MC68HC908EY8A [FREESCALE]

M68HC08 Microcontrollers; M68HC08微控制器
MC68HC908EY8A
型号: MC68HC908EY8A
厂家: Freescale    Freescale
描述:

M68HC08 Microcontrollers
M68HC08微控制器

微控制器
文件: 总292页 (文件大小:3804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908EY16A  
MC68HC908EY8A  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908EY16A  
Rev. 1  
09/2006  
freescale.com  
MC68HC908EY16A  
MC68HC908EY8A  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com/  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
April,  
2006  
0
1
Initial release  
N/A  
279  
286  
21.2 Ordering Information — Seperated automotive and consumer/industrial  
part numbers.  
September,  
2006  
A.4 Ordering Information — Seperated automotive and consumer/industrial  
part numbers.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
3
Revision History  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Chapter 2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Chapter 3 Analog-to-Digital Converter (ADC10) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Chapter 4 BEMF Counter Module (BEMF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Chapter 5 Configuration Registers (CONFIG1, CONFIG2, CONFIG3) . . . . . . . . . . . . . . . . .63  
Chapter 6 Computer Operating Properly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Chapter 7 Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Chapter 8 Internal Clock Generator (ICG) Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 9 External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Chapter 10 Keyboard Interrupt (KBI) Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Chapter 11 Low-Voltage Inhibit (LVI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Chapter 12 Input/Output (I/O) Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Chapter 13 Enhanced Serial Communications Interface (ESCI) Module. . . . . . . . . . . . . . .133  
Chapter 14 System Integration Module (SIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
Chapter 15 Serial Peripheral Interface (SPI) Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
Chapter 16 Timebase Module (TBM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
Chapter 17 Timer Interface A (TIMA) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
Chapter 18 Timer Interface B (TIMB) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
Chapter 19 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
Chapter 20 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Chapter 21 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . . . .279  
Appendix A MC68HC908EY8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
Appendix B Differences Between 908EY16A and 908EY16 . . . . . . . . . . . . . . . . . . . . . . . .287  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
1.5  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Oscillator Pins (PTC4/OSC1 and PTC3/OSC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Analog Power Supply/Reference Pins (VDDA, VREFH, VSSA, and VREFL) . . . . . . . . . . . . . . 23  
Port A I/O Pins (PTA6/SS, PTA5/SPSCK, PTA4/KBD4, PTA3/KBD3/RxD,  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
PTA2/KBD2/TxD, PTA1/KBD1, and PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port B I/O Pins (PTB7/AD7/TBCH1, PTB6/AD6/TBCH0, PTB5/AD5/SPSCK,  
1.5.7  
PTB4/AD4/MOSI, PTB3/AD3/MISO, PTB2/AD2–PTB0/AD0). . . . . . . . . . . . . . . . . . . . . 24  
Port C I/O Pins (PTC4/OSC1, PTC3/OSC2, PTC2/MCLK/SS, PTC1/MOSI, PTC0/MISO). 24  
Port D I/O Pins (PTD1/TACH1–PTD0/TACH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port E I/O Pins (PTE1/RxD–PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
1.5.8  
1.5.9  
1.5.10  
1.6  
1.7  
Pin Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Priority of Shared Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Random Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
7
Table of Contents  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.3  
3.3.1  
3.3.2  
3.3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Clock Select and Divide Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Input Select and Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Conversion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Initiating Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Completing Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Aborting Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Total Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Sources of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Sampling Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Pin Leakage Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Noise-Induced Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Code Width and Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Linearity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Code Jitter, Non-Monotonicity and Missing Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.3.3.1  
3.3.3.2  
3.3.3.3  
3.3.3.4  
3.3.4  
3.3.4.1  
3.3.4.2  
3.3.4.3  
3.3.4.4  
3.3.4.5  
3.3.4.6  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.6  
ADC10 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC10 Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC10 Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC10 Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC10 Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC10 Channel Pins (ADn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC10 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC10 Result High Register (ADRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ADC10 Result Low Register (ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ADC10 Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Chapter 4  
BEMF Counter Module (BEMF)  
4.1  
4.2  
4.3  
4.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
BEMF Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.5  
4.5.1  
4.5.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
8
Freescale Semiconductor  
Table of Contents  
Chapter 5  
Configuration Registers (CONFIG1, CONFIG2, CONFIG3)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Chapter 6  
Computer Operating Properly  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
COPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
COPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.4  
6.5  
6.6  
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.8  
COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Chapter 7  
Central Processor Unit (CPU)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
9
Table of Contents  
Chapter 8  
Internal Clock Generator (ICG) Module  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8.3  
8.3.1  
8.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Clock Enable Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Frequency Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
External Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
External Clock Input Path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Clock Monitor Reference Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Internal Clock Activity Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
External Clock Activity Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Clock Selection Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
8.3.2.1  
8.3.2.2  
8.3.2.3  
8.3.2.4  
8.3.3  
8.3.3.1  
8.3.3.2  
8.3.4  
8.3.4.1  
8.3.4.2  
8.3.4.3  
8.3.5  
8.3.5.1  
8.3.5.2  
8.4  
8.4.1  
8.4.2  
8.4.3  
Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Using Clock Monitor Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Binary Weighted Divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Trimming Frequency on the Internal Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
8.4.4  
8.4.4.1  
8.4.4.2  
8.4.4.3  
8.4.4.4  
8.4.5  
8.4.6  
8.4.6.1  
8.4.6.2  
8.4.6.3  
8.4.7  
8.5  
8.5.1  
8.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
8.6  
CONFIG Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.7  
8.7.1  
8.7.2  
Input/Output (I/O) Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
ICG Multiplier Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
10  
Freescale Semiconductor  
Table of Contents  
8.7.3  
8.7.4  
8.7.5  
8.7.6  
8.7.7  
ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ICG 5-Volt Trim Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ICG 3-Volt Trim Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ICG DCO Stage Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Chapter 9  
External Interrupt (IRQ)  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Chapter 10  
Keyboard Interrupt (KBI) Module  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
10.3.1  
Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
MODEK = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
MODEK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.3.1.1  
10.3.1.2  
10.3.2  
10.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.6 KBI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.7.1  
KBI Input Pins (KBI7:KBI0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.8.1  
10.8.2  
10.8.3  
Keyboard Status and Control Register (KBSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Keyboard Interrupt Enable Register (KBIER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Keyboard Interrupt Polarity Register (KBIPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Chapter 11  
Low-Voltage Inhibit (LVI) Module  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
11.4 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
11  
Table of Contents  
11.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
11.5.1  
11.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Chapter 12  
Input/Output (I/O) Ports (PORTS)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
12.2.1  
12.2.2  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
12.3.1  
12.3.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
12.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
12.4.1  
12.4.2  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
12.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
12.5.1  
12.5.2  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
12.6 Port E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
12.6.1  
12.6.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Chapter 13  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.4.1  
13.4.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.4.2.6  
13.4.3  
13.4.3.1  
13.4.3.2  
13.4.3.3  
13.4.3.4  
13.4.3.5  
13.4.3.6  
13.4.3.7  
13.4.3.8  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
12  
Freescale Semiconductor  
Table of Contents  
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.5.1  
13.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.6 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.7.1  
13.7.2  
PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
13.8.1  
13.8.2  
13.8.3  
13.8.4  
13.8.5  
13.8.6  
13.8.7  
13.8.8  
ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
ESCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
13.9 ESCI Arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
13.9.1  
13.9.2  
13.9.3  
13.9.4  
ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Bit Time Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.2 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.2.1  
14.2.2  
14.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
14.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
14.3.1  
14.3.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Forced Monitor Mode Entry Reset (MENRST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
14.3.2.1  
14.3.2.2  
14.3.2.3  
14.3.2.4  
14.3.2.5  
14.3.2.6  
14.4 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
14.4.1  
14.4.2  
14.4.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
14.5 Program Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
14.5.1  
14.5.1.1  
14.5.1.2  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
13  
Table of Contents  
14.6 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
14.6.1  
14.6.2  
14.6.3  
14.6.4  
14.6.5  
14.6.6  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.8.1  
14.8.2  
14.8.3  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.3 Pin Name and Register Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
15.4.1  
15.4.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
15.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
15.5.1  
15.5.2  
15.5.3  
15.5.4  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.6 Error Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.6.1  
15.6.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.8 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
15.9 Resetting the SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
15.10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
15.10.1  
15.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
15.11 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
15.12 SPI I/O Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
15.12.1  
15.12.2  
15.12.3  
15.12.4  
15.12.5  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
14  
Freescale Semiconductor  
Table of Contents  
15.13 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.13.1  
15.13.2  
15.13.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Chapter 16  
Timebase Module (TBM)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16.5 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
16.6.1  
16.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
16.7 Timebase Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Chapter 17  
Timer Interface A (TIMA) Module  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.3.1  
17.3.2  
17.3.3  
17.3.3.1  
17.3.3.2  
17.3.4  
17.3.4.1  
17.3.4.2  
17.3.4.3  
TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
17.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
17.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.5.1  
17.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.6 TIMA During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.7.1  
TIMA Channel I/O Pins (PTD0/TACH0, PTD1/TACH1). . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.8.1  
17.8.2  
17.8.3  
17.8.4  
17.8.5  
TIMA Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
TIMA Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
15  
Table of Contents  
Chapter 18  
Timer Interface B (TIMB) Module  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.3.1  
18.3.2  
18.3.3  
18.3.3.1  
18.3.3.2  
18.3.4  
18.3.4.1  
18.3.4.2  
18.3.4.3  
TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
18.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
18.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
18.5.1  
18.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
18.6 TIMB During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
18.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
18.7.1  
TIMB Channel I/O Pins (PTB7/AD7/TBCH1–PTB6/AD6/TBCH0) . . . . . . . . . . . . . . . . . . . 226  
18.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
18.8.1  
18.8.2  
18.8.3  
18.8.4  
18.8.5  
TIMB Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
TIMB Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Chapter 19  
Development Support  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
19.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
19.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
19.2.1.1  
19.2.1.2  
19.2.1.3  
19.2.2  
19.2.2.1  
19.2.2.2  
19.2.2.3  
19.2.2.4  
19.2.3  
19.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
19.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
19.3.1.1  
19.3.1.2  
19.3.1.3  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
16  
Freescale Semiconductor  
Table of Contents  
19.3.1.4  
19.3.1.5  
19.3.1.6  
19.3.1.7  
19.3.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Extended Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
19.3.3  
19.4 Routines Supported in ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
19.4.1  
19.4.2  
Variables Used in the Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
How to Use the Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
GetByte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
PutByte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
fProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
fErase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
19.4.2.1  
19.4.2.2  
19.4.2.3  
19.4.2.4  
19.4.2.5  
Chapter 20  
Electrical Specifications  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
20.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
20.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
20.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
20.5 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
20.6 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
20.7 3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
20.8 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
20.9 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
20.10 External Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
20.11 Trimmed Accuracy of the Internal Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
20.11.1  
Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
20.12 ADC10 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
20.13 5V SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
20.14 3V SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
20.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
20.16 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
20.17 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
20.17.1  
20.17.2  
Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Conducted Transient Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
21.2 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
21.3 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
17  
Table of Contents  
Appendix A  
MC68HC908EY8A  
A.1  
A.2  
A.3  
A.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286  
Appendix B  
Differences Between 908EY16A and 908EY16  
B.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
B.2  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
Enhanced Serial Communications Interface Module (ESCI). . . . . . . . . . . . . . . . . . . . . . . . 287  
Serial Peripheral Interface Module (SPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Internal Clock Generator Module (ICG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Keyboard Interface Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Analog-to-Digital Converter Module (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
B.2.1  
B.2.2  
B.2.3  
B.2.4  
B.2.5  
B.3  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Monitor Extended Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Zeroes in Security Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Forced Monitor Mode Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
B.3.1  
B.3.2  
B.3.3  
B.4  
B.4.1  
B.4.2  
Monitor ROM FLASH Programming Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
18  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908EY16A is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
The information contained in this document pertains to the MC68HC908EY8A with the exceptions noted  
in Appendix A MC68HC908EY8A.  
1.2 Features  
For convenience, features have been organized to reflect:  
Standard features of the MC68HC908EY16A  
Features of the CPU08  
Standard features of the MC68HC908EY16A include:  
High-performance M68HC08 architecture optimized for C-compilers  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
8-MHz internal bus frequency at 5V  
Internal oscillator requiring no external components:  
Software selectable bus frequencies  
25 percent accuracy with a trimming capability of better than 1 percent  
Clock monitor  
Option to allow use of external clock source or external crystal/ceramic resonator  
15,872 bytes of on-chip FLASH memory with in-circuit programming  
FLASH program memory security(1)  
512 bytes of on-chip random-access memory (RAM)  
Low voltage inhibit (LVI) module  
Internal clock generator module (ICG)  
Two 16-bit, 2-channel timer (TIMA and TIMB) interface modules with selectable input capture,  
output compare, and pulse-width modulation (PWM) capability on each channel  
8-channel, 10-bit successive approximation analog-to-digital converter (ADC)  
Enhanced serial communications interface module (ESCI) for local interconnect network (LIN)  
connectivity  
Serial peripheral interface (SPI)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
19  
General Description  
Timebase Module (TBM)  
5-bit keyboard wakeup port with software selectable rising or falling edge detect, as well as high-  
or low-level detection  
Programmable for rising/falling edge or high/low level detection  
24 general-purpose input/output (I/O) pins  
External asynchronous interrupt pin with internal pullup (IRQ)  
System protection features:  
Optional computer operating properly (COP) reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
32-pin quad flat pack (QFP) package  
Low-power design; fully static with stop and wait modes  
Internal pullups on IRQ and RST to reduce customer system cost  
Standard low-power modes of operation:  
Wait mode  
Stop mode  
Master reset pin (RST) and power-on reset (POR)  
BREAK module (BRK) to allow single breakpoint setting during  
in-circuit debugging  
Higher current source capability on nine port lines for LED drive (PTA6/SS, PTA5/SPSCK,  
PTA4/KBD4, PTA3/KBD3/RxD, PTA2/KBD2/TxD, PTA1/KBD1, PTA0/KBD0, PTC1/MOSI, and  
PTC0/MISO)  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16 ÷ 8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Third party C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908EY16A.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
20  
Freescale Semiconductor  
MCU Block Diagram  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
PTA2/KBD2/TxD(1)  
PTA1/KBD1  
USER FLASH  
15,872 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTB5/AD5/SPSCK(1  
PTB4/AD4/MOSI(1)  
PTB3/AD3/MISO(1)  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 1-1. MCU Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
21  
General Description  
1.4 Pin Assignments  
Figure 1-2 shows the pin assignments for the MC68HC908EY16A.  
24  
23  
22  
21  
20  
19  
18  
17  
PTA2/KBD2/TxD  
PTA1/KBD1  
1
PTE1/RxD  
PTE0/TxD  
PTC0/MISO  
PTC1/MOSI  
PTA5/SPSCK  
PTA6/SS  
2
3
4
5
6
7
8
PTA0/KBD0  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTC4/OSC1  
PTC3/OSC2  
PTB0/AD0  
IRQ  
PTC2/MCLK/SS  
Figure 1-2. Pin Assignments  
1.5 Pin Functions  
Descriptions of the pin functions are provided here.  
1.5.1 Power Supply Pins (V and V )  
DD  
SS  
VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To  
prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-3  
shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response  
ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that  
require the port pins to source high current levels.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
22  
Freescale Semiconductor  
Pin Functions  
MCU  
VDD  
VSS  
C1  
0.1 μF  
+
C2  
VDD  
Note: Component values shown represent typical applications.  
Figure 1-3. Power Supply Bypassing  
1.5.2 Oscillator Pins (PTC4/OSC1 and PTC3/OSC2)  
The OSC1 and OSC2 pins are available through programming options in the configuration register. These  
pins then become the connections to an external clock source or crystal/ceramic resonator.  
When selecting PTC4 and PTC3 as I/O, OSC1 and OSC2 functions are not available.  
1.5.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset  
of the entire system. It is driven low when any internal reset source is asserted. This pin contains an  
internal pullup resistor that is always activated, even when the reset pin is pulled low. See Chapter 14  
System Integration Module (SIM).  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor that is always  
activated, even when the IRQ pin is pulled low. See Chapter 9 External Interrupt (IRQ).  
1.5.5 Analog Power Supply/Reference Pins (V  
, V  
, V  
, and V  
)
DDA  
REFH  
SSA  
REFL  
VDDA and VSSA are the power supply pins for the analog-to-digital converter (ADC). Decoupling of these  
pins should be as per the digital supply.  
NOTE  
V
REFH is the high reference supply for the ADC. VDDA should be tied to the  
same potential as VDD via separate traces.  
VREFL is the low reference supply for the ADC. VSSA should be tied to the  
same potential as VSS via separate traces.  
See Chapter 3 Analog-to-Digital Converter (ADC10) Module.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
23  
General Description  
1.5.6 Port A I/O Pins (PTA6/SS, PTA5/SPSCK, PTA4/KBD4, PTA3/KBD3/RxD,  
PTA2/KBD2/TxD, PTA1/KBD1, and PTA0/KBD0)  
Port A input/output (I/O) pins (PTA6/SS, PTA5/SPSCK, PTA4/KBD4, PTA3/KBD3/RxD,  
PTA2/KBD2/TxD, PTA1/KBD1, and PTA0/KBD0) are special-function, bidirectional I/O port pins. PTA5  
and PTA6 are shared with the serial peripheral interface (SPI). PTA4-PTA0 can be programmed to serve  
as keyboard interrupt pins. PTA2 and PTA3 can be programmed to serve as the ESCI transmit and  
receive data pins.  
See Chapter 12 Input/Output (I/O) Ports (PORTS), Chapter 15 Serial Peripheral Interface (SPI) Module,  
Chapter 10 Keyboard Interrupt (KBI) Module, and Chapter 13 Enhanced Serial Communications Interface  
(ESCI) Module.  
1.5.7 Port B I/O Pins (PTB7/AD7/TBCH1, PTB6/AD6/TBCH0, PTB5/AD5/SPSCK,  
PTB4/AD4/MOSI, PTB3/AD3/MISO, PTB2/AD2–PTB0/AD0)  
PTB7/AD7/TBCH1, PTB6/AD6/TBCH0, PTB5/AD5/SPSCK, PTB4/AD4/MOSI, PTB3/AD3/MISO,  
PTB2/AD2–PTB0/AD0 are special-function, bidirectional I/O port pins that can also be used for ADC  
inputs. PTB7/AD7/TBCH1 and PTB6/AD6/TBCH0 are special function bidirectional I/O port pins that can  
also be used for timer interface pins. PTB5/AD5/SPSCK, PTB4/AD4/MOSI, and PTB3/AD3/MISO can be  
programmed to serve as SPI clock and data pins.  
See Chapter 12 Input/Output (I/O) Ports (PORTS), Chapter 3 Analog-to-Digital Converter (ADC10)  
Module, Chapter 18 Timer Interface B (TIMB) Module, and Chapter 15 Serial Peripheral Interface (SPI)  
Module.  
1.5.8 Port C I/O Pins (PTC4/OSC1, PTC3/OSC2, PTC2/MCLK/SS, PTC1/MOSI, PTC0/MISO)  
PTC4/OSC1, PTC3/OSC2, PTC2/MCLK/SS, PTC1/MOSI, PTC0/MISO are special-function, bidirectional  
I/O port pins. See Chapter 12 Input/Output (I/O) Ports (PORTS). PTC3/OSC2 and PTC4/OSC1 are  
shared with the on-chip oscillator circuit through configuration options. See Chapter 8 Internal Clock  
Generator (ICG) Module.  
When applications require:  
PTC3/OSC2 can be programmed to be OSC2  
PTC4/OSC1 can be programmed to be OSC1  
PTC2/MCLK/SS is software selectable to be MCLK, or bus clock out. PTC1/MOSI can be programmed  
to be the MOSI signal for the SPI. PTC0/MISO can be programmed to be the MISO signal for the SPI.  
See Chapter 15 Serial Peripheral Interface (SPI) Module.  
1.5.9 Port D I/O Pins (PTD1/TACH1–PTD0/TACH0)  
PTD1/TACH1–PTD0/TACH0 are special-function, bidirectional I/O port pins that can also be programmed  
to be timer pins.  
See Chapter 12 Input/Output (I/O) Ports (PORTS) and Chapter 17 Timer Interface A (TIMA) Module.  
1.5.10 Port E I/O Pins (PTE1/RxD–PTE0/TxD)  
PTE1/RxD–PTE0/TxD are special-function, bidirectional I/O port pins that can also be programmed to be  
enhanced serial communication interface (ESCI) pins.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
24  
Freescale Semiconductor  
Pin Summary  
See Chapter 12 Input/Output (I/O) Ports (PORTS) and Chapter 13 Enhanced Serial Communications  
Interface (ESCI) Module.  
NOTE  
Any unused inputs and I/O ports should be tied to an appropriate logic level  
(either VDD or VSS). Although the I/O ports of the MC68HC908EY16A do  
not require termination, termination is recommended to reduce the  
possibility of electro-static discharge damage.  
1.6 Pin Summary  
Table 1-1. External Pin Summary  
Hysteresis(1)  
Pin Name  
Function  
Driver Type  
Reset State  
General-Purpose I/O  
SPI Slave Select  
PTA6/SS  
Dual State  
Yes  
Input Hi-Z  
General-Purpose I/O  
SPI Clock  
PTA5/SPSCK  
PTA4/KBD4  
Dual State  
Dual State  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
Keyboard Wakeup Pin  
General-Purpose I/O  
Keyboard Wakeup Pin  
SCI Receive Data  
PTA3/KBD3/RxD  
PTA2/KBD2/TxD  
Dual State  
Dual State  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
Keyboard Wakeup Pin  
SCI Transmit Data  
General-Purpose I/O  
Keyboard Wakeup Pin  
PTA1/KBD1  
PTA0/KBD0  
Dual State  
Dual State  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
Keyboard Wakeup Pin  
General-Purpose I/O  
ADC Channel  
Timer B Channel 1  
PTB7/ATD7/TBCH1  
PTB6/ATD6/TBCH0  
PTB5/ATD5/SPSCK  
PTB4/ATD4/MOSI  
Dual State  
Dual State  
Dual State  
Dual State  
Yes  
Yes  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
ADC Channel  
Timer B Channel 0  
General-Purpose I/O  
ADC Channel  
SPI Clock  
General-Purpose I/O  
ADC Channel  
SPI Data Path  
General-Purpose I/O  
ADC Channel  
PTB3/ATD3/MISO  
PTB2/ATD2  
Dual State  
Dual State  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
SPI Data Path  
General-Purpose I/O  
ADC Channel  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
25  
General Description  
Table 1-1. External Pin Summary (Continued)  
Hysteresis(1)  
Pin Name  
Function  
Driver Type  
Reset State  
General-Purpose I/O  
ADC Channel  
PTB1/ATD1  
Dual State  
Yes  
Input Hi-Z  
General-Purpose I/O  
ADC Channel  
PTB0/ATD0  
Dual State  
Yes  
Input Hi-Z  
General-Purpose I/O  
External Clock In  
PTC4/OSC1  
PTC3/OSC2  
Dual State  
Dual State  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
General-Purpose I/O  
MCLK output  
PTC2/MCLK/SS  
Dual State  
Yes  
Input Hi-Z  
SPI Slave Select  
General-Purpose I/O  
SPI Data Path  
PTC1/MOSI  
PTC0/MISO  
PTD1/TACH1  
PTD0/TACH0  
PTE1/RxD  
Dual State  
Dual State  
Dual State  
Dual State  
Dual State  
Dual State  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
Input Hi-Z  
General-Purpose I/O  
SPI Data Path  
General Purpose I/O  
Timer A Channel 1  
General Purpose I/O  
Timer A Channel 0  
General-Purpose I/O  
SCI Receive Data  
General-Purpose I/O  
SCI Transmit Data  
PTE0/TxD  
VDD  
VSS  
Chip Power Supply  
Chip Ground  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VDDA  
VSSA  
CGM Analog Power Supply  
CGM Analog Ground  
ADC Reference High  
Voltage  
VREFH  
VREFL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ADC Reference Low  
Voltage  
IRQ  
External Interrupt Request  
External Reset  
N/A  
Yes  
Yes  
Input Hi-Z  
RST  
Open Drain  
Output Low  
1. Hysteresis is not 100% tested but is typically a minimum of 300mV.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
26  
Freescale Semiconductor  
Priority of Shared Pins  
1.7 Priority of Shared Pins  
Table 1-2. Priority of Shared Pins  
Port Number  
PTA6  
Priority 1  
SSB(1) (in)  
Priority 2  
PTA6 (in/out)  
Priority 3  
SPSCK(1) (in/out)  
KBD4 (in)  
PTA5  
PTA5 (in/out)  
PTA4 (in/out)  
KBD3 (in)  
PTA4  
RX(1) (in)  
PTA3  
PTA3 (in/out)  
TX(1) (out)  
KBD1 (in)  
KBD0 (in)  
AD7 (in)  
PTA2  
PTA1  
PTA0  
PTB7  
PTB6  
PTB5  
KBD2 (in)  
PTA2 (in/out)  
PTA1 (in/out)  
PTA0 (in/out)  
TBCH1 (in/out)  
TBCH0 (in/out)  
PTB7 (in/out)  
PTB6 (in/out)  
PTB5 (in/out)  
AD6 (in)  
SPSCK(1) (in/out)  
MOSI(1) (in/out)  
AD5 (in)  
PTB4  
AD4 (in)  
PTB4 (in/out)  
PTB3 (in/out)  
MISO(1) (in/out)  
PTB2 (in/out)  
PTB1 (in/out)  
PTB0 (in/out)  
PTC4 (in/out)  
PTC3 (in/out)  
PTB3  
PTB2  
PTB1  
PTB0  
PTC4  
PTC3  
PTC2  
AD3 (in)  
AD2 (in)  
AD1 (in)  
AD0 (in)  
OSC1 (in)  
OSC2 (out)  
MCLK (out)  
SSB(1) (in)  
PTC2 (in/out)  
MOSI(1) (in/out)  
PTC1  
PTC1 (in/out)  
MISO(1) (in/out)  
TACH1 (in/out)  
TACH0 (in/out)  
PTC0  
PTD1  
PTD0  
PTE1  
PTC0 (in/out)  
PTD1 (in/out)  
PTD0 (in/out)  
PTE1 (in/out)  
RX(1) (in)  
TX(1) (out)  
PTE0  
PTE0 (in/out)  
1. Pin location can be changed using CONFIG3 register bits.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
27  
General Description  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
28  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The M68HC08 central processor unit (CPU08) can address 64 Kbytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
16 Kbytes of FLASH memory, 15,872 bytes of user space  
512 bytes of random-access memory (RAM)  
36 bytes of user-defined vectors  
350 bytes of monitor routines in read-only memory (ROM)  
674 bytes of integrated FLASH burn-in routines in ROM  
2.2 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address reset. In the memory map  
(Figure 2-1) and in register figures in this document, unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on microcontroller unit (MCU) operation. In  
the Figure 2-1 and in register figures in this document, reserved locations are marked with the word  
reserved or with the letter R.  
2.4 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area of $0000–$003F. Additional I/O  
registers have these addresses:  
$FE00; SIM break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE03; SIM break flag control register, SBFCR  
$FE04; interrupt status register 1, INT1  
$FE05; interrupt status register 2, INT2  
$FE06; interrupt status register 3, INT3  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
$FF80; 5V internal oscillator trim value (optional), ICGT5V  
$FF81; 3V internal oscillator trim value (optional), ICGT3V  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
29  
Memory  
Data registers are shown in Figure 2-2. and Table 2-1 is a list of vector locations.  
$0000  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
Reserved  
I/O Registers  
64 Bytes  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
$003F  
$0040  
RAM  
512 Bytes  
$023F  
$0240  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Unimplemented  
3520 Bytes  
$0FFF  
$1000  
Jump Table for FLASH Routines  
32 Bytes  
$101F  
$1020  
Reserved  
19 Bytes  
Integrated FLASH Program  
and Erase Routines  
512 Bytes  
$FE1F  
$FE20  
$121F  
$1220  
Monitor ROM 350 Bytes  
Unimplemented  
350 Bytes  
FF7D  
$FF7E  
$FF7F  
$FF80  
$FF81  
$FF82  
$137D  
$137E  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
Integrated FLASH Program  
and Erase Routines  
130 Bytes  
5V ICG Trim Value (Optional) (ICGT5V)  
3V ICG Trim Value (Optional) (ICGT3V)  
$13FF  
$1400  
Unimplemented  
44,032 Bytes  
Unimplemented  
90 Bytes  
$BFFF  
$C000  
$FFDB  
$FFDC  
FLASH Memory  
15,872 Bytes  
FLASH Vectors  
36 Bytes  
$FDFF  
$FE00  
Extended Security Byte  
$FFFF  
SIM Break Status Register (SBSR)  
Note:  
Locations $FFF6–$FFFD are used for the eight  
security bytes.  
$FE01  
SIM Reset Status Register (SRSR)  
Figure 2-1. Memory Map  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
30  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
Port A Data Register  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 123.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB5  
0
PTB2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
(PTB) Write:  
See page 125.  
Reset:  
Read:  
Port C Data Register  
PTC2  
0
(PTC) Write:  
See page 126.  
Reset:  
Port D Data Register Read:  
(PTD)  
0
0
0
0
0
0
Write:  
$0003  
See page 128.  
Reset:  
Unaffected by reset  
Read:  
Data Direction  
Register A (DDRA) Write:  
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
0
DDRA0  
0
$0004  
$0005  
$0006  
See page 123.  
Reset:  
0
Read:  
Data Direction  
Register B (DDRB) Write:  
DDRB7  
0
DDRB6  
DDRB5  
DDRB4  
0
DDRB3  
0
DDRB2  
0
DDRB1  
0
DDRB0  
0
See page 125.  
Reset:  
0
0
0
0
Read:  
Data Direction  
Register C (DDRC) Write:  
MCLKEN  
DDRC4  
DDRC3  
DDRC2  
DDRC1  
0
DDRC0  
0
See page 127.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Data Direction Read:  
DDRD1  
DDRD0  
Register D (DDRD)  
Write:  
$0007  
See page 128.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Port E Data Register  
PTE1  
PTE0  
$0008  
$0009  
$000A  
$000B  
(PTE) Write:  
See page 130.  
Reset:  
Unaffected by reset  
SPISRE MCLKSRE PORTSRE ESCISEL  
Read:  
Configuration Register 3  
RNGSEL ESCISRE  
SPISEL  
0
(CONFIG3) Write:  
See page 67.  
Reset:  
0
0
1
0
0
0
0
0
0
0
0
0
0
Read:  
Data Direction  
Register E (DDRE) Write:  
DDRE1  
DDRE0  
See page 130.  
Reset:  
0
0
0
0
0
0
0
0
Read: BEMF7  
BEMF6  
BEMF5  
BEMF4  
BEMF3  
BEMF2  
BEMF1  
BEMF0  
BEMF Register  
(BEMF) Write:  
See page 61.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
KBI Polarity  
Bit 7  
6
5
4
3
2
KBIP2  
0
1
KBIP1  
0
Bit 0  
KBIP0  
0
$000C  
Read:  
0
0
0
KBIP4  
0
KBIP3  
0
Register (KBIPR) Write:  
See page 118.  
Reset:  
0
0
0
Read:  
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
(SPCR) Write:  
See page 194.  
Reset:  
0
1
0
1
Read:  
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
Register (SPSCR) Write:  
ERRIE  
MODFEN  
SPR1  
SPR0  
See page 195.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 197.  
Reset:  
Indeterminate after reset  
Read:  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 146.  
Reset:  
0
TCIE  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 148.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 150.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 151.  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 153.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register  
(SCDR) Write:  
See page 154.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate Register  
LINT  
0
LINR  
0
SCP1  
0
SCP0  
0
R
SCR2  
SCR1  
SCR0  
(SCBR) Write:  
See page 154.  
Reset:  
0
PSSB3  
0
0
PSSB2  
0
0
PSSB1  
0
0
PSSB0  
0
Read:  
ESCI Prescale Register  
PDS2  
0
PDS1  
PDS0  
PSSB4  
(SCPSC) Write:  
See page 156.  
Reset:  
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
32  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
ESCII Arbiter Control Read:  
Register  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
AM1  
AM0  
ACLK  
Write:  
$0018  
(SCIACTL)  
See page 159.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data Register  
$0019  
$001A  
$001B  
$001C  
(SCIACTL) Write:  
See page 160.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
Keyboard Status Read:  
and Control Register  
KEYF  
IMASKK  
MODEK  
Write:  
ACKK  
(KBSCR)  
See page 117.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
Keyboard Interrupt Enable  
KBIE4  
0
KBIE3  
KBIE2  
0
KBIE1  
0
KBIE0  
Register (KBIER) Write:  
See page 118.  
Reset:  
0
0
0
0
0
0
Read:  
TBIF  
TBR2  
TBR1  
TBR0  
TBIE  
TBON  
R
Timebase Control Register  
(TBCR)  
See page 202.  
Write:  
Reset:  
Read:  
TACK  
0
0
0
0
0
0
0
0
0
0
0
0
IRQF  
0
ACK  
0
IRQ Status and Control  
IMASK  
0
MODE  
0
$001D  
$001E  
$001F  
Register (INTSCR) Write:  
See page 112.  
Reset:  
0
0
0
0
0
Read:  
ESCI  
BDSRC  
EXT-  
XTALEN  
EXT-  
SLOW  
EXT-  
CLKEN  
TMB-  
CLKSEL  
OSCENIN-  
STOP  
SSB-  
PUENB  
Configuration Register 2  
R
(CONFIG2) Write:  
See page 65.  
Reset:  
0
COPRS  
0
0
0
0
0
0
0
STOP  
0
1
COPD  
0
Read:  
LVISTOP LVIRSTD LVIPWRD LVI5OR3(1) SSREC  
Configuration Register 1  
(CONFIG1) Write:  
See page 64.  
Reset:  
0
0
0
0
0
1. The LVI5OR3 bit is cleared only by a power-on reset (POR).  
Read:  
TOF  
0
Timer A Status and Control  
TOIE  
TSTOP  
R
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
Register (TASC) Write:  
See page 211.  
Reset:  
0
0
TRST  
0
0
1
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Timer A Counter Register  
High (TACNTH) Write:  
See page 213.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Timer A Counter Register  
Low (TACNTL) Write:  
See page 213.  
Reset:  
0
BIT 15  
1
0
BIT 14  
1
0
BIT 13  
1
0
0
BIT 11  
1
0
BIT 10  
1
0
BIT 9  
1
0
BIT 8  
1
Read:  
Timer A Counter Modulo  
Register High (TAMODH) Write:  
BIT 12  
See page 213.  
Reset:  
1
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
33  
Memory  
Addr.  
Register Name  
Bit 7  
6
BIT 6  
1
5
BIT 5  
1
4
BIT 4  
1
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
Read:  
Timer A Counter Modulo  
Register Low (TAMODL) Write:  
BIT 7  
$0024  
$0025  
See page 213.  
Reset:  
1
CH0F  
0
1
Timer A Channel 0 Status Read:  
and Control Register  
CH0IE  
MS0B  
MS0A  
ELS0B  
ELS0A  
TOV0  
CH0MAX  
Write:  
(TASC0)  
See page 214.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Timer A Channel 0  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0026  
$0027  
Register High (TACH0H) Write:  
See page 217.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
Timer A Channel 0  
Register Low (TACH0L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
See page 217.  
Reset:  
Timer A Channel 1 Status Read:  
and Control Register  
CH1F  
0
0
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
Write:  
R
$0028  
(TASC1)  
See page 214.  
Reset:  
Read:  
0
0
Timer A Channel 1  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
Register High (TACH1H) Write:  
See page 217.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Read:  
Timer A Channel 1  
Register Low (TACH1L) Write:  
BIT 7  
BIT 6  
TOIE  
BIT 5  
BIT 2  
PS2  
BIT 1  
PS1  
BIT 0  
PS0  
See page 217.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
Timer B Status and Control  
TSTOP  
R
Register (TBSC) Write:  
See page 227.  
Reset:  
0
0
TRST  
0
1
0
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Timer B Counter Register  
High (TBCNTH) Write:  
See page 229.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Timer B Counter Register  
Low (TBCNTL) Write:  
See page 229.  
Reset:  
0
BIT 15  
1
0
BIT 14  
1
0
BIT 13  
1
0
BIT 12  
1
0
BIT 11  
1
0
BIT 10  
1
0
BIT 9  
1
0
BIT 8  
1
Read:  
Timer B Counter Modulo  
Register High (TBMODH) Write:  
See page 229.  
Reset:  
Read:  
Timer B Counter Modulo  
Register Low (TBMODL) Write:  
BIT 7  
1
BIT 6  
BIT 5  
BIT 4  
BIT 3  
1
BIT 2  
BIT 1  
BIT 0  
1
See page 229.  
Reset:  
1
1
1
1
1
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
34  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
CH0F  
0
6
5
4
3
2
1
Bit 0  
Timer B Channel 0 Status Read:  
and Control Register  
CH0IE  
MS0B  
MS0A  
ELS0B  
ELS0A  
TOV0  
CH0MAX  
Write:  
$0030  
(TBSC0)  
See page 230.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Timer B Channel 0  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0031  
$0032  
Register High (TBCH0H) Write:  
See page 233.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
Timer B Channel 0  
Register Low (TBCH0L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
See page 233.  
Reset:  
Timer B Channel 1 Status Read:  
and Control Register  
CH1F  
0
0
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
Write:  
R
$0033  
(TBSC1)  
See page 230.  
Reset:  
Read:  
0
0
Timer B Channel 1  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
Register High (TBCH1H) Write:  
See page 233.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
Timer B Channel 1  
Register Low (TBCH1L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
ICGS  
BIT 1  
BIT 0  
See page 233.  
Reset:  
Read:  
CMF  
ECGS  
ICG Control Register  
CMIE  
0
CMON  
CS  
ICGON  
ECGON  
(ICGCR) Write:  
See page 104.  
Reset:  
0
0
0
N5  
0
N4  
1
N3  
0
N2  
0
N1  
0
N0  
Read:  
ICG Multiplier Register  
N6  
(ICGMR) Write:  
See page 106.  
Reset:  
0
TRIM7  
1
0
TRIM6  
0
0
1
0
1
0
1
Read:  
TRIM5  
0
TRIM4  
0
TRIM3  
TRIM2  
TRIM1  
TRIM0  
ICG Trim Register (ICGTR)  
See page 106.  
Write:  
Reset:  
0
0
0
0
Read:  
DDIV3  
DDIV2  
DDIV1  
DDIV0  
ICG Divider Control  
Register (ICGDVR) Write:  
See page 107.  
Reset:  
0
0
0
0
U
U
U
U
Read: DSTG7  
DSTG6  
DSTG5  
DSTG4  
DDSTG3  
DSTG2  
DSTG1  
DSTG0  
ICG DCO Stage Control  
Register (ICGDSR) Write:  
$003A  
$003B  
R
U
R
R
U
R
R
U
R
R
U
R
R
U
R
R
U
R
R
U
R
R
U
R
See page 108.  
Reset:  
Reserved  
ADC10 Status and Control Read: COCO  
Register  
AIEN  
0
ADCO  
0
ADCH4  
ADCH3  
1
ADCH2  
1
ADCH1  
1
ADCH0  
1
Write:  
$003C  
(ADSCR)  
See page 56.  
Reset:  
0
1
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
35  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
AD9  
AD8  
ADC10 Data Register High  
$003D  
$003E  
$003F  
$FE00  
(ADRH) Write:  
See page 58.  
Reset:  
Read:  
Unaffected by reset  
AD4 AD3  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Analog-to-Digital Data  
Register Low (ADRL) Write:  
See page 58.  
Reset:  
Unaffected by reset  
Read:  
Analog-to-Digital Clock  
Register (ADCLK) Write:  
ADLPC  
ADIV1  
ADIV0  
ADICLK  
MODE1  
MODE0  
ADLSMP  
ACLKEN  
See page 59.  
Reset:  
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
1
R
0
0
0
R
0
Read:  
SBSW  
NOTE  
0
SIM Break Status Register  
(SBSR) Write:  
See page 176.  
Reset:  
Note: Writing a 0 clears SBSW.  
Read:  
POR  
1
PIN  
0
COP  
0
ILOP  
0
ILAD  
0
MENRST  
0
LVI  
0
0
0
SIM Reset Status Register  
$FE01  
$FE02  
(SRSR) Write:  
See page 177.  
POR:  
Reserved  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE04  
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status  
Register 1 (INT1)  
See See page 172.  
0
0
0
0
0
0
0
0
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status  
Register 2 (INT2)  
See See page 173.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IF16  
R
IF15  
R
Interrupt Status  
Register 3 (INT3)  
See See page 173.  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Reserved  
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
MASS  
ERASE  
PGM  
0
(FLCR) Write:  
See page 40.  
Reset:  
0
BIT 15  
0
0
BIT 14  
0
0
BIT 13  
0
0
0
BIT 11  
0
0
BIT 10  
0
0
BIT 9  
0
Read:  
Break Address Register  
BIT 12  
BIT 8  
0
High (BRKH) Write:  
See page 238.  
Reset:  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
36  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
BIT 7  
0
6
BIT 6  
0
5
4
3
2
1
Bit 0  
Read:  
Break Address Register  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
$FE0A  
Low (BRKL) Write:  
See page 238.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
BRKA  
$FE0B  
$FE0C  
$FF7E  
Register (BSCR) Write:  
See page 239.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
LVI Status Register  
(LVISR) Write:  
See page 120.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
FLASH Block Protect  
Register (FLBPR)(1) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
See page 45.  
Reset:  
Unaffected by reset  
BIT 4 BIT 3  
Unaffected by reset  
BIT 4 BIT 3  
5V Internal Oscillator Trim Read:  
Value (Optional)  
Write:  
BIT 7  
BIT 7  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
BIT 0  
BIT 0  
$FF80  
$FF81  
(ICGT5V)(1)  
Reset:  
3V Internal Oscillator Trim Read:  
Value (Optional)  
Write:  
(ICGT3V)(1)  
Reset:  
Unaffected by reset  
1. Non-volatile FLASH register  
Read:  
Low byte of reset vector  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 71.  
Reset:  
Writing clears COP counter (any value)  
Unaffected by reset  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
37  
Memory  
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
Timebase interrupt vector (high)  
Timebase interrupt vector (low)  
SPI transmit vector (high)  
SPI transmit vector (low)  
