MB15F02SLPFV1 [FUJITSU]

Dual Serial Input PLL Frequency Synthesizer; 双串行输入锁相环频率合成器
MB15F02SLPFV1
型号: MB15F02SLPFV1
厂家: FUJITSU    FUJITSU
描述:

Dual Serial Input PLL Frequency Synthesizer
双串行输入锁相环频率合成器

信号电路 锁相环或频率合成电路 光电二极管 信息通信管理
文件: 总25页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-21356-3E  
ASSP  
Dual Serial Input  
PLL Frequency Synthesizer  
MB15F02SL  
DESCRIPTION  
The Fujitsu MB15F02SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1200 MHz and a  
500 MHz prescalers. The 1200 MHz and 500 MHz prescalers have a dual modulus division ratio of 128/129 or  
64/65, and a 8/9 or a 16/17 enabling pulse swallowing operation.  
The supply voltage range is between 2.4 V and 3.6 V. The MB15F02SL uses the latest BiCMOS process. As a result,  
the supply current is typically 3 mA at 2.7 V. A refined charge pump supplies a well-balanced output current of 1.5  
mA or 6 mA. The charge pump current is selectable by serial data.  
MB15F02SL is ideally suited for wireless mobile communications, such as GSM and PDC.  
FEATURES  
• High frequency operation: RF synthesizer: 1200 MHz max  
IF synthesizer: 500 MHz max  
• Low power supply voltage: VCC = 2.4 to 3.6 V  
• Ultra Low power supply current: ICC = 3.0 mA typ. (VCC = 2.7 V, Ta = +25°C, in IF, RF locking state)  
ICC = 3.5 mA typ. (VCC = 3.0 V, Ta = +25°C, in IF, RF locking state)  
• Direct power saving function: Power supply current in power saving mode  
Typ. 0.1 µA (VCC = 3.0 V, Ta = +25°C), Max. 10 µA (VCC = 3.0 V)  
• Dual modulus prescaler: 1200 MHz prescaler (64/65, 128/129)/500 MHz prescaler (8/9 or 16/17)  
• Serial input 14-bit programmable reference divider: R = 3 to 16,383  
• Serial input programmable divider consisting of:  
- Binary 7-bit swallow counter: 0 to 127  
- Binary 11-bit programmable counter: 3 to 2,047  
• Software selectable charge pump current  
• On-chip phase control for phase comparator  
• Operating temperature: Ta = –40 to +85°C  
• Pin compatible with MB15F02, MB15F02L  
PACKAGES  
16-pad plastic BCC  
16-pin plastic SSOP  
(LCC-16P-M04)  
(FPT-16P-M05)  
MB15F02SL  
PIN ASSIGNMENTS  
16-pin SSOP  
16-pad BCC  
GNDRF Clock  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GNDRF  
OSCIN  
GNDIF  
finIF  
Clock  
Data  
LE  
16 15  
OSCIN  
1
14  
Data  
GNDIF  
finIF  
2
3
4
5
6
13  
12  
11  
10  
9
LE  
finRF  
VCCRF  
XfinRF  
PSRF  
DORF  
finRF  
VCCRF  
XfinRF  
PSRF  
TOP  
VIEW  
TOP  
VIEW  
VCCIF  
LD/fout  
PSIF  
VCCIF  
LD/fout  
PSIF  
7
8
DOIF  
DOIF DORF  
(FPT-16P-M05)  
(LCC-16P-M04)  
2
MB15F02SL  
PIN DESCRIPTIONS  
Pin no.  
Pin  
SSOP-16 BCC-16  
I/O  
Descriptions  
name  
1
2
3
4
5
16  
1
GNDRF  
OSCIN  
GNDIF  
finIF  
I
Ground for RF-PLL section.  
The programmable reference divider input. TCXO should be connected  
with a AC coupling capacitor.  
2
I
Ground for the IF-PLL section.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be via AC coupling.  
3
4
VCCIF  
Power supply voltage input pin for the IF-PLL section.  
Lock detect signal output (LD)/phase comparator monitoring  
output (fout).  
6
7
5
6
LD/fout  
PSIF  
O
I
The output signal is selected by LDS bit in a serial data.  
