MB89P665RP-SH [FUJITSU]

Microcontroller, 8-Bit, UVPROM, F2MC-8L CPU, 10MHz, CMOS, PDIP64;
MB89P665RP-SH
型号: MB89P665RP-SH
厂家: FUJITSU    FUJITSU
描述:

Microcontroller, 8-Bit, UVPROM, F2MC-8L CPU, 10MHz, CMOS, PDIP64

可编程只读存储器 微控制器 光电二极管
文件: 总47页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12532-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89660R Series  
MB89663R/665R/P665/W665  
OUTLINE  
The MB89660R series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a great variety of peripheral functions such  
as timers, a UART, a serial interface, an 8-bit A/D converter, an input capture, an output compare, and an external  
interrupt. The MB89660R series is applicable to a wide range of applications from consumer products to industrial  
equipment.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• Packages  
QFP-64  
SH-DIP-64  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
(Continued)  
PACKAGE  
64-pin Ceramic SH-DIP  
64-pin Plastic QFP  
64-pin Plastic SH-DIP  
(DIP-64C-A06)  
(FPT-64P-M06)  
(DIP-64P-M01)  
MB89660R Series  
(Continued)  
• Four types of timers  
8-bit PWM timer  
8/16-bit timer/counter  
20-bit timebase timer  
• Functions that permit communications with a variety of devices  
UART which permits selection of synchronous/asynchronous communications  
A serial interface that permits selection of the transfer direction  
• 8-bit A/D converter: 8 channels  
Sense function capable of performing voltage compare operation in 5 µs at 10 MHz  
Started by external input possible  
• Real-time control  
Input capture: 2 channels  
Output compare: 2 channels  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from low-power consumption modes (with an edge  
detection function).  
• Low power consumption (standby modes)  
Stop mode (Oscillation stops to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)  
Hardware standby mode (Wake-up from this mode and activation by pin input only.)  
2
MB89660R Series  
PRODUCT LINEUP  
Part number  
MB89665R  
MB89W665  
MB89P665  
MB89663R  
Item  
Classification  
Mass-produced products  
(mask ROM products)  
One-time PROM product,  
also used for evaluation  
EPROM product  
ROM size  
8 K × 8 bits 16 K × 8 bits  
(internal mask ROM) (internal mask ROM) (internal PROM, to be programmed with  
general-purpose EPROM programmer)  
16 K × 8 bits  
RAM size  
256 × 8 bits  
512 × 8 bits  
CPU functions  
The number of instructions:  
Instruction bit length:  
Instruction length:  
136  
8 bits  
1 to 3 bytes  
1,8, 16 bits  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
0.4 µs at 10 MHz  
3.6 µs at 10 MHz  
Ports  
Output ports (CMOS):  
Output ports (N-ch open-drain):  
8
8 (All also serve as peripherals.)  
General-purpose I/O ports (CMOS): 36 (19 ports also serve as peripherals.)  
Total: 52  
8-bit interval timer operation (square wave output capable, operating clock cycle: 0.4 µs to 25.6 µs)  
8-bit resolution PWM operation (conversion cycle: 102 µs to 6.6 ms)  
8-bit PWM timer  
8/16-bit timer/  
counter  
2-channel 8-bit timer/counter operation (timer 1 and timer 2, each operating clock  
independence, square wave output capable), or 16-bit timer/counter operation (operating  
clock cycle: 0.8 µs to 12.8 µs)  
In timer 1 or 16-bit timer/counter operation, event counter operation by external clock input  
UART  
Variable data length (6-, 7-, 8-bit length), built-in baud rate generator, error detection function,  
built-in full-duplex double buffer NRZ type transfer format, CLK synchronous/asynchronous  
data transfer capable  
Transfer rate setting by dedicated band rate generator, external clock, 8-bit PWM timer  
8-bit serial I/O  
8 bits  
LSB/MSB first selectable  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
8-bit A/D  
converter  
8-bit resolution × 8 channels  
A/D conversion function (conversion time: 18 µs at 10 MHz)  
Sense function (conversion time: 5 µs at 10 MHz)  
Capable of continuous activation by an external clock or an internal clock  
Reference voltage input  
Real-time I/O  
16-bit timer: operating clock cycle (0.4 µs, 0.8 µs, 1.6 µs, 3.2 µs)  
overflow interrupt  
Input capture: 16 bits × 2 channels (External trigger edge selectable)  
Output capture: 16 bits × 2 channels  
(Continued)  
3
MB89660R Series  
(Continued)  
Part number  
MB89665R  
MB89W665  
MB89P665  
MB89663R  
Item  
External interrupt  
4 channels (source flag, enable flag independently)  
Rising edge/falling edge/both edges selectable  
Used also for wake-up from stop/sleep mode.  
(Edge detection is also permitted in stop mode.)  
(Wake-up from hardware standby mode is not possible)  
Low-power  
consumption  
(standby modes)  
Sleep mode, stop mode, and hardware standby mode  
CMOS  
Process  
Operating voltage*  
(when using A/D  
converter)  
2.2 V to 6.0 V  
(3.5 V to 6.0 V)  
2.7 V to 6.0 V  