SPI receive vector (high)  
SPI receive vector (low)  
ADC conversion complete vector (high)  
ADC conversion complete vector (low)  
Keyboard vector (high)  
Lowest  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Keyboard vector (low)  
ESCI transmit vector (high)  
ESCI transmit vector (low)  
ESCI receive vector (high)  
ESCI receive vector (low)  
ESCI error vector (high)  
ESCI error vector (low)  
TIMB overflow vector (high)  
TIMB overflow vector (low)  
TIMB channel 1 vector (high)  
TIMB channel 1 vector (low)  
TIMB channel 0 vector (high)  
TIMB channel 0 vector (low)  
TIMA overflow vector (high)  
TIMA overflow vector (low)  
TIMA channel 1 vector (high)  
TIMA channel 1 vector (low)  
TIMA channel 0 vector (high)  
TIMA channel 0 vector (low)  
CMIREQ (high)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
CMIREQ (low)  
IRQ vector (high)  
IF1  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Highest  
Reset vector (low)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
38  
Freescale Semiconductor  
Random Access Memory (RAM)  
2.5 Random Access Memory (RAM)  
Addresses $0040–$00FF and $0100–$023F are RAM locations. The location of the stack RAM is  
programmable with the reset stack pointer instruction (RSP). The 16-bit stack pointer allows the stack  
RAM to be anywhere in the 64K-byte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for input/output (I/O) control and user data or code. When the stack  
pointer is moved from its reset location at $00FF, direct addressing mode instructions can access all page  
zero RAM locations efficiently. Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the central  
processor unit (CPU) registers.  
NOTE  
For M6805, M146805, and M68HC05 compatibility, the H register is not  
stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU could overwrite data  
in the RAM during a subroutine or during the interrupt stacking operation.  
2.6 FLASH Memory (FLASH)  
The FLASH memory is an array of 15,872 bytes with an additional 36 bytes of user vectors and one byte  
used for block protection.  
NOTE  
An erased bit reads as 1 and a programmed bit reads as 0.  
The program and erase operations are facilitated through control bits in the FLASH control register  
(FLCR). See 2.6.1 FLASH Control Register.  
The FLASH is organized internally as an 16,384-word by 8-bit complementary metal-oxide semiconductor  
(CMOS) page erase, byte (8-bit) program embedded FLASH memory. Each page consists of 64 bytes.  
The page erase operation erases all words within a page. A page is composed of two adjacent rows.  
A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
39  
Memory  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program and erase operations  
in the array. HVEN can be set only if either PGM = 1 or ERASE = 1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 16-Kbyte FLASH array for mass or page erase operation.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
40  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.2 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to read as logic 1:  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block to be erased.  
4. Wait for a time, tNVS (minimum 10 μs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum 5 μs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 μs), the memory can be accessed in read mode again.  
NOTE  
While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps.  
NOTE  
Due to the security feature (see 19.3 Monitor Module (MON)) the last page  
of the FLASH (0xFFDC–0xFFFF), which contains the security bytes,  
cannot be erased by Page Erase Operation. It can only be erased with the  
Mass Erase Operation.  
In applications that require more than 1000 program/erase cycles, use the 4 ms page erase specification  
to get improved long-term reliability. Any application can use this 4 ms page erase specification. However,  
in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and  
speed is important, use the 1 ms page erase specification to get a shorter cycle time.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
41  
Memory  
2.6.3 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory to read as logic 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address range.  
4. Wait for a time, tNVS (minimum 10 μs).  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (minimum 4 ms).  
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, tNVHL (minimum 100 μs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 μs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
1. When in monitor mode, with security sequence failed (see 19.3.2 Security), write to the FLASH block protect register  
instead of any FLASH address.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
42  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.4 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory (Figure 2-4 is a flowchart representation).  
NOTE  
To avoid program disturbs, the row must be erased before any byte on that  
row is programmed.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address range desired.  
4. Wait for a time, tNVS (minimum of 10 μs).  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum of 5 μs).  
7. Write data to the FLASH address(1) to be programmed.  
8. Wait for a time, tPROG (minimum of 30 μs).  
9. Repeat steps 7 and 8 until all the bytes within the row are programmed.  
10. Clear the PGM bit.(1)  
11. Wait for a time, tNVH (minimum of 5 μs).  
12. Clear the HVEN bit.  
13. After a time, tRCV (minimum of 1 μs), the memory can be accessed in read mode again.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum.  
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing the  
PGM bit, must not exceed the maximum programming time, tPROG maximum.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
43  
Memory  
1
2
Algorithm for Programming  
a Row (32 bytes) of FLASH Memory  
SET PGM BIT  
READ THE FLASH BLOCK  
PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
3
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
PROGRAMMING  
THIS ROW?  
YES  
NO  
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
13  
Notes:  
The time between each FLASH address change (step 7 to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG maximum.  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
44  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.5 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made for protecting a block of memory from unintentional erase or program  
operations due to system malfunction. This protection is done by using the FLASH block protect register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH  
memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program  
operations.  
NOTE  
In performing a program or erase operation, FLBPR must be read after  
setting the PGM or ERASE bit and before asserting the HVEN bit.  
When FLBPR is programmed with all 0s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory address ranges as shown in  
2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF or $FE,  
any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase  
is disabled whenever any block is protected (FLBPR does not equal $FF). The presence of a VTST on the  
IRQ pin will bypass the block protection so that all of the memory included in the block protect register is  
open for program and erase operations.  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and  
therefore can be written only during a programming sequence of the FLASH memory. The value in this  
register determines the starting location of the protected range within the FLASH memory.  
Address:  
$FF7E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is $FF.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR7–BPR0 — FLASH Block Protect Bits  
These eight bits represent bits [13:6] of a 16-bit memory address. Bit 15 and Bit 14 are 1s and bits [5:0]  
are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be $XX00, $XX40, $XX80, and $XXC0 (64 bytes  
page boundaries) within the FLASH memory.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF FLASH  
BLOCK PROTECT  
0
0
0
0
0
0
FLBPR VALUE  
1
1
Figure 2-6. FLASH Block Protect Start Address  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
45  
Memory  
Table 2-2. Examples of Protect Address Ranges  
BPR[7:0]  
$00  
Addresses of Protect Range  
The entire FLASH memory is protected.  
$C040 (1100 0000 0100 0000) — $FFFF  
$C080 (1100 0000 1000 0000) — $FFFF  
$C0C0 (1100 0000 1100 0000) — $FFFF  
$C100 (1100 0001 0000 0000) — $FFFF  
and so on...  
$01 (0000 0001)  
$02 (0000 0010)  
$03 (0000 0011)  
$04 (0000 0100)  
$FC (1111 1100)  
$FD (1111 1101)  
$FF00 (1111 1111 0000 0000) — FFFF  
$FF40 (1111 1111 0100 0000) — $FFFF  
FLBPR and vectors are protected  
$FF80 (1111 1111 1000 0000) — FFFF  
$FE (1111 1110)  
Vectors are protected  
$FF  
The entire FLASH memory is not protected.  
2.6.7 Wait Mode  
Putting the microcontroller unit (MCU) into wait mode while the FLASH is in read mode does not affect  
the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is  
inactive.  
The WAIT instruction should not be executed while performing a program or erase operation on the  
FLASH, or the operation will discontinue and the FLASH will be on standby mode.  
2.6.8 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase operation on the  
FLASH, or the operation will discontinue and the FLASH will be on standby mode  
NOTE  
Standby mode is the power-saving mode of the FLASH module in which all  
internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
46  
Freescale Semiconductor  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1 Introduction  
This section describes the 10-bit successive approximation analog-to-digital converter (ADC10).  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDDA and VSSA as its supply pins and  
VREFH and VREFL as its reference pins. This MCU uses CGMXCLK as its alternate clock source for the  
ADC. This MCU does not have a hardware conversion trigger.  
3.2 Features  
Features of the ADC10 module include:  
Linear successive approximation algorithm with 10-bit resolution  
Output formatted in 10- or 8-bit right-justified format  
Single or continuous conversion (automatic power-down in single conversion mode)  
Configurable sample time and conversion speed (to save power)  
Conversion complete flag and interrupt  
Input clock selectable from up to three sources  
Operation in wait and stop modes for lower noise operation  
3.3 Functional Description  
The ADC10 uses successive approximation to convert the input sample taken from ADVIN to a digital  
representation. The approximation is taken and then rounded to the nearest 10- or 8-bit value to provide  
greater accuracy and to provide a more robust mechanism for achieving the ideal code-transition voltage.  
Figure 3-2 shows a block diagram of the ADC10.  
For proper conversion, the voltage on ADVIN must fall between VREFH and VREFL. If ADVIN is equal to  
or exceeds VREFH, the converter circuit converts the signal to $3FF for a 10-bit representation or $FF for  
a 8-bit representation. If ADVIN is equal to or less than VREFL, the converter circuit converts it to $000.  
Input voltages between VREFH and VREFL are straight-line linear conversions.  
NOTE  
Input voltage must not exceed the analog supply voltages.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
47  
Analog-to-Digital Converter (ADC10) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
15,872 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
PTB2/AD2  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
USER FLASH VECTOR SPACE  
36 BYTES  
PTB1/AD1  
PTB0/AD0  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 3-1. Block Diagram Highlighting ADC10 Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
48  
Freescale Semiconductor  
Functional Description  
ADCSC  
ADCLK  
ASYNC  
CLOCK  
GENERATOR  
ACLKEN  
ACLK  
1
2
ADCK  
MCU STOP  
ADHWT  
CLOCK  
DIVIDE  
BUS CLOCK  
CONTROL SEQUENCER  
ALTERNATE CLOCK SOURCE  
AD0  
ADn  
1
2
AIEN  
INTERRUPT  
COCO  
ADVIN  
SAR CONVERTER  
VREFH  
VREFL  
DATA REGISTERS ADRH:ADRL  
Figure 3-2. ADC10 Block Diagram  
The ADC10 can perform an analog-to-digital conversion on one of the software selectable channels. The  
output of the input multiplexer (ADVIN) is converted by a successive approximation algorithm into a 10-bit  
digital result. When the conversion is completed, the result is placed in the data registers (ADRH and  
ADRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADRL. The conversion complete flag  
is then set and an interrupt is generated if the interrupt has been enabled.  
3.3.1 Clock Select and Divide Circuit  
The clock select and divide circuit selects one of three clock sources and divides it by a configurable value  
to generate the input clock to the converter (ADCK). The clock can be selected from one of the following  
sources:  
The asynchronous clock source (ACLK) — This clock source is generated from a dedicated clock  
source which is enabled when the ADC10 is converting and the clock source is selected by setting  
the ACLKEN bit. When the ADLPC bit is clear, this clock operates from 1–2 MHz; when ADLPC is  
set it operates at 0.5–1 MHz. This clock is not disabled in STOP and allows conversions in stop  
mode for lower noise operation.  
Alternate clock source — This clock source is equal to the external oscillator clock or a four times  
the bus clock. The alternate clock source is MCU specific, see 3.1 Introduction to determine source  
and availability of this clock source option. This clock is selected when ADICLK and ACLKEN are  
both low.  
The bus clock — This clock source is equal to the bus frequency. This clock is selected when  
ADICLK is high and ACLKEN is low.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
49  
Analog-to-Digital Converter (ADC10) Module  
Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If  
the available clocks are too slow, the ADC10 will not perform according to specifications. If the available  
clocks are too fast, then the clock must be divided to the appropriate frequency. This divider is specified  
by the ADIV[1:0] bits and can be divide-by 1, 2, 4, or 8.  
3.3.2 Input Select and Pin Control  
Only one analog input may be used for conversion at any given time. The channel select bits in ADCSC  
are used to select the input signal for conversion.  
3.3.3 Conversion Control  
Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits.  
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC10 module can  
be configured for low power operation, long sample time, and continuous conversion.  
3.3.3.1 Initiating Conversions  
A conversion is initiated:  
Following a write to ADCSC (with ADCH bits not all 1s) if software triggered operation is selected.  
Following a hardware trigger event if hardware triggered operation is selected.  
Following the transfer of the result to the data registers when continuous conversion is enabled.  
If continuous conversions are enabled a new conversion is automatically initiated after the completion of  
the current conversion. In software triggered operation, continuous conversions begin after ADCSC is  
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a  
hardware trigger event and continue until aborted.  
3.3.3.2 Completing Conversions  
A conversion is completed when the result of the conversion is transferred into the data result registers,  
ADRH and ADRL. This is indicated by the setting of the COCO bit. An interrupt is generated if AIEN is  
high at the time that COCO is set.  
A blocking mechanism prevents a new result from overwriting previous data in ADRH and ADRL if the  
previous data is in the process of being read while in 10-bit mode (ADRH has been read but ADRL has  
not). In this case the data transfer is blocked, COCO is not set, and the new result is lost. When a data  
transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous  
conversions enabled). If single conversions are enabled, this could result in several discarded  
conversions and excess power consumption. To avoid this issue, the data registers must not be read after  
initiating a single conversion until the conversion completes.  
3.3.3.3 Aborting Conversions  
Any conversion in progress will be aborted when:  
A write to ADCSC occurs (the current conversion will be aborted and a new conversion will be  
initiated, if ADCH are not all 1s).  
A write to ADCLK occurs.  
The MCU is reset.  
The MCU enters stop mode with ACLK not enabled.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
50  
Freescale Semiconductor  
Functional Description  
When a conversion is aborted, the contents of the data registers, ADRH and ADRL, are not altered but  
continue to be the values transferred after the completion of the last successful conversion. In the case  
that the conversion was aborted by a reset, ADRH and ADRL return to their reset states.  
Upon reset or when a conversion is otherwise aborted, the ADC10 module will enter a low power, inactive  
state. In this state, all internal clocks and references are disabled. This state is entered asynchronously  
and immediately upon aborting of a conversion.  
3.3.3.4 Total Conversion Time  
The total conversion time depends on many factors such as sample time, bus frequency, whether  
ACLKEN is set, and synchronization time. The total conversion time is summarized in Table 3-1.  
Table 3-1. Total Conversion Time versus Control Conditions  
Conversion Mode  
ACLKEN  
Maximum Conversion Time  
8-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
x
18 ADCK + 3 bus clock  
18 ADCK + 3 bus clock + 5 μs  
16 ADCK  
Subsequent continuous (fBus fADCK  
)
8-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
x
38 ADCK + 3 bus clock  
38 ADCK + 3 bus clock + 5 μs  
36 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
x
21 ADCK + 3 bus clock  
21 ADCK + 3 bus clock + 5 μs  
19 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
x
41 ADCK + 3 bus clock  
41 ADCK + 3 bus clock + 5 μs  
39 ADCK  
Subsequent continuous (fBus fADCK  
)
The maximum total conversion time for a single conversion or the first conversion in continuous  
conversion mode is determined by the clock source chosen and the divide ratio selected. The clock  
source is selectable by the ADICLK and ACLKEN bits, and the divide ratio is specified by the ADIV bits.  
For example, if the alternate clock source is 16 MHz and is selected as the input clock source, the input  
clock divide-by-8 ratio is selected and the bus frequency is 4 MHz, then the conversion time for a single  
10-bit conversion is:  
21 ADCK cycles  
16 MHz/8  
3 bus cycles  
4 MHz  
= 11.25 μs  
Maximum Conversion time =  
+
Number of bus cycles = 11.25 μs x 4 MHz = 45 cycles  
NOTE  
The ADCK frequency must be between fADCK minimum and fADCK  
maximum to meet A/D specifications.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
51  
Analog-to-Digital Converter (ADC10) Module  
3.3.4 Sources of Error  
Several sources of error exist for ADC conversions. These are discussed in the following sections.  
3.3.4.1 Sampling Error  
For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given  
the maximum input resistance of approximately 15 kΩ and input capacitance of approximately 10 pF,  
sampling to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window  
(3.5 cycles / 2 MHz maximum ADCK frequency) provided the resistance of the external analog source  
(RAS) is kept below 10 kΩ. Higher source resistances or higher-accuracy sampling is possible by setting  
ADLSMP (to increase the sample window to 23.5 cycles) or decreasing ADCK frequency to increase  
sample time.  
3.3.4.2 Pin Leakage Error  
Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.  
If this error cannot be tolerated by the application, keep RAS lower than VADVIN / (4096*ILeak) for less than  
1/4LSB leakage error (at 10-bit resolution).  
3.3.4.3 Noise-Induced Errors  
System noise which occurs during the sample or conversion process can affect the accuracy of the  
conversion. The ADC10 accuracy numbers are guaranteed as specified only if the following conditions  
are met:  
There is a 0.1μF low-ESR capacitor from VREFH to VREFL (if available).  
There is a 0.1μF low-ESR capacitor from VDDA to VSSA (if available).  
If inductive isolation is used from the primary supply, an additional 1μF capacitor is placed from  
VDDA to VSSA (if available).  
VSSA and VREFL (if available) is connected to VSS at a quiet point in the ground plane.  
The MCU is placed in wait mode immediately after initiating the conversion (next instruction after  
write to ADCSC).  
There is no I/O switching, input or output, on the MCU during the conversion.  
There are some situations where external system activity causes radiated or conducted noise emissions  
or excessive VDD noise is coupled into the ADC10. In these cases, or when the MCU cannot be placed  
in wait or I/O activity cannot be halted, the following recommendations may reduce the effect of noise on  
the accuracy:  
Place a 0.01 μF capacitor on the selected input channel to VREFL or VSSA (if available). This will  
improve noise issues but will affect sample rate based on the external analog source resistance.  
Operate the ADC10 in stop mode by setting ACLKEN, selecting the channel in ADCSC, and  
executing a STOP instruction. This will reduce VDD noise but will increase effective conversion time  
due to stop recovery.  
Average the input by converting the output many times in succession and dividing the sum of the  
results. Four samples are required to eliminate the effect of a 1LSB, one-time error.  
Reduce the effect of synchronous noise by operating off the asynchronous clock (ACLKEN=1) and  
averaging. Noise that is synchronous to the ADCK cannot be averaged out.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
52  
Freescale Semiconductor  
Functional Description  
3.3.4.4 Code Width and Quantization Error  
The ADC10 quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step  
ideally has the same height (1 code) and width. The width is defined as the delta between the transition  
points from one code to the next. The ideal code width for an N bit converter (in this case N can be 8 or  
10), defined as 1LSB, is:  
1LSB = (VREFH–VREFL) / 2N  
Because of this quantization, there is an inherent quantization error. Because the converter performs a  
conversion and then rounds to 8 or 10 bits, the code will transition when the voltage is at the midpoint  
between the points where the straight line transfer function is exactly represented by the actual transfer  
function. Therefore, the quantization error will be 1/2LSB in 8- or 10-bit mode. As a consequence,  
however, the code width of the first ($000) conversion is only 1/2LSB and the code width of the last ($FF  
or $3FF) is 1.5LSB.  
3.3.4.5 Linearity Errors  
The ADC10 may also exhibit non-linearity of several forms. Every effort has been made to reduce these  
errors but the user should be aware of them because they affect overall accuracy. These errors are:  
Zero-Scale Error (EZS) (sometimes called offset) — This error is defined as the difference between  
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first  
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is  
used.  
Full-Scale Error (EFS) — This error is defined as the difference between the actual code width of  
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the  
difference between the actual $3FE code width and its ideal (1LSB) is used.  
Differential Non-Linearity (DNL) — This error is defined as the worst-case difference between the  
actual code width and the ideal code width for all conversions.  
Integral Non-Linearity (INL) — This error is defined as the highest-value the (absolute value of the)  
running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition  
voltage to a given code and its corresponding ideal transition voltage, for all codes.  
Total Unadjusted Error (TUE) — This error is defined as the difference between the actual transfer  
function and the ideal straight-line transfer function, and therefore includes all forms of error.  
3.3.4.6 Code Jitter, Non-Monotonicity and Missing Codes  
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,  
non-monotonicity, and missing codes.  
Code jitter is when, at certain points, a given input voltage converts to one of two values when  
sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition  
voltage, the converter yields the lower code (and vice-versa). However, even very small amounts  
of system noise can cause the converter to be indeterminate (between two codes) for a range of  
input voltages around the transition voltage. This range is normally around 1/2 LSB but will  
increase with noise.  
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code  
for a higher input voltage.  
Missing codes are those which are never converted for any input value. In 8-bit or 10-bit mode, the  
ADC10 is guaranteed to be monotonic and to have no missing codes.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC10) Module  
3.4 Interrupts  
When AIEN is set, the ADC10 is capable of generating a CPU interrupt after each conversion. A CPU  
interrupt is generated when the conversion completes (indicated by COCO being set). COCO will set at  
the end of a conversion regardless of the state of AIEN.  
3.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
3.5.1 Wait Mode  
The ADC10 will continue the conversion process and will generate an interrupt following a conversion if  
AIEN is set. If the ADC10 is not required to bring the MCU out of wait mode, ensure that the ADC10 is not  
in continuous conversion mode by clearing ADCO in the ADC10 status and control register before  
executing the WAIT instruction. In single conversion mode the ADC10 automatically enters a low-power  
state when the conversion is complete. It is not necessary to set the channel select bits (ADCH[4:0]) to  
all 1s to enter a low power state.  
3.5.2 Stop Mode  
If ACLKEN is clear, executing a STOP instruction will abort the current conversion and place the ADC10  
in a low-power state. Upon return from stop mode, a write to ADCSC is required to resume conversions,  
and the result stored in ADRH and ADRL will represent the last completed conversion until the new  
conversion completes.  
If ACLKEN is set, the ADC10 continues normal operation during stop mode. The ADC10 will continue the  
conversion process and will generate an interrupt following a conversion if AIEN is set. If the ADC10 is  
not required to bring the MCU out of stop mode, ensure that the ADC10 is not in continuous conversion  
mode by clearing ADCO in the ADC10 status and control register before executing the STOP instruction.  
In single conversion mode the ADC10 automatically enters a low-power state when the conversion is  
complete. It is not necessary to set the channel select bits (ADCH[4:0]) to all 1s to enter a low-power state.  
If ACLKEN is set, a conversion can be initiated while in stop using the external hardware trigger  
ADEXTCO when in external convert mode. The ADC10 will operate in a low-power mode until the trigger  
is asserted, at which point it will perform a conversion and assert the interrupt when complete (if AIEN is  
set).  
3.6 ADC10 During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits during  
the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
54  
Freescale Semiconductor  
I/O Signals  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
3.7 I/O Signals  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDD and VSS as its supply and reference  
pins. This MCU does not have an external trigger source.  
3.7.1 ADC10 Analog Power Pin (V  
)
DDA  
The ADC10 analog portion uses VDDA as its power pin. In some packages, VDDA is connected internally  
to VDD. If externally available, connect the VDDA pin to the same voltage potential as VDD. External filtering  
may be necessary to ensure clean VDDA for good results.  
NOTE  
If externally available, route VDDA carefully for maximum noise immunity  
and place bypass capacitors as near as possible to the package.  
3.7.2 ADC10 Analog Ground Pin (V  
)
SSA  
The ADC10 analog portion uses VSSA as its ground pin. In some packages, VSSA is connected internally  
to VSS. If externally available, connect the VSSA pin to the same voltage potential as VSS  
.
In cases where separate power supplies are used for analog and digital power, the ground connection  
between these supplies should be at the VSSA pin. This should be the only ground connection between  
these supplies if possible. The VSSA pin makes a good single point ground location.  
3.7.3 ADC10 Voltage Reference High Pin (V  
)
REFH  
VREFH is the power supply for setting the high-reference voltage for the converter. In some packages,  
REFH is connected internally to VDDA. If externally available, VREFH may be connected to the same  
V
potential as VDDA, or may be driven by an external source that is between the minimum VDDA spec and  
the VDDA potential (VREFH must never exceed VDDA).  
NOTE  
Route VREFH carefully for maximum noise immunity and place bypass  
capacitors as near as possible to the package.  
AC current in the form of current spikes required to supply charge to the capacitor array at each  
successive approximation step is drawn through the VREFH and VREFL loop. The best external component  
to meet this current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor  
is connected between VREFH and VREFL and must be placed as close as possible to the package pins.  
Resistance in the path is not recommended because the current will cause a voltage drop which could  
result in conversion errors. Inductance in this path must be minimum (parasitic only).  
3.7.4 ADC10 Voltage Reference Low Pin (V  
)
REFL  
VREFL is the power supply for setting the low-reference voltage for the converter. In some packages,  
VREFL is connected internally to VSSA. If externally available, connect the VREFL pin to the same voltage  
potential as VSSA. There will be a brief current associated with VREFL when the sampling capacitor is  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
55  
Analog-to-Digital Converter (ADC10) Module  
charging. If externally available, connect the VREFL pin to the same potential as VSSA at the single point  
ground location.  
3.7.5 ADC10 Channel Pins (ADn)  
The ADC10 has multiple input channels. Empirical data shows that capacitors on the analog inputs  
improve performance in the presence of noise or when the source impedance is high. 0.01 μF capacitors  
with good high-frequency characteristics are sufficient. These capacitors are not necessary in all cases,  
but when used they must be placed as close as possible to the package pins and be referenced to VSSA  
.
3.8 Registers  
These registers control and monitor operation of the ADC10:  
ADC10 status and control register, ADCSC  
ADC10 data registers, ADRH and ADRL  
ADC10 clock register, ADCLK  
3.8.1 ADC10 Status and Control Register  
This section describes the function of the ADC10 status and control register (ADCSC). Writing ADCSC  
aborts the current conversion and initiates a new conversion (if the ADCH[4:0] bits are equal to a value  
other than all 1s).  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 3-3. ADC10 Status and Control Register (ADCSC)  
COCO — Conversion Complete Bit  
COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever  
the status and control register is written or whenever the data register (low) is read.  
1 = Conversion completed  
0 = Conversion not completed  
AIEN — ADC10 Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of a conversion. The interrupt signal is cleared  
when the data register is read or the status/control register is written.  
1 = ADC10 interrupt enabled  
0 = ADC10 interrupt disabled  
ADCO — ADC10 Continuous Conversion Bit  
When this bit is set, the ADC10 will begin to convert samples continuously (continuous conversion  
mode) and update the result registers at the end of each conversion, provided the ADCH[4:0] bits do  
not decode to all 1s. The ADC10 will continue to convert until the MCU enters reset, the MCU enters  
stop mode (if ACLKEN is clear), ADCLK is written, or until ADCSC is written again. If stop is entered  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
56  
Freescale Semiconductor  
Registers  
(with ACLKEN low), continuous conversions will cease and can be restarted only with a write to  
ADCSC. Any write to ADCSC with ADCO set and the ADCH bits not all 1s will abort the current  
conversion and begin continuous conversions.  
If the bus frequency is less than the ADCK frequency, precise sample time for continuous conversions  
cannot be guaranteed in short-sample mode (ADLSMP = 0). If the bus frequency is less than 1/11th  
of the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in  
long-sample mode (ADLSMP = 1).  
When clear, the ADC10 will perform a single conversion (single conversion mode) each time ADCSC  
is written (assuming the ADCH[4:0] bits do not decode all 1s).  
1 = Continuous conversion following a write to ADCSC  
0 = One conversion following a write to ADCSC  
ADCH[4:0] — Channel Select Bits  
The ADCH[4:0] bits form a 5-bit field that is used to select one of the input channels. The input  
channels are detailed in Table 3-2. The successive approximation converter subsystem is turned off  
when the channel select bits are all set to 1. This feature allows explicit disabling of the ADC10 and  
isolation of the input channel from the I/O pad. Terminating continuous conversion mode this way will  
prevent an additional, single conversion from being performed. It is not necessary to set the channel  
select bits to all 1s to place the ADC10 in a low-power state, however, because the module is  
automatically placed in a low-power state when a conversion completes.  
Table 3-2. Input Channel Select  
Input Select(1)  
PTB0  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
Unused  
Unused  
Unused  
Reserved  
Reserved  
VREFH  
Continuing through  
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
VREFL  
1
1
1
1
1
1
1
1
0
1
Low-power state  
1. If any unused or reserved channels are selected, the resulting conversion will  
be unknown.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
57  
Analog-to-Digital Converter (ADC10) Module  
3.8.2 ADC10 Result High Register (ADRH)  
This register holds the MSBs of the result and is updated each time a conversion completes. All other bits  
read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the  
result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then  
the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with  
ADRL.  
Address:  
$003D  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-4. ADC10 Data Register High (ADRH), 8-Bit Mode  
Address:  
$003D  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
AD8  
Read:  
Write:  
Reset:  
AD9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC10 Data Register High (ADRH), 10-Bit Mode  
3.8.3 ADC10 Result Low Register (ADRL)  
This register holds the LSBs of the result. This register is updated each time a conversion completes.  
Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result  
registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the  
intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.  
Address:  
$003E  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-6. ADC10 Data Register Low (ADRL)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
58  
Freescale Semiconductor  
Registers  
3.8.4 ADC10 Clock Register (ADCLK)  
This register selects the clock frequency for the ADC10 and the modes of operation.  
Address:  
$003F  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
MODE1  
0
2
MODE0  
0
1
Bit 0  
Read:  
Write:  
Reset:  
ADLPC  
0
ADLSMP ACLKEN  
0
0
Figure 3-7. ADC10 Clock Register (ADCLK)  
ADLPC — ADC10 Low-Power Configuration Bit  
ADLPC controls the speed and power configuration of the successive approximation converter. This  
is used to optimize power consumption when higher sample rates are not required.  
1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.  
0 = High-speed configuration  
ADIV[1:0] — ADC10 Clock Divider Bits  
ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK.  
Table 3-3 shows the available clock configurations.  
Table 3-3. ADC10 Clock Divide Ratio  
ADIV1  
ADIV0  
Divide Ratio (ADIV)  
Clock Rate  
Input clock ÷ 1  
Input clock ÷ 2  
Input clock ÷ 4  
Input clock ÷ 8  
0
0
1
1
0
1
0
1
1
2
4
8
ADICLK — Input Clock Select Bit  
If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock  
source to generate the internal clock ADCK. If the alternate clock source is less than the minimum  
clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock  
ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (fADCK) between  
the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.  
1 = The internal bus clock is selected as the input clock source  
0 = The alternate clock source IS SELECTED  
MODE[1:0] — 10- or 8-Bit Mode Selection  
These bits select 10- or 8-bit operation. The successive approximation converter generates a result  
that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the  
transfer function to transition at the midpoint between the ideal code voltages, causing a quantization  
error of 1/2LSB.  
Reset returns 8-bit mode.  
00 = 8-bit, right-justified, ADCSC software triggered mode enabled  
01 = 10-bit, right-justified, ADCSC software triggered mode enabled  
10 = Reserved  
11 = Reserved  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
59  
Analog-to-Digital Converter (ADC10) Module  
ADLSMP — Long Sample Time Configuration  
This bit configures the sample time of the ADC10 to either 3.5 or 23.5 ADCK clock cycles. This adjusts  
the sample period to allow higher impedance inputs to be accurately sampled or to maximize  
conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall  
power consumption in continuous conversion mode if high conversion rates are not required.  
1 = Long sample time (23.5 cycles)  
0 = Short sample time (3.5 cycles)  
ACLKEN — Asynchronous Clock Source Enable  
This bit enables the asynchronous clock source as the input clock to generate the internal clock ADCK,  
and allows operation in stop mode. The asynchronous clock source will operate between 1 MHz and  
2 MHz if ADLPC is clear, and between 0.5 MHz and 1 MHz if ADLPC is set.  
1 = The asynchronous clock is selected as the input clock source (the clock generator is only  
enabled during the conversion)  
0 = ADICLK specifies the input clock source and conversions will not continue in stop mode  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
60  
Freescale Semiconductor  
Chapter 4  
BEMF Counter Module (BEMF)  
4.1 Introduction  
This section describes the BEMF module. The BEMF counter integrates over time, while the  
PTD0/TACH0 pin is active. This function is useful for measuring recirculation currents in motors occurring  
on switching of inductive loads.  
BEMF is the abbreviation for Back ElectroMagnetic Force.  
4.2 Functional Description  
The 8-bit BEMF counter runs at the internal bus frequency divided by 64. Whenever PTD0/TACH0 is a  
logic 1, the counter increments by 1 with each period.  
4.3 BEMF Register  
The BEMF register contains the eight read-only bits of the BEMF counter, showing its actual value. A read  
access to the BEMF register resets all counter bits to 0.  
Address:  
$000B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: BEMF7  
Write:  
BEMF6  
BEMF5  
BEMF4  
BEMF3  
BEMF2  
BEMF1  
BEMF0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-1. BEMF Register (BEMF)  
4.4 Input Signal  
Port D shares the PTD0/TACH0 pin with the BEMF module. To measure an external signal with the BEMF  
module, PTD0/TACH0 must be configured as an input (DDRD0 = 0).  
4.5 Low Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The BEMF module remains active after execution of the WAIT instruction. In wait mode the BEMF register  
is not accessible by the CPU.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
61  
BEMF Counter Module (BEMF)  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
15,872 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
PTB3/AD3/MISO(1)  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD0/TACH0  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 4-2. Block Diagram Highlighting BEMF Block and Pins  
4.5.2 Stop Mode  
The BEMF module is inactive after execution of the STOP instruction. In stop mode the BEMF register is  
not accessible by the CPU.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
62  
Freescale Semiconductor  
Chapter 5  
Configuration Registers (CONFIG1, CONFIG2, CONFIG3)  
5.1 Introduction  
This section describes the configuration registers, CONFIG1, CONFIG2, and CONFIG3.  
The configuration registers control these options:  
Stop mode recovery time, 32 CGMXCLK cycles or 4096 CGMXCLK cycles  
Computer operating properly (COP) timeout period, 262,128 or 8176 CGMXCLK cycles  
STOP instruction  
Computer operating properly (COP) module  
Low-voltage inhibit (LVI) module control and voltage trip point selection  
Enable/disable the oscillator (OSC) during stop mode  
External clock/crystal source control  
Enhanced SCI clock source selection  
SPI pin selection  
ESCI pin selection  
External oscillator frequency range selection  
Slew rate control for the ports, SPI, ESCI, and MCLK outputs  
5.2 Functional Description  
The configuration registers are used in the initialization of various options and can be written once after  
each reset. All of the configuration register bits are cleared during reset. Since the various options affect  
the operation of the microcontroller unit (MCU), it is recommended that these registers be written  
immediately after reset. The configuration registers are located at $0009, $001E, and $001F. For  
compatibility, a write to a read-only memory (ROM) version of the MCU at this location will have no effect.  
The configuration register may be read at anytime.  
NOTE  
On a ROM device, the CONFIG module is known as an MOR (mask option  
register). On a ROM device, the options are fixed at the time of device  
fabrication and are neither writable nor changeable by the user.  
On a FLASH device, the CONFIG registers are special registers containing  
one-time writable latches after each reset. Upon a reset, the CONFIG  
registers default to predetermined settings as shown in Figure 5-1,  
Figure 5-2, and Figure 5-3.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
63  
Configuration Registers (CONFIG1, CONFIG2, CONFIG3)  
Address:  
$001F  
Bit 7  
6
LVISTOP  
0
5
LVIRSTD  
0
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVIPWRD LVI5OR3(1)  
0
0
1. The LVI5OR3 bit is cleared only by a power-on reset (POR).  
Figure 5-1. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating  
Properly.  
1 = COP timeout period = 8176 CGMXCLK cycles  
0 = COP timeout period = 262,128 CGMXCLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI)  
Module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI) Module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. See Chapter 11 Low-Voltage Inhibit  
(LVI) Module. The voltage mode selected for the LVI will typically be 5 V. However, users may choose  
to operate the LVI in 3-V mode if desired. See Chapter 20 Electrical Specifications for the LVI’s voltage  
trip points for each of the modes.  
1 = LVI operates in 5-V mode.  
0 = LVI operates in 3-V mode.  
NOTE  
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a  
4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLCK cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
64  
Freescale Semiconductor  
Functional Description  
If the system clock source selected is the internal oscillator or the external crystal and the  
OSCENINSTOP configuration bit is not set, the oscillator will be disabled during stop mode. The short  
stop recovery does not provide enough time for oscillator stabilization and thus the SSREC bit should  
not be set.  
The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles)  
gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the  
MCU is not protected from a low-power condition. However, when using the short stop recovery  
configuration option, the 32-CGMXCLK delay must be greater than the LVI’s turn on time to avoid a  
period in startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. See Chapter 6 Computer Operating Properly.  
1 = COP module disabled  
0 = COP module enabled  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
R
ESCIBDSRC EXTXTALEN EXTSLOW EXTCLKEN TMBCLKSEL OSCENINSTOP SSBPUENB  
0
0
0
0
0
0
0
1
R
= Reserved  
Figure 5-2. Configuration Register 2 (CONFIG2)  
ESCIBDSRC — ESCI Baud Rate Clock Source Bit  
ESCIBDSRC controls the clock source used for the ESCI. The setting of the bit affects the frequency  
at which the ESCI operates.  
1 = Internal data bus clock used as clock source for ESCI  
0 = CGMXCLK used as clock source for ESCI  
EXTXTALEN — External Crystal Enable Bit  
EXTXTALEN enables the external oscillator circuits to be configured for a crystal configuration where  
the PTC4/OSC1 and PTC3/OSC2 pins are the connections for an external crystal.  
NOTE  
This bit does not function without setting the EXTCLKEN bit also.  
Clearing the EXTXTALEN bit (default setting) allows the PTC3/OSC2 pin to function as a  
general-purpose I/O pin. Refer to Table 5-1 for configuration options for the external source. See  
Chapter 8 Internal Clock Generator (ICG) Module for a more detailed description of the external clock  
operation.  
EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the  
valid range of crystals (30 kHz to 100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock  
monitor will expect an external clock source in the valid range for externally generated clocks when  
using the clock monitor (60 Hz to 32 MHz).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
65  
Configuration Registers (CONFIG1, CONFIG2, CONFIG3)  
EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for  
a 4096-cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear,  
the stabilization divider is configured to 16 cycles since an external clock source does not need a  
startup time.  
1 = Allows PTC3/OSC2 to be an external crystal connection.  
0 = PTC3/OSC2 functions as an I/O port pin (default).  
EXTSLOW — Slow External Crystal Enable Bit  
The EXTSLOW bit has two functions. It configures the ICG module for a fast (1 MHz to 32 MHz) or  
slow (30 kHz to 100 kHz) speed crystal. The option also configures the clock monitor operation in the  
ICG module to expect an external frequency higher (307.2 kHz to 32 MHz) or lower (60 Hz to  
307.2 kHz) than the base frequency of the internal oscillator. See Chapter 8 Internal Clock Generator  
(ICG) Module.  
1 = ICG set for slow external crystal operation  
0 = ICG set for fast external crystal operation  
Table 5-1. External Clock Option Settings  
External Clock  
Pin Function  
Configuration Bits  
Description  
EXTCLKEN  
EXTXTALEN  
PTC4/OSC1  
PTC3/OSC2  
