MB15E65UV [FUJITSU]

PLL Frequency Synthesizer, PBCC18, PLASTIC, BCC-18;
MB15E65UV
型号: MB15E65UV
厂家: FUJITSU    FUJITSU
描述:

PLL Frequency Synthesizer, PBCC18, PLASTIC, BCC-18

文件: 总28页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fujitsu semiconductor  
Rev2.0  
ASSP  
Sigma delta Fractional-N PLL Frequency Synthesizer  
(2.0GHz single PLL)  
MB15E65UV  
DESCRIPTION  
The Fujitsu MB15E65UV includes a serial input Sigma delta Fractional Phase Locked Loop (PLL) frequency  
synthesizer with fast lock up function. The PLL consists of 2.0GHz sigma delta Fractional-N PLL.  
The new package (BCC18) decreases a mount area of MB15E65UV about 50% comparing with the latest package,  
BCC20.  
MB15E65UV is ideally suitable for digital mobile communications, such as PHS.  
FEATURE  
-Operating frequency  
-Fractional-N PLL  
: 100MHz - 2.0GHz  
: modulo 262144(218) or 32768(215)  
Fast lock up and low noise.  
:Vcc=2.7V to 3.3V  
-Power supply voltage  
-Low current consumption : Icc (typ)=4.6mA(Vcc=Vp=3.0V, Ta=25C)  
-Direct power saving function : Power supply current in power saving mode  
Typ. 0.1 uA(Vcc=3.0V, Ta=25°C), Max. 10 uA(Vcc=3.0V)  
-Integrate the automatic selector circuit for the switching the loop filter (Possible to change the switching time)  
-Switching charge pump current by a serial data.  
Stable mode:94uA / Fast lock mode:4.5mA  
-Integrate the open drain switch for the loop filter.  
-2-modulus prescaler 16/17  
-Serial input programmable reference divider : Binary 6bit R=1 to 63  
-Serial input programmable divider consisting of  
Binary 4 bit swallow counter : 0 to 15  
Binary 8 bit programmable counter : 9 to 255  
-Digital lock detector  
-On-chip phase control for the phase comparator  
-Operating temperature :Ta=-40 to +85 degree C  
PACKAGE  
18-pad Plastic BCC  
LCC-18P-M05  
1
Rev2.0  
MB15E65UV  
PIN ASSIGNMENT  
BCC-18  
TOP VIEW  
GND  
Do  
SW  
Vp  
Vcc  
NC  
Xfin  
fin  
NC  
1
2
3
4
5
6
18 17 16 15  
VccSD  
GND  
LD/fout  
PS  
14  
13  
12  
11  
LE  
GND  
7
8
9
10  
Data  
OSCin  
Clock  
LCC-18P-M05  
- 2 -  
Rev2.0  
MB15E65UV  
PIN DESCRIPTIONS  
Pin No Pin name I/O  
Descriptions  
Power supply voltage input pin for the Charge Pump circuit.  
Power supply voltage input pin. Except for CP circuit.  
No connection  
1
2
3
Vp  
Vcc  
NC  
Prescaler complimentary input.  
4
5
Xfin  
fin  
I
I
This pin should be grounded via a capacitor.  
Prescaler input pin.  
Connection to an external VCO should be via AC coupling.  
Load Enable signal input.  
When LE is “H”, data in the shift register is transferred to the corresponding latch  
according to the control bits in the serial programming data.  
6
LE  
I
Serial data input. Data is transferred to the corresponding latch ref counter or  
program counter according to the control bits setting in the serial programming data.  
Clock input for the 24 or 29 bit shift register.  
One bit data is shifted into the shift register on a rising edge of the clock.  
The programmable reference divider input. External TCXO reference oscillator input  
or connection to crystal. TCXO should be connected with via AC coupling.  
7
8
Data  
CLK  
I
I
9
OSCin  
GND  
I
Ground  
10  
Power saving mode control pin.  
This pin must be set at “L” when the power supply is started up. (Open is prohibited)  
PS=”H”: Normal mode (according to serial data)  
11  
12  
PS  
I
PS=”L”: Power saving mode  
Lock detect signal output (LD) / phase comparator monitoring output (fout).  
The output signal is selected by the LD1, LD2 and LD3 bits in the serial data.  
Lock detector (LD) output has two mode, Buffer output or Open drain output.  