LDS bit = “H” ; outputs fout signal  
LDS bit = “L” ; outputs LD signal  
Power saving mode control for the IF-PLL section. This pin must be set  
at “L” during Power-ON. (Open is prohibited.)  
PSIF = “H” ; Normal mode  
PSIF = “L” ; Power saving mode  
Charge pump output for the IF-PLL section.  
Phase characteristics of the phase detector can be selected via  
programming of the FC-bit.  
8
9
7
8
DoIF  
O
O
Charge pump output for the RF-PLL section.  
Phase characteristics of the phase detector can be selected via  
programming of the FC-bit.  
DoRF  
Power saving mode control for the RF-PLL section. This pin must be set  
at “L” during Power-ON. (Open is prohibited.)  
PSRF = “H” ; Normal mode  
10  
9
PSRF  
I
PSRF = “L” ; Power saving mode  
Prescaler complementary input for the RF-PLL section.  
This pin should be grounded via a capacitor.  
11  
12  
13  
14  
10  
11  
12  
13  
XfinRF  
VCCRF  
finRF  
LE  
I
I
Power supply voltage input pin for the RF-PLL section, the shift register  
and the oscillator input buffer. When power is OFF, latched data of RF-PLL  
is lost.  
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be via AC coupling.  
Load enable signal inpunt (with a schmitt trigger input buffer.)  
When the LE bit is set “H”, data in the shift register is transferred to the  
corresponding latch according to the control bit in the serial data.  
I
Serial data input (with a schmitt trigger input buffer.)  
Data is transferred to the corresponding latch (IF-ref counter, IF-prog.  
counter, RF-ref. counter, RF-prog. counter) according to the control bit in  
the serial data.  
15  
16  
14  
15  
Data  
I
I
Clock input for the 23-bit shift register (with a schmitt trigger input buffer.)  
One bit of data is shifted into the shift register on a rising edge of the clock.  
Clock  
3
MB15F02SL  
BLOCK DIAGRAM  
VCCIF GNDIF  
5 (4) 3 (2)  
Intermittent  
PSIF 7  
3-bit latch  
7-bit latch  
11-bit latch  
mode control  
(6)  
fpIF  
(IF-PLL)  
Binary 7-bit  
swallow counter  
(IF-PLL)  
Binary 11-bit  
programmable  
counter (IF-PLL)  
Charge  
pump  
(IF-PLL)  
Phase  
comp.  
(IF-PLL)  
8
(7)  
DoIF  
Current  
Switch  
LDS SWIF FCIF  
Lock  
Det.  
(IF-PLL)  
Prescaler  
finIF 4  
(IF-PLL)  
(3)  
8/9, 16/17  
1-bit latch  
2-bit latch  
T1 T2  
14-bit latch  
LDIF  
Binary 14-bit  
programmable ref.  
counter (IF-PLL)  
C/P setting  
current CP  
frIF  
OSCIN 2  
(1)  
Selector  
AND  
frRF  
LD  
Binary 14-bit  
programmable ref.  
counter (RF-PLL)  
frIF  
C/P setting  
current CP  
T1 T2  
6
(5)  
frRF  
fpIF  
fpRF  
LD/  
fout  
OR  
2-bit latch  
14-bit latch  
1-bit latch  
(12)  
finRF 13  
Prescaler  
(RF-PLL)  
64/65, 128/129  
Lock  
Det.  
11  
XfinRF  
(RF-PLL)  
(10)  
Charge  
Phase  
comp.  
(RF-PLL)  
Binary 7-bit  
swallow counter  
(RF-PLL)  
Binary 11-bit  
programmable  
counter (RF-PLL)  
9
(8)  
Current  
switch  
DoRF  
pump  
LDS SWRF FCRF  
Intermittent  
mode control  
(RF-PLL)  
(RF-PLL)  
PSRF 10  
(9)  
fpRF  
3-bit latch  
7-bit latch  
11-bit latch  
Schmitt  
circuit  
LE 14  
(13)  
Latch selector  
(14)  
Data 15  
Schmitt  
circuit  
C
N
1
C
N
2
23-bit shift register  
Schmitt  
circuit  
Clock 16  
(15)  
(11)  
(16)  
1
12  
VCCRF  
GNDRF  
O : SSOP  
( ) : BCC  
4
MB15F02SL  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Remark  
Min.  