(3.5 V to 6.0 V)  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89663R  
MB89665R  
MB89P665  
Package  
MB89W665  
DIP-64P-M01  
×
×
FPT-64P-M06  
DIP-64C-A06  
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89660R Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the OTPROM (one-time PROM) product (also used for evaluation), verify its differences  
from the product that will actually be used: Take particular care on the following points:  
• On the MB89663R, register bank from 16 to 32 cannot be used.  
• On the MB89P665, address BFF0H to BFF6H comprise the option setting area, option settings can be read by  
reading these addresses.  
• The stack area, etc., is used.  
2. Current Consumption  
• When operated at low speed, the product with an OTPROM or an EPROM will consume more current than  
the product with a mask ROM.  
• However, the same is the current comsumption in sleep/stop modes. (For more information, see sections “■  
Electrical Characteristics” and “Example Characteristics.”  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary with product.  
Before using options, check section “Mask Options.”  
Take particular care on the following points:  
• On the MB89P665, a pull-up resistor must be selected in a group of four pins for P54 to P57.  
• For all products, P50 to P57 must be set for no pull-up resistor optional when an A/D converter is used.  
4. Differences between the MB89660 and MB89660R Series  
• Memory access area  
Memory access area of both the MB89660R and MB89660 series is the same.  
• Other Specifications  
For MB89660R series, input level at P00 to P07 and P10 to P17 is fixed when the hardware is standing-by.  
And for MB89660 series, input level at P00 to P07 and P10 to P17 is not fixed. Therefore, when the medium  
voltage is input there such as input open, the standby current will increase.  
• Electrical specifications/electrical characteristics  
There are differences at pull down resistances of MOD0 and MOD1 between MB89660R series and MB89660  
series. For more information, see “3. DC characteristics” in section “Electrical Characteristics”.  
Electrical specification of the other items of MB89660R series and MB89660 series are equivalent.  
However, it is possible that the valid characteristic will be modified. See the corresponding characteristic  
respectively for detail.  
5
MB89660R Series  
PIN ASSIGNMENT  
(Top view)  
1
VCC  
P36/RTO1  
P37/ADST  
P40/SCK1  
P41/SO1  
P42/SI1  
P43/SCK2  
P44/SO2  
P45/SI2  
P46/PTO  
P47  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
P35/RTO0  
P34/RTI1  
P33/RTI0  
P32/TO2  
P31/TO1  
P30/EC  
VSS  
3
4
5
6
7
8
9
P00  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
HST  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
RST  
P23  
MOD0  
P24  
MOD1  
P25  
X0  
P26  
X1  
P27  
VSS  
(DIP-64P-M01)  
(DIP-64C-A06)  
(Top view)  
P45/SI2  
P46/PTO  
P47  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P30/EC  
VSS  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P50/AN0  
P51/AN1  
P52/AN2  
P53/AN3  
P54/AN4  
P55/AN5  
P56/AN6  
P57/AN7  
AVCC  
AVR  
AVSS  
P60/INT0  
P61/INT1  
P62/INT2  
P63/INT3  
HST  
(FPT-64P-M06)  
6
MB89660R Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
X0  
Function  
SH-DIP*1  
QFP*2  
23  
30  
31  
28  
29  
A
Crystal oscillator pins  
24  
X1  
21  
MOD0  
MOD1  
B
Operation mode select pins  
Connect directly to VCC or VSS.  
A pull-down resistor is selectable as an option for mask  
ROM products.  
22  
27  
20  
19  
RST  
C
Reset I/O pin  
This port is an N-ch open-drain output type with pull-up  
resistor and of hysteresis input type. “L” is output from this  
pin by an internal reset source. The internal circuit is  
initialized by the input of “L”.  
26  
HST  
G
D
Hardware standby input pin  
Connect directly to VCC when hardware standby is not  
used.  
56 to 49  
48 to 41  
40 to 33  
58  
49 to 42  
41 to 34  
33 to 26  
51  
P00 to P07  
P10 to P17  
P20 to P27  
P30/EC  
General-purpose I/O ports  
F
E
General-purpose output ports  
General-purpose I/O port  
Also serves as an external clock input for an 8/16-bit  
timer/counter.  
This pin is of hysteresis input type and with a noise  
canceller.  
59  
60  
52  
53  
P31/TO1  
P32/TO2  
E
E
E
E
E
General-purpose high-current I/O port  
Also serves as an 8/16-bit timer/counter output. This pin  
is of hysteresis input type and with a noise canceller.  
General-purpose I/O port  
Also serves as an 8/16-bit timer/counter output. This pin  
is of hysteresis input type and with a noise canceller.  
61  
62  
54  
55  
P33/RTI0  
P34/RTI1  
General-purpose I/O ports  
Also serve as the data input for the input capture. This pin  
is of hysteresis input type and with a noise canceller.  
63  
1
56  
58  
P35/RTO0  
P36/RTO1  
General-purpose I/O ports  
Also serve as the data output for the output compare. This  