The LD signal is outputted by VDIG (3V system) in the Buffer mode. When Open  
drain mode is selected, the LD/fout pin should be connected to the outside power  
supply via pulled-up resistor. When the resistor is 50ohm, the leakage current of low  
state is about 50uA and the constant value is 4usec. (Recommendation value)  
LD/fout  
O
Ground  
13  
14  
GND  
Power supply voltage input pin for the sigma delta modulation section.  
Except for CP.  
VccSD  
No connection  
15  
16  
NC  
Open drain switch for the high speed up mode  
SW  
O
Ground  
17  
18  
GND  
Do  
Charge Pump output.  
O
- 3 -  
Rev2.0  
MB15E65UV  
BLOCK DIAGRAM  
Input  
Buffer  
OSCin  
Phase  
Detector  
Proportional  
Charge Pump  
Reference  
Counter  
Do  
Dual modulus  
Prescaler  
Main Counter &  
Swallow Counter  
Lock  
Detector  
fin  
LD/fout  
SW  
Selector  
Sigma delta  
Fractional modulation  
PS  
Speedup  
Switch Timer  
Data  
LE  
Control logic  
(29bitShift Register)  
Clock  
- 4 -  
Rev2.0  
MB15E65UV  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
Vcc  
Vp  
Rating  
-0.5 to 3.6  
Vcc to 3.6  
-0.5 to Vcc+0.5  
max. +8  
Unit  
V
Remark  
Vcc=VccSD  
V
Vi  
V
PI  
dBm  
V
RF Input power  
AC Input voltage  
VIRF  
Vo  
max. Vcc  
GND to Vcc  
GND to Vp  
-10 to +10  
-55 to +125  
V
LD/fout  
Do  
Output voltage  
VDo  
IMAX  
TSTG  
V
Input current  
mA  
°C  
Storage temperature  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional  
operation should be restricted to the conditions as detailed in the operational sections of this data sheet.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remark  
Min.  
2.7  
Typ. Max.  
Vcc  
Vp  
Vi  
3.0  
3.3  
3.3  
V
V
Vcc=VccSD  
Power supply voltage  
Input voltage  
Vcc  
GND  
-40  
-
-
-
Vcc  
+85  
V
Operating temperature  
Ta  
°C  
Note: Vcc must supply equal voltage.  
Handling Precautions  
-This device should be transported and stored in anti-static containers.  
-This is a static-sensitive device ; take proper anti-ESD precautions. Ensure that personnel and equipment are  
properly grounded. Cover workbenches with grounded conductive mats.  
-Always turn the power supply off before inserting or removing the device from its socket.  
-Protect leads with a conductive sheet when handling or transporting PC boards with devices  
- 5 -  
Rev2.0  
MB15E65UV  
ELECTRICAL CHARACTERISITCS  
(Vcc=2.7V to 3.3V, Ta=-40 to +85°C)  
Value  
Typ.  
4.9  
Parameter  
Symbol  
Condition  
Vcc=Vp=3.0V  
Unit  
Min.  
Max.  
Icc*1  
Ips  
6.5  
mA  
uA  
Power supply current  
Power saving current  
Vcc current at PS=”L  
0.1*2  
10  
fin*3  
AC coupling.  
100  
2000  
MHz  
MHz  
Operating frequency  
Input sensitivity  
R=1  
5
20  
fosc  
min. 500mVpp  
2 R 63  
5
40  
+2  
PfinRF  
50termination  
-10  
0.5  
dBm  
Vp-p  
Vosc  
1.0  
1.5  
Phase Detector  
Operating Frequency  
fMAIN_PD  
0.4  
20  
MHz  
Data,  
Clock  
LE  
0.7Vcc+0  
VIH  
VIL  
VIH  
VIL  
Schmitt trigger input  
Schmitt trigger input  
V
V
V
V
0.3Vcc-0.  
