tinst*  
Max.  
AIN input “1” pulse width  
AIN input “0” pulse width  
BIN input “1” pulse width  
BIN input “0” pulse width  
AIN ↑ → BIN time  
tAHL  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tALL  
tBHL  
tBLL  
tAUBU  
tBUAD  
tADBD  
tBDAU  
tBUAU  
tAUBD  
tBDAD  
tADBU  
tZHL  
BIN ↑ → AIN time  
P36, P37,  
P33, P34  
AIN ↓ → BIN time  
BIN ↓ → AIN time  
BIN ↑ → AIN time  
AIN ↑ → BIN time  
BIN ↓ → AIN time  
AIN ↓ → BIN time  
ZIN input “1” pulse width  
ZIN input “0” pulse width  
P32, P35  
tZLL  
* : For information on tinst, see “(4) Instruction Cycle.”  
42  
MB89670/A Series  
tAHL  
tALL  
0.8 VCC  
0.8 VCC  
AIN  
BIN  
0.2 VCC  
0.2 VCC  
tAUBU  
tBUAD  
tADBD  
tBDAU  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tBHL  
tBLL  
tBHL  
tBLL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
BIN  
AIN  
0.2 VCC  
0.2 VCC  
tBUAU  
tAUBD  
tBDAD  
tADBU  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tAHL  
tALL  
0.8 VCC  
0.8 VCC  
tZHL  
ZIN  
tZLL  
0.2 VCC  
0.2 VCC  
43  
MB89670/A Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Parameter  
Resolution  
Symbol  
Pin  
Unit  
Remarks  
Min.  
Max.  
10  
bit  
Linearity error  
±2.0  
±1.5  
±3.0  
LSB  
LSB  
LSB  
mV  
Differential linearity error  
Total error  
AVCC =  
AVR = VCC  
Zero transition voltage  
AN0 to AN7 AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB  
VOT  
Full-scale transition  
voltage  
AN0 to AN7 AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB  
VFST  
mV  
LSB  
µs  
Interchannel disparity  
4
A/D mode conversion  
time  
At 10-MHz  
oscillation  
13.2  
Analog port input current  
Analog input voltage  
Reference voltage  
AN0 to AN7  
AN0 to AN7  
AVR  
IAIN  
0
10  
µA  
V
AVR  
AVCC  
0
V
Reference voltage  
supply current  
IR  
AVR  
200  
µA AVR = 5.0 V  
Precautions: • The smaller | AVR – AVSS |, the greater the error would become relatively.  
• The output impedance of the external circuit for the analog input must satisfy the following conditions:  
Output impedance of the external circuit < Approx. 10 kΩ  
If the output impedance of the external circuit is too high, an analog voltage sampling time might be  
insufficient (sampling time = 6 µs at 10 MHz oscillation).  
An analog input equivalent circuit is shown below.  
Sample hold circuit  
R 10 kis  
recommended.  
.
C = 60 pF  
.
AN  
Comparator  
.
R = 3 kΩ  
.
Analog channel selector  
Close for approx. 15 instruction cycles  
after activating A/D conversion.  
If R > 10 k, it is recommended  
to connect an external capacitor  
of approx. 0.1 µF.  
Microcontroller’s internal circuit  
Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the  
sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the  
analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.  
It is recommended to keep the input impedance to the analog pin not exceed 10 k. If it exceeds 10 k, it is  
recommended to connect a capacitor of approx. 0.1 µF for the analog input pin.  
ExceptforthesamplingperiodafterA/Dactivation, theinputleakagecurrentoftheanaloginputpinislessthan10µA.  
44  
MB89670/A Series  
(1) A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
• Linearity error  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1111” “11 1111 1110”) from actual conversion characteristics  
• Differential linearity error  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error  
The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale  
transition error, linearity error, quantization error, and noise.  
Theoreticall I/O characteristics  
VFST  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
Actual conversion  
value  
1.5 LSB  
{1 LSB × N + 0.5 LSB}  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
VOT  
Actual conversion  
value  
1 LSB  
Theoretical value  
0.5 LSB  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
Analog input  
VFST – VOT  
VNT – {1 LSB × N + 0.5 LSB}  
1 LSB =  
(V)  
Total error of digital output N  
1022  
1 LSB  