pin is of hysteresis input type and with a noise canceller.  
2
59  
P37/ADST  
General-purpose high-current I/O port  
Also serves as the external starting input for the A/D  
converter. This pin is of hysteresis input type and with a  
noise canceller.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-64P-M06  
(Continued)  
7
MB89660R Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
General-purpose I/O port  
Also serves as the clock I/O for the UART. This pin is of  
hysteresis input type and with a noise canceller.  
SH-DIP*1  
QFP*2  
3
60  
P40/SCK1  
P41/SO1  
P42/SI1  
E
E
E
E
4
5
6
61  
62  
63  
General-purpose I/O port  
Also serves as the data output for the UART. This pin is of  
hysteresis input type and with a noise canceller.  
General-purpose I/O port  
Also serves as the data input for the UART. This pin is of  
hysteresis input type and with a noise canceller.  
P43/SCK2  
General-purpose I/O port  
Also serves as the clock I/O for the 8-bit serial I/O  
interface. This pin is of hysteresis input type and with a  
noise canceller.  
7
8
64  
1
P44/SO2  
P45/SI2  
P46/PTO  
P47  
E
E
E
E
General-purpose I/O port  
Also serves as the data output for the 8-bit serial I/O  
interface. This pin is of hysteresis input type and with a  
noise canceller.  
General-purpose I/O port  
Also serves as the data input for the 8-bit serial I/O  
interface. This pin is of hysteresis input type and with a  
noise canceller.  
9
2
General-purpose I/O port  
Also serves as a toggle output for an 8-bit PWM timer.  
This pin is of hysteresis input type and with a noise  
canceller.  
10  
3
General-purpose I/O port  
This pin is of hysteresis input type and with a noise  
canceller.  
11 to 18  
22 to 25  
4 to 11  
P50/AN0 to  
P57/AN7  
H
E
N-ch open-drain output ports  
Also serve as the analog input for the A/D converter.  
15 to 18  
P60/INT0 to  
P63/INT3  
General-purpose I/O ports  
These pins also serve as an external interrupt input.  
These pins are of hysteresis input type and with a noise  
canceller.  
64  
57  
VCC  
Power supply pin  
32  
57  
25  
50  
VSS  
Power supply (GND) pins  
19  
20  
21  
12  
13  
14  
AVCC  
AVR  
AVSS  
A/D converter power supply pin  
A/D converter reference voltage input pin  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
*1: DIP-64P-M01, DIP-64C-A06  
*2: FPT-64P-M06  
8
MB89660R Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillation feedback resistor of approximately  
1 Mat 5.0 V  
X1  
N-ch  
P-ch  
P-ch  
X0  
N-ch  
N-ch  
Standby control signal  
B
C
• CMOS input  
• Built-in pull-down resistor (mask ROM products only)  
• Output pull-up resistor (P-ch) of approximately 50 kΩ  
R
at 5.0 V  
P-ch  
• Hysteresis input  
N-ch  
D
• CMOS output  
• CMOS input  
R
• Pull-up resistor option of approximately  
50 kat 5.0 V  
P-ch  
P-ch  
N-ch  
E
• CMOS output  
• Hysteresis input  
R
• Pull-up resistor option of approximately  
50 kat 5.0 V  
P-ch  
P-ch  
N-ch  
F
• CMOS output  
P-ch  
N-ch  
(Continued)  
9
MB89660R Series  
(Continued)  
Type  
Circuit  
Remarks  
G
• Hysteresis input  
H
• N-ch open-drain output  
• Analog input  
R
• Pull-up resistor option of approximately  
50 kat 5.0 V  
P-ch  
P-ch  
N-ch  
Analog input  
10  
MB89660R Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “ Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D Converters  
Connect to be AVCC = VCC and AVSS = AVR = VSS if the A/D converters are not in use.  
4. Power Supply Voltage Fluctuations  
Although operation is assured within the rated range of VCC power supply voltage, a rapid fluctuation of the  
voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC  
is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple  
fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency(50 to 60  
Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as  
when power is switched.  
5. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
11  
MB89660R Series  
PROGRAMMING TO THE EPROM ON THE MB89P665  
The MB89P665 is an OTPROM version of the MB89660R series.  
1. Features  
• 16-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0280H  
RAM  
Not available  
0000H  
Vacancy  
(Read value FFH)  
BFF0H  
BFF7H  
C000H  
3FF0H  
Option area  
Not available  
Not availble  
3FF7H  
Vacancy  
(Read value FFH)  
4000H  
PROM  
16 KB  
EPROM  
16 KB  
FFFFH  
7FFFH  
12  
MB89660R Series  
3. Programming to the PROM  
In EPROM mode, the MB89P665A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH  
while operating as a single chip correspond to 4000H to 7FFFH in EPROM mode).  
Load option data into addresses 3FF0H to 3FF6H of the EPROM programmer. (For information about each  
corresponding option, see “8. Setting OTPROM Options.”)  
(3) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
13  
MB89660R Series  
5. Programming Yield  