–0.5  
–0.5  
GND  
–55  
Max.  
Power supply voltage  
Input voltage  
VCC  
VI  
+4.0  
V
V
VCC +0.5  
VCC  
Output voltage  
VO  
V
Storage temperature  
Tstg  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remark  
Min.  
2.4  
Typ.  
3.0  
Max.  
3.6  
Power supply voltage  
Input voltage  
VCC  
VI  
V
V
GND  
–40  
VCC  
Operating temperature  
Ta  
+85  
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
5
MB15F02SL  
ELECTRICAL CHARACTERISTICS  
(VCC = 2.4 V to 3.6 V, Ta = 40 to +85°C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
finIF = 500 MHz, VCCIF = 2.7 V  
(VCCIF = 3.0 V)  
1.2  
*1  
ICCIF  
mA  
mA  
(1.5)  
Power supply current*1  
finRF = 1200 MHz, VCCRF = 2.7 V  
(VCCRF = 3.0 V)  
1.8  
(2.0)  
*1  
ICCRF  
0.1*2  
IPSIF  
IPSRF  
finIF  
PSIF = PSRF = “L”  
PSIF = PSRF = “L”  
IF PLL  
10  
10  
µA  
Power saving current  
Operating frequency  
0.1*2  
µA  
*3  
finIF  
50  
100  
3
500  
1200  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
Vp-p  
*3  
finRF  
finRF  
fosc  
RF PLL  
OSCIN  
*8  
finIF  
PfinIF IF PLL, 50 system  
PfinRF RF PLL, 50 system  
–15  
–15  
0.5  
+2  
Input sensitivity  
finRF  
+2  
OSCIN  
VOSC  
VCC  
VCC ×0.7  
“H” level input voltage  
“L” level input voltage  
VIH  
Schmitt trigger input  
Data,  
Clock,  
LE  
+ 0.4  
V
VCC × 0.3  
– 0.4  
VIL  
Schmitt trigger input  
“H” level input voltage  
“L” level input voltage  
VIH  
VCC × 0.7  
PSIF,PSRF  
V
VIL  
VCC × 0.3  
*4  
Data,  
Clock,  
“H” level input current  
“L” level input current  
IIH  
–1.0  
–1.0  
+1.0  
+1.0  
µA  
µA  
LE,  
*4  
IIL  
PSIF, PSRF  
“H” level input current  
“L” level input current  
IIH  
0
+100  
0
OSCIN  
*4  
IIL  
–100  
“H” level output  
voltage  
VOH  
VOL  
VCC = 3.0 V, IOH = –1 mA  
VCC = 3.0 V, IOL = 1 mA  
VCC = 3.0 V, IDOH = –0.5 mA  
VCC = 3.0 V, IDOL = 0.5 mA  
VCC – 0.4  
0.4  
LD/fout  
V
“L” level output  
voltage  
“H” level output  
voltage  
VDOH  
VDOL  
IOFF  
VCC – 0.4  
DoIF  
DoRF  
V
“L” level output  
voltage  
0.4  
2.5  
–1.0  
High impedance  
cutoff current  
DoIF  
DoRF  
VCC = 3.0 V,  
VOFF = 0.5 V to VCC – 0.5 V  
nA  
mA  
“H” level output  
current  
*4  
IOH  
VCC = 3.0 V  
VCC = 3.0 V  
LD/fout  
“L” level output  
current  
*4  
IOL  
1.0  
(Continued)  
6
MB15F02SL  
(Continued)  
(VCC = 2.4 to 3.6 V, Ta = 40 to +85°C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
VCC = 3.0 V,  
CS bit = “H”  
CS bit = “L”  
CS bit = “H”  
CS bit = “L”  
–6.0  
*4  
“H” level output current  
“L” level output current  
IDOH  
VDOH = VCC/2,  
–1.5  
6.0  
Ta = +25°C  
DoIF  
DoRF  
mA  
VCC = 3.0 V,  
VDOL= VCC/2,  
Ta = +25°C  
IDOL  
1.5  
*5  
IDOL/IDOH  
IDOMT  
VDO = VCC/2  
3
%
%
*6  
Charge pump  
current rate  
vs VDO  
IDOVD  
0.5 V VDO VCC – 0.5 V  
10  
–40°C Ta ≤ +85°C,  
VDO = VCC/2  
*7  
vs Ta  
IDOTA  
10  
%
*1: Conditions; fosc = 12 MHz, Ta = +25°C, in locking state.  