Input voltage  
Input current  
Output voltage  
0.7Vcc  
PS  
0.3Vcc  
+1.0  
+1.0  
Data  
Clock  
LE  
IIH*4  
IIL*4  
VOH  
-1.0  
uA  
uA  
V
-1.0  
Vcc=3.0V, IOH=-1mA  
Vcc-0.4  
LD/fout  
Vcc=3.0V, IOL=1mA  
VOL  
VOH  
VOL  
Vp-0.4  
0.4  
V
V
Vcc=Vp=3.0V, IOH=-0.01mA  
Vcc=Vp=3.0V, IOH=0.01mA  
Do  
Do  
SW  
0.4  
2.5  
V
High impedance  
cutoff current  
Vcc=3.0V, VOFF=0.5V to Vcc-0.5V  
IOFF  
nA  
Normal mode (Switch at OFF)  
Hi speed mode(Switch at ON)  
100  
k  
Hi-Speed mode  
output Resistance  
ZSSH  
35  
70  
- 6 -  
Rev2.0  
MB15E65UV  
ELECTRICAL CHARACTERISITCS (Continued)  
Value  
TYP  
Parameter  
Symbol  
Condition  
Unit  
MIN  
MAX  
IOH*5  
IOL  
-1.0  
mA  
mA  
uA  
Vcc=3.0V  
Vcc=3.0V  
LD/fout  
+1.0  
-0.16  
+0.04  
-6.1  
IDOH*4  
IDOL  
-0.094  
+0.094  
-4.5  
-0.04  
+0.16  
-2.4  
+6.1  
Vcc=Vp=3.0V,VDOH=Vp/2  
Ta=25°C, TMC=CS=”L”  
Output current  
uA  
Do  
IDOH*4  
IDOL  
mA  
mA  
Vcc=Vp=3.0V,VDOH=Vp/2  
Ta=25°C, TMC=”L”,CS=”H”  
+2.4  
+4.5  
CP current RF  
ratio  
VDO=Vp/2,Ta=25°C  
IDOL/IDOH  
IDOMT*5  
8
15  
%
1:Conditions: Vcc=VccSD=Vp=3.0V,Ta=25°C, fvco=1800MHz,fosc=19.2MHz(-2dBm), fr=4.8MHz in locking state  
2:Conditions: Vcc=VccSD=Vp=3.0V, Ta=25°C, fosc=19.2MHz(-2dBm),CLK,Data,LE:VIL=GND, VIH=Vcc  
3:AC coupling. The minimum frequency is specified with a connecting coupling capacitor of 1000pF.  
4: The minus “-“ means the direction of current flow.  
5:Conditions: Vcc=Vp=3.0V, Ta=25°C ( | | IDOL | - | IDOH | | )/ [( | IDOL | + | IDOH| )/2] × 100%  
- 7 -  
Rev2.0  
MB15E65UV  
FUNCTIONAL DESCRIPTION  
Serial Data Input  
Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Serial data of binary data is entered  
through Data pin. On rising edge of clock, one bit of serial data is transferred into the shift register. When  
load enable signal is high, the data stored in the shift register is transferred to one of latch them depending  
upon the control bit data setting.  
Control bit (CN1, CN2 and CN3) and shift resistor format are as follows.  
According to “LEN” bit, the serial data length can be changed. At that time, the order of the bits is also changed.  
When “LEN” bit is “0”, the format of first byte can be changed according to MODE bit.  
*The 3rd Line with Mode bit should be inputted at first. If the 3rd Line is inputted finally after Power-ON, the 1st Line will  
be invalid.  
Table1. Shift Register Configuration at “LEN” bit=1  
LSB  
Data Flow  
MSB  
CN CN CN  
Line  
1st  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
1
1
2
3
TM TM  
U1 U2  
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 A1 A2 A3 A4 N1 N2 N3 N4  
TM TM TM TM TM TM TM  
2nd  
3rd  
0
0
1
0
0
0
R1 R2 R3 R4 R5 R6  
LD LD LD DE  
X
X
X
X
X
X
N5 N6 N7 N8  
PW LE  
X
X
X
X
X
X
X
X
X
X
1
2
3
4
5
6
7
OD  
SW  
MO  
DE  
FC  
X
X
X
X
X
CS  
SC  
TMC  
X
X
1
2
3
T
DN  
N
Table2. Shift Register Configuration at “LEN” bit=0 and “MODE” bit=0  
LSB  
Data Flow  
MSB  
CN CN CN  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
1
2
3
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 A1 A2 A3 A4 N1  
0
0
1
0
0
0
R1 R2 R3 R4 R5 R6 TM1 TM2 TM3 TM4 TM5 TM6 TM7  
X
X
N2 N3 N4 N5 N6 N7 N8  
LD LD LD DE  
OD  
SW  
MO  
DE  
TM TM PW LE  
FC  
X
X
X
X
X
CS  
SC  
TMC  
X
1
2
3
T
U1 U2 DN  
N
Table3. Shift Register Configuration at “LEN”bit=0 and “MODE” bit=1  
LSB  
Data Flow  
MSB  
CN CN CN  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
1
2
3
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 A1 A2 A3 A4 N1 N2 N3 N4  
0
0
1
0
0
0
R1 R2 R3 R4 R5 R6 TM1 TM2 TM3 TM4 TM5 TM6 TM7  
X
X
X
X
X
X
N5 N6 N7 N8  
TM TM PW LE  
LD LD LD DE  
OD  
SW  
MO  
DE  
FC  
X
X
X
X
X
CS  
SC  
TMC  
1
2
3
T
U1 U2 DN  
N
Note: Data input with MSB first.  