Default setting — external  
oscillator disabled  
0
0
PTC4  
PTC3  
External oscillator disabled since  
EXTCLKEN not set  
0
1
1
0
PTC4  
OSC1  
PTC3  
PTC3  
External oscillator configured for  
an external clock source input  
(square wave) on OSC1  
External oscillator configured for  
an external crystal configuration  
on OSC1 and OSC2. System will  
also operate with square-wave  
clock source in OSC1.  
1
1
OSC1  
OSC2  
EXTCLKEN — External Clock Enable Bit  
EXTCLKEN enables an external clock source or crystal/ceramic resonator to be used as a clock input.  
Setting this bit enables PTC4/OSC1 pin to be a clock input pin. Clearing this bit (default setting) allows  
the PTC4/OSC1 and PTC3/OSC2 pins to function as general-purpose input/output (I/O) pins. Refer to  
Table 5-1 for configuration options for the external source. See Chapter 8 Internal Clock Generator  
(ICG) Module for a more detailed description of the external clock operation.  
1 = Allows PTC4/OSC1 to be an external clock connection  
0 = PTC4/OSC1 and PTC3/OSC2 function as I/O port pins (default).  
TMBCLKSEL — Timebase Clock Select Bit  
TMBCLKSEL enables an enable the extra divide by 128 prescaler in the timebase module. Setting this  
bit enables the extra prescaler and clearing this bit disables it. Refer to Table 16-1 for timebase divider  
selection details.  
1 = Enables extra divide by 128 prescaler in timebase module.  
0 = Disables extra divide by 128 prescaler in timebase module.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
66  
Freescale Semiconductor  
Functional Description  
OSCENINSTOP — Oscillator Enable In Stop Mode Bit  
OSCENINSTOP, when set, will enable the internal clock generator module to continue to generate  
clocks (either internal, ICLK, or external, ECLK) in stop mode. See Chapter 8 Internal Clock Generator  
(ICG) Module. This function is used to keep the timebase running while the rest of the microcontroller  
stops. When clear, all clock generation will cease and both ICLK and ECLK will be forced low during  
stop mode. The default state for this option is clear, disabling the ICG in stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
SSBPUENB — SS Pullup Enable Bit  
Clearing SSBPUENB enables the SS pullup resistor.  
1 = Disables SS pullup resistor.  
0 = Enables SS pullup resistor.  
Address:  
$0009  
Bit 7  
6
RNGSEL  
1
5
ESCISRE  
0
4
SPISRE  
0
3
2
1
Bit 0  
SPISEL  
0
Read:  
Write:  
Reset:  
MCLKSRE PORTSRE ESCISEL  
0
0
0
0
= Unimplemented  
Figure 5-3. Configuration Register 3 (CONFIG3)  
RNGSEL — External Oscillator Frequency Range Select  
RNGSEL works in conjunction with EXTSLOW to enable the amplifiers for the crystal oscillator.  
Table 5-2. External Crystal Frequency Range Selection  
EXTSLOW  
RNGSEL  
Frequency Range  
8–32 MHz  
0
0
1
1
0
1
0
1
1–8 MHz  
32–100 kHz  
Reserved  
Setting EXTSLOW will force RNGSEL to a 0. RNGSEL cannot be written if EXTSLOW = 1.  
ESCISRE — Slew Rate Enable for ESCI  
1 = Slew rate controlled output for TxD  
0 = Normal output  
SPISRE — Slew Rate Enable for SPI  
1 = Slew rate controlled output for MISO, MOSI, and SCK  
0 = Normal outputs  
MCLKSRE — Slew Rate Enable for MCLK  
1 = Slew rate controlled output for MCLK  
0 = Normal output  
PORTSRE — Slew Rate Enable for Ports  
1 = Slew rate controlled output for all ports  
0 = Normal output  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
67  
Configuration Registers (CONFIG1, CONFIG2, CONFIG3)  
ESCISEL — ESCI Pin Selection Bit  
ESCISEL is used to select the pins to be used as ESCI pins when the ESCI is enabled. For more  
information on the ESCI, see Chapter 13 Enhanced Serial Communications Interface (ESCI) Module.  
1 = TxD on PTA2 — RxD on PTA3  
0 = TxD on PTE0 — RxD on PTE1  
SPISEL — SPI Pin Selection Bit  
SPISEL is used to select the pins to be used as SPI pins when the SPI is enabled. For more information  
on the SPI, see Chapter 15 Serial Peripheral Interface (SPI) Module.  
1 = MISO on PTB3 — MOSI on PTB4 SPSCK on PTB5 SS on PTC2  
0 = MISO on PTC0 — MOSI on PTC1 SPSCK on PTA5 SS on PTA6  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
68  
Freescale Semiconductor  
Chapter 6  
Computer Operating Properly  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by periodically clearing the COP counter.  
6.2 Functional Description  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Chapter 14 System Integration Module (SIM) for more details.  
Figure 6-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler. If not cleared by software,  
the COP counter overflows and generates an asynchronous reset after 8176 or 262,128 CGMXCLK  
cycles, depending on the state of the COP rate select bit, COPRS, in the CONFIG1. When COPRS = 0,  
a 4.9152-MHz crystal gives a COP timeout period of 53.3 ms. Writing any value to location $FFFF before  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
69  
Computer Operating Properly  
an overflow occurs prevents a COP reset by clearing the COP counter and stages 4–12 of the SIM  
counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status  
register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ pin is held at VTST. During the break state,  
VTST on the RST pin disables the COP.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
6.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 6-1.  
6.3.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.  
6.3.2 STOP Instruction  
The STOP instruction signal clears the COP prescaler.  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 6.4 COP Control Register) clears the COP  
counter and clears stages 12 through 4 of the COP prescaler. Reading the COP control register returns  
the reset vector.  
6.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.  
6.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
6.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the COP prescaler.  
6.3.7 COPD  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See  
Chapter 5 Configuration Registers (CONFIG1, CONFIG2, CONFIG3).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
70  
Freescale Semiconductor  
COP Control Register  
6.3.8 COPRS  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See  
Chapter 5 Configuration Registers (CONFIG1, CONFIG2, CONFIG3).  
6.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
6.5 Interrupts  
The COP does not generate CPU interrupt requests.  
6.6 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin or on the RST pin.  
6.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.7.1 Wait Mode  
The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the  
COP counter in a CPU interrupt routine.  
6.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
The STOP bit in the configuration register (CONFIG) enables the STOP instruction. To prevent  
inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the  
STOP bit.  
6.8 COP Module During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
71  
Computer Operating Properly  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
72  
Freescale Semiconductor  
Chapter 7  
Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
73  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
74  
Freescale Semiconductor  
CPU Registers  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
75  
Central Processor Unit (CPU)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
76  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
77  
Central Processor Unit (CPU)  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
78  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
IMM  
IMM  
CBEQ opr,X+,rel Compare and Branch if Equal  
IX1+  
CBEQ X+,rel  
CBEQ  
opr,SP,rel  
IX+  
SP1  
9E61 ff rr  
CLC  
Clear Carry Bit  
C 0  
0 INH  
98  
1
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
79  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLI  
Clear Interrupt Mask  
Clear  
I 0  
0
– INH  
9A  
2
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
SP1  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
8C  
CLRH  
0
0
1
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
80  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
None  
– INH  
– INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
81  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
82  
Freescale Semiconductor  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
83  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
3
4
4
5
3
4
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2 2 IX1  
SP1 1 IX  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
3
SBC  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ORA  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
3
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
INH  
2
2
2
IX1  
3
4
MOV  
IMD  
3
CLR  
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 8  
Internal Clock Generator (ICG) Module  
8.1 Introduction  
The internal clock generator (ICG) module is used to create a stable clock source for the microcontroller  
without using any external components. The ICG generates the oscillator output clock (CGMXCLK),  
which is used by the computer operating properly (COP), low-voltage inhibit (LVI), and other modules.  
The ICG also generates the clock generator output (CGMOUT), which is fed to the system integration  
module (SIM) to create the bus clocks. The bus frequency will be one-fourth the frequency of CGMXCLK  
and one-half the frequency of CGMOUT. Finally, the ICG generates the timebase clock (TBMCLK), which  
is used in the timebase module (TBM).  
8.2 Features  
The ICG has these features:  
Selectable external clock generator, either 1-pin external source or 2-pin crystal, multiplexed with  
port pins  
Internal clock generator with programmable frequency output in integer multiples of a nominal  
frequency (307.2 kHz ± 25 percent)  
Internal oscillator trimmed accuracy of ±3.5 percent  
Bus clock software selectable from either internal or external clock (bus frequency range from  
76.8 kHz ± 25 percent to 9.75 MHz ± 25 percent in 76.8-kHz increments)  
NOTE  
For the MC68HC908EY16A, do not exceed the maximum bus frequency of  
8 MHz at 5.0 V.  
Timebase clock automatically selected from external clock if external clock is available  
Clock monitor for both internal and external clocks  
8.3 Functional Description  
The ICG, shown in Figure 8-2, contains these major submodules:  
Clock enable circuit  
Internal clock generator  
External clock generator  
Clock monitor circuit  
Clock selection circuit  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
85  
Internal Clock Generator (ICG) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
15,872 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 8-1. Block Diagram Highlighting ICG Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
86  
Freescale Semiconductor  
Functional Description  
CS  
RESET  
CGMOUT  
CGMXCLK  
TBMCLK  
CLOCK  
SELECTION  
CIRCUIT  
IOFF  
EOFF  
CMON  
ECGS  
ICGS  
CLOCK  
MONITOR  
CIRCUIT  
FICGS  
DDIV[3:0]  
DSTG[7:0]  
ICLK  
INTERNAL CLOCK  
GENERATOR  
N[6:0}  
TRIM[7:0]  
IBASE  
ICGEN  
SIMOSCEN  
OSCENINSTOP  
EXTCLKEN  
ECGON  
CLOCK/PIN  
ENABLE  
CIRCUIT  
ICGON  
ECGEN  
ECLK  
EXTXTALEN  
EXTSLOW  
EXTERNAL CLOCK  
GENERATOR  
PTC4  
LOGIC  
PTC3  
LOGIC  
INTERNAL  
OSC1  
PTC4  
OSC2  
PTC3  
TO MCU  
EXTERNAL  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-2. ICG Module Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
87  
Internal Clock Generator (ICG) Module  
8.3.1 Clock Enable Circuit  
The clock enable circuit is used to enable the internal clock (ICLK) or external clock (ECLK) and the port  
logic which is shared with the oscillator pins (OSC1 and OSC2). The clock enable circuit generates an  
ICG stop (ICGSTOP) signal which stops all clocks (ICLK, ECLK, and the low-frequency base clock,  
IBASE). ICGSTOP is set and the ICG is disabled in stop mode if the oscillator enable stop bit  
(OSCENINSTOP) in the configuration (CONFIG) register is clear. The ICG clocks will be enabled in stop  
mode if OSCENINSTOP is high.  
The internal clock enable signal (ICGEN) turns on the internal clock generator which generates ICLK.  
ICGEN is set (active) whenever the ICGON bit is set and the ICGSTOP signal is clear. When ICGEN is  
clear, ICLK and IBASE are both low.  
The external clock enable signal (ECGEN) turns on the external clock generator which generates ECLK.  
ECGEN is set (active) whenever the ECGON bit is set and the ICGSTOP signal is clear. ECGON cannot  
be set unless the external clock enable (EXTCLKEN) bit in the CONFIG is set. when ECGEN is clear,  
ECLK is low.  
The port C4 enable signal (PC4EN) turns on the port C4 logic. Since port C4 is on the same pin as OSC1,  
this signal is only active (set) when the external clock function is not desired. Therefore, PC4EN is clear  
when ECGON is set. PC4EN is not gated with ICGSTOP, which means that if the ECGON bit is set, the  
port C4 logic will remain disabled in stop mode.  
The port C3 enable signal (PC3EN) turns on the port C3 logic. Since port C3 is on the same pin as OSC2,  
this signal is only active (set) when 2-pin oscillator function is not desired. Therefore, PC3EN is clear when  
ECGON and the external crystal enable (EXTXTALEN) bit in the CONFIG are both set. PC4EN is not  
gated with ICGSTOP, which means that if ECGON and EXTXTALEN are set, the port C3 logic will remain  
disabled in stop mode.  
8.3.2 Internal Clock Generator  
The internal clock generator, shown in Figure 8-3, creates a low frequency base clock (IBASE), which  
operates at a nominal frequency (fNOM) of 307.2 kHz ± 25 percent, and an internal clock (ICLK) which is  
an integer multiple of IBASE. This multiple is the ICG multiplier factor (N), which is programmed in the  
ICG multiplier register (ICGMR). The internal clock generator is turned off and the output clocks (IBASE  
and ICLK) are held low when the internal clock generator enable signal (ICGEN) is clear.  
The internal clock generator contains:  
A digitally controlled oscillator  
A modulo N divider  
A frequency comparator, which contains voltage and current references, a frequency to voltage  
converter, and comparators  
A digital loop filter  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
88  
Freescale Semiconductor  
Functional Description  
ICGEN  
FICGS  
VOLTAGE AND  
CURRENT  
REFERENCES  
++  
+
DSTG[7:0]  
DDIV[3:0]  
DIGITAL  
LOOP  
FILTER  
DIGITALLY  
CONTROLLED  
OSCILLATOR  
ICLK  
– –  
N[6:0]  
TRIM[7:0]  
FREQUENCY  
COMPARATOR  
CLOCK GENERATOR  
MODULO  
N
DIVIDER  
IBASE  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-3. Internal Clock Generator Block Diagram  
8.3.2.1 Digitally Controlled Oscillator  
The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock  
(ICLK). The clock period of ICLK is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]).  
Because of only a limited number of bits in DDIV and DSTG, the precision of the output (ICLK) is restricted  
to a precision of approximately ±0.202 percent to ±0.368 percent when measured over several cycles (of  
the desired frequency). Additionally, since the propagation delays of the devices used in the DCO ring  
oscillator are a measurable fraction of the bus clock period, reaching the long-term precision may require  
alternately running faster and slower than desired, making the worst case cycle-to-cycle frequency  
variation ±6.45 percent to ±11.8 percent (of the desired frequency). The valid values of DDIV:DSTG range  
from $000 to $9FF. For more information on the quantization error in the DCO, see 8.4.4 Quantization  
Error in DCO Output.  
8.3.2.2 Modulo N Divider  
The modulo N divider creates the low-frequency base clock (IBASE) by dividing the internal clock (ICLK)  
by the ICG multiplier factor (N), contained in the ICG multiplier register (ICGMR). When N is programmed  
to a $01 or $00, the divider is disabled and ICLK is passed through to IBASE undivided. When the internal  
clock generator is stable, the frequency of IBASE will be equal to the nominal frequency (fNOM) of 307.2  
kHz ± 25 percent.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
89  
Internal Clock Generator (ICG) Module  
8.3.2.3 Frequency Comparator  
The frequency comparator effectively compares the low-frequency base clock (IBASE) to a nominal  
frequency, fNOM. First, the frequency comparator converts IBASE to a voltage by charging a known  
capacitor with a current reference for a period dependent on IBASE. This voltage is compared to a voltage  
reference with comparators, whose outputs are fed to the digital loop filter. The dependence of these  
outputs on the capacitor size, current reference, and voltage reference causes up to ±25 percent error  
in fNOM  
.
8.3.2.4 Digital Loop Filter  
The digital loop filter (DLF) uses the outputs of the frequency comparator to adjust the internal clock  
(ICLK) clock period. The DLF generates the DCO divider control bits (DDIV[3:0]) and the DCO stage  
control bits (DSTG[7:0]), which are fed to the DCO. The DLF first concatenates the DDIV and DSTG  
registers (DDIV[3:0]:DSTG[7:0]) and then adds or subtracts a value dependent on the relative error in the  
low-frequency base clock’s period, as shown in Table 8-1. In some extreme error conditions, such as  
operating at a VDD level which is out of specification, the DLF may attempt to use a value above the  
maximum ($9FF) or below the minimum ($000). In both cases, the value for DDIV will be between $A and  
$F. In this range, the DDIV value will be interpreted the same as $9 (the slowest condition). Recovering  
from this condition requires subtracting (increasing frequency) in the normal fashion until the value is  
again below $9FF. (If the desired value is $9xx, the value may settle at $Axx through $Fxx. This is an  
acceptable operating condition.) If the error is less than ±5 percent, the internal clock generator’s filter  
stable indicator (FICGS) is set, indicating relative frequency accuracy to the clock monitor.  
Table 8-1. Correction Sizes from DLF to DCO  
Frequency Error  
of IBASE Compared  
to fNOM  
Current to New  
DDIV[3:0]:DSTG[7:0](1)  
DDVI[3:0]:DSTG[7:0]  
Correction  
Relative Correction  
in DCO  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
$xFF to $xDF  
$x20 to $x00  
$xFF to $xF7  
$x08 to $x00  
$xFF to $xFE  
$x01 to $x00  
$xFE to $xFF  
$x00 to $x01  
$xF7 to $xFF  
$x00 to $x08  
$xDF to $xFF  
$x00 to $x20  
–2/31  
–2/19  
–6.45%  
IBASE < 0.85 fNOM  
–32 (–$020)  
–8 (–$008)  
–1 (–$001)  
+1 (+$001)  
+8 (+$008)  
+32 (+$020)  
–10.5%  
–1.61%  
–2.86%  
–0.202%  
–0.366%  
+0.202%  
+0.368%  
+1.64%  
+2.94%  
+6.90%  
+11.8%  
–0.5/31  
0.85 fNOM < IBASE  
IBASE < 0.95 fNOM  
–0.5/17.5  
–0.0625/31  
–0.0625/17.0625  
+0.0625/30.9375  
+0.0625/17  
+0.5/30.5  
+0.5/17  
0.95 fNOM < IBASE  
IBASE < fNOM  
fNOM < IBASE  
IBASE < 1.05 fNOM  
1.05 fNOM < IBASE  
IBASE < 1.15 fNOM  
+2/29  
1.15 fNOM < IBASE  
+2/17  
1. x = Maximum error is independent of value in DDIV[3:0]. DDIV increments or decrements when an addition to DSTG[7:0]  
carries or borrows.  
8.3.3 External Clock Generator  
The ICG also provides for an external oscillator or external clock source, if desired. The external clock  
generator, shown in Figure 8-4, contains an external oscillator amplifier and an external clock input path.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
90  
Freescale Semiconductor  
Functional Description  
ECGEN  
ECLK  
INPUT PATH  
EXTXTALEN  
AMPLIFIER  
EXTERNAL  
CLOCK  
GENERATOR  
EXTSLOW  
OSC1  
PTC4  
OSC2  
PTC3  
INTERNAL TO MCU  
EXTERNAL  
RB  
NAME  
NAME  
CONFIGURATION BIT  
TOP LEVEL SIGNAL  
RS*  
*RS can be 0 (shorted)  
when used with higher-  
frequency crystals. Refer  
to manufacturer’s data.  
X1  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
C1  
C2  
These components are required  
for external crystal use only.  
Figure 8-4. External Clock Generator Block Diagram  
8.3.3.1 External Oscillator Amplifier  
The external oscillator amplifier provides the gain required by an external crystal connected in a Pierce  
oscillator configuration. The amount of this gain is controlled by the slow external (EXTSLOW) bit in the  
CONFIG. When EXTSLOW is set, the amplifier gain is reduced for operating low-frequency crystals  
(32 kHz to 100 kHz). When EXTSLOW is clear, the amplifier gain will be sufficient for 1-MHz to 8-MHz  
crystals. EXTSLOW must be configured correctly for the given crystal or the circuit may not operate.  
The amplifier is enabled when the external clock generator enable (ECGEN) signal is set and when the  
external crystal enable (EXTXTALEN) bit in the CONFIG is set. ECGEN is controlled by the clock enable  
circuit (see 8.3.1 Clock Enable Circuit) and indicates that the external clock function is desired. When  
enabled, the amplifier will be connected between the PTC4/OSC1 and PTC3/OSC2 pins. Otherwise, the  
PTC3/OSC2 pin reverts to its port function.  
In its typical configuration, the external oscillator requires five external components:  
1. Crystal, X1  
2. Fixed capacitor, C1  
3. Tuning capacitor, C2 (can also be a fixed capacitor)  
4. Feedback resistor, RB  
5. Series resistor, RS (included in Figure 8-4 to follow strict Pierce oscillator guidelines and may not  
be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
91  
Internal Clock Generator (ICG) Module  
8.3.3.2 External Clock Input Path  
The external clock input path is the means by which the microcontroller uses an external clock source.  
The input to the path is the PTC4/OSC1 pin and the output is the external clock (ECLK). The path, which  
contains input buffering, is enabled when the external clock generator enable signal (ECGEN) is set.  
When not enabled, the PTC4/OSC1 pin reverts to its port function.  
8.3.4 Clock Monitor Circuit  
The ICG contains a clock monitor circuit which, when enabled, will continuously monitor both the external  
clock (ECLK) and the internal clock (ICLK) to determine if either clock source has been corrupted. The  
clock monitor circuit, shown in Figure 8-5, contains these blocks:  
Clock monitor reference generator  
Internal clock activity detector  
External clock activity detector  
IOFF  
IOFF  
CMON  
FICGS  
CMON  
FICGS  
ICLK  
ACTIVITY  
DETECTOR  
IBASE  
ICGEN  
IBASE  
ICGEN  
EREF  
ICGS  
ICGS  
EREF  
IBASE  
ICGON  
EXTXTALEN  
EXTSLOW  
ECGS  
EXTXTALEN  
EXTSLOW  
REFERENCE  
GENERATOR  
ESTBCLK  
ECLK  
ECGEN  
IREF  
ESTBCLK  
IREF  
ECGS  
ECGS  
ECLK  
ACTIVITY  
DETECTOR  
ECGEN  
ECLK  
ECGEN  
ECLK  
EOFF  
CMON  
EOFF  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-5. Clock Monitor Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
92  
Freescale Semiconductor  
Functional Description  
8.3.4.1 Clock Monitor Reference Generator  
The clock monitor uses a reference based on one clock source to monitor the other clock source. The  
clock monitor reference generator generates the external reference clock (EREF) based on the external  
clock (ECLK) and the internal reference clock (IREF) based on the internal clock (ICLK). To simplify the  
circuit, the low-frequency base clock (IBASE) is used in place of ICLK because it always operates at or  
near 307.2 kHz. For proper operation, EREF must be at least twice as slow as IBASE and IREF must be  
at least twice as slow as ECLK.  
To guarantee that IREF is slower than ECLK and EREF is slower than IBASE, one of the signals is divided  
down. Which signal is divided and by how much is determined by the external slow (EXTSLOW) and  
external crystal enable (EXTXTALEN) bits in the CONFIG, according to the rules in Table 8-2.  
NOTE  
Each signal (IBASE and ECLK) is always divided by four. A longer divider  
is used on either IBASE or ECLK based on the EXTSLOW bit.  
To conserve size, the long divider (divide by 4096) is also used as an external crystal stabilization divider.  
The divider is reset when the external clock generator is turned off or in stop mode (ECGEN is clear).  
When the external clock generator is first turned on, the external clock generator stable bit (ECGS) will  
be clear. This condition automatically selects ECLK as the input to the long divider. The external  
stabilization clock (ESTBCLK) will be ECLK divided by 16 when EXTXTALEN is low or 4096 when  
EXTXTALEN is high. This timeout allows the crystal to stabilize. The falling edge of ESTBCLK is used to  
set ECGS, which will set after a full 16 or 4096 cycles. When ECGS is set, the divider returns to its normal  
function. ESTBCLK may be generated by either IBASE or ECLK, but any clocking will only reinforce the  
set condition. If ECGS is cleared because the clock monitor determined that ECLK was inactive, the  
divider will revert to a stabilization divider. Since this will change the EREF and IREF divide ratios, it is  
important to turn the clock monitor off (CMON = 0) after inactivity is detected to ensure valid recovery.  
8.3.4.2 Internal Clock Activity Detector  
The internal clock activity detector, shown in Figure 8-6, looks for at least one falling edge on the  
low-frequency base clock (IBASE) every time the external reference (EREF) is low. Since EREF is less  
than half the frequency of IBASE, this should occur every time. If it does not occur two consecutive times,  
the internal clock inactivity indicator (IOFF) is set. IOFF will be cleared the next time there is a falling edge  
of IBASE while EREF is low.  
The internal clock stable bit (ICGS) is also generated in the internal clock activity detector. ICGS is set  
when the internal clock generator’s filter stable signal (FICGS) indicates that IBASE is within about 5  
percent of the target 307.2 kHz ± 25 percent for two consecutive measurements. ICGS is cleared when  
FICGS is clear, the internal clock generator is turned off or is in stop mode (ICGEN is clear), or when IOFF  
is set.  
8.3.4.3 External Clock Activity Detector  
The external clock activity detector, shown in Figure 8-7, looks for at least one falling edge on the external  
clock (ECLK) every time the internal reference (IREF) is low. Since IREF is less than half the frequency  
of ECLK, this should occur every time. If it does not occur two consecutive times, the external clock  
inactivity indicator (EOFF) is set. EOFF will be cleared the next time there is a falling edge of ECLK while  
IREF is low.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
93  
Internal Clock Generator (ICG) Module  
CMON  
EREF  
IOFF  
ICGS  
CK  
Q
1/4  
R
R
R
R
D
D
Q
D
Q
DFFRS  
CK  
DFFRR  
CK  
DFFRR  
CK  
Q
IBASE  
S
R
R
DLF MEASURE  
OUTPUT CLOCK  
ICGEN  
FICGS  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-6. Internal Clock Activity Detector  
The external clock stable bit (ECGS) is also generated in the external clock activity detector. ECGS is set  
on a falling edge of the external stabilization clock (ESTBCLK). This will be 4096 ECLK cycles after the  
external clock generator on bit is set, or the MCU exits stop mode (ECGEN = 1) if the external crystal  
enable (EXTXTALEN) in the CONFIG is set, or 16 cycles when EXTXTALEN is clear. ECGS is cleared  
when the external clock generator is turned off or in stop mode (ECGEN is clear) or when EOFF is set.  
CMON  
EOFF  
CK  
Q
IREF  
1/4  
R
R
R
D
D
DFFRS  
DFFRR  
CK  
CK  
Q
Q
EGGS  
ECLK  
S
R
ESTBCLK  
ECGEN  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-7. External Clock Activity Detector  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
94  
Freescale Semiconductor  
Functional Description  
8.3.5 Clock Selection Circuit  
The clock selection circuit, shown in Figure 8-8, contains two clock switches which generate the oscillator  
output clock (CGMXCLK) and the timebase clock (TBMCLK) from either the internal clock (ICLK) or the  
external clock (ECLK). The clock selection circuit also contains a divide-by-two circuit which creates the  
clock generator output clock (CGMOUT), which generates the bus clocks.  
CS  
CGMXCLK  
OUTPUT  
SELECT  
ICLK  
ICLK  
ECLK  
IOFF  
EOFF  
ECLK  
DIV2  
SYNCHRONIZING  
CLOCK  
SWITCHER  
IOFF  
EOFF  
CGMOUT  
TBMCLK  
FORCE_I  
FORCE_E  
RESET  
VSS  
OUTPUT  
SELECT  
ECGON  
ICLK  
ECLK  
SYNCHRONIZING  
CLOCK  
SWITCHER  
IOFF  
EOFF  
FORCE_I  
FORCE_E  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 8-8. Clock Selection Circuit Block Diagram  
8.3.5.1 Clock Selection Switches  
The first switch creates the oscillator output clock (CGMXCLK) from either the internal clock (ICLK) or the  
external clock (ECLK), based on the clock select bit (CS; set selects ECLK, clear selects ICLK). When  
switching the CS bit, both ICLK and ECLK must be on (ICGON and ECGON set). The clock being  
switched to also must be stable (ICGS or ECGS set).  
The second switch creates the timebase clock (TBMCLK) from ICLK or ECLK based on the external clock  
on bit. When ECGON is set, the switch automatically selects the external clock, regardless of the state of  
the ECGS bit.  
8.3.5.2 Clock Switching Circuit  
To robustly switch between the internal clock (ICLK) and the external clock (ECLK), the switch assumes  
the clocks are completely asynchronous, so a synchronizing circuit is required to make the transition.  
When the select input (the clock select bit for the oscillator output clock switch or the external clock on bit  
for the timebase clock switch) is changed, the switch will continue to operate off the original clock for  
between one and two cycles as the select input is transitioned through one side of the synchronizer. Next,  
the output will be held low for between one and two cycles of the new clock as the select input transitions  
through the other side. Then the output starts switching at the new clock’s frequency. This transition  
guarantees that no glitches will be seen on the output even though the select input may change  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
95  
Internal Clock Generator (ICG) Module  
asynchronously to the clocks. The unpredictably of the transition period is a necessary result of the  
asynchronicity.  
The switch automatically selects ICLK during reset. When the clock monitor is on (CMON is set) and it  
determines one of the clock sources is inactive (as indicated by the IOFF or EOFF signals), the circuit is  
forced to select the active clock. There are no clocks for the inactive side of the synchronizer to properly  
operate, so that side is forced deselected. However, the active side will not be selected until one to two  
clock cycles after the IOFF or EOFF signal transitions.  
8.4 Usage Notes  
The ICG has several features which can provide protection to the microcontroller if properly used. Other  
features can greatly simplify usage of the ICG if certain techniques are employed. This section describes  
several possible ways to use the ICG and its features. These techniques are not the only ways to use the  
ICG and may not be optimum for all environments. In any case, these techniques should be used only as  
a template, and the user should modify them according to the application’s requirements.  
These notes include:  
Switching clock sources  
Enabling the clock monitor  
Using clock monitor interrupts  
Quantization error in digitally controlled oscillator (DCO) output  
Switching internal clock frequencies  
Nominal frequency settling time  
Improving frequency settling time  
Trimming frequency  
8.4.1 Switching Clock Sources  
Switching from one clock source to another requires both clock sources to be enabled and stable. A  
simple flow requires:  
Enable desired clock source  
Wait for it to become stable  
Switch clocks  
Disable previous clock source  
The key point to remember in this flow is that the clock source cannot be switched (CS cannot be written)  
unless the desired clock is on and stable.  
8.4.2 Enabling the Clock Monitor  
Many applications require the clock monitor to determine if one of the clock sources has become inactive,  
so the other can be used to recover from a potentially dangerous situation. Using the clock monitor  
requires both clocks to be active (ECGON and ICGON both set). To enable the clock monitor, both clocks  
also must be stable (ECGS and ICGS both set). This is to prevent the use of the clock monitor when a  
clock is first turned on and potentially unstable.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
96  
Freescale Semiconductor  
Usage Notes  
Enabling the clock monitor and clock monitor interrupts requires a flow similar to this:  
Enable the alternate clock source  
Wait for both clock sources to be stable  
Switch to the desired clock source if necessary  
Enable the clock monitor  
Enable clock monitor interrupts  
These events must happen in sequence.  
8.4.3 Using Clock Monitor Interrupts  
The clock monitor circuit can be used to recover from perilous situations such as crystal loss. To use the  
clock monitor effectively, these points should be observed:  
Enable the clock monitor and clock monitor interrupts.  
The first statement in the clock monitor interrupt service routine (CMISR) should be a read to the  
ICG control register (ICGCR) to verify that the clock monitor flag (CMF) is set. This is also the first  
step in clearing the CMF bit.  
The second statement in the CMISR should be a write to the ICGCR to clear the CMF bit (write the  
bit low). Writing the bit high will not affect it. This statement does not need to immediately follow  
the first, but must be contained in the CMISR.  
The third statement in the CMISR should be to clear the CMON bit. This is required to ensure  
proper reconfiguration of the reference dividers. This statement also must be contained in the  
CMISR.  
Although the clock monitor can be enabled only when both clocks are stable (ICGS is set or ECGS  
is set), it will remain set if one of the clocks goes unstable.  
The clock monitor only works if the external slow (EXTSLOW) bit in the CONFIG is set to the  
correct value.  
The internal and external clocks must both be enabled and running to use the clock monitor.  
When the clock monitor detects inactivity, the inactive clock is automatically deselected and the  
active clock selected as the source for CGMXCLK and TBMCLK. The CMISR can use the state of  
the CS bit to check which clock is inactive.  
When the clock monitor detects inactivity, the application may have been subjected to extreme  
conditions which may have affected other circuits. The CMISR should take any appropriate  
precautions.  
8.4.4 Quantization Error in DCO Output  
The digitally controlled oscillator (DCO) is comprised of three major sub-blocks:  
1. Binary weighted divider  
2. Variable-delay ring oscillator  
3. Ring oscillator fine-adjust circuit  
Each of these blocks affects the clock period of the internal clock (ICLK). Since these blocks are controlled  
by the digital loop filter (DLF) outputs DDIV and DSTG, the output of the DCO can change only in  
quantized steps as the DLF increments or decrements its output. The following sections describe how  
each block will affect the output frequency.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
97  
Internal Clock Generator (ICG) Module  
8.4.4.1 Digitally Controlled Oscillator  
The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock  
(ICLK), whose clock period is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]).  
Because of the digital nature of the DCO, the clock period of ICLK will change in quantized steps. This  
will create a clock period difference or quantization error (Q-ERR) from one cycle to the next. Over several  
cycles or for longer periods, this error is divided out until it reaches a minimum error of 0.202 percent to  
0.368 percent. The dependence of this error on the DDIV[3:0] value and the number of cycles the error is  
measured over is shown in Table 8-2.  
8.4.4.2 Binary Weighted Divider  
The binary weighted divider divides the output of the ring oscillator by a power of two, specified by the  
DCO divider control bits (DDIV[3:0]). DDIV maximizes at %1001 (values of %1010 through %1111 are  
interpreted as %1001), which corresponds to a divide by 512. When DDIV is %0000, the ring oscillator’s  
output is divided by 1. Incrementing DDIV by one will double the period; decrementing DDIV will halve the  
period. The DLF cannot directly increment or decrement DDIV; DDIV is only incremented or decremented  
when an addition or subtraction to DSTG carries or borrows.  
Table 8-2. Quantization Error in ICLK  
τ
ICLK Q-ERR  
DDIV[3:0]  
%0000 (min)  
%0000 (min)  
%0000 (min)  
%0001  
ICLK Cycles  
Bus Cycles  
1
4
NA  
1
6.45%–11.8%  
1.61%–2.94%  
32  
1
8  
NA  
1
0.202%–0.368%  
3.23%–5.88%  
%0001  
4
0.806%–1.47%  
0.202%–0.368%  
1.61%–2.94%  
%0001  
16  
1
4  
NA  
1
%0010  
%0010  
4
0.403%–0.735%  
0.202%–0.368%  
0.806%–1.47%  
0.202%–0.368%  
0.403%–0.735%  
0.202%–0.368%  
0.202%–0.368%  
%0010  
8  
1
2  
NA  
1  
NA  
1  
1  
%0011  
%0011  
4  
1
%0100  
%0100  
2  
1  
%0101–%1001 (max)  
8.4.4.3 Variable-Delay Ring Oscillator  
The variable-delay ring oscillator’s period is adjustable from 17 to 31 stage delays, in increments of two,  
based on the upper three DCO stage control bits (DSTG[7:5]). A DSTG[7:5] of %000 corresponds to 17  
stage delays; DSTG[7:5] of %111 corresponds to 31 stage delays. Adjusting the DSTG[5] bit has a 6.45  
percent to 11.8 percent effect on the output frequency. This also corresponds to the size correction made  
when the frequency error is greater than ±15 percent. The value of the binary weighted divider does not  
affect the relative change in output clock period for a given change in DSTG[7:5].  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
98  
Freescale Semiconductor  
Usage Notes  
8.4.4.4 Ring Oscillator Fine-Adjust Circuit  
The ring oscillator fine-adjust circuit causes the ring oscillator to effectively operate at non-integer  
numbers of stage delays by operating at two different points for a variable number of cycles specified by  
the lower five DCO stage control bits (DSTG[4:0]). For example:  
When DSTG[7:5] is %011, the ring oscillator nominally operates at 23 stage delays.  
When DSTG[4:0] is %00000, the ring will always operate at 23 stage delays.  
When DSTG[4:0] is %00001, the ring will operate at 25 stage delays for one of 32 cycles and at 23  
stage delays for 31 of 32 cycles.  
Likewise, when DSTG[4:0] is %11111, the ring operates at 25 stage delays for 31 of 32 cycles and  
at 23 stage delays for one of 32 cycles.  
When DSTG[7:5] is %111, similar results are achieved by including a variable divide-by-two, so the  
ring operates at 31 stages for some cycles and at 17 stage delays, with a divide-by-two for an  
effective 34 stage delays, for the remainder of the cycles.  
Adjusting the DSTG[0] bit has a 0.202 percent to 0.368 percent effect on the output clock period. This  
corresponds to the minimum size correction made by the DLF, and the inherent, long-term quantization  
error in the output frequency.  
8.4.5 Switching Internal Clock Frequencies  
The frequency of the internal clock (ICLK) may need to be changed for some applications. For example,  
if the reset condition does not provide the correct frequency, or if the clock is slowed down for a low-power  
mode (or sped up after a low-power mode), the frequency must be changed by programming the internal  
clock multiplier factor (N). The frequency of ICLK is N times the frequency of IBASE, which is 307.2 kHz  
±25 percent.  
Before switching frequencies by changing the N value, the clock monitor must be disabled. This is  
because when N is changed, the frequency of the low-frequency base clock (IBASE) will change  
proportionally until the digital loop filter has corrected the error. Since the clock monitor uses IBASE, it  
could erroneously detect an inactive clock. The clock monitor cannot be re-enabled until the internal clock  
is stable again (ICGS is set).  
The following flow is an example of how to change the clock frequency:  
Verify there is no clock monitor interrupt by reading the CMF bit.  
Turn off the clock monitor.  
If desired, switch to the external clock (see 8.4.1 Switching Clock Sources).  
Change the value of N.  
Switch back to internal (see 8.4.1 Switching Clock Sources), if desired.  
Turn on the clock monitor (see 8.4.2 Enabling the Clock Monitor), if desired.  
8.4.6 Nominal Frequency Settling Time  
Because the clock period of the internal clock (ICLK) is dependent on the digital loop filter outputs (DDIV  
and DSTG) which cannot change instantaneously, ICLK temporarily will operate at an incorrect clock  
period when any operating condition changes. This happens whenever the part is reset, the ICG multiply  
factor (N) is changed, the ICG trim factor (TRIM) is changed, or the internal clock is enabled after inactivity  
(stop mode or disabled operation). The time that the ICLK takes to adjust to the correct period is known  
as the settling time.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
99  
Internal Clock Generator (ICG) Module  
Settling time depends primarily on how many corrections it takes to change the clock period and the  
period of each correction. Since the corrections require four periods of the low-frequency base clock  
(4*τIBASE), and since ICLK is N (the ICG multiply factor for the desired frequency) times faster than  
IBASE, each correction takes 4*N*τICLK. The period of ICLK, however, will vary as the corrections occur.  
8.4.6.1 Settling to Within 15 Percent  
When the error is greater than 15 percent, the filter takes eight corrections to double or halve the clock  
period. Due to how the DCO increases or decreases the clock period, the total period of these eight  
corrections is approximately 11 times the period of the fastest correction. (If the corrections were perfectly  
linear, the total period would be 11.5 times the minimum period; however, the ring must be slightly  
nonlinear.) Therefore, the total time it takes to double or halve the clock period is 44*N*τICLKFAST  
.
If the clock period needs more than doubled or halved, the same relationship applies, only for each time  
the clock period needs doubled, the total number of cycles doubles. That is, when transitioning from fast  
to slow, going from the initial speed to half speed takes 44*N*τICLKFAST; from half speed to quarter speed  
takes 88*N*τICLKFAST; going from quarter speed to eighth speed takes 176*N*τICLKFAST; and so on. This  
series can be expressed as (2x–1)*44*N*τICLKFAST, where x is the number of times the speed needs  
doubled or halved. Since 2x happens to be equal to τICLKSLOW/τICLKFAST, the equation reduces to  
44*N*(τICLKSLOWτICLKFAST).  
Note that increasing speed takes much longer than decreasing speed since N is higher. This can be  
expressed in terms of the initial clock period (τ1) minus the final clock period (τ2) as such:  
τ
= abs[44Nτ )]  
15  
1 2  
8.4.6.2 Settling to Within 5 Percent  
Once the clock period is within 15 percent of the desired clock period, the filter starts making smaller  
adjustments. When between 15 percent and 5 percent error, each correction will adjust the clock period  
between 1.61 percent and 2.94 percent. In this mode, a maximum of eight corrections will be required to  
get to less than 5 percent error. Since the clock period is relatively close to desired, each correction takes  
approximately the same period of time, or 4*τIBASE. At this point, the internal clock stable bit (ICGS) will  
be set and the clock frequency is usable, although the error will be as high as 5 percent. The total time to  
this point is:  
τ = abs[44Nτ )] + 32τ  
5
1
2
IBASE  
8.4.6.3 Total Settling Time  
Once the clock period is within 5 percent of the desired clock period, the filter starts making minimum  
adjustments. In this mode, each correction will adjust the frequency between 0.202 percent and 0.368  
percent. A maximum of 24 corrections will be required to get to the minimum error. Each correction takes  
approximately the same period of time, or 4*τIBASE. Added to the corrections for 15 percent to 5 percent,  
this makes 32 corrections (128*τIBASE) to get from 15 percent to the minimum error. The total time to the  
minimum error is:  
τ
= abs[44Nτ )] + 128τ  
1 2 IBASE  
tot  
The equations for τ15, τ5, and τtot are dependent on the actual initial and final clock periods τ1 and τ2, not  
the nominal. This means the variability in the ICLK frequency due to process, temperature, and voltage  
must be considered. Additionally, other process factors and noise can affect the actual tolerances of the  
points at which the filter changes modes. This means a worst case adjustment of up to 35 percent (ICLK  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
100  
Freescale Semiconductor  
Low-Power Modes  
clock period tolerance plus 10 percent) must be added. This adjustment can be reduced with trimming.  
Table 8-3 shows some typical values for settling time.  
Table 8-3. Typical Settling Time Examples  
τ1  
τ2  
τ15  
τ5  
τtot  
N
84  
21  
1
1/ (6.45 MHz)  
1/ (25.8 MHz)  
1/ (25.8 MHz)  
1/ (307.2 kHz)  
1/ (25.8 MHz)  
1/ (6.45 MHz)  
1/ (307.2 kHz)  
1/ (25.8 MHz)  
430 μs  
107 μs  
141 μs  
11.9 ms  
535 μs  
212 μs  
246 μs  
12.0 ms  
850 μs  
525 μs  
560 μs  
12.3 ms  
84  
8.4.7 Trimming Frequency on the Internal Clock Generator  
The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the  
frequency comparator indicate zero error, will vary as much as ±25 percent due to process, temperature,  
and voltage dependencies. These dependencies are in the voltage and current references, the offset of  
the comparators, and the internal capacitor.  
The method of changing the unadjusted operating point is by changing the size of the capacitor. This  
capacitor is designed with 639 equally sized units. Of that number, 384 of these units are always  
connected. The remaining 255 units are put in by adjusting the ICG trim factor (TRIM). The default value  
for TRIM is $80, or 128 units, making the default capacitor size 512. Each unit added or removed will  
adjust the output frequency by about ±0.195 percent of the unadjusted frequency (adding to TRIM will  
decrease frequency). Therefore, the frequency of IBASE can be changed to ±25 percent of its unadjusted  
value, which is enough to cancel the process variability mentioned before.  
The best way to trim the internal clock is to use the timer to measure the width of an input pulse on an  
input capture pin (this pulse must be supplied by the application and should be as long or wide as  
possible). Considering the prescale value of the timer and the theoretical (zero error) frequency of the bus  
(307.2 kHz *N/4), the error can be calculated. This error, expressed as a percentage, can be divided by  
0.195 percent and the resultant factor added or subtracted from TRIM. This process should be repeated  
to eliminate any residual error.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
8.5.1 Wait Mode  
The ICG remains active in wait mode. If enabled, the ICG interrupt to the CPU can bring the MCU out of  
wait mode.  
In some applications, low power-consumption is desired in wait mode and a high-frequency clock is not  
needed. In these applications, reduce power consumption by either selecting a low-frequency external  