Due to its nature, bit programming test can’t be conducted as Fujitsu delivery test. For this reason, a programming  
yield of 100% cannot be assured at all times.  
6. Erasure Procedure  
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an  
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This  
dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity  
of 12000 µW/cm2 for 15 to 21 minuites. The internal EPROM should be about one inch from the source and all  
filters should be removed from the UV light source prior to erasure.  
It is important to note that the internal EPROM and similar devices, will erase with light sources having wave-  
lengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,  
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and  
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,  
the package windows should be covered by an opaque label or substance.  
7. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Recommended programmer manufacturer  
and programmer name  
Compatible socket adapter  
Part number  
Package  
Sun Hayato Co., Ltd.  
Minato Electronics Inc. Data I/O Co., Ltd.  
1890A  
1891  
1930  
R4945A  
MB89W665  
SH-DIP-64 ROM-64QF-28DP-8L5  
ROM-64QF-28DP-8L  
SH-DIP-64 ROM-64SD-28DP-8L  
Recommended  
MB89P665PF QFP-64  
MB89P665  
Recommended  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
Minato Electronics Inc.: TEL: USA (1)-916-348-6066  
JAPAN (81)-45-591-5611  
Data I/O Co., Ltd.:TEL: USA/ASIA (1)-206-881-6444  
EUROPE (49)-8-985-8580  
Note: Connect the adapter jumper pin to VSS when using.  
14  
MB89660R Series  
8. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
OTPROM option bit map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Oscillation  
Reset pin Power-on Vacancy  
Vacancy  
stabilization output  
3FF0H Readable Readable Readable time  
reset  
Readable Readable  
and  
writable  
and  
writable  
and  
writable  
1: Crystal  
0: Ceramic 0: No  
1: Yes  
1: Yes  
0: No  
and  
writable  
and  
writable  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
1: Yes  
Pull-up  
1: No  
1: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P57 to P54 P53  
P52  
P51  
P50  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF5H Readable Readable Readable  
and  
and  
writable  
and  
writable  
writable  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P63  
P62  
P61  
P60  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF6H Readable Readable Readable Readable  
and  
and  
writable  
and  
writable  
and  
writable  
writable  
Note: • Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is not selected.  
• Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
15  
MB89660R Series  
BLOCK DIAGRAM  
X0  
X1  
Oscillator  
21-bit timebase timer  
8-bit PWM timer  
P47  
P46/PTO  
Clock controller  
Reset circuit  
(WDT)  
P45/SI2  
RST  
HST  
8-bit serial I/O  
UART  
P44/SO2  
P43/SCK2  
Hardware standby  
CMOS I/O port  
P42/SI1  
P41/SO1  
P40/SCK1  
8
8
P00 to P07  
P10 to P17  
CMOS I/O port  
CMOS I/O port  
P37/ADST  
P36/RTO1  
P35/RTO0  
Output compare  
16-bit timer  
8
P20 to P27  
P34/RTI1  
P33/RTI0  
Input capture  
Real-time I/O  
CMOS output port  
P32/TO2  
8/16-bit  
timer/counter  
P31/TO1  
P30/EC  
RAM  
N-ch open-drain output port  
F2MC-8L  
CPU  
8
8
4
P50/AN0  
8-bit A/D converter  
to P57/AN7  
ROM  
AVR  
AVCC  
AVSS  
4
P60/INT0  
to P63/INT3  
External interrupt  
The other pins  
VCC, VSS × 2  
CMOS I/O port  
MOD0, MOD1  
16  
MB89660R Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89660R series offer 64 Kbytes of memory for storing all of I/O, data, and program  
areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/O  
area. The data area can be divided into register, stack, and direct areas according to the application. The program  
area is allocated from exactly the opposite end, that is, near the highest address. The tables of interrupt reset  
vectors and vector call instructions are allocated from the highest address within the program area. The memory  
space of the MB89660R series is structured as illustrated below.  
Memory Space  
MB89663R  
I/O  
MB89665R  
MB89W665  
MB89P665  
0000H  
0080H  
0000H  
0080H  
0100H  
I/O  
RAM  
256 B  
RAM  
512 B  
0100H  
0180H  
Register  
Register  
0200H  
0280H  
Not available  
Not available  
C000H  
ROM*  
16 KB  
E000H  
FFFFH  
ROM  
8 KB  
FFFFH  
*: When the MB89P665 is used for evaluation, the internal ROM cannot be used.  
17  
MB89660R Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose  
memory registers. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating the instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which is used for arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit pointer for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
: Program counter  
: Accumulator  
FFFDH  
A
T
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy  