- 8 -  
Rev2.0  
MB15E65UV  
Description for the serial data  
F1 to F18  
: Fractional-N increment setting bit for the fractional accumulator  
(F1 to F15)  
At MODE bit=0 (MODE1): 0 to 262143.  
At MODE bit=1 (MODE2): 0 to 32767 (F<Q)  
A1 to A4  
N1 to N8  
R1 to R6  
TMC  
TM1 to TM7  
TMU1 to TMU2  
: Divide ratio setting bits for the swallow counter. (0 to 15)  
: Divide ratio setting bits for the programmable counter. (9 to 255)  
: Divide ratio setting bits for the reference counter. (1 to 63)  
: Timer circuit switch bit. (TMC=1:Enable, TMC=0:Disable)  
: Delay time setting bits for timer at speed up mode.  
: Compensate time setting bits at speed up. (The range is 0D to 15D, TM+TMU)  
At LEN bit=1:Set it on 1st Line.  
At LEN bit=0:Set it on 3rd Line.  
LD1 to LD3  
DET  
: Select bit for the lock detect output or a monitoring the counter output.  
: Select bit for the lock detect output. *1  
DET bit=”0”: Buffer output mode  
DET bit=”1”: Open drain mode  
FC  
CS  
:Phase control bit for the phase detector.  
:Charge pump current setting bit for speed up timer  
CS bit=”0”: Change charge pump current. The switching time depends on setting time  
of TM bit.(Icp is 4.5mA to 0.1mA).  
CS bit=”1”: Fix charge pump current (Icp=4.5mA)  
:Open drain (NMOS-Tr) switch control bit for the speed up mode.  
ODSW bit=”0”: Active. The period of ON/OFF depends on setting time of TM bit.  
ODSW bit=”1”: OFF  
ODSW  
SC  
: Order of sigma delta setting bit  
SC bit=”0” : 2nd order  
SC bit=”1” : 3rd order  
MODE  
: Modulo setting bit and data format of 1st Line setting bit.  
MODE bit=”0”: MODE1 Modulo=262144=(218)  
MODE bit=”1”: MODE2 Modulo=32768=(215)  
: Power saving setting bit. Control the power saving mode by the relation of the PWDN bit  
and PS pin  
PWDN  
LEN  
: Data length setting bit  
LEN bit=”0”: 24bit  
LEN bit=”1”: 29bit  
X
:Dummy bit(Set "0")  
Note : Data input with MSB first  
*1: Lock detector (LD) output has two mode, Buffer output or Open drain output.  
The LD signal is outputted by Vcc (3V system) in the Buffer mode. When Open drain mode is selected, the  
LD/fout pin should be connected to the outside power supply via pulled-up resistor. When the resistor is  
50kohm, the leakage current of low state is about 50uA and the time constant value is 4usec.  
(Recommended value)  
- 9 -  
Rev2.0  
MB15E65UV  
Synthesizer data setting (Fractional-N)  
Fractional-N PLL divide ratio can be calculated using the following equation:  
fvco =NTOTAL x fosc / R  
NTOTAL = P × N + A + 3 + F/Q  
fvco : Output frequency of external voltage controlled oscillator (VCO)  
NTOTAL: Total divide ratio  
fosc : Reference oscillation frequency  
R
P
N
A
F
: Preset divide ratio of binary 6-bit reference counter (1 to 63)  
: Preset divide ratio of 2- modulus prescaler (16)  
: Preset divide ratio of binary 8-bit programmable counter (9 to 255)  
: Preset divide ratio of binary 4-bit swallow counter (0 to15)  
: A numerator of Fractional-N (MODE1:0 to 262143 or MODE2:0 to 32767)  
: A denominator of Fractional-N (MODE1:2^18 or MODE2:2^15)  
Q
When F value is an even number, the value is added +1 at MODE1, and the value is added +1/8 at MODE2.  