*2: VCCIF = VCCRF = 3.0 V, fosc = 12.8 MHz, Ta = +25°C, in power saving mode.  
*3: AC coupling. 1000pF capacitor is connected under the condition of min. operating frequency.  
*4: The symbol “–” (minus) means direction of current flow.  
*5: VCC = 3.0 V, Ta = +25°C (|I3| – |I4|)/[(|I3| + |I4|)/2] × 100(%)  
*6: VCC = 3.0 V, Ta = +25°C [(|I2| – |I1|)/2]/[(|I1| + |I2|)/2] × 100(%) (Applied to each IDOL, IDOH)  
*7: VCC = 3.0 V, [|IDO(+85°C) – IDO(–40°C)|/2]/[|IDO(+85°C) + IDO(–40°C)|/2] × 100(%) (Applied to each IDOL, IDOH)  
*8: Prescaler divided ratio  
Charge pump current  
finIF  
fin  
fin  
VfinIF(min)  
–15 dBm  
–15 dBm  
–10 dBm  
–15 dBm  
–15 dBm  
–15 dBm  
–10 dBm  
16/17  
1.5 mA mode  
6.0 mA mode  
50 MHz  
50 MHz  
500 MHz  
300 MHz  
500 MHz  
300 MHz*  
500 MHz  
300 MHz*  
500 MHz  
300 MHz < fin  
50 MHz fin  
300 MHz < fin  
8/9  
1.5 mA mode  
6.0 mA mode  
50 MHz  
fin  
300 MHz < fin  
* : VCC = 2.7 V to 3.6 V at 500 MHz,  
VCC = 2.4 V to 3.6 V, Ta = 40°C to +85°C at fin < 500 MHz  
I1  
I3  
I2  
IDOL  
IDOH  
I4  
I2  
I1  
0.5  
Vcc/2  
Vcc 0.5  
Vcc  
Charge Pump Output Voltage (V)  
7
MB15F02SL  
FUNCTIONAL DESCRIPTION  
The divide ratio can be calculated using the following equation:  
fVCO = {(M × N) + A} × fOSC ÷ R (A < N)  
fVCO :  
Output frequency of external voltage controlled oscillator (VCO)  
Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64 or 128 for RF-PLL)  
Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
Preset divide ratio of binary 7-bit swallow counter (0 A 127)  
Reference oscillation frequency  
M
N
A
:
:
:
fOSC :  
R
:
Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
Serial Data Input  
Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL  
sections, programmable reference dividers of IF/RF-PLL sections are controlled individually.  
Serial data of binary data is entered through Data pin.  
On rising edge of Clock, one bit of serial data is transferred into the shift register. When the LE signal is taken high,  
the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.  
Table 1. Control Bit  
Control bit  
Destination of serial data  
CN1  
L
CN2  
L
The programmable reference counter for the IF-PLL  
H
L
The programmable reference counter for the RF-PLL  
L
H
The programmable counter and the swallow counter for the IF-PLL  
The programmable counter and the swallow counter for the RF-PLL  
H
H
Shift Register Configuration  
Programmable Reference Counter  
LSB  
1
MSB  
Data Flow  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
C
N
1
C
N
2
T
1
T
2
R
1
R
2
R
3
R
4
R
5
R
6
R
7
R
8
R
9
R
R
R
R
R
C
S
X
X
X
X
10 11 12 13 14  
CN1,2  
: Control bit  
[Table 1]  
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)[Table 2]  
T1, 2  
CS  
X
: Test purpose bit  
: Charge pump currnet select bit  
: Dummy bits (Set “0” or “1”)  
[Table 3]  
[Table 9]  
NOTE: Data input with MSB first.  
8
MB15F02SL  
Programmable Counter  
MSB  
LSB  
1
Data Flow  
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11  
2
3
4
5
6
7
8
9
SWIF/ FCIF/  
SWRF FCRF  
CN1 CN2 LDS  
CN1, CN2 : Control bit  
N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)  
[Table 1]  
[Table 4]  
[Table 5]  
[Table 6]  
A1 to A7  
SWIF/SWRF : Divide ratio setting bit for the prescaler  
(8/9 or 16/17 for the SWIF, 64/65 or 128/129 for the SWRF)  
: Divide ratio setting bits for the swallow counter (0 to 127)  
FCIF/FCRF  
LDS  
: Phase control bit for the phase detector (IF: FCIF, RF: FCRF)  
: LD/fout signal select bit  
[Table 7]  
[Table 8]  
NOTE: Data input with MSB first.  