Vacancy  
PS  
RP  
Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
18  
MB89660R Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interruptisenabledwhenthisflagissetto1’. Interruptisdisabledwhentheflagisclearedto0’. Cleared  
to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ otherwise.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on ‘2’ overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise. Set to the shift-out value in the case of a shift instruction.  
19  
MB89660R Series  
The following general-purpose registers are provided:  
General-purpose registers: an 8-bit register for storing data  
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains  
eight registers. Up to a total of 16 banks can be used on the MB89663R and a total of 32 banks can be used  
on the MB89665R/P665/W665. The bank currently in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
32 banks  
Memory area  
20  
MB89660R Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
Vacancy  
(R/W)  
(W)  
PDR1  
DDR1  
(R/W)  
PDR2  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
STBC  
WDTC  
TBTC  
Standby control register  
Watchdog timer control register  
Timebase timer control register  
Vacancy  
(R/W)  
(W)  
PDR3  
DDR3  
PDR4  
DDR4  
PDR5  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Port 4 data direction register  
Port 5 data register  
Vacancy  
(R/W)  
(W)  
(R/W)  
(R/W)  
(W)  
PDR6  
DDR6  
Port 6 data register  
Port 6 data direction register  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
ADC1  
ADC2  
ADCD  
T2CR  
T1CR  
T2DR  
T1DR  
CNTR  
COMR  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
Timer 1 data register  
PWM control register  
PWM compare register  
Vacancy  
Vacancy  
(Continued)  
21  
MB89660R Series  
(Continued)  
Address  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
7CH  
7DH  
7EH  
7FH  
Read/write  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
Register name  
SMC  
Register description  
UART serial mode control register  
UART serial rate control register  
UART serial status/data register  
UART serial data register  
Serial mode register  
SRC  
SSD  
SIDR/SODR  
SMR  
SDR  
Serial data register  
EIC1  
External interrupt control register 1  
External interrupt control register 2  
Timer control register  
EIC2  
TMCR  
TCHR  
TCLR  
Timer count register (H)  
Timer count register (L)  
(R)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
OPCR  
CPR0H  
CPR0L  
CPR1H  
CPR1L  
ICCR  
Output control register  
Output compare register 0 (H)  
Output compare register 0 (L)  
Output compare register 1 (H)  
Output compare register 1 (L)  
Input capture control register  
Input capture interrupt control register  
Input capture register 0 (H)  
Input capture register 0 (L)  
Input capture register 1 (H)  
Input capture register 1 (L)  
Vacancy  
ICIC  
ICR0H  
ICR0L  
ICR1H  
ICR1L  
(R)  
(R)  
(R)  
Vacancy  
Vacancy  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
Note: Do not use vacancies.  
22  
MB89660R Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min.  
Max.  
VCC  
AVCC  
VSS – 0.3  
VSS + 7.0  
V
*
Power supply voltage  
AVR must not exceed “AVCC + 0.3 V”  
AVR  
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
VCC + 0.3  
V
V
V
Input voltage  
Output voltage  
VO  
“L” level maximum output  
current  
IOL  
20  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
“L” level average output  
current  
Average value (operating  
current × operating rate)  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
“L” level total maximum output  
current  
100  
40  
“L” level total average output  
current  
Average value (operating  
current × operating rate)  
“H” level maximum output  
current  
–20  
–4  
“H” level average output  
current  
Average value (operating  
current × operating rate)  
IOHAV  
ΣIOH  
ΣIOHAV  
“H” level total maximum output  
current  
–50  
–20  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set to the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
23  
MB89660R Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Sym-  
Parameter  
bol  
Unit  
Remarks  
Min.  
Max.  
Normal operation assurance range*  
MB89663R/665R  
2.2*  
2.7*  
1.5  
6.0*  
V
V
V
VCC  
Normal operation assurance range*  
MB89P665  
6.0*  
6.0  
AVCC  
Power supply voltage  
Operating temperature  
Retains the RAM state in the stop  
mode  
AVR  
0.0  
AVCC  
+85  
V
TA  
–40  
°C  
* : These values vary with the operating frequency and analog assurance range. See Figure. 1 and “5. A/D Converter  
Electrical Characteristics.”  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MHz)  
6
5
Analog accuracy assured in the  
AVCC = VCC = 3.5 to 6.0 V range  
Operation assurance range  
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
Main clock operating frequency (MHz)  