(Continued)  
45  
MB89670/A Series  
(Continued)  
Zero transition error  
Full-scale transition error  
004  
Theoretical value  
Actual conversion  
value  
3FF  
3FE  
3FD  
3FC  
Actual conversion  
value  
003  
002  
VFST (Actual  
measured value)  
Theoretical  
value  
Actual conversion  
value  
Actual conversion  
value  
001  
VOT (Actual measured value)  
Analog input  
AVSS  
AVR  
Analog input  
Linearity error  
Differential linearity error  
3FF  
3FE  
3FD  
Theoretical value  
Actual conversion  
value  
N + 1  
{1 LSB × N + VOT}  
Actual conversion  
value  
V(N + 1)T  
VFST (Actual  
measured  
value)  
N
VNT  
004  
003  
002  
001  
N – 1  
N – 2  
VNT  
Actual conversion  
value  
Actual conversion  
value  
Theoretical value  
VOT (Actual measured value)  
Analog input  
AVSS  
AVR  
AVSS  
AVR  
– 1  
Analog input  
VNT – {1 LSB × N + VOT}  
V(N+1)T – VNT  
Linearity error of digital output N =  
Differential linearity error of digital output N =  
1 LSB  
1 LSB  
46  
MB89670/A Series  
EXAMPLE CHARACTERISTICS  
(2) “H” Level Output Voltage  
(1) “L” Level Output Voltage  
VCC – VOH vs. IOH  
VOL vs. IOL  
VOL (V)  
VCC – VOH (V)  
1.0  
VCC = 2.5 V  
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 3.0 V  
0.5  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
5.0  
TA = +25°C  
VIN vs. VCC  
VIN (V)  
4.5  
5.0  
4.0  
VIHS  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
VILS  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
0
1
2
3
4
5
6
7
VCC (V)  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
47  
MB89670/A Series  
(5) Power Supply Current (External Clock)  
ICCS1 vs. VCC, ICCS2 vs. VCC  
I
CC1 vs. VCC, ICC2 vs. VCC  
I
CC (mA)  
ICCS (mA)  
25  
25  
20  
15  
10  
TA = +25°C  
FC = 10 MHz  
External clock  
T
F
A
C
= +25°C  
= 10 MHz  
External clock  
I
CC1 (Divide by 4)  
20  
15  
10  
ICCS1 (Divide by 4)  
ICCS2 (Divide by 64)  
I
CC2 (Divide by 64)  
5
0
5
0
2
3
4
5
6
7
2
3
4
5
6
7
V
CC (V)  
VCC (V)  
(6) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25°C  
500  
100  
50  
10  
1
2
3
4
5
6
VCC (V)  
48  
MB89670/A Series  
INSTRUCTIONS  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
49  
MB89670/A Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
CCR  
RP  
Ri  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
Number of instructions  
Number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH immediately before the instruction  
is executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
50  
MB89670/A Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
51  
MB89670/A Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
A
C
C A  
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
52  
MB89670/A Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
53  
MB89670/A Series  
INSTRUCTION MAP  
54  
MB89670/A Series  
MASK OPTIONS  
MB89673  
MB89677A  
Part number  
MB89P677A  
MB89PV670A  
No.  
Specify when  
ordering masking  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
Pull-up resistors  
P10 to P17,  
1
Selectable by pin  
Selectable by pin  
P30 to P37, P40 to P47,  
P70 to P76  
Fixed to without  
pull-up resistor  
Pull-up resistors  
P00 to P03  
Selectable in 4-pin  
unit  
2
3
Selectable by pin  
Selectable by pin  
Pull-up resistors  
P04 to P07  
Selectable in 4-pin  
unit  
Power-on reset  
Fixed to with  
power-on reset  
4
5
6
With power-on reset  
Without power-on reset  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Oscillation stabilization time  
selection (at 10 MHz)  
Approx. 218/FC (about 26.2 ms)  
Fixed to Approx.  
218/FC (Approx.  
26.2 ms)  
Approx. 217/FC (about 13.1 ms)  
Approx. 214/FC (about 1.6 ms)  
Approx. 24/FC (about 0 ms)  
FC: Clock frequency  
Reset pin output  
With reset output  
Without reset output  
Fixed to with reset  
output  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89673PF  
MB89677APF  
MB89P677APF  
80-pin Plastic QFP  
(FPT-80P-M06)  
MB89673PFM  
MB89677APFM  
MB89P677APFM  