Table 2. Binary 14-bit Programmable Reference Counter Data Setting  
Divide ratio  
R14 R13 R12 R11 R10 R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
(R)  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
4
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note: Divide ratio less than 3 is prohibited.  
Table 3. Test Purpose Bit Setting  
T1  
L
T2  
L
LD/fout pin state  
Outputs frIF.  
H
L
L
Outputs frRF.  
Outputs fpIF.  
Outputs fpRF.  
H
H
H
9
MB15F02SL  
Table 4. Binary 11-bit Programmable Counter Data Setting  
Divide ratio  
N11 N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
(N)  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
4
2047  
1
1
1
1
1
1
1
1
1
1
1
Note: Divide ratio less than 3 is prohibited.  
Table 5. Binary 7-bit Swallow Counter Data Setting  
Divide ratio  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
(A)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
127  
1
1
1
1
1
1
1
Note: Divide ratio (A) range = 0 to 127  
Table 6. Prescaler Data Setting  
SW = “H”  
8/9  
64/65  
SW = “L”  
16/17  
IF-PLL  
Prescaler  
divide ratio  
RF-PLL  
128/129  
Table 7. Phase Comparator Phase Switching Data Setting  
FCIF, FCRF = “H”  
FCIF, FCRF = “L”  
(1)  
DoIF, DoRF  
fr > fp  
fr = fp  
H
Z
L
Z
VCO Output  
Frequency  
fr < fp  
L
H
VCO polarity  
(1)  
(2)  
(2)  
LPF Output Voltage  
Note: Z = High-impedance  
Depending upon the VCO and LPF polarity, FC bit should be set.  
Table 8. LD/fout Output Select Data Setting  
LDS  
H
LD/fout output signal  
fout (frIF/frRF, fpIF/fpRF) signals  
LD signal  
L
10  
MB15F02SL  
Table 9. Charge Pump Current Setting  
CS  
H
Current value  
±6.0 mA  
L
±1.5 mA  
Power Saving Mode (Intermittent Mode Control Circuit)  
Table 10. PS Pin Setting  
PS pin  
Status  
H
L
Normal mode  
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See  
the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.  
Setting the PS pin high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because  
of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can  
cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal  
from the phase detector when it returns to normal operation.  
Note: When power (VCC) is first applied, the device must be in standby mode, PS = Low, for at least 1 µs.  
PS pin must be set at “L” for Power-ON.  
OFF  
ON  
tv 1 µs  
VCC  
Clock  
Data  
LE  
tps 100 ns  
PS  
(1)  
(2)  
(3)  
(1) PS = L(power saving mode) at Power-ON  
(2) Set serial data 1 µs later after power supply remains stable (VCC > 2.2 V).  
(3) Release power saving mode (PS: LH) 100 ns later after setting serial data.  
11  
MB15F02SL  
SERIAL DATA INPUT TIMING  
1st data  
2nd data  
Control bit Invalid data  
LSB  
Data  
MSB  
Clock  
LE  
t1  
t2  
t3  
t6  
t7  
t4  
t5  
On rising edge of the clock, one bit of the data is transfered into the shift register.  
Parameter  
Min. Typ. Max. Unit  
Parameter  
Min. Typ. Max. Unit  
t1  
t2  
t3  
t4  
20  
20  
30  
30  
ns  
ns  
ns  
ns  
t5  
t6  
t7  
100  
20  
ns  
ns  
ns  
100  
Note: LE should be “L” when the data is transferred into the shift register.  