clock and turn the internal clock generator off or reduce the bus frequency by minimizing the ICG multiplier  
factor (N) before executing the WAIT instruction.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
101  
Internal Clock Generator (ICG) Module  
8.5.2 Stop Mode  
The value of the oscillator enable in stop (OSCENINSTOP) bit in the CONFIG determines the behavior  
of the ICG in stop mode. If OSCENINSTOP is low, the ICG is disabled in stop and, upon execution of the  
STOP instruction, all ICG activity will cease and the output clocks (CGMXCLK, CGMOUT, and TBMCLK)  
will be held low. Power consumption will be minimal.  
If OSCENINSTOP is high, the ICG is enabled in stop and activity will continue. This is useful if the  
timebase module (TBM) is required to bring the MCU out of stop mode. ICG interrupts will not bring the  
MCU out of stop mode in this case.  
During stop mode, if OSCENINSTOP is low, several functions in the ICG are affected. The stable bits  
(ECGS and ICGS) are cleared, which will enable the external clock stabilization divider upon recovery.  
The clock monitor is disabled (CMON = 0) which will also clear the clock monitor interrupt enable (CMIE)  
and clock monitor flag (CMF) bits. The CS, ICGON, ECGON, N, TRIM, DDIV, and DSTG bits are  
unaffected.  
8.6 CONFIG Options  
Four CONFIG options affect the functionality of the ICG. These options are:  
1. EXTCLKEN, external clock enable  
2. EXTXTALEN, external crystal enable  
3. EXTSLOW, slow external clock  
4. OSCENINSTOP, oscillator enable in stop  
All CONFIG options will have a default setting. Refer to Chapter 5 Configuration Registers (CONFIG1,  
CONFIG2, CONFIG3) on how the CONFIG is used.  
8.6.1 External Clock Enable (EXTCLKEN)  
External clock enable (EXTCLKEN), when set, enables the ECGON bit to be set. ECGON turns on the  
external clock input path through the PTC4/OSC1 pin. When EXTCLKEN is clear, ECGON cannot be set  
and PTC4/OSC1 will always perform the PTC4 function.  
The default state for this option is clear.  
8.6.2 External Crystal Enable (EXTXTALEN)  
External crystal enable (EXTXTALEN), when set, will enable an amplifier to drive the PTC3/OSC2 pin  
from the PTC4/OSC1 pin. The amplifier will drive only if the external clock enable (EXTCLKEN) bit and  
the ECGON bit are also set. If EXTCLKEN or ECGON are clear, PTC3/OSC2 will perform the PTC3  
function. When EXTXTALEN is clear, PTC3/OSC2 will always perform the PTC3 function.  
EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the valid  
range of crystals (30 kHz to 100 kHz or 1 MHz to 32 MHz). When EXTXTALEN is clear, the clock monitor  
will expect an external clock source in the valid range for externally generated clocks when using the clock  
monitor (60 Hz to 32 MHz).  
EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for a  
4096 cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear, the  
stabilization divider is configured to 16 cycles since an external clock source does not need a startup time.  
The default state for this option is clear.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
102  
Freescale Semiconductor  
Input/Output (I/O) Registers  
8.6.3 Slow External Clock (EXTSLOW)  
Slow external clock (EXTSLOW), when set, will decrease the drive strength of the oscillator amplifier,  
enabling low-frequency crystal operation (30 kHz–100 kHz) if properly enabled with the external clock  
enable (EXTCLKEN) and external crystal enable (EXTXTALEN) bits. When clear, EXTSLOW enables  
high-frequency crystal operation (1 MHz to 8 MHz or 8 MHz to 32 MHz depending on RNGSEL).  
EXTSLOW, when set, also configures the clock monitor to expect an external clock source that is slower  
than the low-frequency base clock (60 Hz to 307.2 kHz). When EXTSLOW is clear, the clock monitor will  
expect an external clock faster than the low-frequency base clock (307.2 kHz to 32 MHz).  
The default state for this option is clear.  
8.6.4 Oscillator Enable In Stop (OSCENINSTOP)  
Oscillator enable in stop (OSCENINSTOP), when set, will enable the ICG to continue to generate clocks  
(either CGMXCLK, CGMOUT, or TBMCLK) in stop mode. This function is used to keep the timebase  
running while the rest of the microcontroller stops. When OSCENINSTOP is clear, all clock generation  
will cease and CGMXCLK, CGMOUT, and TBMCLK will be forced low during stop mode.  
The default state for this option is clear.  
8.7 Input/Output (I/O) Registers  
The ICG contains five registers. These registers are:  
1. ICG control register, ICGCR  
2. ICG multiplier register, ICGMR  
3. ICG trim register, ICGTR  
4. ICG DCO divider control register, ICGDVR  
5. ICG DCO stage control register, ICGDSR  
Several of the bits in these registers have interaction where the state of one bit may force another bit to  
a particular state or prevent another bit from being set or cleared. A summary of this interaction is shown  
in Table 8-4.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
103  
Internal Clock Generator (ICG) Module  
Table 8-4. ICG Module Register Bit Interaction Summary  
Register Bit Results for Given Condition  
Condition  
CMIE CMF CMON CS ICGON ICGS ECQON ECQ N[6:0] TRIM[7:0] DDIV[3:0] DSTQ[7:0]  
Reset  
0
0
0
0
0
0
0
1
0
0
0
0
0
$15  
$80  
OSCENINSTOP = 0,  
STOP = 1  
EXTCLKEN = 0  
CMF = 1  
0
0
0
(1)  
0
0
0
(0)  
(1)  
1
1
1
0
0
1
0
0
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
1
CMON = 0  
CMON = 1  
CS = 0  
(0)  
(1)  
0
1
1
0
0
uw  
uw  
uw  
uw  
1
1
CS = 1  
(0)  
(1)  
1
ICGON = 0  
ICGON = 1  
ICGS = 0  
1
us  
0
0
us  
0
uc  
0
(0)  
0
(0)  
(1)  
(1)  
uw  
uw  
ECGON = 0  
ECGS = 0  
IOFF = 1  
uw  
uw  
us  
(0)  
(0)  
1*  
1*  
(0)  
(0)  
us  
(1)  
(1)  
(0)  
(0)  
us  
1
(1)  
(1)  
(0)  
0
uw  
uw  
uw  
uw  
EOFF = 1  
N = written  
TRIM = written  
0
0*  
0*  
0, 1  
Register bit is unaffected by the given condition.  
Register bit is forced clear or set (respectively) in the given condition.  
0*, 1*  
(0), (1)  
us, uc, uw  
Register bit is temporarily forced clear or set (respectively) in the given condition.  
Register bit must be clear or set (respectively) for the given condition to occur.  
Register bit cannot be set, cleared, or written (respectively) in the given condition.  
8.7.1 ICG Control Register  
The ICG control register (ICGCR) contains the control and status bits for the internal clock generator,  
external clock generator, and clock monitor as well as the clock select and interrupt enable bits.  
$0036  
Address:  
Bit 7  
6
CMF  
0(1)  
0
5
CMON  
0
4
CS  
0
3
ICGON  
1
2
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ICGS  
ECGS  
CMIE  
0
0
0
1. See CMF bit description for method of clearing CMF bit.  
= Unimplemented  
Figure 8-9. ICG Control Register (ICGCR)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
104  
Freescale Semiconductor  
Input/Output (I/O) Registers  
CMIE — Clock Monitor Interrupt Enable Bit  
This read/write bit enables clock monitor interrupts. An interrupt will occur when both CMIE and CMF  
are set. CMIE can be set when the CMON bit has been set for at least one cycle. CMIE is forced clear  
when CMON is clear or during reset.  
1 = Clock monitor interrupts enabled  
0 = Clock monitor interrupts disabled  
CMF — Clock Monitor Interrupt Flag  
This read-only bit is set when the clock monitor determines that either ICLK or ECLK becomes inactive  
and the CMON bit is set. This bit is cleared by first reading the bit while it is set, followed by writing the  
bit low. This bit is forced clear when CMON is clear or during reset.  
1 = Either ICLK or ECLK has become inactive.  
0 = ICLK and ECLK have not become inactive since the last read of the ICGCR, or the clock monitor  
is disabled.  
CMON — Clock Monitor On Bit  
This read/write bit enables the clock monitor. CMON can be set when both ICLK and ECLK have been  
on and stable for at least one bus cycle. (ICGON, ECGON, ICGS, and ECGS are all set.) CMON is  
forced set when CMF is set, to avoid inadvertent clearing of CMF. CMON is forced clear when either  
ICGON or ECGON is clear, during stop mode with OSCENINSTOP low, or during reset.  
1 = Clock monitor output enabled  
0 = Clock monitor output disabled  
CS — Clock Select Bit  
This read/write bit determines which clock will generate the oscillator output clock (CGMXCLK). This  
bit can be set when ECGON and ECGS have been set for at least one bus cycle and can be cleared  
when ICGON and ICGS have been set for at least one bus cycle. This bit is forced set when the clock  
monitor determines the internal clock (ICLK) is inactive or when ICGON is clear. This bit is forced clear  
when the clock monitor determines that the external clock (ECLK) is inactive, when ECGON is clear,  
or during reset.  
1 = External clock (ECLK) sources CGMXCLK  
0 = Internal clock (ICLK) sources CGMXCLK  
ICGON — Internal Clock Generator On Bit  
This read/write bit enables the internal clock generator. ICGON can be cleared when the CS bit has  
been set and the CMON bit has been clear for at least one bus cycle. ICGON is forced set when the  
CMON bit is set, the CS bit is clear, or during reset.  
1 = Internal clock generator enabled  
0 = Internal clock generator disabled  
ICGS — Internal Clock Generator Stable Bit  
This read-only bit indicates when the internal clock generator has determined that the internal clock  
(ICLK) is within about 5 percent of the desired value. This bit is forced clear when the clock monitor  
determines the ICLK is inactive, when ICGON is clear, when the ICG multiplier register (ICGMR) is  
written, when the ICG TRIM register (ICGTR) is written, during stop mode with OSCENINSTOP low,  
or during reset.  
1 = Internal clock is within 5 percent of the desired value.  
0 = Internal clock may not be within 5 percent of the desired value.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
105  
Internal Clock Generator (ICG) Module  
ECGON — External Clock Generator On Bit  
This read/write bit enables the external clock generator. ECGON can be cleared when the CS and  
CMON bits have been clear for at least one bus cycle. ECGON is forced set when the CMON bit or the  
CS bit is set. ECGON is forced clear during reset.  
1 = External clock generator enabled  
0 = External clock generator disabled  
ECGS — External Clock Generator Stable Bit  
This read-only bit indicates when at least 4096 external clock (ECLK) cycles have elapsed since the  
external clock generator was enabled. This is not an assurance of the stability of ECLK but is meant  
to provide a startup delay. This bit is forced clear when the clock monitor determines ECLK is inactive,  
when ECGON is clear, during stop mode with OSCENINSTOP low, or during reset.  
1 = 4096 ECLK cycles have elapsed since ECGON was set.  
0 = External clock is unstable, inactive, or disabled.  
8.7.2 ICG Multiplier Register  
$0037  
Address:  
Bit 7  
6
5
N5  
0
4
N4  
1
3
N3  
0
2
N2  
1
1
N1  
0
Bit 0  
N0  
1
Read:  
Write:  
Reset:  
N6  
0
0
= Unimplemented  
Figure 8-10. ICG Multiplier Register (ICGMR)  
N6:N0 — ICG Multiplier Factor Bits  
These read/write bits change the multiplier used by the internal clock generator. The internal clock  
(ICLK) will be:  
(307.2 kHz ± 25 percent) * N  
A value of $00 in this register is interpreted the same as a value of $01. This register cannot be written  
when the CMON bit is set. Reset sets this factor to $15 (decimal 21) for default frequency of 6.45 MHz  
± 25 percent (1.613 MHz ± 25 percent bus).  
8.7.3 ICG Trim Register  
Address: $0038  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 8-11. ICG Trim Register (ICGTR)  
TRIM7:TRIM0 — ICG Trim Factor Bits  
These read/write bits change the size of the internal capacitor used by the internal clock generator. By  
testing the frequency of the internal clock and incrementing or decrementing this factor accordingly,  
the accuracy of the internal clock can be improved (see 20.11.1 Trimmed Internal Clock Generator  
Characteristics). Incrementing this register by one decreases the frequency by 0.195 percent of the  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
106  
Freescale Semiconductor  
Input/Output (I/O) Registers  
unadjusted value. Decrementing this register by one increases the frequency by 0.195 percent. This  
register cannot be written when the CMON bit is set. Reset sets these bits to $80, centering the range  
of possible adjustment.  
NOTE  
Optional storage for 5V and 3V trim values is provided in non-volatile  
memory at addresses $FF80 and $FF81. See 8.7.4 ICG 5-Volt Trim Value  
and 8.7.5 ICG 3-Volt Trim Value.  
8.7.4 ICG 5-Volt Trim Value  
Address: $FF80  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 8-12. 5V Internal Oscillator Trim Value (ICGT5V)  
This register provides non-volatile storage for an optional 5V oscillator trim value, which can be  
transferred by the user software to the ICG Trim Register (ICGTR) when the device comes out of reset.  
(See 8.7.3 ICG Trim Register.)  
8.7.5 ICG 3-Volt Trim Value  
Address: $FF81  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 8-13. 3V Internal Oscillator Trim Value (ICGT3V)  
This register provides non-volatile storage for an optional 3V oscillator trim value, which can be  
transferred by the user software to the ICG Trim Register (ICGTR) when the device comes out of reset.  
(See 8.7.3 ICG Trim Register.)  
8.7.6 ICG DCO Divider Register  
Address: $0039  
Bit 7  
6
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDIV3  
DDIV2  
DDIV1  
DDIV0  
0
0
U
U
U
U
= Unimplemented  
U = Unaffected  
Figure 8-14. ICG DCO Divider Control Register (ICGDVR)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
107  
Internal Clock Generator (ICG) Module  
DDIV3:DDIV0 — ICG DCO Divider Control Bits  
These bits indicate the number of divide-by-twos (DDIV) that follow the digitally controlled oscillator.  
When ICGON is set, DDIV is controlled by the digital loop filter. The range of valid values for DDIV is  
from $0 to $9. Values of $A through $F are interpreted the same as $9. Since the DCO is active during  
reset, reset has no effect on DSTG and the value may vary.  
8.7.7 ICG DCO Stage Register  
Address: $003A  
Bit 7  
6
DSTG6  
R
5
DSTG5  
R
4
DSTG4  
R
3
DSTG3  
R
2
DSTG2  
R
1
DSTG1  
R
Bit 0  
DSTG0  
R
Read: DSTG7  
Write:  
R
Reset:  
Unaffected by reset  
R
= Reserved  
Figure 8-15. ICG DCO Stage Control Register (ICGDSR)  
DSTG7:DSTG0 — ICG DCO Stage Control Bits  
These bits indicate the number of stages (above the minimum) in the digitally controlled oscillator. The  
total number of stages is approximately equal to $1FF, so changing DSTG from $00 to $FF will  
approximately double the period. Incrementing DSTG will increase the period (decrease the  
frequency) by 0.202 percent to 0.368 percent (decrementing has the opposite effect). DSTG cannot  
be written when ICGON is set to prevent inadvertent frequency shifting. When ICGON is set, DSTG is  
controlled by the digital loop filter. Since the DCO is active during reset, reset has no effect on DSTG  
and the value may vary.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
108  
Freescale Semiconductor  
Chapter 9  
External Interrupt (IRQ)  
9.1 Introduction  
This section describes the non-maskable external interrupt (IRQ) input.  
9.2 Features  
Features include:  
Dedicated external interrupt pin (IRQ)  
Hysteresis buffer  
Programmable edge-only or edge- and level-interrupt sensitivity  
Automatic interrupt acknowledge  
9.3 Functional Description  
A logic 0 applied to the external interrupt pin can latch a central processor unit (CPU) interrupt request.  
Figure 9-1 shows the structure of the IRQ module.  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
IRQ  
CK  
IRQ  
LATCH  
IMASK  
MODE  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 9-1. IRQ Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
109  
External Interrupt (IRQ)  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of  
these actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears  
the latch that caused the vector fetch.  
Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge  
bit in the interrupt status and control register (ISCR). Writing a 1 to the ACK bit clears the IRQ latch.  
Reset — A reset automatically clears both interrupt latches.  
The external interrupt pin is falling-edge triggered and is software-configurable to be both falling-edge and  
low-level triggered. The MODE bit in the ISCR controls the triggering sensitivity of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software  
clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both  
of these occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as  
the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the ISCR masks all external interrupt requests. A latched interrupt request is  
not presented to the interrupt priority logic unless the corresponding IMASK bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests. See Figure 9-2.  
9.4 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear,  
or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-level sensitive. With MODE set,  
both of these actions must occur to clear the IRQ latch:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in  
the interrupt status and control register (ISCR). The ACK bit is useful in applications that poll the  
IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit can also prevent  
spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ  
pin. A falling edge on IRQ that occurs after writing to the ACK bit latches another interrupt request.  
If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address  
at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, the IRQ latch remains set.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
110  
Freescale Semiconductor  
IRQ Pin  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 9-2. IRQ Interrupt Flowchart  
The vector fetch or software clear and the return of the IRQ pin to logic 1 can occur in any order. The  
interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the  
MODE control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With MODE clear, a vector fetch or  
software clear immediately clears the IRQ latch.  
The IRQF bit in the ISCR register can be used to check for pending interrupts. The IRQF bit is not affected  
by the IMASK bit, which makes it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
111  
External Interrupt (IRQ)  
9.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ interrupt latch can be cleared during the  
break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the  
latches during the break state.  
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
writing to the ACK bit in the IRQ status and control register during the break state has no effect on the  
IRQ latch.  
9.6 IRQ Status and Control Register  
The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. The ISCR  
has these functions:  
Shows the state of the IRQ interrupt flag  
Clears the IRQ interrupt latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001D  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. IRQ Status and Control Register (ISCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
112  
Freescale Semiconductor  
Chapter 10  
Keyboard Interrupt (KBI) Module  
10.1 Introduction  
The keyboard interrupt module (KBI) provides independently maskable external interrupts.  
The KBI shares its pins with general-purpose input/output (I/O) port pins. See Figure 10-1 for port location  
of these shared pins.  
10.2 Features  
Features of the keyboard interrupt module include:  
Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Programmable edge-only or edge and level interrupt sensitivity  
Edge sensitivity programmable for rising or falling edge  
Level sensitivity programmable for high or low level  
Pullup or pulldown device automatically enabled based on the polarity of edge or level detect  
Exit from low-power modes  
10.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins.  
These pins can be enabled/disabled independently of each other.  
10.3.1 Keyboard Operation  
Writing to the KBIEx bits in the keyboard interrupt enable register (KBIER) independently enables or  
disables each KBI pin. The polarity of the keyboard interrupt is controlled using the KBIPx bits in the  
keyboard interrupt polarity register (KBIPR). Edge-only or edge and level sensitivity is controlled using the  
MODEK bit in the keyboard status and control register (KBISCR).  
Enabling a keyboard interrupt pin also enables its internal pullup or pulldown device based on the polarity  
enabled. On falling edge or low level detection, a pullup device is configured. On rising edge or high level  
detection, a pulldown device is configured.  
The keyboard interrupt latch is set when one or more enabled keyboard interrupt inputs are asserted.  
If the keyboard interrupt sensitivity is edge-only, for KBIPx = 0, a falling (for KBIPx = 1, a rising) edge  
on a keyboard interrupt input does not latch an interrupt request if another enabled keyboard pin is  
already asserted. To prevent losing an interrupt request on one input because another input remains  
asserted, software can disable the latter input while it is asserted.  
If the keyboard interrupt is edge and level sensitive, an interrupt request is present as long as any  
enabled keyboard interrupt input is asserted.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
113  
Keyboard Interrupt (KBI) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
SINGLE BREAKPOINT  
BREAK MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
15,872 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
PTB3/AD3/MISO(1)  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
PTC2/MCLK/SS(1)  
INTERNAL CLOCK  
GENERATOR MODULE  
OSC2  
OSC1  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 10-1. Block Diagram Highlighting KBI Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
114  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
1
0
KBD0  
VDD  
S
KBIE0  
KEYF  
CLR  
TO PULLUP/  
PULLDOWN ENABLE  
D
Q
SYNCHRONIZER  
KBIP0  
CK  
1
0
IMASKK  
KBI LATCH  
KBDx  
KEYBOARD  
INTERRUPT  
REQUEST  
S
KBIEx  
MODEK  
TO PULLUP/  
PULLDOWN ENABLE  
KBIPx  
Figure 10-2. Keyboard Interrupt Block Diagram  
10.3.1.1 MODEK = 1  
If the MODEK bit is set, the keyboard interrupt inputs are both edge and level sensitive. The KBIPx bit will  
determine whether a edge sensitive pin detects rising or falling edges and on level sensitive pins whether  
the pin detects low or high levels. With MODEK set, both of the following actions must occur to clear a  
keyboard interrupt request:  
Return of all enabled keyboard interrupt inputs to a deasserted level. As long as any enabled  
keyboard interrupt pin is asserted, the keyboard interrupt remains active.  
Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to clear  
the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in KBSCR.  
The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require software to  
clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can also prevent  
spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the  
keyboard interrupt inputs. An edge detect that occurs after writing to ACKK latches another interrupt  
request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with  
the KBI vector address.  
The KBI vector fetch or software clear and the return of all enabled keyboard interrupt pins to a deasserted  
level may occur in any order.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt input stays asserted.  
10.3.1.2 MODEK = 0  
If the MODEK bit is clear, the keyboard interrupt inputs are edge sensitive. The KBIPx bit will determine  
whether an edge sensitive pin detects rising or falling edges. A KBI vector fetch or software clear  
immediately clears the KBI latch.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
115  
Keyboard Interrupt (KBI) Module  
The keyboard flag bit (KEYF) in KBSCR can be read to check for pending interrupts. The KEYF bit is not  
affected by IMASKK, which makes it useful in applications where polling is preferred.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
10.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup or pulldown device to pull  
the pin to its deasserted level. Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting IMASKK in KBSCR.  
2. Enable the KBI polarity by setting the appropriate KBIPx bits in KBIPR.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in KBIER.  
4. Write to ACKK in KBSCR to clear any false interrupts.  
5. Clear IMASKK.  
An interrupt signal on an edge sensitive pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge and level sensitive pin must be acknowledged after a delay that depends on  
the external load.  
10.4 Interrupts  
The following KBI source can generate interrupt requests:  
Keyboard flag (KEYF) — The KEYF bit is set when any enabled KBI pin is asserted based on the KBI  
mode and pin polarity. The keyboard interrupt mask bit, IMASKK, is used to enable or disable KBI  
interrupt requests.  
10.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
10.5.1 Wait Mode  
The KBI module remains active in wait mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
10.5.2 Stop Mode  
The KBI module remains active in stop mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of stop mode.  
10.6 KBI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
116  
Freescale Semiconductor  
I/O Signals  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
10.7 I/O Signals  
The KBI module can share its pins with the general-purpose I/O pins. See Figure 10-1 for the port pins  
that are shared.  
10.7.1 KBI Input Pins (KBI7:KBI0)  
Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be  
controlled independently. Each KBI pin when enabled will automatically configure the appropriate  
pullup/pulldown device based on polarity.  
10.8 Registers  
The following registers control and monitor operation of the KBI module:  
KBSCR (keyboard interrupt status and control register)  
KBIER (keyboard interrupt enable register)  
KBIPR (keyboard interrupt polarity register)  
10.8.1 Keyboard Status and Control Register (KBSCR)  
Features of the KBSCR:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 10-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
117  
Keyboard Interrupt (KBI) Module  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.  
1 = Keyboard interrupt requests disabled  
0 = Keyboard interrupt requests enabled  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.  
1 = Keyboard interrupt requests on edge and level  
0 = Keyboard interrupt requests on edge only  
10.8.2 Keyboard Interrupt Enable Register (KBIER)  
KBIER enables or disables each keyboard interrupt pin.  
Address: $001B  
Bit 7  
0
6
0
5
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 10-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE4–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch KBI interrupt  
requests.  
1 = KBDx pin enabled as keyboard interrupt pin  
0 = KBDx pin not enabled as keyboard interrupt pin  
10.8.3 Keyboard Interrupt Polarity Register (KBIPR)  
KBIPR determines the polarity of the enabled keyboard interrupt pin and enables the appropriate pullup  
or pulldown device.  
Address: $000C  
Bit 7  
0
6
0
5
0
4
KBIP4  
0
3
KBIP3  
0
2
KBIP2  
0
1
KBIP1  
0
Bit 0  
KBIP0  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 10-5. Keyboard Interrupt Polarity Register (KBIPR)  
KBIP4–KBIP0 — Keyboard Interrupt Polarity Bits  
Each of these read/write bits selects the polarity of the keyboard interrupt pin. Reset clears the  
keyboard interrupt polarity register.  
1 = Keyboard polarity is rising edge and/or high level  
0 = Keyboard polarity is falling edge and/or low level  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
118  
Freescale Semiconductor  
Chapter 11  
Low-Voltage Inhibit (LVI) Module  
11.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin  
and can force a reset when the VDD voltage falls to the LVI trip voltage.  
11.2 Features  
Features include:  
Programmable LVI reset  
Programmable power consumption  
3 V or 5 V selectable trip point  
11.3 Functional Description  
Figure 11-1 shows the structure of the LVI module. The LVI is enabled out of reset. The following bits  
located in the configuration register can alter the default conditions:  
Setting the LVI power disable bit, LVIPWRD, disables the LVI  
Setting the LVI reset disable bit, LVIRSTD, prevents the LVI module from generating a reset.  
Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to continue monitoring the  
voltage level on VDD while in stop mode.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG-1  
FROM CONFIG-1  
LVIRSTD  
LVIPWRD  
FROM CONFIG-1  
VDD > LVITRIPR = 0  
DD < LVITRIPF = 1  
LVI RESET  
LOW VDD  
DETECTOR  
V
LVI5OR3  
FROM CONFIG-1  
LVIOUT  
Figure 11-1. LVI Module Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
119  
Low-Voltage Inhibit (LVI) Module  
Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, LVITRIPR. VDD must  
be above LVITRIPR for only one CPU cycle to bring the MCU out of reset (see 11.3.2 Forced Reset  
Operation). The output of the comparator controls the state of the LVIOUT flag in the LVI status register  
(LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.  
11.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the LVITRIPF level, software can monitor VDD by  
polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at 0 to enable the LVI  
module, and the LVIRSTD bit must be at 1 to disable LVI resets.  
11.3.2 Forced Reset Operation  
In applications that require VDD to remain above the LVITRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls to the LVITRIPF level. In the configuration register, the LVIPWRD  
and LVIRSTD bits must be at 0 to enable the LVI module and to enable LVI resets.  
11.3.3 False Reset Protection  
False reset protection is provided by the hysteresis in the LVI trip circuit (refer to Table 11-1). Please refer  
to 20.5 5V DC Electrical Characteristics for hysteresis value (VHYS) and rising and falling LVI trip values.  
11.3.4 LVI Status Register  
The LVI status register flags VDD voltages below the LVITRIPF level.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the LVITRIPF voltage. (See  
Table 11-1.) Reset clears the LVIOUT bit.  
Table 11-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
At Level:  
VDD > LVITRIPR  
VDD < LVITRIPF  
0
1
LVITRIPF < VDD < LVITRIPR  
Previous Value  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
120  
Freescale Semiconductor  
LVI Interrupts  
11.4 LVI Interrupts  
The LVI module does not generate interrupt requests.  
11.5 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby  
modes.  
11.5.1 Wait Mode  
With the LVIPWRD bit in the configuration register programmed to 0, the LVI module is active after a  
WAIT instruction.  
With the LVIRSTD bit in the configuration register programmed to 0, the LVI module can generate a reset  
and bring the MCU out of wait mode.  
11.5.2 Stop Mode  
With the LVISTOP bit in the configuration register programmed to a 1 and the LVIPWRD bit programmed  
to 0, the LVI module will be active after a STOP instruction.  
With the LVIPWRD bit in the configuration register programmed to 1 and the LVISTOP bit at a 0, the LVI  
module will be inactive after a STOP instruction.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
121  
Low-Voltage Inhibit (LVI) Module  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
122  
Freescale Semiconductor  
Chapter 12  
Input/Output (I/O) Ports (PORTS)  
12.1 Introduction  
Twenty-four bidirectional input/output (I/O) pins form five parallel ports. All I/O pins are programmable as  
inputs or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
12.2 Port A  
Port A is a 7-bit general-purpose bidirectional I/O port that shares pin functions with the serial peripheral  
interface (SPI) and keyboard (KBD) modules.  
12.2.1 Port A Data Register  
The port A data register contains a data latch for each of the seven port A pins.  
Address:  
$0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
Alternative Function:  
Alternative Function:  
SS  
SPSCK  
KBD4  
KBD3  
RxD  
KBD2  
TxD  
KBD1  
KBD0  
= Unimplemented  
Figure 12-1. Port A Data Register (PTA)  
PTA[6:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
12.2.2 Data Direction Register A  
Data direction register A determines whether each port A pin is an input or an output. Writing a 1 to a  
DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
123  
Input/Output (I/O) Ports (PORTS)  
Address:  
$0004  
Bit 7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 12-2. Data Direction Register A (DDRA)  
DDRA[6:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[6:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 12-3 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 12-3. Port A I/O Circuit  
When bit DDRAx is a 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-1 summarizes the operation of the port A pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTA[6:0](1)  
PTA[6:0]  
0
1
X
X
Input, Hi-Z  
Output  
DDRA[6:0]  
Pin  
DDRA[6:0]  
PTA[6:0]  
X = don’t care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
124  
Freescale Semiconductor  
Port B  
12.3 Port B  
Port B is an 8-bit special-function port that shares all of its pins with the analog-to-digital converter (ADC)  
and some pin functions with TIMB.  
Port B is designed so that the ADC function will take priority over the timer functionality on PTB6 and  
PTB7. If the ADC is selected for a conversion on a previously enabled timer pin, the port pin will be  
connected to the ADC and disconnected from the timer. If both the timer input capture and ADC functions  
are being used on the same port pin, it is recommended that the timer channel be disabled before the pin  
is enabled as an ADC input to avoid glitches. If both the timer output compare (or PWM) and ADC  
functions are being used on the same port pin, it is recommended that the timer channel be disabled  
before the pin is enabled as an ADC input.  
12.3.1 Port B Data Register  
The port B data register contains a data latch for each of the eight port B pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
Alternative Function:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
Alternative Function: TBCH1  
TBCH0  
SPSCK  
MOSI  
MISO  
Figure 12-4. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
12.3.2 Data Direction Register B  
Data direction register B determines whether each port B pin is an input or an output. Writing a 1 to a  
DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-5. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
125  
Input/Output (I/O) Ports (PORTS)  
Figure 12-6 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
RESET  
DDRBx  
PTBx  
WRITE PTB ($0001)  
PTBx  
READ PTB ($0001)  
Figure 12-6. Port B I/O Circuit  
When DDRBx is a 1, reading address $0001 reads the PTBx data latch. When DDRBx is a 0, reading  
address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit. Table 12-2 summarizes the operation of the port B pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTB[7:0](1)  
PTB[7:0]  
0
1
X
X
Input, Hi-Z  
Output  
DDRB[7:0]  
Pin  
DDRB[7:0]  
PTB[7:0]  
X = don’t care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
12.4 Port C  
Port C is an 5-bit general-purpose bidirectional I/O port that shares pin functions with the internal clock  
generator (ICG) and serial peripheral interface (SPI) modules.  
12.4.1 Port C Data Register  
The port C data register contains a data latch for each of the five port C pins.  
Address:  
$0002  
Bit 7  
0
6
0
5
0
4
3
2
1
Bit 0  
Read:  
Write:  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Reset:  
Unaffected by reset  
OSC1 OSC2  
Alternative Function:  
Alternative Function:  
MCLK  
SS  
MOSI  
MISO  
= Unimplemented  
Figure 12-7. Port C Data Register (PTC)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
126  
Freescale Semiconductor  
Port C  
PTC[4:0] — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
12.4.2 Data Direction Register C  
Data direction register C determines whether each port C pin is an input or an output. Writing a 1 to a  
DDRC bit enables the output buffer for the corresponding port C pin; a 0 disables the output buffer.  
Address:  
$0006  
Bit 7  
6
0
5
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
MCLKEN  
0
0
0
= Unimplemented  
Figure 12-8. Data Direction Register C (DDRC)  
MCLKEN — MCLK Enable Bit  
This read/write bit enables MCLK, a bus clock frequency clock signal, to be an output signal on PTC2.  
If MCLK is enabled, PTC2 is under the control of MCLKEN. Reset clears this bit.  
1 = MCLK output enabled  
0 = MCLK output disabled  
DDRC[4:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC[4:0] and MCLKEN, configuring  
all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 12-9 shows the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 12-9. Port C I/O Circuit  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
127  
Input/Output (I/O) Ports (PORTS)  
When bit DDRCx is a 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a 0,  
reading address $0002 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-3 summarizes the operation of the port C pins.  
Table 12-3. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
DDRC[7]  
Accesses to PTC  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTC2  
0
1
0
1
2
2
Input, Hi-Z  
Output  
Pin  
0
DDRC[7]  
PTC[4:0](1)  
PTC[4:0]  
X
X
Input, Hi-Z  
Output  
DDRC[4:0]  
DDRC[4:0]  
Pin  
PTC[4:0]  
X = don’t care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
12.5 Port D  
Port D is a 2-bit special function port that shares its pins with the timer interface module (TIMA).  
12.5.1 Port D Data Register  
The port D data register contains a data latch for each of the two port D pins.  
Address:  
$0003  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
PTD1  
PTD0  
Reset:  
Unaffected by reset  
Alternative Function:  
TACH1  
TACH0  
= Unimplemented  
Figure 12-10. Port D Data Register (PTD)  
PTD[1:0] — Port D Data Bits  
PTD[1:0] are read/write, software programmable bits. Data direction of each port D pin is under the  
control of the corresponding bit in data direction register D.  
12.5.2 Data Direction Register D  
Data direction register D determines whether each port D pin is an input or an output. Writing a 1 to a  
DDRD bit enables the output buffer for the corresponding port D pin; a 0 disables the output buffer.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
128  
Freescale Semiconductor  
Port D  
Address:  
$0007  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 12-11. Data Direction Register D (DDRD)  
DDRD[1:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[1:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 12-12 shows the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 12-12. Port D I/O Circuit  
When bit DDRDx is a 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a 0,  
reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-4 summarizes the operation of the port D pins.  
Table 12-4. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTD[1:0](1)  
PTD[1:0]  
0
1
X
X
Input, Hi-Z  
Output  
DDRD[1:0]  
Pin  
DDRD[1:0]  
PTD[1:0]  
X = don’t care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
129  
Input/Output (I/O) Ports (PORTS)  
12.6 Port E  
Port E is a 2-bit special function port that shares its pins with the enhanced serial communications  
interface module (ESCI).  
12.6.1 Port E Data Register  
The port E data register contains a data latch for each of the port E pins.  
Address:  
$0008  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
PTE1  
PTE0  
Reset:  
Unaffected by reset  
Alternative Function:  
RxD  
TxD  
= Unimplemented  
Figure 12-13. Port E Data Register (PTE)  
PTE[1:0] — Port E Data Bits  
These read/write bits are software programmable. Data direction of each port E pin is under the control  
of the corresponding bit in data direction register E. Reset has no effect on PTE[1:0].  
12.6.2 Data Direction Register E  
Data direction register E determines whether each port E pin is an input or an output. Writing a 1 to a  
DDRE bit enables the output buffer for the corresponding port E pin; a 0 disables the output buffer.  
Address:  
$000A  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 12-14. Data Direction Register E (DDRE)  
DDRE[1:0] — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE[1:0], configuring all port E pins  
as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE  
Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 12-15 shows the port E I/O logic.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
130  
Freescale Semiconductor  
Port E  
READ DDRE ($000A)  
WRITE DDRE ($000A)  
DDREx  
PTEx  
RESET  
WRITE PTE ($0008)  
READ PTE($0008)  
PTEx  
Figure 12-15. Port E I/O Circuit  
When bit DDREx is a 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a 0,  
reading address $0008 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-5 summarizes the operation of the port E pins.  
Table 12-5. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
Read  
Write  
PTE[1:0](1)  
PTE[1:0]  
0
1
X
X
Input, Hi-Z  
Output  
DDRE[1:0]  
Pin  
DDRE[1:0]  
PTE[1:0]  
X = don’t care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
131  
Input/Output (I/O) Ports (PORTS)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
132  
Freescale Semiconductor  
Chapter 13  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction  
The enhanced serial communications interface (ESCI) module allows asynchronous communications  
with peripheral devices and other microcontroller units (MCU).  
13.2 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter central processor unit (CPU) interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
13.3 Pin Name Conventions  
The generic names of the ESCI input/output (I/O) pins are:  
RxD (receive data)  
TxD (transmit data)  
ESCI I/O lines are implemented by sharing parallel I/O port pins. The full name of an ESCI input or output  
reflects the name of the shared port pin. Table 13-1 shows the full names and the generic names of the  
ESCI I/O pins. The generic pin names appear in the text of this section.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
133  
Enhanced Serial Communications Interface (ESCI) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
15,872 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
PTB3/AD3/MISO(1)  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
PTC2/MCLK/SS(1)  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 13-1. Block Diagram Highlighting ESCI Block and Pins  
Table 13-1. Pin Name Conventions  
ESCI Generic Pin Name  
Full Pin Name  
RxD  
PTE1/RxD  
PTA3  
TxD  
PTE0/TxD  
PTA2  
Alternative Pin  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
134  
Freescale Semiconductor  
Functional Description  
13.4 Functional Description  
Figure 13-2 shows the structure of the ESCI module. The ESCI allows full-duplex, asynchronous, NRZ  
serial communication between the MCU and remote devices, including other MCUs. The transmitter and  
receiver of the ESCI operate independently, although they use the same baud rate generator. During  
normal operation, the CPU monitors the status of the ESCI, writes the data to be transmitted, and  
processes received data.  
The baud rate clock source for the ESCI can be selected via the configuration bit, ESCIBDSRC, of the  
CONFIG2 register ($001E).  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
SCI_TxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
ARBITER-  
TxD  
TXINV  
BUS_CLK  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
SL  
ACLK bit in SCIACTL  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
LINT  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
BUS CLOCK  
CGMXCLK  
Enhanced  
PRE-  
SCALER  
PRE- BAUD RATE  
SCALER GENERATOR  
÷ 4  
SL  
DATA SELECTION  
CONTROL  
÷ 16  
SL=1 -> SCI_CLK = BUSCLK  
SL=0 -> SCI_CLK = CGMXCLK (4x BUSCLK)  
Figure 13-2. ESCI Module Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
135  
Enhanced Serial Communications Interface (ESCI) Module  
13.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 13-3.  
PARITY  
OR DATA  
BIT  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 13-3. SCI Data Formats  
13.4.2 Transmitter  
Figure 13-4 shows the structure of the SCI transmitter. The baud rate clock source for the ESCI can be  
selected via the configuration bit, ESCIBDSRC.  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
ESCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
PDS2  
PDS1  
PDS0  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 13-4. ESCI Transmitter  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
136  
Freescale Semiconductor  
Functional Description  
13.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control  
register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control  
register 3 (SCC3) is the ninth bit (bit 8).  
13.4.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI  
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1).  
2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in ESCI control register 2  
(SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and  
then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit  
shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift  
register. A 1 stop bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition,  
logic 1. If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port E pins.  
13.4.2.3 Break Characters  
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character.  
For TXINV = 0 (output not inverted), a transmitted break character contains all 0s and has no start, stop,  
or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as  
SBK is at 1, transmitter logic continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the last break character and then  
transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of  
the start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by  
eight or nine 0 data bits and a 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive  
0 data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed  
by 9 or 10 consecutive 0 data bits and a 0 where the stop bit should be, resulting in a total of 11 or 12  
consecutive 0 data bits.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
137  
Enhanced Serial Communications Interface (ESCI) Module  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
13.4.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character contains all 1s and has no start, stop, or  
parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle  
character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
13.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values including idle, break, start, and stop bits, are inverted when TXINV is at 1. See  
13.8.1 ESCI Control Register 1.  
13.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the ESCI transmitter:  
ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the  
SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
13.4.3 Receiver  