EX) fosc=19.8MHz, fvco=2000MHz and R=6  
fr=19.8MHz/6=3.3MHz  
NTOTAL=2000MHz/3.3MHz=606.060606  
Integer part: 606=PxN+A+3  
At P=16 N=37, A=11  
Fraction part: F/Q=(2000MHz/3.3MHz/2)-606  
At Q=262144, F=15887.51499  
Select Cut off the decimal. F=15887  
At that time, the frequency gap is for F=0.51499  
fgap=0.51499/262144x(19.8MHz/6)=6.5Hz  
Table4. Fractional-N increment of the fractional accumulator Data setting (F1 toF18)  
Divide  
F
F
F
F
F
F
F
F
F
F
9
F
8
F
7
F
6
F
5
F
4
F
3
F
2
F
1
ratio ( F ) 18 17 16 15 14 13 12 11 10  
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
1
1
1
0
1
0
1
1
1
2
32767  
262144  
Note: When the Modulo (Q) is 2^18, F1 to F=15 are available. F=0 to 32767  
When the Modulo (Q) is 2^15, F1 to F=18 are available. F=0 to 262143  
- 10 -  
Rev2.0  
MB15E65UV  
Table.5 Binary 8 bit Programmable counter data setting (N1 to N8)  
Divide  
N
8
N
7
N
6
N
5
N
4
N
3
N
2
N
1
ratio  
(N)  
9
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
0
0
1
0
1
1
1
0
1
10  
255  
Note: Divide ratio less than 9 is prohibited.  
Table.6 Binary 4 bit swallow counter data setting (A1 to A4)  
Divide  
ratio (A)  
A
4
A
3
A
2
A
1
0
1
0
0
1
0
0
1
0
0
1
0
1
1
15  
Note: Divide ratio (A) range=0 to 15, A<N  
Table.7 Binary 6 bit programmable reference counter data setting (R1 to R6)  
Divide  
ratio (R)  
R
6
R
5
R
4
R
3
R
2
R
1
1
0
0
0
0
0
1
2
63  
0
1
0
1
0
1
0
1
1
1
0
1
Table.8 Phase comparator phase switching data setting (FC)  
FC=”1”  
FC=”0”  
Do  
(1)  
(2)  
fr > fp  
fr < fp  
H
L
L
H
VCO output  
Frequency  
fr = fp  
Z
Z
VCO polarity  
(1)  
(2)  
VCO Input Voltage  
NOTE: Z= High impedance  
When the LPF and VCO characteristics are similar to (1), set FC bit high  
When the VCO characteristics are similar to (2), set FC bit low.  
- 11 -  
Rev2.0  
MB15E65UV  
Timer circuit  
Fast lock up time can be achieved by using the timer circuit for speed up mode.  
The timer circuit for speed up mode controls the time to switch the charge pump current, or internal open drain output  
or serial switch according to setting time automatically. The time set by TM bits. The variable charge pump current can  
be set by CS bit. Also the switching time of the open drain can be controlled by ODSW bit.  
Table 9. Switching time setting bit (TM1 to TM7)  
Value for the  
switching time(TM)  
1
TM7  
TM6  
TM5  
TM4  
TM3  
TM2  
TM1  
Ex. fosc=19.2MHz  
0
-
0
-
0
-
0
-
0
-
0
-
1
-
3.3us  
-
-
126  
127  
0
1
1
1
1
1
1
1
1
1
1
1
0
1
420us  
423.3us  
The switching time depends on oscillator frequency (fosc).  
Switching time = 64 / fosc x TM  
Table.10 Compensate time setting bits at speed up (TMU1 to TMU2)  
Compensate value  
TMU2  
TMU1  
(TMU)  
0
5
0
0
1
1
0
1
0
1
10  
15  
*Total value for the switching time of speed up is calculated by the following  
Switching time =64/foscx(TM+TMU), TM+TMU=1 to 142  
Table.11 High-speed mode function setting (ODSW)  
ODSW  
1
0
OFF  
Active  
Table.12 Charge pump current setting bits (CS)  
Charge pump  
current  
TMC bit  
CS  
(Timer circuit)  
+/-0.094mA(fixed)  
+/-4.5mA(fixed)  
0
1
0
1
0
0
1
1
+/-4.5mA to +/-0.094mA  
+/-4.5mA(fixed)  
- 12 -  
Rev2.0  
MB15E65UV  
Table.13 LD/fout output setting bit(LD1 to LD3)  
Maximum operating  
frequency  
LD/fout output  
LD  
LD3  
LD2  
LD1  
-
0
1
-
-
0
1
1
1
1800 MHz  
1
1
0
fr  
fout  
2000 MHz  
fp  
Prohibit  
When Lock detector output is selected, there are two outputs mode, Buffer output or Open drain.  