12  
MB15F02SL  
PHASE COMPARATOR OUTPUT WAVEFORM  
frIF/frRF  
fpIF/fpRF  
tWU  
tWL  
LD  
(FC bit = High)  
DOIF/DORF  
(FC bit = Low)  
DOIF/DORF  
LD Output Logic Table  
IF-PLL section  
RF-PLL section  
Locking state/Power saving state  
Unlocking state  
LD output  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes:Phase error detection range = –2π to +2π  
Pulses on DoIF/RF signals are output to prevent dead zone.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU > 2/fosc: i. e. tWU > 156.3 ns when fosc = 12.8 MHz  
tWU < 4/fosc: i. e. tWL < 312.5 ns when fosc = 12.8 MHz  
13  
MB15F02SL  
MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
fout  
Oscilloscope  
VCCIF  
0.1 µF  
S.G.  
1000 pF  
1000 pF  
50 Ω  
50 Ω  
S.G.  
DOIF  
PSIF LD/fout  
VCCIF  
finIF  
4
GNDIF OSCIN  
GNDRF  
8
7
6
5
3
2
1
9
10  
11  
12  
13  
14  
LE  
15  
16  
DORF  
PSRF  
XfinRF  
Data  
Clock  
VCCRF  
finRF  
S.G.  
1000 pF  
Controller (divide ratio setting)  
VCCRF  
50 Ω  
1000 pF  
0.1 µF  
Note: SSOP-16  
14  
MB15F02SL  
TYPICAL CHARACTERISTICS  
1. fin input impedance  
RF-PLL input sensitivity Input frequency  
Ta = +25 °C  
10  
5
0
5  
SPEC  
10  
15  
20  
25  
30  
35  
40  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
0
500  
1000  
1500  
2000  
Input frequency finRF (MHz)  
IF-PLL input sensitivity Input frequency  
Ta = +25 °C  
10  
5
0
5  
SPEC  
10  
15  
20  
25  
30  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Input frequency finIF (MHz)  
15  
MB15F02SL  
2. OSCIN input sensitivity  
Input sensitivity Input frequency  
Ta = +25 °C  
SPEC  
10  
0
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
Input frequency fOSC (MHz)  
16  
MB15F02SL  
3. Do output current (RF-PLL)  
1.5 mA mode  
VDO IDO  
Ta = +25 °C  
VCC = 3.0 V  
10.00  
2.000  
/div  
IDOL  
0
IDOH  
10.00  
0
4.800  
.6000/div  
Change pump output voltage VDO (V)  
6.0 mA mode  
VDO IDO  
Ta = +25 °C  
VCC = 3.0 V  
10.00  
IDOL  
2.000  
/div  
0
IDOH  
10.00  
0
4.800  
.6000/div  
Change pump output voltage VDO (V)  
17  
MB15F02SL  
4. Do output current (IF-PLL)  
1.5 mA mode  
VDO IDO  
Ta = +25 °C  
VCC = 3.0 V  
10.00  
2.000  
/div  
IDOL  
0
IDOH  
10.00  
0
4.800  
.6000/div  
Change pump output voltage VDO (V)  
6.0 mA mode  
VDO IDO  
Ta = +25 °C  
VCC = 3.0 V  
10.00  
IDOL  
2.000  
/div  
0
IDOH  
10.00  
0
4.800  
.6000/div  
Change pump output voltage VDO (V)  
18  
MB15F02SL  
5. fin input impedance  
finRF input impedance  
1 : 351.03 Ω  
699.34 Ω  
100 MHz  
33.18 Ω  
208.83 Ω  
400 MHz  
2 :  
3 :  
4 :  
12.895 Ω  
94.023 Ω  
800 MHz  
10.543 Ω  
48.268 Ω  
1200 MHz  
1
2
4
3
START  
100.000 000 MHz  
STOP 1 200.000 000 MHz  
finIF input impedance  
1 : 859.06 Ω  
1.0314 kΩ  
50 MHz  
92.656 Ω  
413.59 Ω  
200 MHz  
2 :  
3 :  
4 :  
28.531 Ω  
204.21 Ω  
400 MHz  
20.859 Ω  
159.23 Ω  
500 MHz  
1
2
4
3
START  
50.000 000 MHz  
STOP 500.000 000 MHz  
19  
MB15F02SL  
6. OSCIN input impedance  
OSCIN input impedance  
1 : 9.0005 kΩ  
3.281 kΩ  
3 MHz  
3.9238 kΩ  
2 :  
4.8648 kΩ  
10 MHz  
1.4543 kΩ  
3.45 kΩ  
20 MHz  
3 :  
4
3
2
4 :  
1
395.5 Ω  
1.8983 kΩ  
40 MHz  
START  
3.000 000 MHz  
STOP  
40.000 000 MHz  
20  
MB15F02SL  
APPLICATION EXAMPLE  
VCO  
LPF  
OUTPUT  
3 V  
0.1 µF  
1000 pF  
1000 pF  
from controller  
Clock  
16  
Data  
15  
XfinRF  
11  
PSRF  
10  
DoRF  
9
LE  
14  
finRF  
13  
VCCRF  
12  
MB15F02SL  
1
2
3
4
5
6
7
8
GNDRF OSCIN GNDIF  
finIF  
VCCIF  
LD/fout  
PSIF  
DoIF  
3 V  
LockDet  
1000 pF  
1000 pF  
0.1 µF  
TCXO  
OUTPUT  
VCO  
LPF  
Note: SSOP-16  
USAGE PRECAUTIONS  
(1) VCCRF must equal VccIF.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to both VCCRF and VCCIF tokeep them  
equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions:  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting or removing this device into or from a socket.  