Figure 13-5 shows the structure of the ESCI receiver.  
13.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
138  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
LINR  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
ESCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-5. ESCI Receiver Block Diagram  
13.4.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
139  
Enhanced Serial Communications Interface (ESCI) Module  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating  
that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set,  
the SCRF bit generates a receiver CPU interrupt request.  
13.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times  
(see Figure 13-6):  
After every start bit  
After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at  
RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples  
returns a valid 0)  
To locate the start bit, data recovery logic does an asynchronous search for a 0 preceded by three 1s.  
When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT DATA  
VERIFICATION SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 13-2 summarizes the results of the start bit verification samples.  
Table 13-2. Start Bit Verification  
RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
140  
Freescale Semiconductor  
Functional Description  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 13-3 summarizes the results of the data bit samples.  
Table 13-3. Data Bit Recovery  
RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-4  
summarizes the results of the stop bit samples.  
Table 13-4. Stop Bit Recovery  
RT8, RT9, and RT10 Samples  
Framing Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
13.4.3.4 Framing Errors  
If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets  
the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has  
no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
13.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
141  
Enhanced Serial Communications Interface (ESCI) Module  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 13-7 shows how much a slow received character can be misaligned without causing a noise  
error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop  
bit data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is:  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
142  
Freescale Semiconductor  
Functional Description  
Fast Data Tolerance  
Figure 13-8 shows how much a fast received character can be misaligned without causing a noise  
error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit  
data samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
× 100 = 3.90%.  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is:  
170 176  
× 100 = 3.53%.  
-------------------------  
170  
13.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
1. Address mark — An address mark is a 1 in the MSB position of a received character. When the  
WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU  
bit. The address mark also sets the ESCI receiver full bit, SCRF. Software can then compare the  
character containing the address mark to the user-defined address of the receiver. If they are the  
same, the receiver remains awake and processes the characters that follow. If they are not the  
same, software can set the RWU bit and put the receiver back into the standby state.  
2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
143  
Enhanced Serial Communications Interface (ESCI) Module  
does not set the receiver idle bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting 1s as idle character bits after the start bit  
or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle will cause the receiver to wake up.  
13.4.3.7 Receiver Interrupts  
These sources can generate CPU interrupt requests from the ESCI receiver:  
ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the  
RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU  
interrupt requests.  
13.4.3.8 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate ESCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the ESCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate ESCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop  
bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error CPU  
interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity error in incoming  
data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error CPU  
interrupt requests.  
13.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
13.5.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled CPU interrupt request from the ESCI module  
can bring the MCU out of wait mode.  
If ESCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
144  
Freescale Semiconductor  
ESCI During Break Module Interrupts  
13.5.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states.  
ESCI module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission  
or reception results in invalid data.  
13.6 ESCI During Break Module Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables software to clear status bits during the  
break state. See 19.2 Break Module (BRK).  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
13.7 I/O Signals  
Port E shares two of its pins with the ESCI module. The two ESCI I/O pins are:  
PTE0/TxD — transmit data  
PTE1/RxD — receive data  
13.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the ESCI transmitter. The ESCI shares the PTE0/TxD  
pin with port E. When the ESCI is enabled, the PTE0/TxD pin is an output regardless of the state of the  
DDRE0 bit in data direction register E (DDRE).  
13.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the ESCI receiver. The ESCI shares the PTE1/RxD pin with  
port E. When the ESCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit  
in data direction register E (DDRE).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
145  
Enhanced Serial Communications Interface (ESCI) Module  
13.8 I/O Registers  
These I/O registers control and monitor ESCI operation:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
13.8.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address: $0010  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 13-9. ESCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in ESCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = ESCI enabled  
0 = ESCI disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
146  
Freescale Semiconductor  
I/O Registers  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or nine bits long (See  
Table 13-5).The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the M  
bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
Table 13-5. Character Format Selection  
Control Bits  
PEN:PTY  
0 X  
Character Format  
M
0
1
0
0
1
1
Start Bits Data Bits Parity Stop Bits Character Length  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
0 X  
1 0  
1 1  
1 0  
Even  
Odd  
1 1  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a 1 (address mark) in the MSB  
position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.  
Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 13-5). When enabled, the parity  
function inserts a parity bit in the MSB position (see Table 13-3). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
147  
Enhanced Serial Communications Interface (ESCI) Module  
PTY — Parity Bit  
This read/write bit determines whether the ESCI generates and checks for odd parity or even parity  
(see Table 13-5). Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
13.8.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
SCTE bit to generate transmitter CPU interrupt requests  
TC bit to generate transmitter CPU interrupt requests  
SCRF bit to generate receiver CPU interrupt requests  
IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Address: $0011  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 13-10. ESCI Control Register 2 (SCC2)  
SCTIE — ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter CPU interrupt requests. Setting  
the SCTIE bit in SCC2 enables the SCTE bit to generate CPU interrupt requests. Reset clears the  
SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter CPU interrupt requests. Reset  
clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver CPU interrupt requests. Setting the  
SCRIE bit in SCC2 enables the SCRF bit to generate CPU interrupt requests. Reset clears the  
SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
148  
Freescale Semiconductor  
I/O Registers  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 consecutive 1s  
from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes  
any transmission in progress before the TxD returns to the idle condition (1). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the  
break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no 1s between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the ESCI to send a break  
character instead of a preamble.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
149  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Address:  
$0012  
Bit 7  
R8  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R
ORIE  
FEIE  
U
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 13-11. ESCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect  
on the R8 bit.  
T8 — Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset clears the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the receiver overrun bit,  
OR. Reset clears ORIE.  
1 = ESCI error CPU interrupt requests from OR bit enabled  
0 = ESCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = ESCI error CPU interrupt requests from NE bit enabled  
0 = ESCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = ESCI error CPU interrupt requests from FE bit enabled  
0 = ESCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the parity error bit, PE.  
Reset clears PEIE.  
1 = ESCI error CPU interrupt requests from PE bit enabled  
0 = ESCI error CPU interrupt requests from PE bit disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
150  
Freescale Semiconductor  
I/O Registers  
13.8.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0013  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 13-12. ESCI Status Register 1 (SCS1)  
SCTE — ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an ESCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an ESCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit  
by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There  
may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data  
register. SCRF can generate an ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE  
generates an ESCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
151  
Enhanced Serial Communications Interface (ESCI) Module  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an ESCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 13-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-13. Flag Clearing Sequence  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
152  
Freescale Semiconductor  
I/O Registers  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the RxD pin. NF generates an NF  
CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a 0 is accepted as the stop bit. FE generates an ESCI error  
CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity error in incoming data. PE generates  
a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
13.8.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Address:  
$0014  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-14. ESCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin  
followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
153  
Enhanced Serial Communications Interface (ESCI) Module  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search.  
RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling  
RPF before disabling the ESCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
13.8.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the ESCI data register.  
Address:  
$0015  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by Reset  
Figure 13-15. ESCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits, R7:R0. Writing to address $0018  
writes the data to be transmitted, T7:T0. Reset has no effect on the ESCI data register.  
NOTE  
Do not use read-modify-write instructions on the ESCI data register.  
13.8.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate. One in the ESCI  
baud rate register and one in the ESCI prescaler register.  
Address:  
$0016  
Bit 7  
6
5
SCP1  
0
4
SCP0  
0
3
R
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
LINT  
LINR  
0
0
R
= Reserved  
Figure 13-16. ESCI Baud Rate Register (SCBR)  
LINT — LIN Break Symbol Transmit Enable  
This read/write bit selects the enhanced ESCI features for master nodes in the local interconnect  
network (LIN) protocol (version 1.2) as shown in Table 13-6. Reset clears LINT.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
154  
Freescale Semiconductor  
I/O Registers  
LINR — LIN Receiver Bit  
This read/write bit selects the enhanced ESCI features for slave nodes in the local interconnect  
network (LIN) protocol as shown in Table 13-6. Reset clears LINR.  
Table 13-6. ESCI LIN Slave Node Control Bits  
LINT  
LINR  
M
X
0
1
0
1
0
1
Functionality  
Normal ESCI functionality  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
13-bit generation enabled for LIN transmitter  
14-bit generation enabled for LIN transmitter  
11-bit break detect/13-bit generation enabled for LIN  
12-bit break detect/14-bit generation enabled for LIN  
In LIN (version 1.2) systems, the master node transmits a break character which will appear as  
11.05–14.95 dominant bits to the slave node. A data character of 0x00 sent from the master might  
appear as 7.65–10.35 dominant bit times. This is due to the oscillator tolerance requirement that the  
slave node must be within 15% of the master node's oscillator. Since a slave node cannot know if it  
is running faster or slower than the master node (prior to synchronization), the LINR bit allows the slave  
node to differentiate between a 0x00 character of 10.35 bits and a break character of 11.05 bits. The  
break symbol length must be verified in software in any case, but the LINR bit serves as a filter,  
preventing false detections of break characters that are really 0x00 data characters.  
SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as shown in Table 13-7. Reset  
clears SCP1 and SCP0.  
Table 13-7. ESCI Baud Rate Prescaling  
Baud Rate Register  
SCP[1:0]  
Prescaler Divisor (BPD)  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2–SCR0 — ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in Table 13-8. Reset clears  
SCR2–SCR0.  
Table 13-8. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
16  
32  
64  
128  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
155  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate. One in the ESCI  
baud rate register and one in the ESCI prescaler register.  
Address:  
$0017  
Bit 7  
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
PDS2  
0
Figure 13-17. ESCI Prescaler Register (SCPSC)  
PDS2–PDS0 — Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in Table 13-9. Reset clears PDS2–PDS0.  
NOTE  
The setting of ‘000’ will bypass not only this prescaler but also the Prescaler  
Divisor Fine Adjust (PDFA). It is not recommended to bypass the prescaler  
while ENSCI is set, because the switching is not glitch free.  
Table 13-9. ESCI Prescaler Division Ratio  
PDS[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Prescaler Divisor (PD)  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4–PSSB0 — Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve  
more timing resolution on the average prescaler frequency as shown in Table 13-10. Reset clears  
PSSB4–PSSB0.  
Use the following formula to calculate the ESCI baud rate:  
Frequency of the SCI clock source  
Baud rate =  
64 x BPD x BD x (PD + PDFA)  
where:  
Frequency of the SCI clock source = fBus or CGMXCLK (selected by ESCIBDSRC  
in the CONFIG2 register)  
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
156  
Freescale Semiconductor  
I/O Registers  
Table 13-10. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
14/32 = 0.4375  
15/32 = 0.46875  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
157  
Enhanced Serial Communications Interface (ESCI) Module  
Table 13-11 shows the ESCI baud rates that can be generated with a 4.9152-MHz clock frequency.  
Table 13-11. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
(ESCI Clock = 4.9152 MHz)  
PDS[2:1:0]  
PSSB[4:3:2:1:0]  
SCP[1:0]  
SCR[2:1:0]  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
1 1 1 1 1  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
1
1
1
1
1
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
158  
Freescale Semiconductor  
ESCI Arbiter  
13.9 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support software for communication tasks as  
bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit  
counter with 1-bit overflow and control logic. The CPU can control operation mode via the ESCI arbiter  
control register (SCIACTL).  
FRACTIONAL DIVIDE  
PRESCALER — FD  
SCI BAUD RATE  
PRESCALER — BPD  
BAUD RATE  
DIVIDER — BD  
÷1 OR 2 8.9687  
(BYPASSED OR  
ESCI CLOCK  
(BUS OR 4 x BUS)  
fTx  
÷1, 3, 4, or 13  
÷1, 2, 4, . . . 128  
÷4  
÷16  
2 831/32  
)
fRx  
ESCI Rx  
ACLK = 1  
ACLK = 0  
9-BIT ARBITER COUNTER  
÷4  
Figure 13-18. ESCI Arbiter Counter Clock Selection  
13.9.1 ESCI Arbiter Control Register  
Address:  
$0018  
Bit 7  
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
AM1  
0
0
0
0
0
0
= Unimplemented  
Figure 13-19. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 — Arbiter Mode Select Bits  
As shown in Table 13-12, these read/write bits select the mode of the arbiter module. Reset clears  
AM1 and AM0.  
Table 13-12. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST — Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing a 0 to AM1. Reset clears  
ALOST.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
159  
Enhanced Serial Communications Interface (ESCI) Module  
ACLK — Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source. Reset clears ACLK.  
1 = Arbiter counter is clocked with one quarter of the ESCI input clock generated by the ESCI  
prescaler.  
0 = Arbiter counter is clocked with the bus clock divided by four  
NOTE  
For ACLK=1, the Arbiter input clock is driven from the ESCI prescaler. The  
prescaler can be clocked by either the bus clock or CGMXCLK depending  
on the state of the ESCIBDSRC bit in CONFIG2.  
AFIN— Arbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to  
SCIACTL. Reset clears AFIN.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
ARUN— Arbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running. Reset clears ARUN.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
AROVFL— Arbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear AROVFL by writing any value to  
SCIACTL. Writing 0s to AM1 and AM0 resets the counter keeps it in this idle state. Reset clears  
AROVFL.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8— Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing any value to SCIACTL.  
Reset clears ARD8.  
13.9.2 ESCI Arbiter Data Register  
Address: $0019  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-20. ESCI Arbiter Data Register (SCIADAT)  
ARD7–ARD0 — Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear ARD7–ARD0 by writing any  
value to SCIACTL. Writing 0s to AM1 and AM0 permanently resets the counter and keeps it in this idle  
state. Reset clears ARD7–ARD0.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
160  
Freescale Semiconductor  
ESCI Arbiter  
13.9.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available according to the state of ACLK.  
1. ACLK = 0 — The counter is clocked with one quarter of the ESCI input clock (= bus or CGMXCLK,  
see Figure 5-2. Configuration Register 2 (CONFIG2) for a description of the ESCIBDSRC bit). The  
counter is started when a falling edge on the RxD pin is detected. The counter will be stopped on  
the next falling edge. ARUN is set while the counter is running, AFIN is set on the second falling  
edge on RxD (for instance, the counter is stopped). This mode is used to recover the received baud  
rate. See Figure 13-21.  
2. ACLK = 1 — The counter is clocked with one quarter of the ESCI input clock divided by the ESCI  
prescaler. The counter is started when a logic 0 is detected on RxD (see Figure 13-22). A logic 0  
on RxD on enabling the bit time measurement with ACLK = 1 leads to immediate start of the  
counter (see Figure 13-23). The counter will be stopped on the next rising edge of RxD. This mode  
is used to measure the length of a received break.  
MEASURED TIME  
RXD  
Figure 13-21. Bit Time Measurement with ACLK = 0  
MEASURED TIME  
RXD  
Figure 13-22. Bit Time Measurement with ACLK = 1, Scenario A  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
161  
Enhanced Serial Communications Interface (ESCI) Module  
MEASURED TIME  
RXD  
Figure 13-23. Bit Time Measurement with ACLK = 1, Scenario B  
13.9.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD  
(output of the ESCI module, internal chip signal), the counter is started. When the counter reaches $38  
(ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for example,  
another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced  
to 1, resulting in a seized transmission.  
If SCI_TxD is sensed logic 0 without having sensed a logic 0 before on RxD, the counter will be reset,  
arbitration operation will be restarted after the next rising edge of SCI_TxD.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
162  
Freescale Semiconductor  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. The SIM is a system state controller that coordinates the central processor unit (CPU)  
and exception timing. Together with the CPU, the SIM controls all microcontroller unit (MCU) activities. A  
block diagram of the SIM is shown in Figure 14-1.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 14-1 shows the internal signal names used in this section.  
Table 14-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMOUT  
IAB  
Description  
Selected clock source from internal clock generator module (ICG)  
Clock output from ICG module (bus clock = CGMOUT divided by two)  
Internal address bus  
IDB  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset (POR) module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
14.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 14-2. This clock  
originates from either an external oscillator or from the internal clock generator.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
163  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO ICG)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM ICG)  
CGMOUT (FROM ICG)  
÷ 2  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
FORCED MON MODE ENTRY  
(FROM MENRST MODULE)  
POR CONTROL  
LVI (FROM LVI MODULE)  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 14-1. SIM Block Diagram  
CGMXCLK  
SIM COUNTER  
BUS CLOCK  
GENERATORS  
ECLK  
ICLK  
SELECT  
CIRCUIT  
A
CGMOUT  
÷ 2  
÷ 2  
B
S*  
*WHEN S = 1,  
CGMOUT = B  
ICG  
GENERATOR  
CS  
SIM  
MONITOR MODE  
USER MODE  
ICG  
Figure 14-2. System Clock Signals  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
164  
Freescale Semiconductor  
Reset and System Initialization  
14.2.1 Bus Timing  
In user mode, the internal bus frequency is the internal clock generator output (CGMXCLK) divided by  
four.  
14.2.2 Clock Startup from POR or LVI Reset  
When the power-on reset (POR) module or the low-voltage inhibit (LVI) module generates a reset, the  
clocks to the CPU and peripherals are inactive and held in an inactive phase until after 4096 CGMXCLK  
cycles. The MCU is held in reset by the SIM during this entire period. The bus clocks start upon completion  
of the timeout.  
14.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay timeout. Stop mode  
recovery timing is discussed in detail in 14.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
14.3 Reset and System Initialization  
The MCU has these internal reset sources:  
Power-on reset (POR) module  
Computer operating properly (COP) module  
Low-voltage inhibit (LVI) module  
Illegal opcode  
Illegal address  
Forced monitor mode entry reset (MENRST) module  
All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
These internal resets clear the SIM counter and set a corresponding bit in the SIM reset status register  
(SRSR). See 14.4 SIM Counter and 14.8.2 SIM Reset Status Register.  
14.3.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum of tILR time. Figure 14-3 shows the relative timing.  
CGMOUT  
RST  
VECT H  
VECT L  
IAB  
PC  
Figure 14-3. External Reset Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
165  
System Integration Module (SIM)  
14.3.2 Active Resets from Internal Sources  
An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, POR, or  
MENRST as shown in Figure 14-4.  
NOTE  
For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM asserts IRST. The internal reset signal then follows  
with the 64-cycle phase as shown in Figure 14-5.  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RESET  
ILLEGAL OPCODE RESET  
COP RESET  
INTERNAL RESET  
LVI  
POR  
MENRST  
Figure 14-4. Sources of Internal Reset  
Table 14-2. Reset Recovery Timing  
Reset Type  
POR/LVI  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
All Others  
RSTPULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 14-5. Internal Reset Timing  
14.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset (POR) module generates a pulse to indicate  
that power-on has occurred. The MCU is held in reset while the SIM counter counts out 4096 CGMXCLK  
cycles. Another 64 CGMXCLK cycles later, the CPU and memories are released from reset to allow the  
reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow  
stabilization of the internal clock generator.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are  
cleared.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
166  
Freescale Semiconductor  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 14-6. POR Recovery  
14.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the reset status register (SRSR).  
To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least  
every 4080 CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible  
out of reset to guarantee the maximum amount of time before the first timeout.  
The COP module is disabled if the IRQ pin is held at VTST while the MCU is in monitor mode. The COP  
module can be disabled only through combinational logic conditioned with the high-voltage signal on the  
IRQ pin. This prevents the COP from becoming disabled as a result of external noise.  
14.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the configuration register (CONFIG1) is 0, the SIM treats the STOP  
instruction as an illegal opcode and causes an illegal opcode reset.  
14.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset.  
14.3.2.5 Forced Monitor Mode Entry Reset (MENRST)  
The MENRST module is monitoring the reset vector fetches and will assert an internal reset if it detects  
that the reset vectors are erased ($00). When the MCU comes out of reset, it is forced into monitor mode.  
See 19.3 Monitor Module (MON).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
167  
System Integration Module (SIM)  
14.3.2.6 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the VTRIPF  
voltage. The LVI bit in the SIM reset status register (SRSR) is set and a chip reset is asserted if the  
LVIPWRD and LVIRSTD bits in the CONFIG register are at 0. The MCU is held in reset until VDD rises  
above VTRIPR. The MCU remains in reset until the SIM counts 4096 CGMXCLK to begin a reset recovery.  
Another 64 CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to  
occur. See Chapter 11 Low-Voltage Inhibit (LVI) Module.  
14.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the  
clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of  
CGMXCLK.  
14.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the internal clock generator to drive the  
bus clock state machine.  
14.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration  
register. If the SSREC bit is a 1, then the stop recovery is reduced from the normal delay of 4096  
CGMXCLK cycles down to 32 CGMXCLK cycles.  
14.4.3 SIM Counter and Reset States  
The SIM counter is free-running after all reset states. See 14.3.2 Active Resets from Internal Sources for  
counter control and internal reset recovery sequences.  
14.5 Program Exception Control  
Normal, sequential program execution can be changed in two ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
168  
Freescale Semiconductor  
Program Exception Control  
14.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the return-from-interrupt  
(RTI) instruction recovers the CPU register contents from the stack so that normal processing can  
resume. Figure 14-7 shows interrupt entry timing. Figure 14-8 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L STARTADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 14-7. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1 [7:0] PC – 1 [15:8] OPCODE OPERAND  
R/W  
Figure 14-8. Interrupt Recovery  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. As shown in  
Figure 14-9, once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless  
of priority, until the latched interrupt is serviced or the I bit is cleared.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
169  
System Integration Module (SIM)  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
ICG CLK MON  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
?
YES  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION  
?
YES  
YES  
NO  
RTI  
INSTRUCTION  
?
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 14-9. Interrupt Processing  
14.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
170  
Freescale Semiconductor  
Program Exception Control  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 14-10 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
load-accumulator- from-memory (LDA) instruction is executed.  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 14-10. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805, M146805, and MC68HC05  
Families the H register is not pushed on the stack during interrupt entry. If  
the interrupt service routine modifies the H register or uses the indexed  
addressing mode, software should save the H register and then restore it  
prior to exiting the routine.  
14.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
171  
System Integration Module (SIM)  
14.6 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 14-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 14-3. Interrupt Sources  
Priority  
Interrupt Source  
Reset  
Interrupt Status Register Flag  
Highest  
I1  
SWI instruction  
IRQ pin  
CGM clock monitor  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SCI Error  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
SCI receiver  
I10  
I11  
I12  
I13  
I14  
I15  
I16  
SCI transmitter  
Keyboard  
ADC conversion complete  
SPI receiver  
SPI transmitter  
Timebase module  
Lowest  
14.6.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-11. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 and Bit 0 — Always read 0  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
172  
Freescale Semiconductor  
Interrupt Status Registers  
14.6.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-12. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
14.6.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 14-13. Interrupt Status Register 3 (INT3)  
IF16–IF15 — Interrupt Flags 16–15  
This flag indicates the presence of an interrupt request from the source shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bits 7–2 — Always read 0  
14.6.4 Reset  
All reset sources always have higher priority than interrupts and cannot be arbitrated.  
14.6.5 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting its  
break interrupt output. See 19.2 Break Module (BRK). The SIM puts the CPU into the break state by  
forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how  
each module is affected by the break state.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
173  
System Integration Module (SIM)  
14.6.6 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
14.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. Both STOP and WAIT clear the interrupt mask  
(I) in the condition code register, allowing interrupts to occur. Low-power modes are exited via an interrupt  
or reset.  
14.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while one set of peripheral clocks continues to run.  
Figure 14-14 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset. If the COP disable bit, COPD, in the configuration register is 0,  
then the computer operating properly module (COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 14-14. Wait Mode Entry Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
174  
Freescale Semiconductor  
Low-Power Modes  
Figure 14-15 and Figure 14-16 show the timing for WAIT recovery.  
IAB  
IDB  
$DE0B  
$A6  
$DE0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$DE  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = CPU interrupt  
Figure 14-15. Wait Recovery from Interrupt  
64  
CYCLES  
IAB  
$DE0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
IRST  
$A6  
CGMXCLK  
Figure 14-16. Wait Recovery from Internal Reset  
14.7.2 Stop Mode  
In stop mode, the SIM counter is held in reset and the CPU and peripheral clocks are held inactive. If the  
STOPOSCEN bit in the configuration register is not enabled, the SIM also disables the internal clock  
generator module outputs (CGMOUT and CGMXCLK).  
The CPU and peripheral clocks do not become active until after the stop delay timeout. Stop mode is  
exited via an interrupt request from a module that is still active in stop mode or from a system reset.  
An interrupt request from a module that is still active in stop mode can cause an exit from stop mode. Stop  
recovery time is selectable using the SSREC bit in the configuration register. If SSREC is set, stop  
recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. Stacking for interrupts  
begins after the selected stop recovery time has elapsed.  
When stop mode is exited due to a reset condition, the SIM forces a long stop recovery time of 4096  
CGMXCLK cycles.  
NOTE  
Short stop recovery is ideal for applications using canned oscillators that do  
not require long startup times for stop mode. External crystal applications  
should use the full stop recovery time by clearing the SSREC bit.  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 14-17 shows stop mode entry timing.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
175  
System Integration Module (SIM)  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 14-17. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 14-18. Stop Mode Recovery from Interrupt  
14.8 SIM Registers  
The SIM has three memory mapped registers. Table 14-4 shows the mapping of these registers.  
Table 14-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
14.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop or  
wait mode.  
Address: $FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
= Reserved  
Note: 1. Writing a 0 clears SBSW  
Figure 14-19. SIM Break Status Register (SBSR)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
176  
Freescale Semiconductor  
SIM Registers  
SBSW — SIM Break STOP/WAIT  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
14.8.2 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading it. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bits can both be set if the power supply has a slow rise time.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MENRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-20. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin RST  
0 = POR or read of SPSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MENRST — Forced Monitor Mode Entry Reset Bit  
1 = Last reset was caused by the MENRST circuit  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset was caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
177  
System Integration Module (SIM)  
14.8.3 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while  
the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
0
0
0
R
= Reserved  
Figure 14-21. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
178  
Freescale Semiconductor  
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous,  
serial communications with peripheral devices.  
15.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts with CPU service:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
15.3 Pin Name and Register Name Conventions  
The generic names of the SPI input/output (I/O) pins are:  
SS (slave select)  
SPSCK (SPI serial clock)  
MOSI (master out slave in)  
MISO (master in slave out)  
The SPI shares four I/O pins with a parallel I/O port. The full name of an SPI pin reflects the name of the  
shared port pin. Table 15-1 shows the full names of the SPI I/O pins. The generic pin names appear in  
the text that follows.  
Table 15-1. Pin Name Conventions  
SPI Generic Pin Name  
Full SPI Pin Name  
Alternative Pin  
MISO  
PTC0/MISO  
PTB3  
MOSI  
PTC1/MOSI  
PTB4  
SS  
SPSCK  
PTA5/SPSCK  
PTB5  
PTA6/SS  
PTC2  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
179  
Serial Peripheral Interface (SPI) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
SINGLE BREAKPOINT  
BREAK MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
PTA3/KBD3/RxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
PTA2/KBD2/TxD(1)  
PTA1/KBD1  
USER FLASH  
15,872 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
PTB2/AD2  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
USER FLASH VECTOR SPACE  
36 BYTES  
PTB1/AD1  
PTB0/AD0  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 15-1. Block Diagram Highlighting SPI Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
180  
Freescale Semiconductor  
Functional Description  
15.4 Functional Description  
Figure 15-2 shows the structure of the SPI module.  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt  
driven. All SPI interrupts can be serviced by the CPU.  
The following paragraphs describe the operation of the SPI module.  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUS CLOCK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
÷ 128  
PIN  
CONTROL  
LOGIC  
CLOCK  
SELECT  
SPSCK  
SS  
SPMSTR  
SPE  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPI  
CONTROL  
SPRIE  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 15-2. SPI Module Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
181  
Serial Peripheral Interface (SPI) Module  
15.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR (SPCR $0010), is set.  
NOTE  
Configure the SPI modules as master and slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave SPI  
before disabling the master SPI. See 15.13.1 SPI Control Register.  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the SPI data register. If the shift register is empty, the byte immediately transfers to  
the shift register, setting the SPI transmitter empty bit, SPTE (SPSCR $0011). The byte begins shifting  
out on the MOSI pin under the control of the serial clock. (See Table 15-2).  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 15.13.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 15-3. Full-Duplex Master-Slave Connections  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s  
MISO pin. The transmission ends when the receiver full bit, SPRF (SPSCR), becomes set. At the same  
time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal  
operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and  
control register and then reading the SPI data register. Writing to the SPI data register clears the SPTIE  
bit.  
15.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit (SPCR, $0010) is clear. In slave mode the SPSCK  
pin is the input for the serial clock from the master MCU. Before a data transmission occurs, the SS pin  
of the slave MCU must be at logic 0. SS must remain low until the transmission is complete. (See 15.6.2  
Mode Fault Error.)  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it is transferred to the receive data  
register, and the SPRF bit (SPSCR) is set. To prevent an overflow condition, slave software then must  
read the SPI data register before another byte enters the shift register.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
182  
Freescale Semiconductor  
Transmission Formats  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed, which is  
twice as fast as the fastest master SPSCK clock that can be generated. The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a a transmission remains in a buffer until the end  
of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. (See 15.5 Transmission Formats.)  
If the write to the data register is late, the SPI transmits the data already in the shift register from the  
previous transmission.  
NOTE  
To prevent SPSCK from appearing as a clock edge, SPSCK must be in the  
proper idle state before the slave is enabled.  
15.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock line synchronizes shifting and sampling on the two serial data lines. A slave  
select line allows individual selection of a slave SPI device; slave devices that are not selected do not  
interfere with SPI bus activities. On a master SPI device, the slave select line can be used optionally to  
indicate a multiple-master bus contention.  
15.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in  
the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit (SPCR) selects one of two fundamentally different transmission  
formats. The clock phase and polarity should be identical for the master SPI device and the  
communicating slave device. In some cases, the phase and polarity are changed between transmissions  
to allow a master device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit (SPCR), disable the SPI by  
clearing the SPI enable bit (SPE).  
15.5.2 Transmission Format When CPHA = 0  
Figure 15-4 shows an SPI transmission in which CPHA (SPCR) is 0. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
183  
Serial Peripheral Interface (SPI) Module  
signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives  
to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the  
master must be high or must be reconfigured as general-purpose I/O not affecting the SPI (see 15.6.2  
Mode Fault Error). When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore, the  
slave must begin driving its data before the first SPSCK edge, and a falling edge on the SS pin is used to  
start the transmission. The SS pin must be toggled high and then low again between each byte  
transmitted.  
SCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SCK CPOL = 0  
SCK CPOL = 1  
MOSI  
FROM MASTER  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
MISO  
FROM SLAVE  
MSB  
SS TO SLAVE  
CAPTURE STROBE  
Figure 15-4. Transmission Format (CPHA = 0)  
15.5.3 Transmission Format When CPHA = 1  
Figure 15-5 shows an SPI transmission in which CPHA (SPCR) is 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI  
signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives  
to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the  
master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 15.6.2  
Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge.  
Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can remain low  
between transmissions. This format may be preferable in systems having only one master and only one  
slave driving the MISO data line.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
184  
Freescale Semiconductor  
Error Conditions  
SCK CYCLE #  
1
2
3
4
5
6
7
8
FOR REFERENCE  
SCK CPOL = 0  
SCK CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS TO SLAVE  
CAPTURE STROBE  
Figure 15-5. Transmission Format (CPHA = 1)  
15.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), transmissions are started by a software write to  
the SPDR ($0012). CPHA has no effect on the delay to the start of the transmission, but it does affect the  
initial state of the SCK signal. When CPHA = 0, the SCK signal remains inactive for the first half of the  
first SCK cycle. When CPHA = 1, the first SCK cycle begins with an edge on the SCK line from its inactive  
to its active level. The SPI clock rate (selected by SPR1–SPR0) affects the delay from the write to SPDR  
and the start of the SPI transmission. (See Figure 15-6.) The internal SPI clock in the master is a  
free-running derivative of the internal MCU clock. It is only enabled when both the SPE and SPMSTR bits  
(SPCR) are set to conserve power. SCK edges occur half way through the low time of the internal MCU  
clock. Since the SPI clock is free-running, it is uncertain where the write to the SPDR will occur relative  
to the slower SCK. This uncertainty causes the variation in the initiation delay shown in Figure 15-6. This  
delay will be no longer than a single SPI bit time. That is, the maximum delay between the write to SPDR  
and the start of the SPI transmission is two MCU bus cycles for DIV2, eight MCU bus cycles for DIV8, 32  
MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.  
15.6 Error Conditions  
Two flags signal SPI error conditions:  
1. Overflow (OVRF in SPSCR) — Failing to read the SPI data register before the next byte enters the  
shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and  
the unread byte still can be read by accessing the SPI data register. OVRF is in the SPI status and  
control register.  
2. Mode fault error (MODF in SPSCR) — The MODF bit indicates that the voltage on the slave select  
pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
185  
Serial Peripheral Interface (SPI) Module  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SCK  
CPHA = 1  
SCK  
CPHA = 0  
SCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 15-6. Transmission Start Delay (Master)  
15.6.1 Overflow Error  
The overflow flag (OVRF in SPSCR) becomes set if the SPI receive data register still has unread data  
from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. (See  
Figure 15-4 and Figure 15-5.) If an overflow occurs, the data being received is not transferred to the  
receive data register so that the unread data can still be read. Therefore, an overflow error always  
indicates the loss of data.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE in SPSCR)  
is also set. MODF and OVRF can generate a receiver/error CPU interrupt request. (See Figure 15-9.) It  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
186  
Freescale Semiconductor  
Error Conditions  
is not possible to enable only MODF or OVRF to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
If an end-of-block transmission interrupt was meant to pull the MCU out of wait, having an overflow  