In case of Buffer output, the output is digital output at 3V system.  
In case of Open drain output, should pull up to the external voltage via resistor. When the resistor is  
50kohm, the time constant is at 4usec, and then the leak current is about 50uA.  
- 13 -  
Rev2.0  
MB15E65UV  
Power saving mode  
Table.14 Power saving mode setting  
PLL State  
Normal  
PS pin  
PWDN bit  
H
L
1
1
Power  
saving  
0
0
H
L
The intermittent mode control circuit reduces the PLL power consumption.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is  
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)  
which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase  
in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error  
signal from the phase detector when it returns to normal operation.  
Operation mode  
The set section and reference oscillation circuit are operated. It is normal operation.  
Power save mode  
The power supply current in power save mode is at 0.1uA(typ). Max.10uA.  
The phase detector output, Do, becomes high impedance.  
The lock detector, LD, remains high, indicating a locked condition.  
OFF  
ON  
Vcc  
tv>1us  
Clock  
Data  
LE  
tps>100ns  
PS  
(1)  
(3)  
(2)  
(1) Set PS=”L” (power saving mode) at Power-ON.  
(2) Set serial data 1us later after power supply remains stable (Vcc>2.2V).  
(3) Release power saving mode (PS : “L” “H”) at least 100ns after setting serial data.  
- 14 -  
Rev2.0  
MB15E65UV  
Serial data input timing  
MSB  
LSB  
Data  
Clock  
LE  
t0  
t1  
t5  
t2  
t3 t6 t4  
Table15.Timing parameters  
Parameter  
MIN.  
100  
20  
TYP.  
MAX.  
Unit  
Note  
CK Rate  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu CKData  
th CKData  
tsu LE  
20  
30  
tsu inactive  
tw CK  
20  
30  
tw LE  
100  
Note: LE should be “L” when the data is transferred into the shift register.  
On rising edge of the clock, one bit of the data is transferred into the shift register.  
- 15 -  
Rev2.0  
MB15E65UV  
Setting method  
Example: In case that the serial data length of 1st Line is 29bit..  
1.Power-ON  
Supply the voltage on all Vcc pins at the same time. If the voltage for Vcc is supplied at the different timing, the leak  
current is caused.  
PS pin should be low at Power-ON.  
2.Initial setting (PS pin is low)  
LSB  
Data Flow  
MSB  
CN CN CN  
Line  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
1
0
0
1
2
0
0
3
0
0
LD LD LD DE  
1
OD  
SW  
MO  
DE  
PW LE  
FC  
1
X
0
X
0
X
0
X
0
X
0
CS  
0
X
0
X
0
TMC  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
3rd  
2
3
T
DN  
N
0
0
0
0
0
0
0
1
1
TM TM  
U1 U2  
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 A1 A2 A3 A4 N1 N2 N3 N4  
1st  
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
X
0
0
X
0
0
X
0
1
X
0
0
0
1
1
0
X
0
0
X
0
0
X
0
0
X
0
0
X
0
TM TM TM TM TM TM TM  
R1 R2 R3 R4 R5 R6  
N5 N6 N7 N8  
1
2
3
4
5
6
7
2nd  
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
(1) Input the binary data from 3rd Line as the above table.  
(2) Set each value in F bits, A bits, N bits and R bits of the initial operating frequency.  
(3) 2nd and 3rd Lines are almost used at fixed status, so it is not necessary to reload the Lines after initial setting.  
(It is necessary to write the 2nd Line according to the frequency setting after initial setting.)  
In case that 1st Line is with 29bit length, you should only write the 1st Line when the frequency is changed.  
(4) Monitor the state of LD/fout pin after data setting. When LD/fout is at “High”, the state of PLL is power  
saving and the operation is normal.  
(5) Dummy bit, “x” should be set at “0”.  
3.Release the power saving  
(1) PS pin change to “High”, and then PLL should be locked. When LD/fout is at “High”, PLL is locked.  
*Turn on a VCO or a reference oscillator as TCXO before PS pin change to “High”.  
4.Change the frequency  
(1) Write 1st Line only according to frequency setting.  
(If the N5 to N8 bit in 2nd Line need to be changed for setting frequency, it is necessary to write the 2nd Line.)  