Note: The shaded area is assured only for the MB89663R/665R.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
24  
MB89660R Series  
3. DC characteristics  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P10 to P17  
VIH  
0.7 VCC  
VCC + 0.3  
V
“H” level input  
voltage  
RST, HST  
P30 to P37,  
P40 to P47,  
P60 to P63  
VIHS  
VIL  
0.8 VCC  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
V
V
V
P00 to P07,  
P10 to P17  
“L” level input  
voltage*1  
RST, HST  
P30 to P37,  
P40 to P47,  
P60 to P63  
VILS  
Open-drain  
output pin  
VD  
P50 to P57  
VSS – 0.3  
VCC + 0.3  
V
applied voltage  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30,  
P32 to P36,  
P40 to P47,  
P60 to P63  
VOH1  
IOH = –2.0 mA  
IOH = –15 mA  
2.4  
2.4  
V
V
“H” level output  
voltage  
VOH2  
P31, P37  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30,  
P32 to P36,  
P40 to P47,  
P50 to P57,  
P60 to P63  
IOL = +1.8 mA  
VOL1  
0.4  
V
“L” level output  
voltage  
IOL = +12 mA  
IOL = +4.0 mA  
VOL2  
P31, P37  
RST  
0.4  
0.4  
V
V
VOL3  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P47,  
P60 to P63  
Input leakage  
0.45 V  
Withoutpull-up  
resistor  
current (Hi-z output  
leakage current)  
ILI  
±5  
µA  
kΩ  
< VI < VCC  
Pull-up  
resistance  
RST,  
option select pin  
RPULU  
VI = 0.0 V  
25  
50  
100  
(Continued)  
25  
MB89660R Series  
(Continued)  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Parameter  
Pull-down  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
Mask ROM  
products only  
RPULD  
MOD0, MOD1 VI = +5.0 mA  
25  
50  
100  
kΩ  
mA  
mA  
resistance  
MB89663R/  
665R  
FC = 10 MHz  
15  
17  
18  
20  
tinst*3 = 0.4 µs  
ICC  
in the Normal  
mode  
MB89P665/  
W665  
FC = 10 MHz  
tinst*3 = 0.4 µs  
in the Sleep  
mode  
VCC  
ICCS  
ICCH  
IA  
6
8
mA  
µA  
TA = +25°C  
tinst*3 = 0.4 µs  
in the Stop  
mode  
Power supply  
current  
10  
4.5  
FC = 10 MHz,  
when A/D  
conversionis  
operating  
2.5  
mA  
AVCC  
FC = 10 MHz,  
TA = +25°C,  
IAH  
5
µA  
when A/D  
conversion is  
not operating  
Other than  
Input  
capacitance  
AVCC, AVSS, VCC, f = 1 MHz  
10  
pF  
CIN  
and VSS  
*1: Fix MOD0 and MOD1 to VSS.  
*2: The power supply current is measured on the external clock at “VCC = 5.0 V”.  
*3: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
26  
MB89660R Series  
4. AC Characteristics  
(1) Reset Timing, Hardware Standby Timing  
(VCC = +5.0 V±10%, AVSS =VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
RST “L” pulse width  
HST “L” pulse width  
tZLZH  
tHLHH  
16 tXCYL  
16 tXCYL  
ns  
ns  
* : tXCYL is the oscillation cycle (1/FC) to input to the X0 pin.  
tZLZH  
RST  
HST  
0.2 VCC  
0.2 VCC  
tHLHH  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Values  
Symbol  
Condition  
Unit  
Remarks  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms  
ms  
Due to repeated  
operations  
tOFF  
1
Note: Make sure that power supply rises within the oscillation stabilization time selected.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
VCC  
0.2 V  
0.2 V  
27  
MB89660R Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
name  
Min.  
1
Typ.  
Max.  
10  
Clock frequency  
Clock cycle time  
FC  
X0, X1  
X0, X1  
MHz  
ns  
tXCYL  
100  
1000  
Input clock pulse  
width  
PWH  
PWL  
External clock  
External clock  
X0  
X0  
20  
ns  
ns  
Input clock rising/  
falling time  
tCR  
tCF  
10  
X0 and X1 Timing and Conditions of Applied Voltage  
tXCYL  
PWL  
PWH  
tCF  
tCR  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
When operating at “FC = 10 MHz”  
Instruction cycle  
(minimum execution  
time)  
tinst  
4/FC  
µs  
28  
MB89660R Series  
(5) Serial I/O Timing and UART Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name Condition  
Unit  
Remarks  
Min.  
Max.  
SCK1,  
SCK2  
Serial clock cycle time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
2 tinst*  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK1 ↓ → SO1 time  
SCK2 ↓ → SO2 time  
SCK1, SO1  
SCK2, SO2  
–200  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
200  
Internal  
shift clock  
mode  
Valid SI1 SCK1 ↑  
Valid SI1 SCK1 ↑  
SI1, SCK1  
SI2, SCK2  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
SCK2 ↑ → valid SI2 hold time  
SCK1,  
SCK2  
Serial clock “H” pulse width tSHSL  
Serial clock “L” pulse width tSLSH  
SCK1,  
SCK2  
External  
shift clock  
mode  
SCK1 ↓ → SO1 time  
tSLOV  
SCK1, SO1  
SCK2, SO2  
200  
SCK2 ↓ → SO2 time  
Valid SI1 SCK1 ↑  
tIVSH  
SI1, SCK1  
SI2, SCK2  
1/2 tinst*  
1/2 tinst*  
Valid SI2 SCK2 ↑  
SCK1, SI1  
SCK2, SI2  
SCK1 ↑ → valid SI1 hold time  
tSHIX  
SCK2 ↑ → valid SI2 hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
29  
MB89660R Series  
Serial I/O Timing and UART Timing (Internal Shift Clock Mode)  
tSCYC  
2.4 V  
SCK1  
SCK2  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