-Protect leads with conductive sheet, when transporting a board mounted device.  
21  
MB15F02SL  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
16-pin, plastic SSOP  
(FPT-16P-M05)  
MB15F02SLPFV1  
16-pad, plastic BCC  
(LCC-16P-M04)  
MB15F02SLPV1  
22  
MB15F02SL  
PACKAGE DIMENSIONS  
16-pin, Plastic SSOP  
(FPT-16P-M05)  
Note 1 ) * : These dimensions do not include resin protrusion.  
Note 2 ) Pins width and pins thickness include plating thickness.  
*
5.00±0.10(.197±.004)  
0.17±0.03  
(.007±.001)  
16  
9
*
4.40±0.10 6.40±0.20  
(.173±.004) (.252±.008)  
INDEX  
Details of "A" part  
1.25 +00..1200  
.049 +..000048  
(Mounting height)  
1
8
LEAD No.  
"A"  
0.65(.026)  
0.24±0.08  
(.009±.003)  
M
0.13(.005)  
0~8°  
0.10±0.10  
(.004±.004)  
(Stand off)  
0.50±0.20  
(.020±.008)  
0.25(.010)  
0.45/0.75  
(.018/.030)  
0.10(.004)  
Dimensions in mm (inches)  
C
1999 FUJITSU LIMITED F16013S-3C-5  
(Continued)  
23  
MB15F02SL  
(Continued)  
16-pad, Plastic BCC  
(LCC-16P-M04)  
4.55±0.10  
(.179±.004)  
0.80(.031)MAX  
Mounting height  
3.40(.134)TYP  
0.65(.026)  
0.325±0.10  
(.013±.004)  
TYP  
14  
9
9
14  
0.80(.031)  
REF  
INDEX AREA  
4.20±0.10  
(.165±.004)  
3.25(.128)  
TYP  
1.55(.061)  
REF  
"B"  
"A"  
0.40±0.10  
(.016±.004)  
0.075±0.025  
(.003±.001)  
(Stand off)  
1.725(.068)  
REF  
1
6
6
1
Details of "A" part  
0.75±0.10  
Details of "B" part  
0.60±0.10  
(.024±.004)  
(.030±.004)  
0.05(.002)  
0.40±0.10  
0.60±0.10  
(.016±.004)  
(.024±.004)  
C
Dimensions in mm (inches)  
1999 FUJITSU LIMITED C16015S-1C-1  
24  
MB15F02SL  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
All Rights Reserved.  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without  
notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, USA  
Tel: +1-408-922-9000  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipments, industrial, communications, and  
measurement equipments, personal or household devices, etc.).  
CAUTION:  
Fax: +1-408-922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Singapore 556741  
Tel: +65-281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
F0001  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB15F02SLPFV1-ER

PLL Frequency Synthesizer, BICMOS, PDSO16, PLASTIC, SSOP-16
FUJITSU

MB15F02SLPV

暂无描述
FUJITSU

MB15F02SLPV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03L

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03LPFV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03LPV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03PFV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03PV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03SL

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03SLPFV1

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F03SLPFV1-ER

PLL Frequency Synthesizer, BICMOS, PDSO16, PLASTIC, SSOP-16
FUJITSU