condition without overflow interrupts enabled causes the MCU to hang in wait mode. If the OVRF is  
enabled to generate an interrupt, it can pull the MCU out of wait mode instead.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 15-7 shows how it is possible to miss an overflow.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
2
5
READ SPSCR  
READ SPDR  
3
7
1
2
3
4
5
6
7
8
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCRW WITH SPRF BIT SET AND OVRF BIT CLEAR.  
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR.  
CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT, BUT NOT OVRF BIT.  
BYTE 4 FAILS TO SET SPRF BIT BECAUSE OVRF BIT IS SET. BYTE 4 IS LOST.  
Figure 15-7. Missed Read of Overflow Condition  
The first part of Figure 15-7 shows how to read the SPSCR and SPDR to clear the SPRF without  
problems. However, as illustrated by the second transmission example, the OVRF flag can be set in  
between the time that SPSCR and SPDR are read.  
In this case, an overflow can be easily missed. Since no more SPRF interrupts can be generated until this  
OVRF is serviced, it will not be obvious that bytes are being lost as more transmissions are completed.  
To prevent this, either enable the OVRF interrupt or do another read of the SPSCR after the read of the  
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions will complete with an SPRF interrupt. Figure 15-8 illustrates this process. Generally, to  
avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit (SPSCR).  
15.6.2 Mode Fault Error  
For the MODF flag (in SPSCR) to be set, the mode fault error enable bit (MODFEN in SPSCR) must be  
set. Clearing the MODFEN bit does not clear the MODF flag but does prevent MODF from being set again  
after MODF is cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE in SPSCR)  
is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. MODF and  
OVRF can generate a receiver/error CPU interrupt request. (See Figure 15-9). It is not possible to enable  
only MODF or OVRF to generate a receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
187  
Serial Peripheral Interface (SPI) Module  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
2
4
6
9
12  
14  
READ SPSCR  
READ SPDR  
3
8
10  
13  
1
2
3
4
5
6
7
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT.  
CPU READS SPSCR AGAIN TO CHECK OVRF BIT.  
CPU READS BYTE 2 SPDR, CLEARING OVRF BIT.  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR.  
CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT.  
CPU READS SPSCR AGAIN TO CHECK OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
10  
11  
12  
13  
14  
CPU READS SPSCR.  
CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR.  
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS BYTE 4 IN SPDR, CLEARING SPRF BIT.  
CPU READS SPSCR AGAIN TO CHECK OVRF BIT.  
Figure 15-8. Clearing SPRF When OVRF Interrupt Is Not Enabled  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes to logic 0. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all data direction register (DDR) bits associated with the SPI shared  
port pins.  
NOTE  
Setting the MODF flag (SPSCR) does not clear the SPMSTR bit. Reading  
SPMSTR when MODF = 1 will indicate a MODE fault error occurred in  
either master mode or slave mode.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK returns  
to its idle level after the shift of the eighth data bit. When CPHA = 1, the transmission begins when the  
SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns  
to its IDLE level after the shift of the last data bit. (See 15.5 Transmission Formats.)  
NOTE  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and  
later deselected (SS is at logic 1) even if no SPSCK is sent to that slave.  
This happens because SS at logic 0 indicates the start of the transmission  
(MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a  
slave can be selected and then later deselected with no transmission  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
188  
Freescale Semiconductor  
Interrupts  
occurring. Therefore, MODF does not occur since a transmission was  
never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the  
ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort  
the SPI transmission by toggling the SPE bit of the slave.  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK clocks,  
even if a transmission has begun.  
To clear the MODF flag, read the SPSCR and then write to the SPCR register. This entire clearing  
procedure must occur with no MODF condition existing or else the flag will not be cleared.  
15.7 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests:  
Table 15-2. SPI Interrupts  
Flag  
Request  
SPTE (Transmitter Empty)  
SPRF (Receiver Full)  
OVRF (Overflow)  
SPI Transmitter CPU Interrupt Request (SPTIE = 1)  
SPI Receiver CPU Interrupt Request (SPRIE = 1)  
SPI Receiver/Error Interrupt Request (SPRIE = 1, ERRIE = 1)  
SPI Receiver/Error Interrupt Request (SPRIE = 1, ERRIE = 1, MODFEN = 1)  
MODF (Mode Fault)  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU  
interrupt requests.  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt,  
provided that the SPI is enabled (SPE = 1).  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF flags to generate a  
receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
flag is enabled to generate receiver/error CPU interrupt requests.  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 15-9. SPI Interrupt Request Generation  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
189  
Serial Peripheral Interface (SPI) Module  
Two sources in the SPI status and control register can generate CPU interrupt requests:  
1. SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift  
register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF can generate an SPI receiver/error CPU interrupt request.  
2. SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE can generate an SPTE CPU interrupt request.  
15.8 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE in SPSCR) indicates when the transmit data buffer  
is ready to accept new data. Write to the SPI data register only when the SPTE bit is high. Figure 15-10  
shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has  
CPHA:CPOL = 1:0).  
For a slave, the transmit data buffer allows back-to-back transmissions to occur without the slave having  
to time the write of its data between the transmissions. Also, if no new data is written to the data buffer,  
the last value contained in the shift register will be the next data word transmitted.  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK (CPHA:CPOL = 1:0)  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
5
4
3
2
1
6
5
4
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
3
4
7
8
CPU WRITES BYTE 1 TO SPDR, CLEARING  
SPTE BIT.  
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING  
BYTE 3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING  
BYTE 2 AND CLEARING SPTE BIT.  
10  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 15-10. SPRF/SPTE CPU Interrupt Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
190  
Freescale Semiconductor  
Resetting the SPI  
15.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial reset occurs whenever the SPI enable bit (SPE) is  
low. Whenever SPE is low, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
The following additional items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to reset all control bits when SPE is set back to high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing a 0 to the SPE bit. The SPI also can be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
15.10 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
15.10.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode, the SPI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can  
bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt  
requests by setting the error interrupt enable bit (ERRIE). (See 15.7 Interrupts.)  
15.10.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after the MCU exits stop mode. If stop mode is exited  
by reset, any transfer in progress is aborted and the SPI is reset.  
15.11 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR, $FE03) enables software to  
clear status bits during the break state. (See 19.2.1.1 Flag Protection During Break Interrupts.)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
191  
Serial Peripheral Interface (SPI) Module  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the data register  
in break mode will not initiate a transmission nor will this data be transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect.  
15.12 SPI I/O Signals  
The SPI module has four I/O pins and shares three of them with a parallel I/O port.  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
VSS — Clock ground  
The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a  
single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins  
are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD  
.
15.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmit serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is 0 and its SS pin is at logic 0. To support a multiple-slave  
system, a logic 1 on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
15.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmit serial data. In full duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
192  
Freescale Semiconductor  
SPI I/O Signals  
15.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
15.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
(See 15.5 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be  
toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low  
throughout the transmission for the CPHA = 1 format. See Figure 15-11.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-11. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of the SS from creating a MODF error. (See 15.13.2 SPI Status and Control  
Register.)  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if a transmission already has begun.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 15.6.2 Mode Fault Error.) For the state of  
the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit  
is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and  
reading the data register. (See Table 15-2.)  
15.12.5 V (Clock Ground)  
SS  
VSS is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. To  
reduce the ground return path loop and minimize radio frequency (RF) emissions, connect the ground pin  
of the slave to the VSS pin.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
193  
Serial Peripheral Interface (SPI) Module  
15.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR $0010)  
SPI status and control register (SPSCR $0011)  
SPI data register (SPDR $0012)  
15.13.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Selects CPU interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address:  
$000D  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
R
= Reserved  
Figure 15-12. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set  
when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR  
bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See  
Figure 15-4 and Figure 15-5.) To transmit data between SPI modules, the SPI modules must have  
identical CPOL bits. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See  
Figure 15-4 and Figure 15-5.) To transmit data between SPI modules, the SPI modules must have  
identical CPHA bits. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1  
between bytes. (See Figure 15-11). Reset sets the CPHA bit.  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once  
the transmission begins, no new data is allowed into the shift register from the data register. Therefore,  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
194  
Freescale Semiconductor  
I/O Registers  
the slave data register must be loaded with the desired transmit data before the falling edge of SS. Any  
data written after the falling edge is stored in the data register and transferred to the shift register at  
the current transmission.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission.  
The same applies when SS is high for a slave. The MISO pin is held in a high-impedance state, and  
the incoming SPSCK is ignored. In certain cases, it may also cause the MODF flag to be set. (See  
15.6.2 Mode Fault Error). A logic 1 on the SS pin does not in any way affect the state of the SPI state  
machine.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins  
become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable Bit  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI (see 15.9  
Resetting the SPI). Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE — SPI Transmit Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
15.13.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal the following conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address:  
$000E  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 15-13. SPI Status and Control Register (SPSCR)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
195  
Serial Peripheral Interface (SPI) Module  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register  
with SPRF set and then reading the SPI data register. Any read of the SPI data register clears the  
SPRF bit.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read-only bit enables the MODF and OVRF flags to generate CPU interrupt requests. Reset  
clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the SPI data register. Reset clears the  
OVRF flag.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission. In a  
master SPI, the MODF flag is set if the SS pin goes low at any time. Clear the MODF bit by reading  
the SPI status and control register with MODF set and then writing to the SPCR. Reset clears the  
MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE CPU interrupt request if the SPTIE bit in the SPI control register is  
set also.  
NOTE  
Do not write to the SPI data register unless the SPTE bit is high.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE will be set  
again within two bus cycles since the transmit buffer empties into the shift register. This allows the user  
to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot  
occur until the transmission is completed. This implies that a back-to-back write to the transmit data  
register is not possible. The SPTE indicates when the next write can occur.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
196  
Freescale Semiconductor  
I/O Registers  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the  
MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general purpose I/O. When the SPI is  
enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of  
MODFEN. (See 15.12.4 SS (Slave Select)).  
If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. (See 15.6.2 Mode  
Fault Error).  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 15-3. SPR1 and  
SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.  
Table 15-3. SPI Master Baud Rate Selection  
SPR1:SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the internal clock generator module (ICG), see Chapter 8 Internal  
Clock Generator (ICG) Module.  
BD = baud rate divisor  
15.13.3 SPI Data Register  
The SPI data register is the read/write buffer for the receive data register and the transmit data register.  
Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive data registers are separate  
buffers that can contain different values. See Figure 15-2  
Address:  
$000F  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after Reset  
Figure 15-14. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register since the  
buffer read is not the same as the buffer written.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
197  
Serial Peripheral Interface (SPI) Module  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
198  
Freescale Semiconductor  
Chapter 16  
Timebase Module (TBM)  
16.1 Introduction  
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user  
selectable rates using a counter clocked by either the internal or external clock sources. This TBM version  
uses 15 divider stages, eight of which are user selectable.  
16.2 Features  
Features of the TBM module include:  
Software configurable periodic interrupts with divide-by-8, 16, 32, 64, 128, 1024, 2048, 4096, 8192,  
16384, 32768, 262,144, 1,048,576, and 4,194,304 taps of the selected clock source  
Configurable for operation during stop mode to allow periodic wake up from stop  
16.3 Functional Description  
This module can generate a periodic interrupt by dividing the clock source supplied from the internal clock  
generator module, TBMCLK. Note that this clock source is the external clock ECLK when the ECGON bit  
in the ICG control register (ICGCR) is set. Otherwise, TBMCLK is driven at the internally generated clock  
frequency (ICLK). In other words, if the external clock is enabled it will be used as the TBMCLK, even if  
the MCU bus clock is based on the internal clock.  
The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 16-1, starts  
counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the  
TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared  
by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the  
interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact  
period.  
The timebase module may remain active after execution of the STOP instruction if the internal clock  
generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the  
configuration register. The timebase module can be used in this mode to generate a periodic wakeup from  
stop mode.  
16.4 Interrupts  
The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and  
the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE  
bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
Interrupts must be acknowledged by writing a 1 to the TACK bit.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
199  
Timebase Module (TBM)  
TMBCLKSEL  
FROM CONFIG2  
0
1
DIVIDE  
BY 128  
PRESCALER  
TBMCLK  
FROM ICG MODULE  
TBON  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2 ÷ 2 ÷ 2  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2 ÷ 2  
÷ 2 ÷ 2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 16-1. Timebase Block Diagram  
16.5 TBM Interrupt Rate  
The interrupt rate is determined by the equation:  
1
Divider  
tTBMRATE = ------------------------ = --------------------  
fTBMRATE fTBMCLK  
where:  
TBMCLK = Frequency supplied from the internal clock generator (ICG) module  
f
Divider = Divider value as determined by TBR2–TBR0 settings. See Table 16-1.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
200  
Freescale Semiconductor  
Low-Power Modes  
As an example, a clock source of 4.9152 MHz and the TBR2–TBR0 set to {011}, the divider tap is 128  
and the interrupt rate calculates to 128/4.9152 x 106 = 26 μs.  
Table 16-1. Timebase Divider Selection  
Divider Tap  
TMBCLKSEL  
TBR2(1)  
TBR1(1)  
TBR0(1)  
0
32,768  
8192  
2048  
128  
64  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4,194,304  
1,048,576  
262,144  
16,384  
8192  
32  
4096  
16  
2048  
8
1024  
1. Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).  
16.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
16.6.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In wait mode the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before executing the WAIT instruction.  
16.6.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the internal clock  
generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the  
configuration register. The timebase module can be used in this mode to generate a periodic wake up  
from stop mode.  
If the internal clock generator has not been enabled to operate in stop mode, the timebase module will  
not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce power consumption by disabling the  
timebase module before executing the STOP instruction.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
201  
Timebase Module (TBM)  
16.7 Timebase Control Register  
The timebase has one register, the timebase control register (TBCR), which is used to enable the  
timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2–TBR0 — Timebase Divider Selection Bits  
These read/write bits select the tap in the counter to be used for timebase interrupts as shown in  
Table 16-1.  
NOTE  
Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).  
TACK— Timebase ACKnowledge Bit  
The TACK bit is a write-only bit and always reads as 0. Writing a 1 to this bit clears TBIF, the timebase  
interrupt flag bit. Writing a 0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled Bit  
This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the  
TBIE bit.  
1 = Timebase interrupt is enabled.  
0 = Timebase interrupt is disabled.  
TBON — Timebase Enabled Bit  
This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption  
when its function is not necessary. The counter can be initialized by clearing and then setting this bit.  
Reset clears the TBON bit.  
1 = Timebase is enabled.  
0 = Timebase is disabled and the counter initialized to 0s.  
NOTE  
Clearing TBON has no effect on the TBIF flag.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
202  
Freescale Semiconductor  
Chapter 17  
Timer Interface A (TIMA) Module  
17.1 Introduction  
This section describes the timer interface A module (TIMA). The TIMA is a 2-channel timer that provides  
a timing reference with input capture, output compare, and pulse width modulation (PWM) functions.  
Figure 17-2 is a block diagram of the TIMA.  
For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer  
Reference Manual, Freescale document order number TIM08RM/AD.  
17.2 Features  
Features include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered PWM signal generation  
Programmable TIMA clock input  
7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMA counter stop and reset bits  
17.3 Functional Description  
Figure 17-2 shows the TIMA structure. The central component of the TIMA is the 16-bit TIMA counter that  
can operate as a free-running counter or a modulo up-counter. The TIMA counter provides the timing  
reference for the input capture and output compare functions. The TIMA counter modulo registers,  
TAMODH–TAMODL, control the modulo value of the TIMA counter. Software can read the TIMA counter  
value at any time without affecting the counting sequence.  
The two TIMA channels are programmable independently as input capture or output compare channels.  
17.3.1 TIMA Counter Prescaler  
The TIMA clock source can be one of the seven prescaler outputs. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIMA status and control register  
select the TIMA clock source.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
203  
Timer Interface A (TIMA) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
PTA2/KBD2/TxD(1)  
PTA1/KBD1  
USER FLASH  
15,872 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 17-1. Block Diagram Highlighting TIMA Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
204  
Freescale Semiconductor  
Functional Description  
INTERNAL  
BUS CLOCK  
PRESCALER SELECT  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TAMODH:TAMODL  
ELS0B  
ELS0A  
CHANNEL 0  
16-BIT COMPARATOR  
TACH0H:TACH0L  
16-BIT LATCH  
TOV0  
CH0MAX  
PTD0  
LOGIC  
PTD0/TACH0  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
CH0IE  
MS0A  
ELS1B ELS1A  
CHANNEL 1  
16-BIT COMPARATOR  
TACH1H:TACH1L  
16-BIT LATCH  
TOV1  
CH1MAX  
PTD1  
LOGIC  
PTD1/TACH1  
CH1F  
INTER-  
RUPT  
LOGIC  
CH1IE  
MS1A  
Figure 17-2. TIMA Block Diagram  
17.3.2 Input Capture  
An input capture function has three basic parts: edge select logic, an input capture latch, and a 16-bit  
counter. Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value  
of the free-running counter after the corresponding input capture edge detector senses a defined  
transition. The polarity of the active edge is programmable. The level transition which triggers the counter  
transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in TASC0 through TASC1  
control registers with x referring to the active channel number). When an active edge occurs on the pin of  
an input capture channel, the TIMA latches the contents of the TIMA counter into the TIMA channel  
registers, TACHxH–TACHxL. Input captures can generate TIMA CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input capture interrupts or by polling the  
status flag bit.  
The free-running counter contents are transferred to the TIMA channel status and control register  
(TACHxH–TACHxL, see 17.8.5 TIMA Channel Registers) on each proper signal transition regardless of  
whether the TIMA channel flag (CH0F–CH1F in TASC0–TASC1 registers) is set or clear. When the status  
flag is set, a CPU interrupt is generated if enabled. The value of the count latched or “captured” is the time  
of the event. Because this value is stored in the input capture register 2 bus cycles after the actual event  
occurs, user software can respond to this event at a later time and determine the actual time of the event.  
However, this must be done prior to another input capture on the same pin; otherwise, the previous time  
value will be lost.  
By recording the times for successive edges on an incoming signal, software can determine the period  
and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
205  
Timer Interface A (TIMA) Module  
captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the  
overflows at the 16-bit module counter to extend its range.  
Another use for the input capture function is to establish a time reference. In this case, an input capture  
function is used in conjunction with an output compare function. For example, to activate an output signal  
a specified number of clock cycles after detecting an input event (edge), use the input capture function to  
record the time at which the edge occurred. A number corresponding to the desired delay is added to this  
captured value and stored to an output compare register (see 17.8.5 TIMA Channel Registers). Because  
both input captures and output compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of software latencies.  
Reset does not affect the contents of the input capture channel register (TACHxH–TACHxL).  
17.3.3 Output Compare  
With the output compare function, the TIMA can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIMA can set, clear, or toggle the channel pin. Output compares can generate TIMA CPU  
interrupt requests.  
17.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 17.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIMA overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMA may pass the new value before it is  
written.  
Use these methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIMA overflow interrupts and write the  
new value in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
17.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
PTD0/TACH0 pin. The TIMA channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and  
channel 1. The output compare value in the TIMA channel 0 registers initially controls the output on the  
PTD0/TACH0 pin. Writing to the TIMA channel 1 registers enables the TIMA channel 1 registers to  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
206  
Freescale Semiconductor  
Functional Description  
synchronously control the output after the TIMA overflows. At each subsequent overflow, the TIMA  
channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors  
the buffered output compare function, and TIMA channel 1 status and control register (TASC1) is unused.  
While the MS0B bit is set, the channel 1 pin, PTD1/TACH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
17.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIMA can generate a PWM  
signal. The value in the TIMA counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIMA counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 17-3 shows, the output compare value in the TIMA channel registers determines the pulse  
width of the PWM signal. The time between overflow and output compare is the pulse width. Program the  
TIMA to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the  
TIMA to set the pin if the state of the PWM pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTDx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 17-3. PWM Period and Pulse Width  
The value in the TIMA counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMA counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000 (see 17.8.1 TIMA Status and Control Register).  
The value in the TIMA channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIMA channel registers  
produces a duty cycle of 128/256 or 50%.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
207  
Timer Interface A (TIMA) Module  
17.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 17.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIMA overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIMA may pass the new value before it is written to the TIMA channel  
registers.  
Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIMA overflow interrupts and write the new value  
in the TIMA overflow interrupt routine. The TIMA overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
17.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the  
PTD0/TACH0 pin. The TIMA channel registers of the linked pair alternately control the pulse width of the  
output.  
Setting the MS0B bit in TIMA channel 0 status and control register (TASC0) links channel 0 and  
channel 1. The TIMA channel 0 registers initially control the pulse width on the PTD0/TACH0 pin. Writing  
to the TIMA channel 1 registers enables the TIMA channel 1 registers to synchronously control the pulse  
width at the beginning of the next PWM period. At each subsequent overflow, the TIMA channel registers  
(0 or 1) that control the pulse width are the ones written to last. TASC0 controls and monitors the buffered  
PWM function, and TIMA channel 1 status and control register (TASC1) is unused. While the MS0B bit is  
set, the channel 1 pin, PTD1/TACH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
208  
Freescale Semiconductor  
Interrupts  
17.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization  
procedure:  
1. In the TIMA status and control register (TASC):  
a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.  
b. Reset the TIMA counter prescaler by setting the TIMA reset bit, TRST.  
2. In the TIMA counter modulo registers (TAMODH–TAMODL), write the value for the required PWM  
period.  
3. In the TIMA channel x registers (TACHxH–TACHxL), write the value for the required pulse width.  
4. In TIMA channel x status and control register (TASCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB–MSxA. See Table 17-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB–ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. See Table 17-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIMA status control register (TASC), clear the TIMA stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMA  
channel 0 registers (TACH0H–TACH0L) initially control the buffered PWM output. TIMA status control  
register 0 (TASC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMA overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 17.8.4 TIMA Channel Status and Control Registers.  
17.4 Interrupts  
These TIMA sources can generate interrupt requests:  
TIMA overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIMA counter modulo registers. The TIMA overflow interrupt enable bit, TOIE,  
enables TIMA overflow CPU interrupt requests. TOF and TOIE are in the TIMA status and control  
register.  
TIMA channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIMA CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
209  
Timer Interface A (TIMA) Module  
17.5 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby  
modes.  
17.5.1 Wait Mode  
The TIMA remains active after the execution of a WAIT instruction. In wait mode, the TIMA registers are  
not accessible by the CPU. Any enabled CPU interrupt request from the TIMA can bring the MCU out of  
wait mode.  
If TIMA functions are not required during wait mode, reduce power consumption by stopping the TIMA  
before executing the WAIT instruction.  
17.5.2 Stop Mode  
The TIMA is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIMA counter. TIMA operation resumes when the MCU exits stop  
mode.  
17.6 TIMA During Break Interrupts  
A break interrupt stops the TIMA counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
17.7 I/O Signals  
Port D shares two of its pins with the TIMA. There is no external clock input to the TIMA prescaler. The  
two TIMA channel I/O pins are PTD0/TACH0 and PTD1/TACH1. See Chapter 12 Input/Output (I/O) Ports  
(PORTS).  
17.7.1 TIMA Channel I/O Pins (PTD0/TACH0, PTD1/TACH1)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTD0/TACH0 and PTD1/TACH1 can be configured as buffered output compare or buffered PWM pins.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
210  
Freescale Semiconductor  
I/O Registers  
17.8 I/O Registers  
These I/O registers control and monitor TIMA operation:  
TIMA status and control register, TASC  
TIMA control registers, TACNTH–TACNTL  
TIMA counter modulo registers, TAMODH–TAMODL  
TIMA channel status and control registers, TASC0 and TASC1  
TIMA channel registers, TACH0H–TACH0L and TACH1H–TACH1L  
17.8.1 TIMA Status and Control Register  
The TIMA status and control register (TASC):  
Enables TIMA overflow interrupts  
Flags TIMA overflows  
Stops the TIMA counter  
Resets the TIMA counter  
Prescales the TIMA counter clock  
Address:  
$0020  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
R
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
0
0
R
= Reserved  
Figure 17-4. TIMA Status and Control Register (TASC)  
TOF — TIMA Overflow Flag Bit  
This read/write flag is set when the TIMA counter reaches the modulo value programmed in the TIMA  
counter modulo registers. Clear TOF by reading the TIMA status and control register when TOF is set  
and then writing a 0 to TOF. If another TIMA overflow occurs before the clearing sequence is complete,  
then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIMA counter has reached modulo value  
0 = TIMA counter has not reached modulo value  
TOIE — TIMA Overflow Interrupt Enable Bit  
This read/write bit enables TIMA overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIMA overflow interrupts enabled  
0 = TIMA overflow interrupts disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
211  
Timer Interface A (TIMA) Module  
TSTOP — TIMA Stop Bit  
This read/write bit stops the TIMA counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIMA counter until software clears the TSTOP bit.  
1 = TIMA counter stopped  
0 = TIMA counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIMA is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until  
TSTOP is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIMA Reset Bit  
Setting this write-only bit resets the TIMA counter and the TIMA prescaler. Setting TRST has no effect  
on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIMA  
counter is reset and always reads as 0. Reset clears the TRST bit.  
1 = Prescaler and TIMA counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIMA counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIMA counter as  
Table 17-1 shows. Reset clears the PS[2:0] bits.  
Table 17-1. Prescaler Selection  
PS[2:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
TIMA Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Unused  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
212  
Freescale Semiconductor  
I/O Registers  
17.8.2 TIMA Counter Registers  
The two read-only TIMA counter registers contain the high and low bytes of the value in the TIMA counter.  
Reading the high byte (TACNTH) latches the contents of the low byte (TACNTL) into a buffer. Subsequent  
reads of TACNTH do not affect the latched TACNTL value until TACNTL is read. Reset clears the TIMA  
counter registers. Setting the TIMA reset bit (TRST) also clears the TIMA counter registers.  
NOTE  
If TACNTH is read during a break interrupt, be sure to unlatch TACNTL by  
reading TACNTL before exiting the break interrupt. Otherwise, TACNTL  
retains the value latched during the break.  
Register Name and Address  
Bit 7  
TACNTH — $0021  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
0
0
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TACNTL — $0022  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-5. TIMA Counter Registers (TACNTH and TACNTL)  
17.8.3 TIMA Counter Modulo Registers  
The read/write TIMA modulo registers contain the modulo value for the TIMA counter. When the TIMA  
counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIMA counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and  
overflow interrupts until the low byte (TMODL) is written. Reset sets the TIMA counter modulo registers.  
Register Name and Address  
Bit 7  
TAMODH — $0023  
6
BIT 14  
1
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
Write:  
Reset:  
1
Register Name and Address  
Bit 7  
TAMODL — $0024  
6
BIT 6  
1
5
BIT 5  
1
4
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
Write:  
BIT 4  
1
Reset:  
1
Figure 17-6. TIMA Counter Modulo Registers (TMODH and TMODL)  
NOTE  
Reset the TIMA counter before writing to the TIMA counter modulo registers.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
213  
Timer Interface A (TIMA) Module  
17.8.4 TIMA Channel Status and Control Registers  
Each of the TIMA channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIMA overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TASC0 — $0025  
5
6
CH0IE  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
MS0B  
0
MS0A  
0
0
0
Register Name and Address  
Bit 7  
TASC1 — $0028  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1F  
CH1IE  
MS1A  
0
0
0
R
0
0
R
R = Reserved  
Figure 17-7. TIMA Channel Status and Control Register  
(TASC0–TASC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIMA counter registers matches the value in the TIMA channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMA channel x status and control register with CHxF set,  
and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is  
complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to  
inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIMA CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMA  
channel 0.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
214  
Freescale Semiconductor  
I/O Registers  
Setting MS0B disables the channel 1 status and control register and reverts TACH1 to  
general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 17-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin once PWM, input  
capture, or output compare operation is enabled (see Table 17-2). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIMA status and control register (TASC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTD0/TACH0  
or pin PTD1/TACH1 is available as a general-purpose I/O pin. However, channel x is at a state  
determined by these bits and becomes transparent to the respective pin when PWM, input capture, or  
output compare mode is enabled. Table 17-2 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 17-2. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
215  
Timer Interface A (TIMA) Module  
NOTE  
Before enabling a TIMA channel register for input capture operation, make  
sure that the PTDx/TACHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIMA counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMA counter overflow.  
0 = Channel x pin does not toggle on TIMA counter overflow.  
NOTE  
When TOVx is set, a TIMA counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1 and clear output on compare is selected, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100 percent. As Figure 17-8 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at 100 percent duty  
cycle level until the cycle after CHxMAX is cleared.  
NOTE  
The PWM 100 percent duty cycle is defined as output high all of the time.  
To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx  
register. The PWM 0 percent duty cycle is defined as output low all of the  
time. To generate the 0 percent duty cycle, select clear output on compare  
and then clear the TOVx bit (CHxMAX = 0).  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTDx/TCHx  
TOV = 1  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOV = 0  
Figure 17-8. CHxMAX Latency  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
216  
Freescale Semiconductor  
I/O Registers  
17.8.5 TIMA Channel Registers  
These read/write registers contain the captured TIMA counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIMA channel registers after reset  
is unknown.  
In input capture mode (MSxB–MSxA = 0:0), reading the high byte of the TIMA channel x registers  
(TACHxH) inhibits input captures until the low byte (TACHxL) is read.  
In output compare mode (MSxB–MSxA 0:0), writing to the high byte of the TIMA channel x registers  
(TACHxH) inhibits output compares and the CHxF bit until the low byte (TACHxL) is written.  
Register Name and Address  
Bit 7  
TACH0H — $0026  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
Write:  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TACH0L — $0027  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
Write:  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TACH1H — $0029  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
Write:  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Reset:  
Indeterminate after reset  
Register Name and Address  
Bit 7  
TACH1L — $002A  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
Write:  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Reset:  
Indeterminate after reset  
Figure 17-9. TIMA Channel Registers (TACH0H/L–TACH1H/L)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
217  
Timer Interface A (TIMA) Module  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
218  
Freescale Semiconductor  
Chapter 18  
Timer Interface B (TIMB) Module  
18.1 Introduction  
This section describes the timer interface B module (TIMB). The TIMB is a 2-channel timer that provides  
a timing reference with input capture, output compare, and pulse width modulation (PWM) functions.  
Figure 18-2 is a block diagram of the TIMB.  
For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer  
Reference Manual, Freescale document order number TIM08RM/AD.  
18.2 Features  
Features include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered PWM signal generation  
Programmable TIMB clock input  
7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMB counter stop and reset bits  
18.3 Functional Description  
Figure 18-2 shows the TIMB structure. The central component of the TIMB is the 16-bit TIMB counter that  
can operate as a free-running counter or a modulo up-counter. The TIMB counter provides the timing  
reference for the input capture and output compare functions. The TIMB counter modulo registers,  
TBMODH–TBMODL, control the modulo value of the TIMB counter. Software can read the TIMB counter  
value at any time without affecting the counting sequence.  
The two TIMB channels are programmable independently as input capture or output compare channels.  
18.3.1 TIMB Counter Prescaler  
The TIMB clock source can be one of the seven prescaler outputs. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIMB status and control register  
select the TIMB clock source.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
219  
Timer Interface B (TIMB) Module  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
PTA2/KBD2/TxD(1)  
PTA1/KBD1  
USER FLASH  
15,872 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 18-1. Block Diagram Highlighting TIMB Block and Pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
220  
Freescale Semiconductor  
Functional Description  
INTERNAL  
BUS CLOCK  
PRESCALER SELECT  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TBMODH:TBMODL  
ELS0B  
ELS0A  
CHANNEL 0  
16-BIT COMPARATOR  
TBCH0H:TBCH0L  
16-BIT LATCH  
TOV0  
CH0MAX  
PTB6  
LOGIC  
PTB6/AD6/TBCH0  
CH0F  
MS0B  
INTERRUPT  
LOGIC  
CH0IE  
MS0A  
ELS1B ELS1A  
CHANNEL 1  
16-BIT COMPARATOR  
TBCH1H:TBCH1L  
16-BIT LATCH  
TOV1  
CH1MAX  
PTB7  
LOGIC  
PTB7/AD7/TBCH1  
CH1F  
INTERRUPT  
LOGIC  
CH1IE  
MS1A  
Figure 18-2. TIMB Block Diagram  
18.3.2 Input Capture  
An input capture function has three basic parts: edge select logic, an input capture latch, and a 16-bit  
counter. Two 8-bit registers, which make up the 16-bit input capture register, are used to latch the value  
of the free-running counter after the corresponding input capture edge detector senses a defined  
transition. The polarity of the active edge is programmable. The level transition which triggers the counter  
transfer is defined by the corresponding input edge bits (ELSxB and ELSxA in TBSC0 through TBSC1  
control registers with x referring to the active channel number). When an active edge occurs on the pin of  
an input capture channel, the TIMB latches the contents of the TIMB counter into the TIMB channel  
registers, TBCHxH–TBCHxL. Input captures can generate TIMB CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input capture interrupts or by polling the  
status flag bit.  
The free-running counter contents are transferred to the TIMB channel status and control register  
(TBCHxH–TBCHxL, see 18.8.5 TIMB Channel Registers) on each proper signal transition regardless of  
whether the TIMB channel flag (CH0F–CH1F in TBSC0–TBSC1 registers) is set or clear. When the status  
flag is set, a CPU interrupt is generated if enabled. The value of the count latched or “captured” is the time  
of the event. Because this value is stored in the input capture register 2 bus cycles after the actual event  
occurs, user software can respond to this event at a later time and determine the actual time of the event.  
However, this must be done prior to another input capture on the same pin; otherwise, the previous time  
value will be lost.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
221  
Timer Interface B (TIMB) Module  
By recording the times for successive edges on an incoming signal, software can determine the period  
and/or pulse width of the signal. To measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are captured. Software should track the  
overflows at the 16-bit module counter to extend its range.  
Another use for the input capture function is to establish a time reference. In this case, an input capture  
function is used in conjunction with an output compare function. For example, to activate an output signal  
a specified number of clock cycles after detecting an input event (edge), use the input capture function to  
record the time at which the edge occurred. A number corresponding to the desired delay is added to this  
captured value and stored to an output compare register (see 18.8.5 TIMB Channel Registers). Because  