80-pin Plastic QFP  
(FPT-80P-M11)  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
MB89P670ACF  
55  
MB89670/A Series  
PACKAGE DIMENSIONS  
80-pin Plastic QFP  
(FPT-80P-M11)  
16.00±0.20(.630±.008)SQ  
1.50+00..1200  
.059+..000048  
60  
61  
41  
40  
14.00±0.10(.551±.004)SQ  
15.00  
(.591)  
NOM  
12.35  
(.486)  
REF  
1 PIN INDEX  
80  
21  
1
Details of "A" part  
0.10±0.10  
LEAD No.  
"A"  
0.127+00..0025  
.005+..000012  
20  
(STAND OFF)  
0.65(.0256)TYP  
0.30±0.10  
(.012±.004)  
M
(.004±.004)  
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10(.004)  
0
10°  
C
1994 FUJITSU LIMITED F80016S-1C-2  
Dimensions in mm (inches)  
56  
MB89670/A Series  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
REF  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
16.30±0.40  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F80010S-3C-2  
Dimensions in mm (inches)  
57  
MB89670/A Series  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
18.70(.736)TYP  
12.00(.472)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
1.50(.059)TYP  
1.00(.040)TYP  
0.80±0.25  
(.0315±.010)  
INDEX AREA  
1.20+00..2400  
4.50(.177)  
TYP  
.047 +..000186  
0.80±0.25  
(.0315±.010)  
1.27±0.13  
(.050±.005)  
INDEX AREA  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.40(.724)  
REF  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
24.70(.972)  
TYP  
TYP  
TYP  
INDEX  
6.00(.236)  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20+00..2400  
.047+..000186  
1.50(.059)  
TYP  
1.00(.040)  
TYP  
0.15±0.05 8.70(.343)  
(.006±.002) MAX  
C
1994 FUJITSU LIMITED M80001SC-4-2  
Dimensions in mm (inches)  
58  
MB89670/A Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 1015, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211, Japan  
Tel: (044) 754-3753  
Fax: (044) 754-3329  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
Fax: (408) 432-9044/9045  
All Rights Reserved.  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
63303 Dreieich-Buchschlag  
Germany  
Circuit diagrams utilizing Fujitsu products are included as a  
means of illustrating typical semiconductor applications. Com-  
plete information sufficient for construction purposes is not nec-  
essarily given.  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
The information contained in this document has been carefully  
checked and is believed to be reliable. However, Fujitsu as-  
sumes no responsibility for inaccuracies.  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED  
No. 51 Bras Basah Road,  
Plaza By The Park,  
The information contained in this document does not convey any  
license under the copyrights, patent rights or trademarks claimed  
and owned by Fujitsu.  
#06-04 to #06-07  
Singapore 189554  
Tel: 336-1600  
Fujitsu reserves the right to change products or specifications  
without notice.  
Fax: 336-1609  
No part of this publication may be copied or reproduced in any  
form or by any means, or transferred to any third party without  
prior written consent of Fujitsu.  
The information contained in this document are not intended for  
use with equipments which require extremely high reliability  
such as aerospace equipments, undersea repeaters, nuclear con-  
trol systems or medical equipments for life support.  
F9602  
FUJITSU LIMITED Printed in Japan  
59  

相关型号:

MB89P677A

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APF

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
CYPRESS

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
SPANSION

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
FUJITSU

MB89P689

8-bit Proprietary Microcontroller
FUJITSU

MB89P689PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P713

CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
FUJITSU

MB89P713P

Microcontroller, 8-Bit, UVPROM, F2MC-8 CPU, 8MHz, CMOS, PDIP64
FUJITSU

MB89P713PF

Microcontroller, 8-Bit, UVPROM, F2MC-8 CPU, 8MHz, CMOS, PQFP64
FUJITSU

MB89P808

8-bit Proprietary Microcontroller
FUJITSU