Serial I/O Timing and UART Timing (External Shift Clock Mode)  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK1  
SCK2  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO1  
SO2  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI1  
SI2  
30  
MB89660R Series  
(6) Peripheral Input Timing  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Max.  
Peripheral input “H” level  
pulse width 1  
tILIH1  
tIHIL1  
tILIH2  
tIHIL2  
tILIH3  
tIHIL3  
tILIH3  
tIHIL3  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
RTI0, RTI1  
INT0 to INT3  
2 tinst*  
Peripheral input “L” level  
pulse width 1  
Peripheral input “H” level  
pulse width 2  
EC  
1 tinst*  
32 tinst*  
8 tinst*  
Peripheral input “L” level  
pulse width 2  
Peripheral input “H” level  
pulse width 3  
A/D mode  
Peripheral input “L” level  
pulse width 3  
ADST  
Peripheral input “H” level  
pulse width 3  
Sense mode  
Peripheral input “L” level  
pulse width 3  
* : For information on tinst, see “(4) Instruction cycle.”  
tIHIL1  
tILIH1  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
INT0 to 3  
RTI0, RTI1  
0.2 VCC  
tIHIL2  
tILIH2  
0.8 VCC  
0.2 VCC  
EC  
0.2 VCC  
tIHIL3  
tILIH3  
0.8 VCC  
0.2 VCC  
ADST  
0.2 VCC  
31  
MB89660R Series  
(7) Noise Filter  
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Max.  
P30 to P37,  
P40 to P47,  
P60 to P63  
During port  
operation  
Noise filter width 1  
Noise filter width 2  
tINF1  
15  
ns  
ns  
During external  
interrupt  
tINF2  
P60 to P63  
60  
tINF 1,  
2
tINF 1,  
2
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
Input waveform  
32  
MB89660R Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to 6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Resolution  
Symbol Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
8
bit  
Total error  
±2.0  
±1.0  
±0.9  
AVSS+  
LSB  
LSB  
LSB  
Linearity error  
Differential linearity error  
AVSS –  
AVSS+  
AVR = AVCC  
Zero transition voltage  
VOT  
VFST  
mV  
mV  
1.5 LSB 0.5 LSB 2.5 LSB  
Full-scale transition  
voltage  
AVR – AVR – AVR +  
3.5 LSB 1.5 LSB 0.5 LSB  
Interchannel disparity  
1
LSB  
A/D mode conversion time  
44 tisnt*  
µs  
Sense mode conversion  
time  
12 tinst*  
µs  
Analog port input circuit  
Analog input voltage  
Reference voltage  
IAIN  
0
10  
µA  
V
AN0 to AN7  
AVR  
AVCC  
0
V
AVR = 5.0 V  
when A/D  
conversion is  
operating  
IR  
150  
5
µA  
µA  
AVR  
Reference voltage  
supply current  
AVR = 5.0 V  
when A/D  
conversion is  
not operating  
IRH  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Glossary  
• Resolution  
Analog changes that are identifiable by the A/D converter  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
33  
MB89660R Series  
Digital output  
1111 1111  
1111 1110  
Theoretical conversion value  
Actual conversion value  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
Differential linearity error =  
– 1  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
Total error =  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V( N+I )T  
VFST  
Analog input  
7. A/D Converter  
• Input impedance of analog input pins  
The A/D converter used for the MB89660R series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 2 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
=
C
33 pF  
.
Analog input pin  
Comparator  
.
=
R
6 kΩ  
.
If the output impedance of  
the external circuit is high, it  
is recommended to connect  
an external capacitor of  
approx. 0.1 µF.  
Closes for 8 instruction cycles  
after starting A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
34  
MB89660R Series  
EXAMPLES CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
P00 to P07, P10 to P17,P20 to P27, P30, P32 to  
P36, P40 to P47, P50 to P57, P60 to P63  
P00 to P07, P10 to P17, P20 to P27, P30, P32  
to P36, P40 to P47, P60 to P63  
VOL vs. IOL  
VCC - VOH vs. IOH  
VCC - VOH (V)  
VOL (V)  
TA = +25°C  
VCC = 3.0 V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 4.0 V  
TA = +25°C  
V CC = 2.5 V  
0.5  
0.4  
0.3  
0.2  
0.1  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(4) “H” Level Output Voltage  
P31, P37  
(3) “L” Level Output Voltage  
P31, P37  
VDD-VOH2 (V)  
VDD-VOH2 vs. IOH2  
VOL2 (V)  
VOL2 vs. IOL2  
VCC = 6.0 V  
VCC = 5.0 V  
VCC = 4.0 V  
VCC = 3.0 V  
3
2
1
0
0.6  
VCC = 6.0 V TA = +25°C  
VCC = 5.0 V  
VCC = 4.0 V  
TA = +25°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VCC = 3.0 V  
0
5
10  
15  
20  
25  
IOH2 (–mA)  
0
10  
20  
IOL2 (mA)  
35  
MB89660R Series  
(5) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(6) “H” Level Input Voltage/“L” Level  
Input Voltage (Hysteresis Input)  
VIN (V)  
5.0  
VIN vs. VCC  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIN (V)  
5.0  
V IN vs. VCC  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIHS  
VILS  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