both input captures and output compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of software latencies.  
Reset does not affect the contents of the input capture channel register (TBCHxH–TBCHxL).  
18.3.3 Output Compare  
With the output compare function, the TIMB can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIMB can set, clear, or toggle the channel pin. Output compares can generate TIMB CPU  
interrupt requests.  
18.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 18.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIMB overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMB may pass the new value before it is  
written.  
Use these methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIMB overflow interrupts and write the  
new value in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
222  
Freescale Semiconductor  
Functional Description  
18.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
PTB6/AD6/TBCH0 pin. The TIMB channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and  
channel 1. The output compare value in the TIMB channel 0 registers initially controls the output on the  
PTB6/AD6/TBCH0 pin. Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to  
synchronously control the output after the TIMB overflows. At each subsequent overflow, the TIMB  
channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors  
the buffered output compare function, and TIMB channel 1 status and control register (TBSC1) is unused.  
While the MS0B bit is set, the channel 1 pin, PTB7/AD7/TBCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
18.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIMB can generate a PWM  
signal. The value in the TIMB counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIMB counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 18-3 shows, the output compare value in the TIMB channel registers determines the pulse  
width of the PWM signal. The time between overflow and output compare is the pulse width. Program the  
TIMB to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the  
TIMB to set the pin if the state of the PWM pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTBx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 18-3. PWM Period and Pulse Width  
The value in the TIMB counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMB counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000 (see 18.8.1 TIMB Status and Control Register).  
The value in the TIMB channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIMB channel registers  
produces a duty cycle of 128/256 or 50%.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
223  
Timer Interface B (TIMB) Module  
18.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 18.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIMB overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIMB may pass the new value before it is written to the TIMB channel  
registers.  
Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIMB overflow interrupts and write the new value  
in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
18.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the  
PTB6/AD6/TBCH0 pin. The TIMB channel registers of the linked pair alternately control the pulse width  
of the output.  
Setting the MS0B bit in TIMB channel 0 status and control register (TBSC0) links channel 0 and  
channel 1. The TIMB channel 0 registers initially control the pulse width on the PTB6/AD6/TBCH0 pin.  
Writing to the TIMB channel 1 registers enables the TIMB channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIMB channel  
registers (0 or 1) that control the pulse width are the ones written to last. TBSC0 controls and monitors  
the buffered PWM function, and TIMB channel 1 status and control register (TBSC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTB7/AD7/TBCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
224  
Freescale Semiconductor  
Interrupts  
18.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization  
procedure:  
1. In the TIMB status and control register (TBSC):  
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.  
b. Reset the TIMB counter prescaler by setting the TIMB reset bit, TRST.  
2. In the TIMB counter modulo registers (TBMODH–TBMODL), write the value for the required PWM  
period.  
3. In the TIMB channel x registers (TBCHxH–TBCHxL), write the value for the required pulse width.  
4. In TIMB channel x status and control register (TBSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB–MSxA. See Table 18-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB–ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. See Table 18-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIMB status control register (TBSC), clear the TIMB stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIMB  
channel 0 registers (TBCH0H–TBCH0L) initially control the buffered PWM output. TIMB status control  
register 0 (TBSC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIMB overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 18.8.4 TIMB Channel Status and Control Registers.  
18.4 Interrupts  
These TIMB sources can generate interrupt requests:  
TIMB overflow flag (TOF) — The TOF bit is set when the TIMB counter reaches the modulo value  
programmed in the TIMB counter modulo registers. The TIMB overflow interrupt enable bit, TOIE,  
enables TIMB overflow CPU interrupt requests. TOF and TOIE are in the TIMB status and control  
register.  
TIMB channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIMB CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
225  
Timer Interface B (TIMB) Module  
18.5 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power- consumption standby  
modes.  
18.5.1 Wait Mode  
The TIMB remains active after the execution of a WAIT instruction. In wait mode, the TIMB registers are  
not accessible by the CPU. Any enabled CPU interrupt request from the TIMB can bring the MCU out of  
wait mode.  
If TIMB functions are not required during wait mode, reduce power consumption by stopping the TIMB  
before executing the WAIT instruction.  
18.5.2 Stop Mode  
The TIMB is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIMB counter. TIMB operation resumes when the MCU exits stop  
mode.  
18.6 TIMB During Break Interrupts  
A break interrupt stops the TIMB counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is  
cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state),  
software can read and write I/O registers during the break state without affecting status bits. Some status  
bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the  
second step clears the status bit.  
18.7 I/O Signals  
Port B shares two of its pins with the TIMB. There is no external clock input to the TIMB prescaler. The  
two TIMB channel I/O pins are PTB6/AD6/TBCH0 and PTB7/AD7/TBCH1. See Chapter 12 Input/Output  
(I/O) Ports (PORTS).  
18.7.1 TIMB Channel I/O Pins (PTB7/AD7/TBCH1–PTB6/AD6/TBCH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTB6/AD6/TBCH0 and PTB7/AD7/TBCH1 can be configured as buffered output compare or buffered  
PWM pins.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
226  
Freescale Semiconductor  
I/O Registers  
18.8 I/O Registers  
These I/O registers control and monitor TIMB operation:  
TIMB status and control register, TBSC  
TIMB control registers, TBCNTH–TBCNTL  
TIMB counter modulo registers, TBMODH–TBMODL  
TIMB channel status and control registers, TBSC0 and TBSC1  
TIMB channel registers, TBCH0H–TBCH0L and TBCH1H–TBCH1L  
18.8.1 TIMB Status and Control Register  
The TIMB status and control register:  
Enables TIMB overflow interrupts  
Flags TIMB overflows  
Stops the TIMB counter  
Resets the TIMB counter  
Prescales the TIMB counter clock  
Address:  
$002B  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
R
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
0
0
R
= Reserved  
Figure 18-4. TIMB Status and Control Register (TBSC)  
TOF — TIMB Overflow Flag Bit  
This read/write flag is set when the TIMB counter reaches the modulo value programmed in the TIMB  
counter modulo registers. Clear TOF by reading the TIMB status and control register when TOF is set  
and then writing a 0 to TOF. If another TIMB overflow occurs before the clearing sequence is complete,  
then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect.  
1 = TIMB counter has reached modulo value  
0 = TIMB counter has not reached modulo value  
TOIE — TIMB Overflow Interrupt Enable Bit  
This read/write bit enables TIMB overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIMB overflow interrupts enabled  
0 = TIMB overflow interrupts disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
227  
Timer Interface B (TIMB) Module  
TSTOP — TIMB Stop Bit  
This read/write bit stops the TIMB counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIMB counter until software clears the TSTOP bit.  
1 = TIMB counter stopped  
0 = TIMB counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIMB is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until  
TSTOP is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIMB Reset Bit  
Setting this write-only bit resets the TIMB counter and the TIMB prescaler. Setting TRST has no effect  
on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIMB  
counter is reset and always reads as 0. Reset clears the TRST bit.  
1 = Prescaler and TIMB counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIMB counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIMB counter as  
Table 18-1 shows. Reset clears the PS[2:0] bits.  
Table 18-1. Prescaler Selection  
PS[2:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
TIMB Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Unused  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
228  
Freescale Semiconductor  
I/O Registers  
18.8.2 TIMB Counter Registers  
The two read-only TIMB counter registers contain the high and low bytes of the value in the TIMB counter.  
Reading the high byte (TBCNTH) latches the contents of the low byte (TBCNTL) into a buffer. Subsequent  
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL is read. Reset clears the TIMB  
counter registers. Setting the TIMB reset bit (TRST) also clears the TIMB counter registers.  
NOTE  
If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL by  
reading TBCNTL before exiting the break interrupt. Otherwise, TBCNTL  
retains the value latched during the break.  
Register Name and Address  
Bit 7  
TBCNTH — $002C  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
0
0
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TBCNTL — $002D  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 18-5. TIMB Counter Registers (TBCNTH and TBCNTL)  
18.8.3 TIMB Counter Modulo Registers  
The read/write TIMB modulo registers contain the modulo value for the TIMB counter. When the TIMB  
counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIMB counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and  
overflow interrupts until the low byte (TMODL) is written. Reset sets the TIMB counter modulo registers.  
Register Name and Address  
Bit 7  
TBMODH — $002E  
6
BIT 14  
1
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
Write:  
Reset:  
1
Register Name and Address  
Bit 7  
TBMODL — $002F  
6
BIT 6  
1
5
BIT 5  
1
4
BIT 4  
1
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
Write:  
Reset:  
1
Figure 18-6. TIMB Counter Modulo Registers (TMODH and TMODL)  
NOTE  
Reset the TIMB counter before writing to the TIMB counter modulo registers.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
229  
Timer Interface B (TIMB) Module  
18.8.4 TIMB Channel Status and Control Registers  
Each of the TIMB channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIMB overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TBSC0 — $0030  
5
6
CH0IE  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
MS0B  
0
MS0A  
0
0
0
Register Name and Address  
Bit 7  
TBSC1 — $0033  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1F  
CH1IE  
MS1A  
0
0
0
R
0
0
R
= Reserved  
Figure 18-7. TIMB Channel Status and Control Registers  
(TBSC0–TBSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIMB counter registers matches the value in the TIMB channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMB channel x status and control register with CHxF set,  
and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is  
complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to  
inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIMB CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
230  
Freescale Semiconductor  
I/O Registers  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIMB  
channel 0.  
Setting MS0B disables the channel 1 status and control register and reverts TBCH1 to  
general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 18-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin once PWM, input  
capture, or output compare operation is enabled. See Table 18-2. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIMB status and control register (TBSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port B, and pin PTBx/TBCHx  
is available as a general-purpose I/O pin. However, channel x is at a state determined by these bits  
and becomes transparent to the respective pin when PWM, input capture, or output compare mode is  
enabled. Table 18-2 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
Table 18-2. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
231  
Timer Interface B (TIMB) Module  
NOTE  
Before enabling a TIMB channel register for input capture operation, make  
sure that the PTBx/TBCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIMB counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMB counter overflow.  
0 = Channel x pin does not toggle on TIMB counter overflow.  
NOTE  
When TOVx is set, a TIMB counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1 and clear output on compare is selected, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100 percent. As Figure 18-8 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at 100 percent duty  
cycle level until the cycle after CHxMAX is cleared.  
NOTE  
The PWM 100 percent duty cycle is defined as output high all of the time.  
To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx  
register. The PWM 0 percent duty cycle is defined as output low all of the  
time. To generate the 0 percent duty cycle, select clear output on compare  
and then clear the TOVx bit (CHxMAX = 0).  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTBx/TCHx  
TOV = 1  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOV = 0  
Figure 18-8. CHxMAX Latency  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
232  
Freescale Semiconductor  
I/O Registers  
18.8.5 TIMB Channel Registers  
These read/write registers contain the captured TIMB counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIMB channel registers after reset  
is unknown.  
In input capture mode (MSxB–MSxA = 0:0), reading the high byte of the TIMB channel x registers  
(TBCHxH) inhibits input captures until the low byte (TBCHxL) is read.  
In output compare mode (MSxB–MSxA 0:0), writing to the high byte of the TIMB channel x registers  
(TBCHxH) inhibits output compares and the CHxF bit until the low byte (TBCHxL) is written.  
Register Name and Address  
Bit 7  
TBCH0H — $0031  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
Write:  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Reset:  
Indeterminate after reset  
TBCH0L — $0032  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
Write:  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Reset:  
Indeterminate after reset  
TBCH1H — $0034  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
Write:  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Reset:  
Indeterminate after reset  
TBCH1L — $0035  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
Write:  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Reset:  
Indeterminate after reset  
Figure 18-9. TIMB Channel Registers (TBCH0H/L–TBCH1H/L)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
233  
Timer Interface B (TIMB) Module  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
234  
Freescale Semiconductor  
Chapter 19  
Development Support  
19.1 Introduction  
This section describes the break module, the monitor module (MON), and the monitor mode entry  
methods.  
19.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features of the break module include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
19.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 19-2 shows the structure of the break module.  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
235  
Development Support  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS(1)  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
PTA2/KBD2/TxD(1)  
PTA1/KBD1  
USER FLASH  
15,872 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
512 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
PTB3/AD3/MISO(1)  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure 19-1. Block Diagram Highlighting BRK and MON Blocks  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
236  
Freescale Semiconductor  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 19-2. Break Module Block Diagram  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode.  
When software does not change the break address and clears the BRKA  
bit in the first break interrupt routine, the next break interrupt will not be  
generated after exiting the interrupt routine even when the internal address  
bus matches the value written in the break address registers.  
19.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (SBFCR) enables software to clear status  
bits during the break state. See 14.8.3 SIM Break Flag Control Register and the “Break Interrupts”  
subsection for each module.  
19.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter and inhibits input captures.  
19.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
19.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (SBSR)  
Break flag control register (SBFCR)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
237  
Development Support  
19.2.2.1 Break Status and Control Register  
The break status and control register (BSCR) contains break module enable and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-3. Break Status and Control Register (BSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
19.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 19-4. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 19-5. Break Address Register Low (BRKL)  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
238  
Freescale Semiconductor  
Break Module (BRK)  
19.2.2.3 Break Status Register  
The break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode.  
This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 19-6. Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
19.2.2.4 Break Flag Control Register  
The break control register (SBFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 19-7. Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
19.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the  
break module will remain enabled in wait and stop modes. However, since the internal address bus does  
not increment in these modes, a break interrupt will never be triggered.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
239  
Development Support  
19.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
requirements for in-circuit programming.  
Features of the monitor module include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate (9600 @ 2.4576-MHz internal operating frequency)  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.8304 MHz oscillator or ICG to generate internal operating frequency of  
2.4576 MHz  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Normal monitor mode entry if VTST is applied to IRQ  
19.3.1 Functional Description  
Figure 19-8 shows a simplified diagram of the monitor mode.  
The monitor module receives and executes commands from a host computer. Figure 19-9, Figure 19-10,  
and Figure 19-11 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
Table 19-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF are erased or programmed:  
The external clock is 9.8304 MHz (9600 baud)  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz (9600 baud)  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
The ICG clock is nominal 2.45 MHz (nominal 9600 baud)  
IRQ = VSS  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
240  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
PTA0 = 1,  
PTA1 = 0, RESET  
VECTOR BLANK?  
PTA0 = 1, PTA1 = 0,  
PTB4 = 1, AND  
PTB3 = 0?  
NO  
NO  
FROM Table 19-1  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
YES  
EXTENDED SECURITY  
= $00?  
NO  
INFINITE LOOP  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 19-8. Simplified Monitor Mode Entry Flowchart  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
241  
Development Support  
MC68HC908EY16A/8A  
VDD  
N.C.  
VDD  
VDDA  
RST  
9.8304-MHz CLOCK  
0.1 μF  
MAX232  
VDD  
OSC1  
1
16  
15  
VCC  
C1+  
VDD  
+
+
+
1 μF  
1 μF  
10 k  
3
4
1 μF  
GND  
C1–  
C2+  
PTB4  
+
1 kΩ  
2
6
V+  
V–  
IRQ  
10 k  
10 k  
VDD  
1 μF  
9.1 V  
PTB3  
PTA1  
5
C2–  
1 μF  
+
10 kΩ  
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
74HC125  
3
2
VSSA  
VSS  
4
3
5
1
Figure 19-9. Normal Monitor Mode Circuit  
MC68HC908EY16A/8A  
VDD  
N.C.  
RST  
VDD  
VDDA  
9.8304-MHz CLOCK  
MAX232  
0.1 μF  
VDD  
OSC1  
1
16  
15  
VCC  
C1+  
+
+
+
1 μF  
1 μF  
3
4
1 μF  
GND  
C1–  
C2+  
PTB4  
PTB3  
N.C.  
+
2
6
V+  
V–  
N.C.  
IRQ  
N.C.  
VDD  
1 μF  
5
C2–  
10 k  
1 μF  
+
PTA1  
10 kΩ  
74HC125  
DB9  
5
10  
9
6
2
7
8
PTA0  
74HC125  
3
2
VSSA  
VSS  
4
3
5
1
Figure 19-10. Forced Monitor Mode (VIRQ = VDD  
)
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
242  
Freescale Semiconductor  
Monitor Module (MON)  
MC68HC908EY16A/8A  
VDD  
N.C.  
N.C.  
RST  
VDD  
VDDA  
MAX232  
0.1 μF  
VDD  
OSC1  
1
16  
15  
VCC  
C1+  
+
+
+
1 μF  
1 μF  
3
4
1 μF  
GND  
C1–  
C2+  
PTB4  
PTB3  
N.C.  
+
2
6
V+  
V–  
IRQ  
N.C.  
VDD  
1 μF  
10 k*  
5
C2–  
10 k  
1 μF  
+
PTA1  
10 kΩ  
74HC125  
DB9  
5
10  
9
6
2
7
8
PTA0  
74HC125  
3
2
VSSA  
VSS  
4
3
5
1
Figure 19-11. Forced Monitor Mode (VIRQ = VSS  
)
Enter monitor mode with pin configuration shown in Table 19-1 by pulling RST low and then high. The  
rising edge of RST latches monitor mode. Once monitor mode is latched, the levels on the port pins  
except PTA0 can change.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 19.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
19.3.1.1 Normal Monitor Mode  
If VTST is applied to IRQ upon monitor mode entry, the internal operating frequency is a divide-by-four of  
the input clock.  
When monitor mode was entered with VTST on IRQ, the computer operating properly (COP) is disabled  
as long as VTST is applied to either IRQ or RST.  
This condition states that as long as VTST is maintained on the IRQ pin after entering monitor mode, or if  
VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ),  
then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be  
removed from the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor mode.  
NOTE  
While the voltage on IRQ is at VTST, the ICG module is bypassed and the  
external square-wave clock becomes the clock source. Dropping IRQ to  
below VTST will remove the bypass and the MCU will revert to the clock  
source selected by the ICG (a determined by the settings in the ICG  
registers).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
243  
Development Support  
Table 19-1. Monitor Mode Signal Requirements and Options  
Serial  
Communication  
Mode  
Selection  
Communication  
Speed  
Reset  
Vector  
Mode  
IRQ  
RST  
ICG  
COP  
External  
Baud  
Rate  
fOP  
PTA0  
PTA1  
PTB4 PTB3  
Clock  
VDD  
or  
VTST  
Normal  
Monitor  
9.8304  
MHz  
2.4576  
MHz  
VTST  
X
1
0
1
0
OFF Disabled  
9600  
9.8304  
MHz  
2.4576  
MHz  
VDD  
VDD  
1
1
0
0
X
X
X
X
OFF Disabled  
ON Disabled  
9600  
Forced  
Monitor  
$FFFF  
(blank)  
Nominal  
2.45 MHz  
Nominal  
9600  
VSS  
VDD  
or  
VSS  
VDD  
VDD  
or  
VTST  
Not  
$FFFF  
Nominal  
1.6 MHz  
User  
X
X
X
X
ON Enabled  
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
SSEL MOD0 MOD1  
[10] [12] [14]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600 except the forced monitor IRQ = VSS case.  
Baud rate using external oscillator is bus frequency / 256.  
4. X = don’t care  
5. RST column indicates the state of RST after the monitor entry.  
6. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
1
3
2
4
GND  
RST  
IRQ  
NC  
5
6
NC  
7
8
PTA0  
PTA1  
PTB3  
PTB4  
NC  
NC  
9
10  
12  
14  
16  
NC  
11  
13  
15  
OSC1  
VDD  
19.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then PTA1, PTB3, and PTB4 pin requirements and  
conditions are not in effect. This is to reduce circuit requirements when performing in-circuit programming.  
If the reset vector is blank and monitor mode is entered without VTST on IRQ, the MCU will see an  
additional reset cycle after the initial power-on reset (POR). The MCU will initially come out of reset in user  
mode. Internal circuitry monitors the reset vector fetches and will assert an internal reset if it detects the  
reset vector is erased ($FFFF).  
Once the MCU enters this mode any reset other than a POR will automatically force the MCU to come  
back to the forced monitor mode. Exiting the forced monitor mode requires a POR. Pulling RST low will  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
244  
Freescale Semiconductor  
Monitor Module (MON)  
not exit monitor mode in this situation. Once the reset vector has been programmed, the traditional  
method of applying a voltage, VTST, to IRQ must be used to re-enter monitor mode after the next POR.  
When the forced monitor mode is entered the COP is always disabled regardless of the state of IRQ or  
RST.  
With VDD on IRQ, an external oscillator of 9.8034 MHz is required for a baud rate of 9600, as the internal  
internal operating frequency is automatically set to the external frequency divided by four.  
With VSS on IRQ at the monitor entry, the ICG is on. In this case, the internal operating frequency is a  
nominal 2.45 MHz and the baud rate is a nominal 9600.  
19.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
Table 19-2 summarizes the differences between user mode and monitor mode.  
Table 19-2. Mode Differences  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High  
Vector Low  
Vector High  
Vector Low  
Vector High  
Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
19.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 19-12. Monitor Data Format  
19.3.1.5 Break Signal  
A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives  
the PTA0 pin high for the duration of approximately two bits and then echoes back the break signal.  
MISSING STOP BIT  
APPROXIMATELY 2 BITS DELAY  
BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 19-13. Break Transaction  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
245  
Development Support  
19.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external or internal oscillator  
and the state of the appropriate pins as shown in Table 19-1.  
Table 19-1 also lists external frequencies required to achieve a standard baud rate of 9600 bps. The  
effective baud rate is the internal operating frequency divided by 256. If using a crystal as the clock  
source, be aware of the upper frequency limit that the internal clock module can handle. See 20.6 5V  
Control Timing for this limit.  
19.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. A delay  
of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The  
data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
3
3
1
1
3
1
2
3
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait approximately 1 bit time before sending next byte  
Figure 19-14. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
2
2
1
1
2
1
2
1
2
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Wait approximately 1 bit time before sending next byte  
Figure 19-15. Write Transaction  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
246  
Freescale Semiconductor  
Monitor Module (MON)  
A brief description of each monitor mode command is given in Table 19-3 through Table 19-8.  
Table 19-3. READ (Read Memory) Command  
Description  
Operand  
Read byte from memory  
2-byte address in high-byte:low-byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Table 19-4. WRITE (Write Memory) Command  
Description  
Operand  
Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned  
Opcode  
None  
$49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
HIGH  
HIGH  
LOW  
Table 19-5. IREAD (Indexed Read) Command  
Description  
Operand  
Read next 2 bytes in memory from last address accessed  
None  
Data Returned  
Opcode  
Returns contents of next two addresses  
$1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
247  
Development Support  
Table 19-6. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Data Returned  
Opcode  
Single data byte  
None  
$19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
Table 19-7. READSP (Read Stack Pointer) Command  
Description  
Operand  
Reads stack pointer  
None  
Data Returned  
Opcode  
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order  
$0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 19-8. RUN (Run User Program) Command  
Description  
Operand  
Executes PULH and RTI instructions  
None  
Data Returned  
Opcode  
None  
$28  
Command Sequence  
FROM HOST  
RUN  
RUN  
ECHO  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
248  
Freescale Semiconductor  
Monitor Module (MON)  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 19-16. Stack Pointer at Monitor Mode Entry  
19.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 19-17.  
VDD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
4
1
1
3
1
3
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait approximately 1 bit time before sending next byte  
4 = Wait until the monitor ROM runs  
Figure 19-17. Monitor Mode Entry Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
249  
Development Support  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
19.3.3 Extended Security  
In addition to the above security, a more secure feature called extended security is implemented in the  
MCU to further protect FLASH contents. Once this extended security is enabled, the MCU does not allow  
any user to enter the monitor mode even when all 8 security bytes are matched correctly. The extended  
security feature can be enabled by programming address $FDFF located in the user FLASH memory with  
data $00.  
To unlock the extended security feature, the MCU must enter the monitor mode by failing the 8 byte  
security check. Then the FLASH must be mass-erased. This unlock process will erase the FLASH  
contents completely.  
NOTE  
To avoid enabling the extended security unintentionally, the user must  
make sure that the user software does not contain data $00 at address  
$FDFF.  
19.4 Routines Supported in ROM  
In the ROM, five routines are supported. Because the ROM has a jump table, the user does not call the  
routines with direct addresses. Therefore, the calling addresses will not change—even when the ROM  
code is updated in the future.  
This section introduces each routine briefly. Details are discussed in later sections.  
GetByte — This routine is used to receive a byte serially on the general-purpose I/O PTA0. The  
receiving baud rate is the same as the baud rate used in monitor mode. In the GetByte routine, the  
GetBit routine is called to generate baud rates.  
PutByte — This routine is used to send a byte serially on the general-purpose I/O PTA0. The  
sending baud rate is the same as the baud rate specified in monitor mode.  
Verify — This routine is used to perform one of two options. Using the send-out option, this routine  
reads FLASH locations and sends the data out serially on the general-purpose I/O PTA0. Using  
the compare option, this routine compares the FLASH data against data in a specific RAM location,  
which is referred to as a DATA array. The DATA array locations and the variable locations required  
for this routine are at fixed memory addresses.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
250  
Freescale Semiconductor  
Routines Supported in ROM  
fProgram — This routine is used to program a contiguous range of FLASH locations.  
Programming data is first loaded into the DATA array. The DATA array locations and the variable  
locations required for this routine are at fixed memory addresses. fProgram can be used when the  
internal operating frequency (fop) is between 1.0 MHz and 8.0 MHz.  
fErase — This routine is used to erase either a page (64 bytes) or the whole array of FLASH. The  
variable locations required for this routine are at fixed memory addresses. This routine can be used  
when the internal operating frequency (fop) is between 1.0 MHz and 8.0 MHz.  
19.4.1 Variables Used in the Routines  
The Verify, fProgram, and fErase routines require certain registers and/or RAM locations to be initialized  
before calling the routines in the user software. Table 19-9 shows variables used in the routines and their  
locations.  
Table 19-9. Variables and Their Locations  
Location  
Variable Name  
Size (Bytes)  
Description  
Reserved for future use  
$0040–$0048  
Reserved  
9
CPU speed — the nearest integer of fop (in MHz) × 4;  
for example, if fop = 2.4576 MHz, CPUSPD = 10  
$0049  
CPUSPD  
LADDR  
1
2
$004A:$004B  
Last address of a 16-bit range  
First location of DATA array;  
DATA array size must match a programming or  
verifying range  
$004C  
DATA  
Varies  
CPUSPD — To set up proper delays used in the fProgram and fErase routines, a value indicating  
the internal operating frequency (fop) must be stored at CPUSPD, which is located at RAM address  
$0049. The CPUSPD value is the nearest integer of fop (in MHz) times 4. For example, if fop is 4.2  
MHz, the CPUSPD value is 17. If fop is 2.1 MHz, the CPUSPD value is 8. Setting a correct CPUSPD  
value is very important to program or erase the FLASH successfully.  
LADDR — A range specifies the FLASH locations to be read, verified, or programmed. The 16-bit  
value in RAM addresses $004A and $004B holds the last address of a range. The addresses  
$004A and $004B are the high and low bytes of the last address, respectively. LADDR is used for  
Verify and fProgram routines.  
DATA — DATA is the first location of the DATA array and is located at RAM address $004C. The  
array is used for loading program or verify data. The DATA array must be in the zero page and its  
size must match the size of the range to be programmed or verified.  
Registers H:X — In the Verify and fProgram routines, registers H and X are initialized with a 16-bit  
value representing the first address of a range. High and low bytes of the address are stored to  
registers H and X, respectively. In the fErase routine, registers H and X are initialized with an  
address which is within the page to be erased or with the address of the block protect register  
(FLBPR) if the entire array to be erased.  
19.4.2 How to Use the Routines  
This section describes the details of each routine. Table 19-10 provides necessary addresses used in the  
on-chip FLASH routines for each MCU type and summarizes the five routines.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
251  
Development Support  
Table 19-10. Summary of On-Chip FLASH Support Routines  
GetByte  
PutByte  
Verify  
fProgram  
fErase  
Jump Table  
Address  
$1000  
$100C  
$1003  
$1009  
$1006  
Get a data byte  
serially through  
PTA0  
Send a data byte  
serially through  
PTA0  
Read and/or  
compare a  
FLASH range  
Program a FLASH Erase a PAGE or  
Routine  
Description  
range  
entire array  
Internal  
Operating  
Frequency  
N/A  
N/A  
N/A  
1.0 MHz to  
8.0 MHz  
1.0 MHz to  
8.0 MHz  
(fop)  
Hardware  
Requirement  
Pullup on PTA0  
Pullup on PTA0  
For send-out option, N/A  
pullup on PTA0  
N/A  
PTA0: Input  
(DDRA0 = 0)  
PTA0: Input and 0  
data bit  
(DDRA0 = 0,  
PTA0 = 0)  
H:X: First address  
of range  
LADDR: Last  
H:X: First address  
of range  
LADDR: Last  
address of range  
CPUSPD: the  
nearest integer fop CPUSPD: the  
(in MHz) times 4  
Data array:  
Load data to be  
programmed  
H:X: Page erase —  
an address within  
the page  
Mass erase =  
FLBPR  
address of range  
A: A = $00 for  
send-out option or  
A $00 for  
compare option.  
For send-out option,  
PTA0: Input and 0  
data bit  
A: data to be sent  
nearest integer fop  
(in MHz) times 4  
Entry  
Conditions  
(DDRA0 = 0,  
PTA0 = 0)  
For compare option,  
DATA array: Load  
data to be  
compared against  
FLASH read data  
A: Data received  
through PTA0  
C-bit: Framing error  
indicator  
A, X: No change  
PTA0: Input and 0  
data bit  
(DDRA0 = 0,  
PTA0 = 0)  
A: Checksum  
H:X: Next FLASH  
address  
C-bit: Verify result  
indicator  
H:X: Next FLASH  
address  
H:X: No change  
(error: C = 0)  
Exit  
Conditions  
(success:  
C = 1)  
DATA array: Data  
replaced with  
FLASH read data  
(compare option)  
I bit is preserved  
Not Serviced  
I bit is preserved  
Not Serviced  
I bit is preserved  
I bit is set, then  
restored to entry  
condition on exit  
I bit is set, then  
restored to entry  
condition on exit  
I Bit  
COP  
Serviced  
Serviced  
Serviced  
Continued on next page  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
252  
Freescale Semiconductor  
Routines Supported in ROM  
Table 19-10. Summary of On-Chip FLASH Support Routines (Continued) (Continued)  
GetByte  
Subroutines (None)  
PutByte  
(None)  
Verify  
PutByte for  
fProgram  
(None)  
fErase  
(None)  
Called  
send-out option  
N/A  
N/A  
LADDR (2 bytes),  
DATA array (no  
size limitation as  
long as in the zero  
page)  
CPUSPD, LADDR  
(2 bytes), DATA  
array (maximum  
32 bytes)  
CPUSPD  
RAM  
Variable  
6 bytes  
6 bytes  
9 bytes for verify  
option  
13 bytes for  
send-out option  
10 bytes  
8 bytes  
Stack Used  
(Including the  
Routine’s Call)  
19.4.2.1 GetByte  
GetByte is a routine that receives a byte on the general-purpose I/O PTA0, and the received value is  
returned to the calling routine in the accumulator (A). This routine is also used in monitor mode so that it  
expects the same non-return-to-zero (NRZ) communication protocol and baud rates.  
This routine detects a framing error when a STOP bit is not detected. If the carry (C) bit of the condition  
control register (CCR) is cleared after returning from this routine, a framing error occurred during the data  
receiving process. Therefore, the data in A is not reliable. The user software is responsible for handling  
such errors.  
Interrupts are not masked (the I bit is not set) and the COP is not serviced in the GetByte routine. User  
software should ensure that interrupts are blocked during character reception.  
The baud rate is defined by fop divided by a constant value. In the case of the MC68HC908EY16A, the  
baud rate is fop divided by 256. When the internal operating frequency is 2.4576 MHz, the baud rate is  
2.4576 MHz/256 = 9600.  
To use this routine, some hardware setup is required. The general-purpose I/O PTA0 must be pulled up.  
For more information, refer to 19.3 Monitor Module (MON).  
Entry Condition  
PTA0 must be configured as an input and pulled up in hardware.  
Exit Condition  
A — Contains data received from PTA0.  
C bit — Usually the C bit is set, indicating proper reception of the STOP bit. However, if the C bit is clear,  
a framing error occurred. Therefore, the received byte in A is not reliable. Example 19-1 shows how to  
receive a byte serially on PTA0.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
253  
Development Support  
Example 19-1. Receiving a Byte Serially  
GetByte: equ $1000  
bclr 0,DDRA  
;EY16A/8A GetByte jump address  
;Configure port A bit 0 as an input  
jsr GetByte  
;Call GetByte routine  
bcc FrameError  
;If C bit is clear, framing error  
; occurred. Take a proper action  
NOTE  
After GetByte is called, the program will remain in this routine until a START  
bit (0) is detected and a complete character is received.  
19.4.2.2 PutByte  
PutByte is a routine that receives a byte on the general-purpose I/O PTA0. The sent value must be loaded  
into the accumulator (A) before calling this routine. This routine is also used in the monitor mode.  
Therefore, it uses the same non-return-to-zero (NRZ) communication protocol. The communication baud  
rates are the same as those described in GetByte.  
To use this routine, some hardware setup is required. The general-purpose I/O PTA0 must be pulled up  
and configured as an input and the PTA0 data bit must be initialized to 0.  
Interrupts are not masked and the COP is not serviced in the PutByte routine. User software should  
ensure that interrupts are blocked during character transmission.  
Entry Condition  
A — Contains data sent from PTA0  
PTA0 — This pin must be configured as an input and pulled up in hardware and the PTA0 data bit must  
be initialized to 0.  
Exit Condition  
A and X are restored with entry values.  
Example 19-2 shows how to send a byte ($55) serially on PTA0.  
Example 19-2. Sending a Byte Serially  
PutByte: equ $100C  
;EY16A/8A PutByte jump address  
bclr 0,DDRA  
bclr 0,PTA  
lda #$55  
;Configure port A bit 0 as an input  
;Initialize data bit to zero PTA0=0  
;Load sent data $55 to A  
jsr PutByte  
;Call PutByte routine  
19.4.2.3 Verify  
When using the Verify routine, the user must select one of the function options summarized in  
Table 19-11. See Verify Routine Options for details.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
254  
Freescale Semiconductor  
Routines Supported in ROM  
Table 19-11. Verify Routine Options  
Option  
Description  
Used to read a range of FLASH locations and to send the read data to a  
host through PTA0 by using the PutByte routine.  
Send-out option  
Used to read a range of FLASH locations and to compare the read data  
against the DATA array  
Compare option  
Verify Routine Options  
Send-Out Option — If the accumulator (A) is initialized with $00 at the routine entry, the read data  
will be sent out serially through PTA0. The communication baud rate is the same as the baud rate  
described in the PutByte routine. When this option is selected, the PTA0 must be pulled up and  
configured as an input and the PTA0 data bit must be initialized to 0.  
Compare Option — If A is initialized with a non-zero value, the read data is compared against the  
DATA array for each byte of FLASH and the DATA array is replaced by the data read from FLASH.  
If the data does not match the corresponding value, the data read from FLASH can be confirmed  
in the DATA array. All data in the DATA array must be in the zero page, but a range can be beyond  
a row size or a page size.  
Carry (C) Bit and Checksum  
The first and last addresses of the range to be read and/or compared are specified as parameters in  
registers H:X and LADDR, respectively. In the compare option, the carry (C) bit of the condition code  
register (CCR) is set if the data in the specified range is verified successfully against the data in the DATA  
array. However when the send-out option is selected, the status of the C bit is meaningless because this  
function does not include the compare operation. Both options calculate a checksum on data read in the  
range. This checksum, which is the LSB of the sum of all bytes in the entire data collection, is stored in A  
upon return from the function.  
Interrupts are not masked. The COP is serviced in Verify. The first COP is serviced at 24 bus cycles after  
this routine is called in the user software. However, the COP timeout might still occur in the send-out  
option if the COP is configured for a short timeout period.  
Entry Condition  
H:X — Contains the beginning address in a range.  
LADDR — Contains the last address in a range.  
A — When A contains $00, read data is sent out via PTA0 (send-out option is selected). When A contains  
a non-zero value, read data is verified against the DATA array (compare option is selected).  
DATA array — Contains data to be verified against FLASH data. For the send-out option, the DATA array  
is not used.  
PTA0 — When the send-out option is selected, this pin must be configured as an input and pulled up in  
hardware and PTA0 must be initialized to 0.  
Exit Condition  
A — Contains a checksum value.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
255  
Development Support  
H:X — Contains the address of the next byte immediately after the range read.  
C bit — Indicates the Verify result (only applies to the compare option).  
When the C bit is set, the verify succeeded.  
When the C bit is cleared, the verify failed.  
DATA array — Replaced with data read from FLASH when the compare option is selected.  
Example 19-3 shows how to use the compare option. Example 19-4 shows how to use the send-out  
option.  
Example 19-3. Compare Option  
Verify:  
equ $1003  
;EY16A/8A Verify jump address  
LADDR:  
DATA:  
equ $004A  
equ $004C  
;Define LADDR address (2 bytes)  
;Define DATA start address  
ldhx #$0000  
lda #$AA  
;Index offset into DATA array  
;Initial data value to store in array  
Data_load:  
coma  
sta DATA,x  
;Fill DATA array, 32 bytes data,  
; to compare against programmed FLASH  
; data (In this example comparing data  
; is $55, $AA, $55, $AA....)  
aix #1  
cphx #$20  
bne Data_load  
ldhx #$C01F  
sthx LADDR  
ldhx #$C000  
;Load last address of range to  
; LADDR  
;Load beginning address of range  
; to H:X  
lda #$55  
;Write non-zero value to A to select  
; the compare option  
jsr Verify  
bcc Error  
;Call Verify routine  
;If bit C is cleared, compare failed  
; Take a proper action  
; A contains a checksum value  
Example 19-4. Send-Out Option  
;EY16A/8A Verify jump address  
;Define DATA start address  
Verify:  
DATA:  
equ $1003  
equ $004C  
bclr 0,DDRA  
bclr 0,PTA  
ldhx #$C025  
sthx LADDR  
ldhx #$C010  
;Configure Port A bit 0 as an input  
;Initialize data bit to zero PTA0=0  
;Load last address of range to  
; LADDR  
;Load beginning address of range  
; to H:X  
clra  
jsr Verify  
;A=0 to select send-out option  
;Call Verify routine  
; A contains a checksum value  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
256  
Freescale Semiconductor  
Routines Supported in ROM  
19.4.2.4 fProgram  
fProgram is used to program a range of FLASH locations with data loaded into the DATA array. All bytes  
that will be programmed must be in the same row. Programming data is passed to fProgram in the DATA  
array. All data in the DATA array must be in the zero page. The size of the DATA array must match the  
size of a specified programming range. This routine supports an internal operating frequency between 1.0  
MHz and 8.0 MHz.  