CN CN CN  
Line  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
1
2
3
F
F
F
F
F
F
F
F
F
TM TM  
U1 U2  
1
F1 F2 F3 F4 F5 F6 F7 F8 F9  
A1 A2 A3 A4 N1 N2 N3 N4  
10 11 12 13 14 15 16 17 18  
1st  
up up up up up up up up up up up up up up up up up up up  
up up up  
1
up up up  
up  
up up  
- 16 -  
Rev2.0  
MB15E65UV  
Phase detector output waveform  
fr  
fp  
twL  
twu  
LD  
(FC bit=“1”)  
Z
Do  
Do  
(FC bit=“0”)  
Z
LD output logic table  
PLL state  
Locking state/Power save state  
Unlocking state  
LD output  
H
L
Note: 1.Phase error detection range = -2π to +2π  
2.Pulses on Do signal during locked state are output to prevent dead zone.  
3.LD output becomes low when phase is tWU or more. LD output becomes high when phase error is tWL  
or less and continues to be so for eight cycles or more.  
4.tWU and tWL depend on fin input frequency.  
tWU > 1/(fin/16) (s) (e.g. tWU > 9.82ns, fin=1629.9MHz)  
tWL < 2/(fin/16) (s) (e.g. tWL < 19.63ns, fin=1629.9MHz)  
- 17 -  
Rev2.0  
MB15E65UV  
Measurement circuit (for measuring input sensitivity of fin and OSCin)  
Do  
GND  
SW  
0.1uF  
Vp  
NC  
1
2
3
4
5
6
18 17 16 15  
14  
VccSD  
Vcc  
NC  
0.1uF  
0.1uF  
GND  
LD/fout  
PS  
13  
MB15E65UV  
1000pF  
Oscilloscope  
Xfin  
fin  
12  
11  
S.G  
1000pF  
LE  
GND  
50Ω  
7
8
9
10  
Data Clock OSCin  
S.G  
1000pF  
50Ω  
Controller  
(Divide ratio setting)  
- 18 -  
Rev2.0  
MB15E65UV  
TYPCAL CHARACTERISTICS  
1.fin input sensetivity  
fin input sensitivity  
10  
5
0
SPEC  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
Vcc=2.7V  
Vcc=3.0V  
Vcc=3.3V  
0
500  
1000  
1500  
2000  
2500  
Frequency (MHz)  
2.OSCin input sensetivity  
OSCin input sensitivity  
10  
5
Vcc=2.6V  
Vcc=3.0V  
Vcc=3.4V  
SPEC  
0
-5  
-10  
-15  
-20  
-25  
-30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (MHz)  
- 19 -  
Rev2.0  
MB15E65UV  
3.Do output current  
CP=94uA  
150  
Vcc=Vp=3.0V  
100  
50  
0
-50  
-100  
-150  
-1  
0
1
2
3
4
VDO[V]  
CP=4.5mA  
6
4
Vcc=Vp=3.0V  
2
0
-2  
-4  
-6  
-1  
0
1
2
3
4
VDO[V]  
- 20 -  
Rev2.0  
MB15E65UV  
4.fin input impedance  
5.OSCin input impedance  
- 21 -  
Rev2.0  
MB15E65UV  
LOOP CHARACTERISTICS  
fvco=800MHz Vcc=3.0V  
Kv=25MHz/V  
Vvco=5.0V  
OSCin  
S.G  
Do  
fr=3.25MHz(R=4) Ta=25°C  
LPF  
fosc=13.0MHz  
TMC=”1”,TM=”5”  
SW  
fin  
PD1=PD2=”1”,CS=”0”,ODSW=”0”,SC=”1”,MODE=”0”  
Do  
VCO  
Spectrum  
Analyzer  
VCO  
7400pF  
2200pF  
1.3k  
4.7kΩ  
SW  
PLL Phase Noise & Spurious Noise  
C/N 1kHz Offset  
C/N 100kHz Offset  
C/N 200kHz Offset  
Ref.Leakage 3.25MHz Offset  
- 22 -  
Rev2.0  
MB15E65UV  
PLL Lock Up time  
L:800MHz -> H:835MHz ±1kHz  
Lch -> Hch 380us  
PLL Lock Up time  
H:835MHz -> L:800MHz ±1kHz  
Hch -> Lch 422us  
- 23 -  
Rev2.0  
MB15E65UV  
Application example  
LPF  
Output  
VCO  
Do GND SW  
0.1uF  
0.1uF  
NC  
Vp  
1
2
3
4
5
6
18 17 16 15  
14  
VccSD  
Vcc  
NC  
Xfin  
fin  
0.1uF  
GND  
LD/fout  
PS  
13  
MB15E65UV  
1000pF  
12  
11  
Lock Det.  