0.0  
0
Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VIHS:  
1
2
3
4
5
6
7
VCC (V)  
Threshold when input voltage in hysteresis  
VILS:  
characteristics is set to “L” level  
(7) Power Supply Current (External Clock)  
ICCS vs. VCC  
ICC vs. VCC  
ICC (mA)  
ICCS (mA)  
9
3
TA = +25°C  
TA = +25°C  
1 MHz  
4 MHz  
8 MHz  
1 MHz  
4 MHz  
8 MHz  
10 MHz  
8
7
6
2
1
0
10 MHz  
5
4
3
2
1
0
1
2
3
4
5
6
1
2
3
4
5
6
7
7
VCC (V)  
VCC (V)  
36  
MB89660R Series  
(8) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25°C  
100  
10  
1
2
3
4
5
6
VCC (V)  
37  
MB89660R Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
TH  
TL  
IX  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
CCR  
RP  
Ri  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
38  
MB89660R Series  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
The number of instructions  
The number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
39  
MB89660R Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
40  
MB89660R Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
C
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
41  
MB89660R Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
42  
MB89660R Series  
INSTRUCTION MAP  
43  
MB89660R Series  
MASK OPTIONS  
MB89663R  
MB89665R  
MB89P665  
MB89W665  
Part number  
No.  
Specify when ordering masking  
Specify with EPROM programmer  
Specifying procedure  
Power-on reset  
1
2
Power-on reset provided  
No power-on reset  
Selectable  
Selectable  
Selection of the oscillation stabilization  
time  
Crystal oscillator  
Selectable  
Selectable  
Selectable  
(26.2 ms at 10 MHz)  
Ceramic oscillator  
(1.64 ms at 10 MHz)  
Reset pin output  
3
4
With reset output  
Without reset output  
Selectable  
Can be selected per pin.  
(Pull-up resistors can NOT  
be selected for P50 to P57  
when an A/D converter is  
used.)  
Pull-up resistors  
Can be set per pin.  
(P54 to P57 must have the  
same setting)  
P00 to P07, P10 to P17,  
P30 to P37, P40 to P47,  
P50 to P57, P60 to P63  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89663RP-SH  
MB89665RP-SH  
MB89P665P-SH  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
MB89663RPF  
MB89665RPF  
MB89P665PF  
64-pin Plastic QFP  
(FPT-64P-M06)  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
MB89W665C-SH  
44  
MB89660R Series  
PACKAGE DIMENSION  
58.00 +00..5252  
2.283 +..002028  
64-pin Plastic SH-DIP  
(DIP-64P-M01)  
INDEX-1  
INDEX-2  
17.00±0.25  
(.669±.010)  
5.65(.222)MAX  
3.00(.118)MIN  
0.25±0.05  
(.010±.002)  
1.00 +00.50  
.039 +0.020  
0.45±0.10  
(.018±.004)  
0.51(.020)MIN  
19.05(.750)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
55.118(2.170)REF  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED D64001S-3C-4  
64-pin Plastic QFP  
(FPT-64P-M06)  
24.70±0.40(.972±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
51  
33  
0.05(.002)MIN  
(STAND OFF)  
52  
32  
14.00±0.20 18.70±0.40  
(.551±.008) (.736±.016)  
12.00(.472)  
REF  
16.30±0.40  
(.642±.016)  
INDEX  
64  
20  
"A"  
1
19  
LEAD No.  
0.15±0.05(.006±.002)  
Details of "B" part  
1.00(.0394)  
TYP  
0.40±0.10  
(.016±.004)  
M
0.20(.008)  
Details of "A" part  
0.25(.010)  
"B"  
0.30(.012)  
0.18(.007)MAX  
0.10(.004)  
18.00(.709)REF  
0
10°  
1.20±0.20  
0.63(.025)MAX  
(.047±.008)  
22.30±0.40(.878±.016)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F64013S-3C-2  
45  
MB89660R Series  
64-pin Ceramic SH-DIP  
(DIP-64C-A06)  
56.90±0.56  
(2.240±.022)  
8.89(.350) DIA  
TYP  
R1.27(.050)  
REF  
18.75±0.25  
(.738±.010)  
INDEX AREA  
1.27±0.25  
(.050±.010)  
5.84(.230)MAX  
3.40±0.36  
0.25±0.05  
(.010±.004)  
1.778±0.180  
(.070±.007)  
0.90±0.10  
(.0355±.0040)  
0.46 +00..0183  
19.05±0.25  
(.750±.010)  
(.134±.014)  
.018 +..000035  
0°~9°  
1.45(.057)  
MAX  
55.118(2.170)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED D64006SC-1-2  
46  
MB89660R Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Fax: (408) 922-9179  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
http://www.fmap.com.sg/  
F9901  
FUJITSU LIMITED Printed in Japan  
47  

相关型号:

MB89P670ACF

8-bit Proprietary Microcontroller
FUJITSU

MB89P677A

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APF

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
CYPRESS

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
SPANSION

MB89P677APMC1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP80, 14 X 14 MM, 1.70 MM HEIGHT, 0.65 MM PITCH, PLASTIC, LQFP-80
FUJITSU

MB89P689

8-bit Proprietary Microcontroller
FUJITSU

MB89P689PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P713

CMOS 8-BIT SINGLE-CHIP FLEXIBLE MICROCONTROLLER
FUJITSU

MB89P713P

Microcontroller, 8-Bit, UVPROM, F2MC-8 CPU, 8MHz, CMOS, PDIP64
FUJITSU

MB89P713PF

Microcontroller, 8-Bit, UVPROM, F2MC-8 CPU, 8MHz, CMOS, PQFP64
FUJITSU