For this split-gate FLASH, the programming algorithm requires a programming time (tprog) between 30 μs  
and 40 μs. Table 19-12 shows how tprog is adjusted by a CPUSPD value in this routine. The CPUSPD  
value is the nearest integer of fop (in MHz) multiplied by 4. For example, if fop is 2.4576 MHz, the CPUSPD  
value is 10 ($0A). If fop is 8.0 MHz, the CPUSPD value is 32 ($20).  
Table 19-12. tprog vs. Internal Operating Frequency  
Internal Operating Freq. (fop  
1.0 MHz fop < 1.125 MHz  
1.125 MHz fop 8.0 MHz  
)
tprog (Cycles)  
38  
tprog  
CPUSPD  
4
33.8 μs < tprog 38.0 μs  
32.6 μs tprog 40.0 μs  
Case 1  
Case 2  
5 to 32  
8 x CPUSPD + 5  
All programming is done using one programming algorithm. The algorithm allows for programming a  
single byte in each pass through it (one-byte programming method). Or, a whole row may be programmed  
by looping within the algorithm to write all the values in the row (row programming method).  
When the COPD bit in CONFIG1 is cleared and COP is therefore enabled, care must be taken to  
keep any programming operation from interfering with the servicing of the COP. In this case, each  
FLASH byte in the range is programmed using the one-byte programming method. Therefore,  
there are no limitations on range size and row/page boundary, but the total time to program multiple  
bytes is longer than the row programming method.  
When COPD bit is set (COP is disabled) and all programming addresses are in the same row, all  
FLASH bytes can be programmed at the same time using the row programming method. In this  
way, the FLASH can be programmed quickly.  
When COPD bit is set (COP is disabled) and a program range extends beyond a row or page, each  
FLASH byte in the range is programmed with the one-byte programming method until the  
beginning of the last row is reached. Then the bytes in the last row are programmed using the row  
programming method. However in this case, a programming range can not cross a boundary from  
$xxFF to $xx00. If a range crosses this boundary, programming data will not be guaranteed.  
In fProgram, the high programming voltage time is enabled for less than 125 μs when programming a  
single byte at any internal operating frequency between 1.0 MHz and 8.0 MHz. Therefore, even when a  
row is programmed by 32 separate single-byte programming operations, the cumulative high voltage  
programming time is less than the maximum tHV (4 ms). The tHV is defined as the cumulative high voltage  
programming time to the same row before the next erase. For more information, refer to the memory  
characteristics in Chapter 20 Electrical Specifications.  
This routine does not confirm that all bytes in the specified range are erased prior to programming. Nor  
does this routine perform a verification after programming, so there is no return confirmation that  
programming was successful. To program data successfully, the user software is responsible for these  
verifying operations. The Verify routine can be used to compare a programmed FLASH range against the  
DATA array.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
257  
Development Support  
Interrupts are masked (I bit is set) during a programming operation. When returning from this routine, I bit  
is restored to the entry condition. If the COP is enabled (COPD = 0), the COP is serviced in this routine.  
The first COP is serviced at 42 bus cycles after this routine is called in the user software. When the COP  
is disabled (COPD = 1), this row programming method is the fastest way to program the FLASH.  
Entry Condition  
H:X — Contains the beginning address in a range.  
LADDR — Contains the last address in a range.  
CPUSPD — Contains the nearest integer value of fop (in MHz) times 4.  
DATA array — Contains the data values to be programmed into FLASH.  
Exit Condition  
H:X — Contains the address of the next byte after the range just programmed.  
Example 19-5 shows how to program one full 32-byte row:  
Example 19-5. Programming a Row  
fProgram: equ $1009  
;EY16A/8A fProgram jump address  
CPUSPD:  
LADDR:  
DATA:  
equ $0049  
equ $004A  
equ $004C  
;Define CPUSPD addrss  
;Define LADDR address (2 bytes)  
;Define DATA start address  
ldhx #$0000  
lda #$AA  
;Index offset into DATA array  
;Initial data value (inverted)  
Data_load:  
coma  
sta DATA,x  
;Alternate between $55 and $AA  
;Fill DATA array, 32 bytes data,  
; values to program into FLASH  
; (ie. 55, AA, 55, AA....)  
aix #1  
cphx #$20  
bne Data_load  
mov #$0A,CPUSPD  
ldhx #$C01F  
sthx LADDR  
;fop = 2.4576MHz in this example  
;Load last address of the row  
; to LADDR  
ldhx #$C000  
;Load beginning address of the  
; row to H:X  
jsr fProgram  
;Call fProgram routine  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
258  
Freescale Semiconductor  
Routines Supported in ROM  
fProgram can be used to program a range less than 32 bytes. Example 19-6 shows how to program $55  
and $AA at location $E004 and $E005, respectively.  
Example 19-6. Programming a Range Smaller than a Row  
fProgram: equ $1009  
;EY16A/8A fProgram jump address  
CPUSPD:  
LADDR:  
DATA:  
equ $0049  
equ $004A  
equ $004C  
;Define CPUSPD addrss  
;Define LADDR address (2 bytes)  
;Define DATA start address  
ldhx #$55AA  
sthx DATA  
mov #$18,CPUSPD  
ldhx #$E005  
;fop = 6.0MHz in this example  
;Load last address to LADDR  
sthx LADDR  
ldhx #$E004  
jsr fProgram  
;Load beginning address to H:X  
;Call fProgram routine  
19.4.2.5 fErase  
fErase can be called to erase a page (64 bytes) or a whole array of FLASH. When the address of the  
FLASH block protect register is passed to fErase, the entire array is erased (MASS). Any other valid  
FLASH address selects the page erase. This routine supports an internal operating frequency between  
1.0 MHz and 8.0 MHz.  
In this routine, both PAGE erase time (tErase) and MASS erase time (tMErase) are set between 4 ms and  
5.5 ms. The CPUSPD value is the nearest integer of fop (in MHz) times 4. For example if fop is 3.1 MHz,  
the CPUSPD is 12 ($0C). If fop is 4.9152 MHz, the CPUSPD is 20 ($14).  
Interrupts are masked (I bit is set) during an erasing operation. When returning from this routine, I bit is  
restored to the entry condition, and the COP is serviced in ERARNGE. The first COP is serviced on  
(51+3xCPUSPD) bus cycles after this routine is called in the user software.  
Entry Condition  
H:X — Contains an address within a desired erase page or FLBPR for mass erase.  
CPUSPD — Contains the nearest integer value of fop (in MHz) times 4.  
Exit Condition  
None  
Example 19-7 shows how to erase an entire array.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
259  
Development Support  
Example 19-7. Erasing an Entire Array  
fErase:  
CPUSPD:  
equ $1006  
;EY16A/8A fErase jump address  
equ $0049  
;Define CPUSPD addrss  
mov #$08,CPUSPD  
ldhx #FLBPR  
jsr fErase  
;fop = 2.0MHz in this example  
;Load FLBPR address to H:X  
;Call fErase routine  
Example 19-8 shows how to erase a page from $E100 through $E13F.  
Example 19-8. Erasing a Page  
fErase:  
CPUSPD:  
equ $1006  
equ $0049  
;EY16A/8A fErase jump address  
;Define CPUSPD addrss  
mov #$0E,CPUSPD  
ldhx #$E121  
;fop = 4.9152MHz in this example  
;Load any address within the  
; page to H:X  
jsr fErase  
;Call fErase routine  
If the FLASH locations that you want to erase are protected due to the value in the FLASH block protect  
register (FLBPR), the erase operation will not be successful. However when a high voltage (Vtst) is applied  
to the IRQ pin, the block protection is bypassed.  
When the FLASH security check fails in the normal monitor mode, the FLASH can be re-accessed by  
erasing the entire FLASH array. To override the FLASH security mechanism and erase the FLASH array  
using this routine, registers H and X must contain the address of the FLASH block protect register  
(FLBPR).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
260  
Freescale Semiconductor  
Chapter 20  
Electrical Specifications  
20.1 Introduction  
This section contains preliminary electrical and timing specifications.  
20.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 20.5 5V DC Electrical Characteristics for guaranteed operating  
conditions.  
Characteristic(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VIn  
VSS –0.3 to VDD +0.3  
V
Maximum current per pin  
excluding VDD, VSS  
and PTA0–PTA6 and PTC0-PTC1  
,
I
±15  
±25  
mA  
mA  
IPTA0–IPTA6  
IPTC0–IPTC1  
,
Maximum current for pins  
PTA0–PTA6 and PTC0-PTC1  
Maximum current out of VSS  
Maximum current into VDD  
Storage temperature  
IMVSS  
100  
100  
mA  
mA  
°C  
IMVDD  
TSTG  
–55 to +150  
1. Voltages referenced to VSS  
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn and VOut be constrained to the range  
VSS (VIn or VOut) VDD. Reliability of operation is enhanced if unused  
inputs are connected to an appropriate logic voltage level (for example,  
either VSS or VDD).  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
261  
Electrical Specifications  
20.3 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
TA  
Operating temperature range  
–40 to 135  
°C  
5.0 ± 10%  
3.0 ± 10%  
VDD  
Operating voltage range  
V
20.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
100  
Unit  
C/W  
W
Thermal resistance  
QFP (32 pins)  
θJA  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
PD = (IDD x VDD) + PI/O  
=
W
K/(TJ + 273°C)  
PD x (TA + 273°C)  
+ PD2 x θJA  
Constant(2)  
K
W/C  
TJ  
TA + (PD x θJA)  
Average junction temperature  
°C  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and  
TJ can be determined for any value of TA.  
20.5 5V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
Load = –2.0 mA, all I/O pins  
ILoad = –5.0 mA, all I/O pins  
ILoad = –10.0 mA, all I/O pins  
ILoad = –15.0 mA, PTA0–PTA6/SS and PTC0–PTC1 only  
I
VDD –0.7 VDD –0.54  
VDD –1.1 VDD –0.91  
VDD –1.7 VDD –1.51  
VDD –1.5 VDD –0.81  
VOH  
V
Output low voltage  
ILoad = 1.6 mA, all I/O pins  
ILoad = 5.0 mA, all I/O pins  
ILoad = 10.0 mA, all I/O pins  
ILoad = 15.0 mA, PTA0–PTA6/SS and PTC0–PTC1 only  
0.31  
0.56  
0.99  
1.44  
0.4  
1
1.5  
1.8  
VOL  
V
VIH  
VIL  
0.7 x VDD  
VSS  
V
DD + 0.3  
Input high voltage — all ports, IRQ, RST  
Input low voltage — all ports, IRQ, RST  
V
V
0.3 x VDD  
+ 2.0  
DC injection current, all ports(3)  
IINJ  
– 2.0  
mA  
mA  
IINJTOT  
Total DC current injection (sum of all I/O)  
– 25  
+ 25  
— Continued on next page  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
262  
Freescale Semiconductor  
5V DC Electrical Characteristics  
Characteristic(1)  
VDD + VDDA supply current  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Run(4),(5)  
Wait(5), (6)  
Stop (LVI off) @ 25°C(7)  
Stop (LVI on) @ 25°C  
Stop (LVI off), –40°C to 135°C  
Stop (LVI on), –40°C to 135°C  
18  
5.2  
0.83  
0.19  
3.0  
25  
7.0  
2.00  
0.24  
30  
mA  
mA  
μA  
mA  
μA  
IDD  
0.19  
0.30  
mA  
I/O ports Hi-Z leakage current(8)  
Input current – RST, OSC1  
IIL  
IIn  
–10  
–1  
+10  
+1  
μA  
μA  
COut  
CIn  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(9)  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate  
Monitor mode entry voltage  
VDD+ 3.5  
9.1  
4.50  
4.60  
Low-voltage inhibit reset, trip falling voltage(10)  
Low-voltage inhibit reset, trip rising voltage(11)  
Low-voltage inhibit reset/recover hysteresis(12)  
Pullup resistor — PTA0–PTA6/SS(13), IRQ, RST  
Pulldown resistor — PTA0–PTA4(14)  
VTRIPF  
VTRIPR  
VHYS  
RPU  
3.90  
4.00  
4.30  
4.40  
90  
V
V
mV  
kΩ  
kΩ  
24  
48  
RPD  
24  
36  
48  
1. VDD = 5.5 Vdc to 4.5 Vdc, VSS = 0 Vdc, TA = –40°C to +135°C, unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Some disturbance of the ADC accuracy is possible during any injection event and is dependent on board layout and power  
supply decoupling.  
4. Run (operating) IDD measured using internal oscillator at its 32-MHz rate. VDD = 5.5 Vdc. All inputs 0.2 V from rail. No dc  
loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
5. All measurements taken with LVI enabled.  
6. Wait IDD measured using internal oscillator at its 1-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all  
outputs. All ports configured as inputs.  
7. Stop IDD is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected.  
8. Pullups and pulldowns are disabled.  
9. Maximum is highest voltage that power-on reset (POR) is guaranteed.  
10. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1).  
11. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1).  
12. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1).  
13. PTA0–PTA4 pullup resistors are for interrupts only and are only enabled when the keyboard is in use.  
14. Pulldown resistors available only when KBIx is enabled with KBIPx = 1.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
263  
Electrical Specifications  
20.6 5V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation (2)  
Crystal option (EXTSLOW = 1, RNGSEL = 0)  
Crystal option (EXTSLOW = 0, RNGSEL = 1)  
Crystal option (EXTSLOW = 0, RNGSEL = 0)  
External clock option (EXTSLOW = 1, RNGSEL = 0)(3)  
External clock option (EXTSLOW = 0, RNGSEL = 1)  
External clock option (EXTSLOW = 0, RNGSEL = 0)  
32  
1
8
dc(4)  
1
8
100  
8
32  
100  
8
kHz  
MHz  
MHz  
kHz  
MHz  
MHz  
fOSC  
32  
f
Internal operating frequency  
125  
50  
8
MHz  
ns  
op  
Internal clock period (1/fOP  
)
tcyc  
RST input pulse width low(5)  
t
ns  
IRL  
IRQ interrupt pulse width low(6)  
(edge-triggered)  
t
50  
ns  
ILIH  
tILIL  
tcyc  
IRQ interrupt pulse period  
Note 8  
16-bit timer(7)  
Input capture pulse width  
Input capture period  
tTH, TL  
tTLTL  
t
ns  
tcyc  
Note 8  
1. V = 0 Vdc; timing shown with respect to 20% V  
and 70% V unless otherwise noted.  
SS  
SS  
DD  
2. See Chapter 8 Internal Clock Generator (ICG) Module for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this  
information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service  
routine plus tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 20-1. RST and IRQ Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
264  
Freescale Semiconductor  
3V DC Electrical Characteristics  
20.7 3V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
I
Load = –0.6 mA, all I/O pins  
VDD–0.3  
VDD–1.0  
VDD–0.8  
VOH  
V
ILoad = –4.0 mA, all I/O pins  
ILoad = –10.0 mA, PTA0–PTA6/SS, PTC0–PTC1 only  
Output low voltage  
ILoad = 0.5 mA, all I/O pins  
ILoad = 6.0 mA, all I/O pins  
ILoad = 10.0 mA, PTA0–PTA6/SS, PTC0–PTC1 only  
0.3  
1.0  
0.8  
VOL  
V
VIH  
VIL  
0.7 x VDD  
VSS  
VDD + 0.3  
0.3 x VDD  
+2  
Input high voltage — all ports, IRQ, RST  
Input low voltage — all ports, IRQ, RST  
DC injection current, all ports  
V
V
IINJ  
–2  
mA  
mA  
IINJTOT  
Total dc current injection (sum of all I/O)  
VDD + VDDA supply current  
–25  
+25  
Run(3),(4)  
Wait(4), (5)  
Stop (LVI off) @ 25°C(4), (6)  
Stop (LVI on) @ 25°C  
Stop (LVI off), –40°C to 135°C  
Stop (LVI on), –40°C to 135°C  
5.7  
1.8  
0.52  
0.15  
1.6  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
μA  
mA  
μA  
IDD  
0.15  
mA  
IIL  
IIn  
Ports Hi-Z leakage current  
Input current – RST, OSC1  
–1  
–1  
0.1  
+1  
+1  
mA  
μA  
CIN  
COUT  
Capacitance  
Ports (as input or output)  
12  
8
pF  
VPOR  
RPOR  
VTST  
POR rearm voltage  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate  
Monitor mode entry voltage  
VDD + 2.5  
9.1  
2.70  
2.80  
Low-voltage inhibit reset, trip falling voltage(7)  
Low-voltage inhibit reset, trip rising voltage(7)  
Low-voltage inhibit reset/recover hysteresis(7)  
Pullup resistor — PTA0–PTA6/SS, IRQ, RST (8)  
Pulldown resistor — PTA0–PTA4(9)  
VTRIPF  
VTRIPR  
VHYS  
RPU  
2.35  
2.45  
2.60  
2.66  
60  
V
V
mV  
kΩ  
kΩ  
16  
26  
36  
RPD  
16  
26  
36  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using internal oscillator at its 16-MHz rate. VDD = 3.0 Vdc. All inputs 0.2 V from rail. No dc  
loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
4. All measurements taken with LVI enabled.  
5. Wait IDD measured using internal oscillator at its 16-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on  
all outputs. All ports configured as inputs.  
6. Stop IDD is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected.  
7. These values assume the LVI is operating in 3-V mode (i.e. LVI5OR3 bit is set to 0)  
8. RPU is measured at VDD = 3.0 V.  
9. Pulldown resistors available only when KBIx is enabled with KBIPx = 1.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
265  
Electrical Specifications  
20.8 3V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation (2)  
Crystal option (EXTSLOW = 1, RNGSEL = 0)  
Crystal option (EXTSLOW = 0, RNGSEL = 1)  
Crystal option (EXTSLOW = 0, RNGSEL = 0)  
External clock option (EXTSLOW = 1, RNGSEL = 0)(3)  
External clock option (EXTSLOW = 0, RNGSEL = 1)  
External clock option (EXTSLOW = 0, RNGSEL = 0)  
32  
1
8
dc(4)  
1
8
100  
8
16  
100  
8
kHz  
MHz  
MHz  
kHz  
MHz  
MHz  
fOSC  
16  
fOP  
tCYC  
tRL  
Internal operating frequency  
4
MHz  
ns  
Internal operating period (1/fOP  
)
250  
200  
200  
RST input pulse width low(5)  
ns  
IRQ interrupt pulse width low(6) (edge-triggered)  
IRQ interrupt pulse period  
tILIH  
tILIL  
ns  
Note(7)  
tCYC  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. See Chapter 8 Internal Clock Generator (ICG) Module for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this  
information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized.  
7. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 20-2. RST and IRQ Timing  
20.9 Internal Oscillator Characteristics  
Characteristic(1)  
Symbol  
fINTOSC  
fOSC_TOL  
N
Min  
230.4  
–25  
1
Typ  
307.2  
Max  
384  
+25  
127  
Unit  
kHz  
%
Internal oscillator base frequency(2), (3)  
Internal oscillator tolerance  
Internal oscillator multiplier(4)  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = –40°C to +135°C, unless otherwise noted  
2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be multiplier (N) x base  
frequency.  
3. fBus = (fINTOSC / 4) x N when internal clock source selected  
4. Multiplier must be chosen to limit the maximum bus frequency of 8 MHz for 4.5-V operation.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
266  
Freescale Semiconductor  
External Oscillator Characteristics  
20.10 External Oscillator Characteristics  
Characteristic(1)  
Symbol  
Min  
Typ  
Max  
Unit  
External clock option(2)(3)  
With ICG clock disabled  
With ICG clock enabled  
External clock option (EXTSLOW = 1, RNGSEL = 0)(4)  
External clock option (EXTSLOW = 0, RNGSEL = 1)(4)  
External clock option (EXTSLOW = 0, RNGSEL = 0)(4)  
32 (6)  
MHz  
dc(5)  
fEXTOSC  
307.2  
8
32(6)  
kHz  
MHz  
MHz  
60  
307.2  
8
External crystal options(7)(8)  
External cyrstal option (EXTSLOW = 1, RNGSEL = 0)(4)  
External crystal option (EXTSLOW = 0, RNGSEL = 1)(4)  
External crystal option (EXTSLOW = 0, RNGSEL = 0)(4)  
30  
1
8
100  
8
32  
kHz  
MHz  
MHz  
fEXTOSC  
32.768  
Crystal load capacitance(9)  
Crystal fixed capacitance(9)  
Crystal tuning capacitance(9)  
CL  
C1  
C2  
12.5  
15  
pF  
pF  
pF  
15  
EXTSLOW = 1  
Feedback bias resistor(9)  
Series resistor (9)  
100  
10  
330  
470  
MΩ  
kΩ  
RB  
Rs  
EXTSLOW = 0  
Feedback bias resistor(9)  
Series resistor (9)(10)  
fOSCXCLK = 1 MHz  
fOSCXCLK = 4 MHz  
fOSCXCLK = 8 to 25 MHz  
RB  
1
MΩ  
Rs  
Rs  
Rs  
20  
10  
0
kΩ  
kΩ  
kΩ  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = –40°C to +135°C, unless otherwise noted  
2. Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input.  
3. No more than 10% duty cycle deviation from 50%  
4. EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor circuits  
of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base frequency,  
fINTOSC.  
5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this  
information.  
6. MCU speed derates from 32 MHz at VDD = 4.5 Vdc  
7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal option.  
8. fBus = (fEXTOSC / 4) when external clock source is selected.  
9. Crystal manufacturer’s value.  
10. Not required for high-frequency crystals  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
267  
Electrical Specifications  
20.11 Trimmed Accuracy of the Internal Clock Generator  
The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the  
frequency comparator indicate zero error, can vary as much as 25% due to process, temperature, and  
voltage. The trimming capability exists to compensate for process affects. The remaining variation in  
frequency is due to temperature, voltage, and change in target frequency (multiply register setting). These  
affects are designed to be minimal, however variation does occur. Better performance is seen with lower  
settings of N.  
20.11.1 Trimmed Internal Clock Generator Characteristics  
Characteristic(1)  
Symbol  
Fabs_tol  
Var_temp  
Min  
Typ  
Max  
Unit  
%
Absolute trimmed internal oscillator tolerance(2),(3)  
–40°C to 85°C  
2.0  
2.5  
3.5  
5.0  
–40°C to 135°C  
Variation over temperature(3), (4)  
0.05  
0.08  
%/°C  
Variation over voltage(3), (5)  
25°C  
–40°C to 85°C  
–40°C to 135°C  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
Var_volt  
%/V  
1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period.  
2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD  
are allowed to vary for a single given setting of N.  
3. Specification is characterized but not tested.  
4. Variation in ICG output frequency for a fixed N and voltage  
5. Variation in ICG output frequency for a fixed N  
20.12 ADC10 Characteristics  
Typ(1)  
Characteristic  
Conditions  
Symbol  
Min  
2.7  
Max  
5.5  
Unit  
Comment  
VDD  
Supply voltage  
Absolute  
VDD < 3.3 V (3.0 V Typ)  
V
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
55  
(2)  
μA  
μA  
μA  
μA  
IDD  
V
V
V
V
V
V
V
DD < 5.5 V (5.0 V Typ)  
DD < 3.3 V (3.0 V Typ)  
DD < 5.5 V (5.0 V Typ)  
DD < 3.3 V (3.0 V Typ)  
DD < 5.5 V (5.0 V Typ)  
DD < 3.3 V (3.0 V Typ)  
DD < 5.5 V (5.0 V Typ)  
75  
Supply Current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
120  
175  
140  
180  
340  
440  
(2)  
IDD  
Supply Current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
(2)  
IDD  
Supply Current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
(2)  
IDD  
615  
— Continued on next page  
Freescale Semiconductor  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
268  
ADC10 Characteristics  
Typ(1)  
Characteristic  
Conditions  
Symbol  
Min  
Max  
Unit  
Comment  
0.40(3)  
High speed (ADLPC = 0)  
2.00  
fADCK  
tADCK = 1/fADCK  
ADC internal clock  
MHz  
0.40(3)  
19  
Low power (ADLPC = 1)  
19  
39  
16  
36  
4
1.00  
20  
Conversion time (4)  
10-bit Mode  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
tADC  
tADC  
tADS  
tADCK cycles  
tADCK cycles  
tADCK cycles  
39  
40  
Conversion time (4)  
8-bit Mode  
16  
17  
36  
37  
4
4
Sample time  
24  
24  
24  
VADIN  
CADIN  
RADIN  
VSS  
VDD  
Input voltage  
V
Input capacitance  
Input impedance  
7
5
10  
15  
pF  
kΩ  
Not tested  
Not tested  
Analog source  
impedance  
External to  
MCU  
RAS  
RES  
ETUE  
10  
kΩ  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
1.758  
5
5.371  
21.48  
± 2.5  
± 1.0  
Ideal resolution  
(1 LSB)  
VREFH/2N  
mV  
7.031  
20  
0
0
0
0
± 1.5  
± 0.7  
± 0.5  
± 0.3  
Total unadjusted  
error  
Includes  
quantization  
LSB  
LSB  
DNL  
Differential  
non-linearity  
Monotonicity and no-missing-codes guaranteed  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
0
0
± 0.5  
± 0.3  
± 0.5  
± 0.3  
± 0.5  
± 0.3  
Integral non-linearity  
Zero-scale error  
INL  
EZS  
EFS  
EQ  
LSB  
LSB  
LSB  
LSB  
LSB  
0
VADIN = VSS  
0
0
VADIN = VDD  
Full-scale error  
0
0
± 0.5  
± 0.5  
± 5  
± 1.2  
8-bit mode is  
not truncated  
Quantization error  
Input leakage error  
Pad leakage(5)  
RAS  
*
± 0.2  
± 0.1  
EIL  
0
1. Typical values assume VDD = 5.0 V, temperature = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Incremental IDD added to MCU mode current.  
3. Values are based on characterization results, not tested in production.  
4. Reference the ADC module specification for more information on calculating conversion times.  
5. Based on typical input pad leakage current.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
269  
Electrical Specifications  
20.13 5V SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/2  
fOP  
fOP/128  
dc  
MHz  
MHz  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tLead(S)  
tLag(S)  
tCYC  
tCYC  
tCYC  
tCYC  
1
2
1
128  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
4
5
6
7
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
tV(M)  
tV(S)  
10  
50  
50  
ns  
ns  
Data hold time, outputs, after enable edge  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 20-3 and Figure 20-4.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
270  
Freescale Semiconductor  
3V SPI Characteristics  
20.14 3V SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/2  
fOP  
fOP/128  
DC  
MHz  
MHz  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tLead(S)  
tLag(S)  
tcyc  
tcyc  
tcyc  
tcyc  
1
2
1
128  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
4
5
6
7
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
40  
40  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
50  
50  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
tV(M)  
tV(S)  
10  
60  
60  
ns  
ns  
Data hold time, outputs, after enable edge  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 20-3 and Figure 20-4.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
271  
Electrical Specifications  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 20-3. SPI Master Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
272  
Freescale Semiconductor  
3V SPI Characteristics  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
SLAVE LSB OUT  
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 20-4. SPI Slave Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
273  
Electrical Specifications  
20.15 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width(1)  
Timer input capture period  
Symbol  
TH, tTL  
tTLTL  
tTCL, tTCH  
Min  
Max  
Unit  
t
tcyc  
2
Note(2)  
tcyc + 5  
tcyc  
ns  
Timer input clock pulse width(1)  
1. Values are based on characterization results, not tested in production.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
tTCH  
TCLK  
tTCL  
Figure 20-5. Timer Input Timing  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
274  
Freescale Semiconductor  
Memory Characteristics  
20.16 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Typ  
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH PGM/ERASE supply voltage (VDD)  
MHz  
V
VPGM/ERASE  
2.7  
5.5  
(1)  
FLASH read bus clock frequency  
0
8 M  
Hz  
fRead  
FLASH page erase time  
<1 K cycles  
>1 K cycles  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
tMErase  
tNVS  
FLASH mass erase time  
4
10  
5
40  
ms  
μs  
μs  
μs  
μs  
μs  
μs  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVH  
tNVHL  
tPGS  
100  
5
tPROG  
FLASH program time  
30  
1
(2)  
FLASH return to read time  
tRCV  
(3)  
FLASH cumulative program hv period  
10 k  
15  
4
ms  
tHV  
FLASH endurance(4)  
100 k  
100  
Cycles  
Years  
FLASH data retention time(5)  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 64) tHV maximum.  
4. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical  
Endurance, please refer to Engineering Bulletin EB619.  
5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
NOTE  
In the 125°C to 135°C temperature range, the FLASH is guaranteed as  
read only.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
275  
Electrical Specifications  
20.17 EMC Performance  
EMC performance is highly dependant on the environment in which the MCU resides. Board design and  
layout, circuit topology choices, location and characteristics of external components as well as MCU  
software operation all play a significant role in EMC performance. The system designer should consult  
Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and  
guidance specifically geared toward EMC performance.  
20.17.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell  
method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed  
with the microcontroller installed on a custom EMC evaluation board including I/O pin loading and board  
layer usage while running specialized EMC test software all designed in compliance with the standards.  
The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations  
(North and East). For more detailed information concerning the evaluation conditions and setup, please  
refer to the EMC Evaluation Report for this device.  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal  
to the reported emissions levels.  
Level(1)  
(Max)  
fosc/fCPU  
Parameter  
Symbol  
Conditions  
Frequency  
Unit  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
dBμV  
Radiated emissions,  
electric field  
VDD = 5 V  
TA = +25oC  
32 QFP  
VRE_TEM  
4/8  
Conditions — TBD  
SAE Level  
1. Data based on qualification test results.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
276  
Freescale Semiconductor  
EMC Performance  
20.17.2 Conducted Transient Susceptibility  
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale  
test method. The measurement is performed with the microcontroller installed on a custom EMC  
evaluation board and running specialized EMC test software designed in compliance with the test  
method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each  
pin of the microcontroller. The transient waveform and injection methodology are in accordance with IEC  
61000-4-2 (ESD) and IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance  
degradation on any pin in the tested configuration is greater than or equal to the reported levels unless  
otherwise indicated by footnotes below the table.  
Amplitude(1)  
fOSC/fCPU  
Parameter  
Symbol  
Conditions  
Result  
Unit  
(Min)  
A
B
C
D
A
B
C
D
TBD  
VDD = 5 V  
TA = +25oC  
32 QFP  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Conducted susceptibility, electrical  
fast transient/burst (EFT/B)  
VCS_EFT  
4/8  
kV  
VDD = 5 V  
TA = +25oC  
32 QFP  
Conducted susceptibility,  
electrostatic discharge (ESD)  
VCS_ESD  
4/8  
kV  
1. Data based on qualification test results. Not tested in production.  
2. These pins demonstrate particularly low levels of performance:  
The susceptibility performance classification is described in the following table.  
Result  
Performance Criteria  
A
No failure  
The MCU performs as designed during and after exposure.  
Self-recovering  
failure  
The MCU does not perform as designed during exposure. The MCU returns  
automatically to normal operation after exposure is removed.  
B
C
D
The MCU does not perform as designed during exposure. The MCU does not return  
to normal operation until exposure is removed and the RESET pin is asserted.  
Soft failure  
Hard failure  
The MCU does not perform as designed during exposure. The MCU does not return  
to normal operation until exposure is removed and the power to the MCU is cycled.  
The MCU does not perform as designed during and after exposure. The MCU cannot  
be returned to proper operation due to physical damage or other permanent  
performance degradation.  
E
Damage  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
277  
Electrical Specifications  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
278  
Freescale Semiconductor  
Chapter 21  
Ordering Information and Mechanical Specifications  
21.1 Introduction  
This section contains ordering numbers for MC68HC908EY16. An example of the device numbering  
system is given in Figure 21-1. In addition, this section gives the package dimensions for the 32-pin  
LQFP.  
21.2 Ordering Information  
Table 21-1. Ordering Numbers  
Operating  
Temperature Range  
Part Number(1)  
Automotive Part Numbers(2)  
S908EY16AKFJE  
S908EY16AMFJE  
S908EY16AVFJE  
S908EY16ACFJE  
–40°C to +135°C  
–40°C to +125°C  
–40°C to +105°C  
–40°C to +85°C  
Consumer and Industrial Part Numbers  
MC908EY16AKFJE  
MC908EY16AMFJE  
MC908EY16AVFJE  
MC908EY16ACFJE  
–40°C to +135°C  
–40°C to +125°C  
–40°C to +105°C  
–40°C to +85°C  
1. FJ = 32-pin low-profile quad flat package  
2. “S” part numbers are tested in accordance with the AEC-Q100 (Automotive Electronics  
Council) standard.  
PACKAGE  
DESIGNATOR  
FAMILY  
MC908 EY 16 A X XX E  
MEMORY  
Pb FREE  
SIZE  
TEMPERATURE  
RANGE  
Figure 21-1. Device Numbering System  
21.3 Package Dimensions  
Refer to the following pages for detailed package dimensions.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
279  
Appendix A  
MC68HC908EY8A  
A.1 Introduction  
The MC68HC908EY8A is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
The information contained in this document pertains to the MC68HC908EY8A with the exceptions shown  
in this appendix.  
A.2 Block Diagram  
See Figure A-1.  
A.3 Memory  
The memory map, shown in Figure A-2, includes:  
8 Kbytes of FLASH memory, 7680 bytes of user space  
384 bytes of random-access memory (RAM)  
36 bytes of user-defined vectors  
350 bytes of monitor routines in read-only memory (ROM)  
674 bytes of integrated FLASH burn-in routines in ROM  
The FLASH memory is an array of 7680 bytes with an additional 36 bytes of user vectors and one byte  
used for block protection. The FLASH is organized internally as an 8192-word by 8-bit complementary  
metal-oxide semiconductor (CMOS) page erase, byte (8-bit) program embedded FLASH memory. Each  
page consists of 64 bytes. The page erase operation erases all words within a page. A page is composed  
of two adjacent rows.  
A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
283  
MC68HC908EY8A  
INTERNAL BUS  
M68HC08 CPU  
P(1)  
PTA6/SS  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA5/SPSCK(1)  
PTA4/KBD4  
SINGLE BREAKPOINT  
BREAK MODULE  
PTA3/KBD3/RxD(1)  
PTA2/KBD2/TxD(1)  
CONTROL AND STATUS REGISTERS  
64 BYTES  
5-BIT KEYBOARD  
INTERRUPT MODULE  
USER FLASH  
7680 BYTES  
PTA1/KBD1  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTA0/KBD0  
USER RAM  
384 BYTES  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
MONITOR ROM  
350 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
PTB5/AD5/SPSCK(1)  
PTB4/AD4/MOSI(1)  
PTB3/AD3/MISO(1)  
FLASH PROGRAMMING (BURN-IN) ROM  
674 BYTES  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
USER FLASH VECTOR SPACE  
36 BYTES  
ARBITER  
MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
GENERATOR MODULE  
PTC2/MCLK/SS(1)  
PTC1/MOSI(1)  
PTC0/MISO(1)  
PRESCALER  
MODULE  
PTD1/TACH1  
PTD0/TACH0  
COMPUTER OPERATING  
PROPERLY MODULE  
SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD(1)  
PTE0/TxD(1)  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
VREFH  
VDDA  
8-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER MODULE  
POWER-ON RESET  
MODULE  
CONFIGURATION REGISTER  
MODULE  
VREFL  
VSSA  
SECURITY  
MODULE  
PERIODIC WAKEUP  
TIMEBASE MODULE  
VDD  
VSS  
POWER  
BEMF MODULE  
NOTE:  
1. The locations of the ESCI and SPI pins are user selectable using CONFIG3 option bits.  
Figure A-1. MC68HC908EY8A Block Diagram  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
284  
Freescale Semiconductor  
Memory  
$0000  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
Reserved  
I/O Registers  
64 Bytes  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
$003F  
$0040  
RAM  
384 Bytes  
$01BF  
$01C0  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Unimplemented  
3648 Bytes  
$0FFF  
$1000  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Jump Table for FLASH Routines  
32 Bytes  
$101F  
$1020  
Reserved  
19 Bytes  
Integrated FLASH Program  
and Erase Routines  
512 Bytes  
$FE1F  
$FE20  
$121F  
$1220  
Monitor ROM 350 Bytes  
Unimplemented  
350 Bytes  
FF7D  
$FF7E  
$FF7F  
$FF80  
$FF81  
$FF82  
$137D  
$137E  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
Integrated FLASH Program  
and Erase Routines  
130 Bytes  
5V ICG Trim Value (Optional) (ICGT5V)  
3V ICG Trim Value (Optional) (ICGT3V)  
$13FF  
$1400  
Unimplemented  
52,224 Bytes  
Unimplemented  
90 Bytes  
$DFFF  
$E000  
$FFDB  
$FFDC  
FLASH Memory  
7,680 Bytes  
FLASH Vectors  
36 Bytes  
$FDFF  
$FE00  
$FE01  
$FFFF  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Note:  
Locations $FFF6–$FFFD are used for the eight  
security bytes.  
Figure A-2. MC68HC908EY8A Memory Map  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
285  
MC68HC908EY8A  
A.4 Ordering Information  
Table A-1. Ordering Numbers  
Operating  
Temperature Range  
Part Number(1)  
Automotive Part Numbers(2)  
S908EY8AKFJE  
S908EY8AMFJE  
S908EY8AVFJE  
S908EY8ACFJE  
–40°C to +135°C  
–40°C to +125°C  
–40°C to +105°C  
–40°C to +85°C  
Consumer and Industrial Part Numbers  
–40°C to +135°C  
MC908EY8AKFJE  
MC908EY8AMFJE  
MC908EY8AVFJE  
MC908EY8ACFJE  
–40°C to +125°C  
–40°C to +105°C  
–40°C to +85°C  
1. FJ = 32-pin low-profile quad flat package  
2. “S” part numbers are tested in accordance with the AEC-Q100 (Automotive Electronics  
Council) standard.  
PACKAGE  
DESIGNATOR  
FAMILY  
MC908 EY 8 A X XX E  
MEMORY  
Pb FREE  
SIZE  
TEMPERATURE  
RANGE  
Figure A-3. Device Numbering System  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
286  
Freescale Semiconductor  
Appendix B  
Differences Between 908EY16A and 908EY16  
B.1 Introduction  
The 908EY16A is a new revision of the existing 908EY16. The 908EY16A was designed using the latest  
HC08 design technology. Emphasis was placed on maintaining compatibility with the existing 908EY16  
during the design stage. While this was largely realized, there are a few differences introduced by  
customer requested improvements and by the use of the latest, enhanced modules. The purpose of this  
appendix is to point out the differences between the two versions of the part.  
B.2 Configuration  
A CONFIG3 register has been added to allow for new configuration features of the ESCI, SPI, and ICG.  
This replaces a reserved register location at address $0009.  
Address:  
$0009  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
908EY16:  
908EY16A:  
Reset:  
R
RNGSEL  
1
R
ESCISRE  
0
R
SPISRE  
0
R
R
R
R
SPISEL  
0
NA  
0
MCLKSRE PORTSRE ESCISEL  
0
0
0
R
= Reserved  
Figure B-1. Configuration Register 3 (CONFIG3)  
B.2.1 Enhanced Serial Communications Interface Module (ESCI)  
Enhanced transmitter functions are available for the local interconnect network (LIN). The LINT bit has  
been added to ESCI Baud Rate register. (The bit location was previously reserved.)  
Address:  
$0016  
Bit 7  
R
6
LINR  
5
4
3
R
R
0
2
1
Bit 0  
SCR0  
SCR0  
0
908EY16:  
908EY16A:  
Reset:  
SCP1  
SCP1  
0
SCP0  
SCP0  
0
SCR2  
SCR2  
0
SCR1  
SCR1  
0
LINT  
0
LINR  
0
R
= Reserved  
Figure B-2. ESCI Baud Rate Register (SCBR)  
The transmit and receive pins can be remapped to the PTA2 and PTA3 pins. This is selected in the  
CONFIG3 register. The reset state of these bits maps the ESCI transmit and receive to the same pins as  
on the 908EY16.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
287  
Differences Between 908EY16A and 908EY16  
B.2.2 Serial Peripheral Interface Module (SPI)  
The four pins associated with the SPI can be remapped to alternate assignments on PTB and PTC. The  
alternated assignment is selected in the CONFIG3 register. The reset state of these bits maps the SPI  
functions to the same pins as on the 908EY16.  
B.2.3 Internal Clock Generator Module (ICG)  
An option to allow the use of high frequency (8 – 32 MHz) crystals for the external oscillator has been  
added. There is now a range select bit in the CONFIG3 register to select this high frequency range.  
B.2.4 Keyboard Interface Module (KBI)  
The ability to select whether a keyboard interrupt is triggered by a rising or falling edge has been added.  
A reserved register has been replaced with the Keyboard Polarity register (KBIPR) at address $000C.  
While the falling edge trigger was the only mode available on the 908EY16, with the 908EY16A you can  
set either rising or falling edge and the reset state of the polarity bits will match the original state.  
Address: $000C  
Bit 7  
R
6
5
R
4
R
3
R
2
R
1
R
Bit 0  
R
908EY16:  
908EY16A:  
Reset:  
R
0/NA  
0/NA  
0
0/NA  
0
KBIP4  
0
KBIP3  
0
KBIP2  
0
KBIP1  
0
KBIP0  
0
0
R
= Reserved  
Figure B-3. Keyboard Interrupt Polarity Register (KBIPR)  
B.2.5 Analog-to-Digital Converter Module (ADC)  
The original ADC module has been replaced with the improved ADC10 module. While the modules are  
extremely similar, there are some differences that need to be evaluated for impact on existing software.  
The conversion complete (COCO) bit now functions slightly differently. COCO is now always a  
read-only bit and will get set regardless of the state of the AIEN bit.  
The divide-by-6 clock selection has been removed. (ADIV2 bit replaced by ADLPC)  
The two left-justified modes for the ADC data format are no longer available.  
A long sample time option has been added to conserve power at the expense of longer conversion  
times. This option is selected using the new ADLSMP bit in the ADCLK register. (The bit location  
was previously reserved.)  
The ADC10 will now run in stop mode if the ACLKEN bit is set to enable the asynchronous clock  
inside the ADC10 module. Utilizing stop mode for an ADC conversion gives the quietest operating  
mode to get extremely accurate ADC readings. (The bit location now used by ACLKEN was  
unimplemented — it always read as a 0 and writes to that location had no affect.)  
The ADC10 conversion time is now anywhere from 21 ADC clock cycles to 44 ADC clock cycles  
depending on ACLKEN. The original ADC module in the 908EY16 had a conversion time of 16 to  
17 ADC clock cycles. The bits that control these clocking operations are in the ADCLK register.  
These changes are shown in Figure B-4.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
288  
Freescale Semiconductor  
Monitor Mode  
Address:  
$003F  
Bit 7  
6
5
4
3
2
1
Bit 0  
908EY16:  
ADIV2  
ADIV1  
ADIV1  
0
ADIV0  
ADIV0  
0
ADICLK  
ADICLK  
0
MODE1  
MODE1  
0
MODE0  
MODE0  
0
R
0/NA  
908EY16A: ADLPC  
ADLSMP ACLKEN  
Reset:  
0
0
0
R
= Reserved  
Figure B-4. ADC10 Clock Register (ADCLK)  
Enabling an ADC channel no longer overrides the digital I/O function of the associated pin. To  
prevent the digital I/O from interfering with the ADC read of the pin, the data direction bit associated  
with the port pin must be set as input.  
B.3 Monitor Mode  
B.3.1 Monitor Extended Security  
An extended security feature has been added to the 908EY16 monitor operation. When the extended  
security location is programmed with zero and all 8 byte security matches, the monitor is terminated in an  
infinite loop automatically. To unlock extended security, the part must enter monitor mode with failed  
security and then the FLASH must be mass-erased to erase the whole FLASH. The extended security  
location in the 908EY16A is located at address $FDFF. The user should check this location in their  
software to ensure that it will not cause unexpected operation.  
B.3.2 Zeroes in Security Bytes  
An additional check has been added to the verification of the security bytes. The number of zero bytes  
used for the security bytes is limited to 5. More than 5 bytes of zero out of the 8 security bytes will cause  
the security check to fail. The user should check the values programmed into locations $FFF6–$FFFD to  
ensure that this requirement is not violated.  
B.3.3 Forced Monitor Mode Baud Rate  
The baud rate used for the 908EY16 Forced Monitor Mode was set at ~6300 baud. In the 908EY16A, this  
has been changed to 9600 baud. In addition, the trim value stored in FLASH is used in this mode to ensure  
that the tolerance required for communicating at this rate is met.  
B.4 Monitor ROM FLASH Programming Routines  
B.4.1 Erase  
The existing 908EY16 call for erase uses a RAM variable called CTRLBYT to determine whether the call  
is for page or mass erase. The 908EY16A routine uses the address passed to determine the page to be  
erased. (If ADDR = FLBPR, then a mass erase is performed.) If the parameters for the current 908EY16  
routine are passed to the new 908EY16A routine for a page erase, it would work correctly. Using an  
existing 908EY16 call to mass erase the 908EY16A will not work.  
A minor difference is that the new 908EY16A routine preserves the original state of the I bit while the  
existing 908EY16 erase routine sets the I bit and leaves it set on exit.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
Freescale Semiconductor  
289  
Differences Between 908EY16A and 908EY16  
B.4.2 Program  
The existing 908EY16 routine uses the row programming method to program any range of addresses  
(starting address in H:X and ending address in RAM at LADDR, data to be programmed is in RAM starting  
after LADDR). This routine is interrupted every 6 bytes to service the COP.  
The 908EY16A routine uses the same variables, so the call setup would be the same. In the 908EY16A,  
the COPD bit is checked. If COP servicing is required, then a byte-by-byte algorithm is used to program  
the range. If no COP servicing is required, then a combination of byte-by-byte and row programming is  
used for a faster algorithm. (In fact, the fastest programming would occur if the start address is the start  
of a row and the end address is the end of the same row. Then only the faster row programming method  
would be used.) To this point, the routines are compatible. However, there is a range limitation on this  
second algorithm. If a range is passed that crosses an xxFF to xx00 boundary, then it will fail. The  
byte-by-byte algorithm does not have this limitation.  
Table B-1. Programming Routine Comparison  
Routine  
Page erase  
Mass erase  
908EY16  
I bit set on exit  
908EY16A  
I bit restored to value at time of call  
Selected with ADDR = FLBPR  
Selected with CTRBYT  
No restrictions on range  
to be programmed  
If COPD = 1, range cannot include  
xxFF/xx00 boundary  
Program  
The maximum number of bytes required for the stack for all FLASH programming routines is now 13  
bytes. In the 908EY16, the maximum number of stack locations was 12 bytes. The user should check to  
verify that enough stack space is set aside to accommodate this one byte increase.  
MC68HC908EY16A • MC68HC908EY8A Data Sheet, Rev. 1  
290  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
MC68HC908EY16A  
Rev. 1, 09/2006  

相关型号:

MC68HC908EY8CFAE

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PQFP32, LEAD FREE, PLASTIC, QFP-32
NXP

MC68HC908EY8KFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, PLASTIC, QFP-32
NXP

MC68HC908EY8VFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, PLASTIC, QFP-32
NXP

MC68HC908GP20

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP20CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP20CFB

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8.2MHz, HCMOS, PQFP44, PLASTIC, QFP-44
MOTOROLA

MC68HC908GP20CP

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CB

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CBE

MC68HC908GP32CBE
FREESCALE