GND  
LE  
7
8
9
10  
Data Clock OSCin  
TCXO  
1000pF  
From controller  
Clock, Data, LE: Schmitt trigger circuit provided (Insert a pull-down or pull-up resister as needed to  
prevent oscillation when the terminals are left open)  
- 24 -  
Rev2.0  
MB15E65UV  
SIGMA DELTA FRACTIONAL-N FUNCTION  
Fractional-N type PLL uses the sigma delta modulation method, and has the following features.  
(1) Integer operation at F=0  
In F=0, the sigma delta circuit block is completely stopped, and RF PLL operates same as Integer-N PLL.  
Therefore, it is the best of the noise characteristic.  
(2) Spurious characteristics  
Spurious is generated in the offset part of fp, which is the comparison frequency. (It corresponds to reference  
Leak in the Integer-N PLL.)  
(Ex.)  
Ntotal becomes 247 in the use condition of fvco=802.75MHz, fosc=13MHz, and R=4, and F becomes 0(Integer  
mode). At this time, spurious generation in the fp/R=13MHz/4=3.25MHz offset. (Reference Leak) (Spurious  
becomes a waveforms like RefLeakage of P22, and can improve by the filter design)  
Spurious is generated in F/Q×fp or (Q-F)/Q×fp offset by the sigma delta circuit operation.  
(Ex.)  
Ntotal is 248.0615385, and F becoming 16131, and the spurious generation in the F/Q x fp=200kHz offset at  
fosc=13MHz, R=4, and fvco=806.2MHz.  
200kHz Offset  
It is possible to adjust the filter as a method of decreasing this spurious. Moreover, spurious can be lost by  
changing R value, and changing fr.  
For instance, F value becomes 16131 by Ntotal=247.0615385, and spurious is generated in F/Q x fp=200kHz  
and 200kHz offset in fvco=802.95MHz at fosc=13MHz and R=4. However, F value becomes 216772 by  
Ntotal=308.8269231 when changing to R=5. Spurious is attenuated by LPF and disappears though generates  
spurious in the F/Q x fp=2.1499MHz offset.  
There is a possibility to which CN is deteriorated because the comparison frequency changes. Therefore, the  
characteristic confirmation by the use condition is necessary. The example of the waveforms in that case is  
appended to the next page.  
- 25 -  
Rev2.0  
MB15E65UV  
R=4 (200kHz offset)  
R=5 (200kHz offset)  
R=4 (In band waveform)  
R=5 (In band waveform)  
R=4 (1kHz offset)  
R=5 (1kHz offset)  
- 26 -  
Rev2.0  
MB15E65UV  
F/Q=1/2, 1/4, and 1/8 ··· When the binary dividing frequency is set, spurious is generated. When the decrease of spurious is  
difficult, spurious can be decreased by moving F value to the range of the allowance of the frequency gap.  
(Ex.)  
Spurious noise generation on the entire floor when F=131072(F/Q=1/2) is set.  
Spurious noise generation on the floor when F=65536(F/Q=1/4) is set.  
The example of the generation at that time in the following of the spurious waveform is shown. Moreover, the example of the  
waveform in case of F value +5 and F value +10 is shown.  
F=65536(F/Q=1/4)  
F=131072(F/Q=1/2)  
F=131072+5  
F=65536+5  
F=131072+10  
F=65536+10  
Rev2.0  
MB15E65UV  
LOOP FILTER (Hi-Speed mode)  
Option  
DO  
C2  
R1  
R2  
C1  
SW  
PACKAGE DIMENSION  
Plastic BCC 18pin  
Unit : mm(inches)  
Note: ( )values:Reference  
- 28 -  

相关型号:

MB15F02

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02L

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02LPFV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02LPV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02PFV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02PFV1

PLL Frequency Synthesizer, BICMOS, PDSO16, PLASTIC, SSOP-16
FUJITSU

MB15F02PV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02SL

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02SLPFV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F02SLPFV1-ER

PLL Frequency Synthesizer, BICMOS, PDSO16, PLASTIC, SSOP-16
FUJITSU

MB15F02SLPV

暂无描述
FUJITSU

MB15F02SLPV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU