MC68HC908GP20 [FREESCALE]

M68HC08 Microcontrollers; M68HC08微控制器
MC68HC908GP20
型号: MC68HC908GP20
厂家: Freescale    Freescale
描述:

M68HC08 Microcontrollers
M68HC08微控制器

微控制器
文件: 总406页 (文件大小:3942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908GP20  
Advance Information  
M68HC08  
Microcontrollers  
Rev. 2.1  
MC68HC908GP20/D  
08/2005  
freescale.com  
Advance Information — MC68HC908GP20  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . 31  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Section 3. Low-Power Modes . . . . . . . . . . . . . . . . . . . . . 57  
Section 4. Resets and Interrupts . . . . . . . . . . . . . . . . . . . 69  
Section 5. Analog-to-Digital Converter (ADC) . . . . . . . 87  
Section 6. Break Module (BRK). . . . . . . . . . . . . . . . . . . . 99  
Section 7. Clock Generator Module (CGMC) . . . . . . 107  
Section 8. Configuration Register (CONFIG). . . . . . . . 139  
Section 9. Computer Operating Properly (COP) . . . . 145  
Section 10. Central Processor Unit (CPU) . . . . . . . . . . 151  
Section 11. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . 169  
Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . . 185  
Section 13. Keyboard Interrupt Module (KBI) . . . . . . . 191  
Section 14. Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . 199  
Section 15. Monitor ROM (MON) . . . . . . . . . . . . . . . . . 205  
Section 16. Input/Output (I/O) Ports . . . . . . . . . . . . . . 221  
Section 17. Random-Access Memory (RAM). . . . . . . 245  
Section 18. Serial Communications  
Interface Module (SCI) . . . . . . . . . . . . . . . . . . . . 247  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
3
List of Sections  
Section 19. System Integration Module (SIM). . . . . . . 287  
Section 20. Serial Peripheral Interface  
Module (SPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
Section 21. Timebase Module (TBM) . . . . . . . . . . . . . . 345  
Section 22. Timer Interface Module (TIM) . . . . . . . . . . 351  
Section 23. Preliminary Electrical Specifications . . . . 377  
Section 24. Mechanical Specifications. . . . . . . . . . . . 399  
Section 25. Ordering Information. . . . . . . . . . . . . . . . . 403  
Advance Information  
4
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.3  
1.3.1  
1.3.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Standard Features of the MC68HC908GP20 . . . . . . . . . . .32  
Features of the CPU08 . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
1.4  
1.5  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
1.6.10  
1.6.11  
1.6.12  
1.6.13  
1.6.14  
Power Supply Pins (V and V ) . . . . . . . . . . . . . . . . . . .37  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . .38  
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . .38  
External Interrupt Pin (IRQ). . . . . . . . . . . . . . . . . . . . . . . . .39  
CGM Power Supply Pins (V  
and V  
). . . . . . . . . . . . .39  
SSA  
DDA  
External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . . .39  
Analog Power Supply Pins (V and V ) . . . . . . . . .39  
DDAD  
SSAD  
ADC Voltage Reference High Pin (V  
) . . . . . . . . . . . . .39  
REFH  
ADC Voltage Reference Low Pin (V  
). . . . . . . . . . . . . .39  
REFL  
Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) .40  
Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . .40  
Port C I/O Pins (PTC6–PTC0). . . . . . . . . . . . . . . . . . . . . . .40  
Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . .40  
Port E I/O Pins (PTE1/RxD–PTE0/TxD) . . . . . . . . . . . . . . .41  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
5
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .43  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Section 3. Low-Power Modes  
3.1  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
3.2  
3.2.1  
3.2.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
3.3  
3.3.1  
3.3.2  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
3.4  
3.4.1  
3.4.2  
Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
3.5  
3.5.1  
3.5.2  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . .60  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
3.6  
3.6.1  
3.6.2  
Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . . . .60  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
3.7  
3.7.1  
3.7.2  
Computer Operating Properly Module (COP). . . . . . . . . . . . . .61  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
3.8  
3.8.1  
3.8.2  
External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .62  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
3.9  
3.9.1  
3.9.2  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . .62  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Advance Information  
6
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . .63  
3.10.1  
3.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . .63  
3.11.1  
3.11.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . .64  
3.12.1  
3.12.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
3.13 Timer Interface Module (TIM1 and TIM2). . . . . . . . . . . . . . . . .64  
3.13.1  
3.13.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.14.1  
3.14.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Section 4. Resets and Interrupts  
4.1  
4.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.3.1  
4.3.3.2  
4.3.3.3  
4.3.3.4  
4.3.3.5  
4.3.4  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
External Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
COP Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . .74  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
7
4.4  
4.4.1  
4.4.2  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
CGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
TIM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
TIM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
SCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
KBD0–KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
4.4.2.1  
4.4.2.2  
4.4.2.3  
4.4.2.4  
4.4.2.5  
4.4.2.6  
4.4.2.7  
4.4.2.8  
4.4.2.9  
4.4.2.10  
4.4.2.11  
4.4.3  
4.4.3.1  
4.4.3.2  
4.4.3.3  
ADC (Analog-to-Digital Converter). . . . . . . . . . . . . . . . . .83  
TBM (Timebase Module) . . . . . . . . . . . . . . . . . . . . . . . . .83  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .86  
Section 5. Analog-to-Digital Converter (ADC)  
5.1  
5.2  
5.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
5.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Voltage Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Accuracy and Precision. . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.5  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Advance Information  
8
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
5.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.7.1  
ADC Analog Power Pin (V  
Reference High Pin (V  
)/ADC Voltage  
) . . . . . . . . . . . . . . . . . . . . .92  
DDAD  
REFH  
5.7.2  
ADC Analog Ground Pin (V  
)/ADC Voltage  
SSAD  
Reference Low Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .92  
REFL  
5.7.3  
ADC Voltage In (ADV ) . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
IN  
5.8  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . .93  
ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
5.8.1  
5.8.2  
5.8.3  
Section 6. Break Module (BRK)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
6.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Flag Protection During Break Interrupts . . . . . . . . . . . . . .102  
CPU During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .102  
TIMI and TIM2 During Break Interrupts. . . . . . . . . . . . . . .102  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . .102  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
6.6  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Break Status and Control Register . . . . . . . . . . . . . . . . . .103  
Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . .104  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .106  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
9
Section 7. Clock Generator Module (CGMC)  
7.1  
7.2  
7.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
7.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .111  
PLL Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .113  
Manual and Automatic PLL Bandwidth Modes . . . . . . . . .113  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .119  
Base Clock Selector Circuit. . . . . . . . . . . . . . . . . . . . . . . .119  
CGMC External Connections . . . . . . . . . . . . . . . . . . . . . .120  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
7.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Output Pin (OSC2). . . . . . . . . . . . . . . . .121  
External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . .122  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
7.5.8  
7.5.9  
7.5.10  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .122  
DDA  
PLL Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .122  
SSA  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . .122  
Oscillator Stop Mode Enable Bit (OSCSTOPENB) . . . . . .122  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . .123  
CGMC Base Clock Output (CGMOUT). . . . . . . . . . . . . . .123  
CGMC CPU Interrupt (CGMINT). . . . . . . . . . . . . . . . . . . .123  
7.6  
CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . .127  
PLL Multiplier Select Register High. . . . . . . . . . . . . . . . . .129  
PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . .130  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . .131  
PLL Reference Divider Select Register. . . . . . . . . . . . . . .132  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Advance Information  
10  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
CGMC During Break Interrupts . . . . . . . . . . . . . . . . . . . . .134  
7.8.1  
7.8.2  
7.8.3  
7.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .135  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . .135  
Parametric Influences on Reaction Time . . . . . . . . . . . . .136  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
7.9.1  
7.9.2  
7.9.3  
Section 8. Configuration Register (CONFIG)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Section 9. Computer Operating Properly (COP)  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
9.1  
9.2  
9.3  
9.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
CGMXCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
STOP Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
COPRS (COP Rate Select). . . . . . . . . . . . . . . . . . . . . . . .148  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.4.7  
9.4.8  
9.5  
9.6  
9.7  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
11  
9.8  
9.8.1  
9.8.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
9.9  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .150  
Section 10. Central Processor Unit (CPU)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
10.4.1  
10.4.2  
10.4.3  
10.4.4  
10.4.5  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Stack Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Program Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . .156  
10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . .158  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
10.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . .159  
10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
Section 11. FLASH Memory  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
11.5 Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
11.5.1  
11.5.2  
FLASH Charge Pump Frequency Control. . . . . . . . . . . . .173  
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
Advance Information  
12  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
11.6 FLASH Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
11.7 FLASH Program/Margin Read Operation. . . . . . . . . . . . . . . .177  
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
11.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . .181  
11.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
Section 12. External Interrupt (IRQ)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
12.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .189  
12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .189  
Section 13. Keyboard Interrupt Module (KBI)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
13.6.1  
13.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .196  
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
13.8.1  
13.8.2  
Keyboard Status and Control Register . . . . . . . . . . . . . . .197  
Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . .198  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
13  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
14.4.1  
14.4.2  
14.4.3  
14.4.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . .202  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .202  
LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
Section 15. Monitor ROM (MON)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
15.4.1  
15.4.2  
15.4.3  
15.4.4  
15.4.5  
Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Advance Information  
14  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Section 16. Input/Output (I/O) Ports  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
16.3.1  
16.3.2  
16.3.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .226  
Port A Input Pullup Enable Register . . . . . . . . . . . . . . . . .228  
16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
16.4.1  
16.4.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .230  
16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
16.5.1  
16.5.2  
16.5.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .233  
Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . .235  
16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
16.6.1  
16.6.2  
16.6.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . .238  
Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . .240  
16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
16.7.1  
16.7.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .242  
Section 17. Random-Access Memory (RAM)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
15  
Section 18. Serial Communications  
Interface Module (SCI)  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
18.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.5.1  
18.5.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .255  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .257  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
18.5.2.1  
18.5.2.2  
18.5.2.3  
18.5.2.4  
18.5.2.5  
18.5.2.6  
18.5.3  
18.5.3.1  
18.5.3.2  
18.5.3.3  
18.5.3.4  
18.5.3.5  
18.5.3.6  
18.5.3.7  
18.5.3.8  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
18.6.1  
18.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .268  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
18.8.1  
18.8.2  
PTE0/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . .268  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . .269  
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
18.9.1  
18.9.2  
18.9.3  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
Advance Information  
16  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
18.9.4  
18.9.5  
18.9.6  
18.9.7  
SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .278  
SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .284  
Section 19. System Integration  
Module (SIM)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .291  
19.3.1  
19.3.2  
19.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Clock Startup from POR or LVI Reset. . . . . . . . . . . . . . . .292  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . .292  
19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .292  
19.4.1  
19.4.2  
External Pin Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
Active Resets from Internal Sources. . . . . . . . . . . . . . . . .294  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Computer Operating Properly (COP) Reset. . . . . . . . . .296  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .297  
Monitor Mode Entry Module Reset (MODRST) . . . . . . .297  
19.4.2.1  
19.4.2.2  
19.4.2.3  
19.4.2.4  
19.4.2.5  
19.4.2.6  
19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
19.5.1  
19.5.2  
19.5.3  
SIM Counter During Power-On Reset. . . . . . . . . . . . . . . .297  
SIM Counter During Stop Mode Recovery . . . . . . . . . . . .298  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . .298  
19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
19.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .302  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
Status Flag Protection in Break Mode. . . . . . . . . . . . . . . .305  
19.6.1.1  
19.6.1.2  
19.6.1.3  
19.6.2  
19.6.3  
19.6.4  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
17  
19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
19.7.1  
19.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
19.8.1  
19.8.2  
19.8.3  
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . .308  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .310  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . .311  
Section 20. Serial Peripheral Interface  
Module (SPI)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.4 Pin Name Conventions and I/O Register Addresses . . . . . . .315  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
20.5.1  
20.5.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
20.6.1  
20.6.2  
20.6.3  
20.6.4  
Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . .319  
Transmission Format When CPHA = 0. . . . . . . . . . . . . . .320  
Transmission Format When CPHA = 1. . . . . . . . . . . . . . .322  
Transmission Initiation Latency. . . . . . . . . . . . . . . . . . . . .323  
20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .325  
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
20.8.1  
20.8.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.11.2 Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .334  
Advance Information  
18  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . .335  
20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . .335  
20.13.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.14.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .340  
20.14.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
Section 21. Timebase Module (TBM)  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .347  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.7.1  
21.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
Section 22. Timer Interface Module (TIM)  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5.1  
22.5.2  
22.5.3  
22.5.4  
TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Input Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . .358  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
19  
22.5.5  
22.5.6  
22.5.7  
22.5.8  
22.5.9  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . .359  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . .359  
Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . .360  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . .361  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.7.1  
22.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.10.1 TIM Status and Control Register. . . . . . . . . . . . . . . . . . . .366  
22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .369  
22.10.4 TIMA Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22.10.5 TIM Channel Status and Control Registers. . . . . . . . . . . .371  
22.10.6 TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
Section 23. Preliminary Electrical Specifications  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.6 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .380  
23.7 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .382  
23.8 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384  
23.9 3.0-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
23.10 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .386  
23.11 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . .387  
23.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389  
Advance Information  
20  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
23.14 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
23.15 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
23.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .396  
23.17 Clock Generation Module Characteristics . . . . . . . . . . . . . . .396  
23.17.1 CGM Component Specifications . . . . . . . . . . . . . . . . . . . .396  
23.17.2 CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . .397  
23.18 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398  
Section 24. Mechanical Specifications  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
24.3 40-Pin Plastic Dual In-Line Package (DIP). . . . . . . . . . . . . . .400  
24.4 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .401  
Section 25. Ordering Information  
25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
21  
Advance Information  
22  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
DIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
2-1  
2-2  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . .47  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Power-On Reset Recovery. . . . . . . . . . . . . . . . . . . . . . . . . .72  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . .74  
Interrupt Stacking Order. . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Interrupt Recognition Example. . . . . . . . . . . . . . . . . . . . . . .77  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Interrupt Status Register 1 (INT1) . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 2 (INT2) . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 3 (INT3) . . . . . . . . . . . . . . . . . . . .86  
5-1  
5-2  
5-3  
5-4  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
ADC Status and Control Register (ADSCR). . . . . . . . . . . . .93  
ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . .95  
ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . .96  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
Break Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . .101  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Break Status and Control Register (BRKSCR) . . . . . . . . .103  
Break Address Register High (BRKH) . . . . . . . . . . . . . . . .104  
Break Address Register Low (BRKL). . . . . . . . . . . . . . . . .104  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .105  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .106  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
23  
List of Figures  
Figure  
Title  
Page  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
CGMC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
CGMC External Connections . . . . . . . . . . . . . . . . . . . . . . .121  
CGMC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . .124  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . .128  
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . .129  
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . .130  
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . .131  
PLL Reference Divider Select Register (PMDS) . . . . . . . .132  
PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
8-1  
8-2  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . .140  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . .140  
9-1  
9-2  
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . .149  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Index Register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Condition Code Register (CCR). . . . . . . . . . . . . . . . . . . . .156  
11-1  
11-2  
11-3  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . .171  
Smart Programming Algorithm. . . . . . . . . . . . . . . . . . . . . .179  
FLASH Block Protect Register (FLBPR) . . . . . . . . . . . . . .181  
12-1  
12-2  
12-3  
IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .187  
IRQ I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .187  
IRQ Status and Control Register (INTSCR). . . . . . . . . . . .190  
13-1  
13-2  
13-3  
13-4  
Keyboard Module Block Diagram. . . . . . . . . . . . . . . . . . . .193  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
Keyboard Status and Control Register (INTKBSCR) . . . . .197  
Keyboard Interrupt Enable Register (INTKBIER). . . . . . . .198  
Advance Information  
24  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
14-1  
14-2  
14-3  
LVI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . .201  
LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .201  
LVI Status Register (LVISR). . . . . . . . . . . . . . . . . . . . . . . .203  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Low-Voltage Monitor Mode Entry Flowchart . . . . . . . . . . .211  
Monitor Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Break Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Read Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . .218  
Monitor Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . .219  
16-1  
16-2  
16-3  
16-4  
16-5  
16-6  
16-7  
16-8  
I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . . .222  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .225  
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .226  
Port A I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Port A Input Pullup Enable Register (PTAPUE). . . . . . . . .228  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .229  
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .230  
Port B I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .232  
Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .233  
Port C I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
Port C Input Pullup Enable Register (PTCPUE). . . . . . . . .235  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .236  
Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .238  
Port D I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
Port D Input Pullup Enable Register (PTDPUE). . . . . . . . .240  
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . .241  
Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . .242  
Port E I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
16-9  
16-10  
16-11  
16-12  
16-13  
16-14  
16-15  
16-16  
16-17  
16-18  
16-19  
18-1  
18-2  
18-3  
SCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .251  
SCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .252  
SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
25  
List of Figures  
Figure  
Title  
Page  
18-4  
18-5  
18-6  
18-7  
18-8  
18-9  
18-10  
18-11  
18-12  
18-13  
18-14  
18-15  
18-16  
SCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . .259  
Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Slow Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
SCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . .270  
SCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . .273  
SCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . .275  
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . .278  
Flag Clearing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . .281  
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . .282  
SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . .283  
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . .284  
19-1  
19-2  
19-3  
19-4  
19-5  
19-6  
19-7  
19-8  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
SIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .290  
CGM Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
Sources of Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . .294  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Interrupt Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . .299  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
Interrupt Recognition Example. . . . . . . . . . . . . . . . . . . . . .301  
Interrupt Status Register 1 (INT1) . . . . . . . . . . . . . . . . . . .303  
Interrupt Status Register 2 (INT2) . . . . . . . . . . . . . . . . . . .303  
Interrupt Status Register 3 (INT3) . . . . . . . . . . . . . . . . . . .304  
Wait Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .306  
Wait Recovery from Interrupt or Break. . . . . . . . . . . . . . . .306  
Wait Recovery from Internal Reset . . . . . . . . . . . . . . . . . .306  
Stop Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .307  
Stop Mode Recovery from Interrupt or Break. . . . . . . . . . .308  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .308  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .310  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .311  
19-9  
19-10  
19-11  
19-12  
19-13  
19-14  
19-15  
19-16  
19-17  
19-18  
19-19  
19-20  
19-21  
19-22  
Advance Information  
26  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
20-1  
20-2  
20-3  
20-4  
20-5  
20-6  
20-7  
20-8  
SPI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .315  
SPI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .316  
Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . .317  
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . .321  
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . .322  
Transmission Start Delay (Master). . . . . . . . . . . . . . . . . . .324  
SPRF/SPTE CPU Interrupt Timing. . . . . . . . . . . . . . . . . . .325  
Missed Read of Overflow Condition. . . . . . . . . . . . . . . . . .327  
Clearing SPRF When OVRF Interrupt Is Not Enabled. . . .328  
SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . .331  
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . .338  
SPI Status and Control Register (SPSCR). . . . . . . . . . . . .340  
SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . .343  
20-9  
20-10  
20-11  
20-12  
20-13  
20-14  
20-15  
21-1  
21-2  
22-1  
22-2  
22-3  
22-4  
22-5  
22-6  
Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .346  
Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . .347  
TIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .355  
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .360  
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .366  
TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . .368  
TIM Counter Registers Low (TCNTL). . . . . . . . . . . . . . . . .368  
TIM Counter Modulo Register High (TMODH) . . . . . . . . . .369  
TIM Counter Modulo Register Low (TMODL). . . . . . . . . . .369  
TIM Counter Register High (TCNTH) . . . . . . . . . . . . . . . .370  
TIM Counter Register Low (TCNTL) . . . . . . . . . . . . . . . . .370  
TIM Channel 0 Status and Control Register (TSC0) . . . . .371  
TIM Channel 1Status and Control Register (TSC1). . . . . .371  
CHxMAX Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . .376  
TIM Channel 0 Register Low (TCH0L). . . . . . . . . . . . . . . .376  
TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . .376  
TIM Channel 1 Register Low (TCH1L). . . . . . . . . . . . . . . .376  
22-7  
22-8  
22-9  
22-10  
22-11  
22-12  
22-13  
22-14  
22-15  
22-16  
22-17  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
27  
List of Figures  
Figure  
Title  
Page  
23-1  
Typical High-Side Driver Characteristics –  
Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 4.5 Vdc). . . . . .386  
DD  
23-2  
23-3  
23-4  
23-5  
23-6  
Typical High-Side Driver Characteristics –  
Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc). . . . . .386  
DD  
Typical Low-Side Driver Characteristics –  
Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 4.5 Vdc). . . . . .387  
DD  
Typical Low-Side Driver Characteristics –  
Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc). . . . . .387  
DD  
Typical Low-Side Driver Characteristics  
for Higher Current Drive – Ports PTC4–PTC0  
(V = 4.5 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388  
DD  
Typical Low-Side Driver Characteristics  
for Higher Current Drive – Ports PTC4–PTC0  
(V = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388  
DD  
23-7  
23-8  
23-9  
Typical Operating I with All Modules  
DD  
Turned On (–40 °C to 85 °C). . . . . . . . . . . . . . . . . . . . .389  
Typical Wait Mode I with TBM Enabled,  
DD  
LVI Disabled, and PLL Disabled (–40 °C to 85 °C) . . . .389  
Typical Wait Mode I , with LVI and TBM Enabled,  
DD  
PLL Disabled (–40 °C to 85 °C). . . . . . . . . . . . . . . . . . .390  
SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
23-10  
23-11  
Advance Information  
28  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
List of Tables  
Table  
Title  
Page  
2-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
4-1  
4-2  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
5-1  
5-2  
Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7-1  
7-2  
7-3  
Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
PRE 1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . .127  
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . .127  
10-1  
10-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
11-1  
11-2  
Charge Pump Clock Frequency . . . . . . . . . . . . . . . . . . . . . .173  
Erase Block Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
14-1  
LVIOUT Bit Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
15-9  
Monitor Mode Signal Requirements and Options. . . . . . . . .209  
Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . .213  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . .215  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . .215  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . .216  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . .216  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . .217  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . .217  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
29  
List of Tables  
Table  
Title  
Page  
16-1  
16-2  
16-3  
16-4  
16-5  
16-6  
Port Control Register Bits Summary . . . . . . . . . . . . . . . . . .224  
Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
18-1  
18-2  
18-3  
18-4  
18-5  
18-6  
18-7  
18-8  
Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . .272  
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . .284  
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
SCI Baud Rate Selection Examples. . . . . . . . . . . . . . . . . . .286  
19-1  
19-2  
19-3  
19-4  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . .289  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
20-1  
20-2  
20-3  
20-4  
Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . .343  
21-1  
Timebase Rate Selection for OSC1 = 32.768 kHz. . . . . . . .347  
22-1  
22-2  
22-3  
Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .374  
25-1  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
Advance Information  
30  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 1. General Description  
1.1 Contents  
1.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.3  
1.3.1  
1.3.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Standard Features of the MC68HC908GP20 . . . . . . . . . . .32  
Features of the CPU08 . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
1.4  
1.5  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
1.6.10  
Power Supply Pins (V and V ) . . . . . . . . . . . . . . . . . . .37  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . .38  
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . .38  
External Interrupt Pin (IRQ). . . . . . . . . . . . . . . . . . . . . . . . .39  
CGM Power Supply Pins (V  
and V  
). . . . . . . . . . . . .39  
SSA  
DDA  
External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . . .39  
Analog Power Supply Pins (V and V ) . . . . . . . . .39  
DDAD  
SSAD  
ADC Voltage Reference High Pin (V  
) . . . . . . . . . . . . .39  
REFH  
ADC Voltage Reference Low Pin (V  
Port A Input/Output (I/O) Pins  
). . . . . . . . . . . . . .39  
REFL  
(PTA7/KBD7–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . .40  
Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . .40  
Port C I/O Pins (PTC6–PTC0). . . . . . . . . . . . . . . . . . . . . . .40  
Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . .40  
Port E I/O Pins (PTE1/RxD–PTE0/TxD) . . . . . . . . . . . . . . .41  
1.6.11  
1.6.12  
1.6.13  
1.6.14  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
31  
1.2 Introduction  
The MC68HC908GP20 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the  
family use the enhanced M68HC08 central processor unit (CPU08) and  
are available with a variety of modules, memory sizes and types, and  
package types.  
1.3 Features  
For convenience, features have been organized to reflect:  
• Standard features of the MC68HC908GP20  
• Features of the CPU08  
1.3.1 Standard Features of the MC68HC908GP20  
• High-performance M68HC08 architecture optimized for  
C-compilers  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
• 8-MHz internal bus frequency  
1
• FLASH program memory security  
• On-chip programming firmware for use with host personal  
computer which does not require high voltage for entry  
• In-system programming  
• System protection features:  
– Optional computer operating properly (COP) reset  
– Low-voltage detection with optional reset and selectable trip  
points for 3.0-V and 5.0-V operation  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Advance Information  
32  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Low-power design; fully static with stop and wait modes  
• Standard low-power modes of operation:  
– Wait mode  
– Stop mode  
• Master reset pin and power-on reset (POR)  
• 20 Kbytes of on-chip FLASH memory with in-circuit programming  
capabilities of FLASH program memory  
• 512 bytes of on-chip random-access memory (RAM)  
• Serial peripheral interface module (SPI)  
• Serial communications interface module (SCI)  
• Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2)  
with selectable input capture, output compare, and PWM  
capability on each channel  
• 8-channel, 8-bit successive approximation analog-to-digital  
converter (ADC)  
• BREAK module (BRK) to allow single breakpoint setting during  
in-circuit debugging  
• Internal pullups on IRQ and RST to reduce customer system cost  
• Clock generator module with on-chip 32-kHz crystal compatible  
PLL (phase-lock loop)  
• Up to 33 general-purpose input/output (I/O) pins, including:  
– 26 shared-function I/O pins  
– Five or seven dedicated I/O pins, depending on package  
choice  
• Selectable pullups on inputs only on ports A, C, and D. Selection  
is on an individual port bit basis. During output mode, pullups are  
disengaged.  
• High current 10-mA sink/10-mA source capability on all port pins  
• Higher current 15-mA sink/source capability on PTC0–PTC4  
• Timebase module with clock prescaler circuitry for eight user  
selectable periodic real-time interrupts with optional active clock  
source during stop mode for periodic wakeup from stop using an  
external 32-kHz crystal  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
33  
• Oscillator stop mode enable bit (OSCSTOPENB) in the CONFIG  
register to allow user selection of having the oscillator enabled or  
disabled during stop mode  
• 8-bit keyboard wakeup port  
• 5-mA maximum current injection on all port pins to maintain input  
protection  
• 40-pin plastic dual-in-line package (DIP) or 44-pin quad flat pack  
(QFP)  
• Specific features of the MC68HC908GP20 in 40-pin DIP are:  
– Port C is only 5 bits: PTC0–PTC4  
– Port D is only 6 bits: PTD0–PTD5; single 2-channel TIM  
module  
1.3.2 Features of the CPU08  
Features of the CPU08 include:  
• Enhanced HC05 programming model  
• Extensive loop control functions  
• 16 addressing modes (eight more than the HC05)  
• 16-bit index register and stack pointer  
• Memory-to-memory data transfers  
• Fast 8 × 8 multiply instruction  
• Fast 16/8 divide instruction  
• Binary-coded decimal (BCD) instructions  
• Optimization for controller applications  
• Efficient C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908GP20. Text in  
parentheses within a module block indicates the module name. Text in  
parentheses next to a signal indicates the module which uses the signal.  
Advance Information  
34  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–PTA0/KBD0 †  
PROGR. TIMEBASE  
MODULE  
CPU  
ARITHMETIC/LOGIC  
UNIT (ALU)  
REGISTERS  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BRKPT BREAK  
MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 19968 BYTES  
DUAL V. LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 512 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 307 BYTES  
PTC6 †  
PTC5 †  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
USER FLASH VECTOR SPACE — 36 BYTES  
CLOCK GENERATOR MODULE  
PTC4 † ‡  
PTC3 † ‡  
PTC2 † ‡  
PTC1 † ‡  
PTC0 † ‡  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
32-kHz OSCILLATOR  
OSC1  
OSC2  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PHASE-LOCKED LOOP  
PTD7/T2CH1 †  
PTD6/T2CH0 †  
PTD5/T1CH1 †  
PTD4/T1CH0 †  
PTD3/SPSCK †  
PTD2/MOSI †  
PTD1/MISO †  
PTD0/SS †  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
24 INTR SYSTEM INTEGRATION  
MODULE  
* RST  
* IRQ  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
MONITOR MODULE  
VDDAD / VREFH  
VSSAD / VREFL  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
DATA BUS SWITCH  
MODULE  
PTE1/RxD  
PTE0/TxD  
POWER-ON RESET  
MODULE  
MEMORY MAP  
MODULE  
VDD  
VSS  
VDDA  
SECURITY  
MASK OPTION REGISTER1  
MODULE  
POWER  
MODULE  
VSSA  
MONITOR MODE ENTRY  
MODULE  
MASK OPTION REGISTER2  
MODULE  
† Ports are software configurable with pullup device if input port.  
‡ Higher current drive port pins  
* Pin contains integrated pullup device  
Figure 1-1. MCU Block Diagram  
1.5 Pin Assignments  
VDDA (PLL)  
VSSA (PLL)  
PTA7/KBD7  
PTA6/KBD6  
PTA5/KBD5  
PTA4/KBD4  
PTA3/KBD3  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
2
CGMXFC(PLL)  
OSC2  
3
4
OSC1  
RST  
5
PTA2/KBD2  
6
PTC0  
PTA1/KBD1  
7
PTC1  
PTA0/KBD0  
8
VSSAD/VREFL (ADC)  
VDDAD/VREFH (ADC)  
PTC2  
9
PTC3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTC4  
PTB7/AD7  
PTE0/TxD/FLSPMGN  
PTE1/RxD  
IRQ/VPP/FLSEPMGN  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
VSS  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
PTD5/T1CH1  
PTD4/T1CH0  
VDD  
Note: PTC5, PTC6, PTD6, and PTD7 were removed for this package.  
Figure 1-2. DIP Pin Assignments  
Advance Information  
36  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
RST  
PTC0  
PTA1/KBD1  
PTA0/KBD0  
1
33  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
PTC1  
VSSAD/VREFL  
VDDAD/VREFH  
PTB7/AD7  
3
PTC2  
4
PTC3  
5
PTC4  
PTB6/AD6  
6
PTB5/AD5  
PTC5  
7
PTC6  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
8
PTE0/TxD  
PTE1/RxD  
IRQ  
9
10  
11  
23  
Figure 1-3. QFP Pin Assignments  
1.6 Pin Functions  
Descriptions of the pin functions are provided here.  
1.6.1 Power Supply Pins (V and V )  
DD  
SS  
V
and V are the power supply and ground pins. The MCU operates  
SS  
DD  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
37  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
NOTE: Component values shown  
represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.6.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. See Section 7. Clock Generator Module (CGMC).  
1.6.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. This pin contains an internal pullup  
resistor. See Section 19. System Integration Module (SIM).  
Advance Information  
38  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
1.6.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an  
internal pullup resistor. See Section 12. External Interrupt (IRQ).  
1.6.5 CGM Power Supply Pins (V  
and V  
)
DDA  
SSA  
V
and V  
are the power supply pins for the analog portion of the  
SSA  
DDA  
clock generator module (CGM). Decoupling of these pins should be as  
per the digital supply. See Section 7. Clock Generator Module  
(CGMC).  
1.6.6 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See  
Section 7. Clock Generator Module (CGMC).  
1.6.7 Analog Power Supply Pins (V  
and V  
)
SSAD  
DDAD  
V
and V  
are the power supply pins for the analog-to-digital  
DDAD  
SSAD  
converter. Decoupling of these pins should be as per the digital supply.  
See Section 5. Analog-to-Digital Converter (ADC).  
1.6.8 ADC Voltage Reference High Pin (V  
)
REFH  
V
is the high reference supply for the ADC. Connect the V  
pin  
REFH  
REFH  
to the same voltage potential as V  
. See Section 5. Analog-to-  
DDAD  
Digital Converter (ADC).  
1.6.9 ADC Voltage Reference Low Pin (V  
)
REFL  
V
is the low reference supply for the ADC. Connect the V  
pin to  
REFL  
REFL  
the same voltage potential as V  
. See Section 5. Analog-to-Digital  
SSAD  
Converter (ADC).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
39  
1.6.10 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)  
PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all  
of the port A pins can be programmed to serve as keyboard interrupt  
pins. See Section 16. Input/Output (I/O) Ports and Section 13.  
Keyboard Interrupt Module (KBI).  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
1.6.11 Port B I/O Pins (PTB7/AD7–PTB0/AD0)  
PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can  
also be used for analog-to-digital converter (ADC) inputs. See Section  
16. Input/Output (I/O) Ports and Section 5. Analog-to-Digital  
Converter (ADC).  
1.6.12 Port C I/O Pins (PTC6–PTC0)  
PTC6–PTC0 are general-purpose, bidirectional I/O port pins. See  
Section 16. Input/Output (I/O) Ports. PTC5 and PTC6 are only  
available on 44-pin QFP packages.  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
1.6.13 Port D I/O Pins (PTD7/T2CH1–PTD0/SS)  
PTD7–PTD0 are special-function, bidirectional I/O port pins.  
PTD0–PTD3 can be programmed to be serial peripheral interface (SPI)  
pins, while PTD4–PTD7 can be individually programmed to be timer  
interface module (TIM1 and TIM2) pins. See Section 22. Timer  
Interface Module (TIM), Section 20. Serial Peripheral Interface  
Module (SPI), and Section 16. Input/Output (I/O) Ports. PTD6 and  
PTD7 are only available on 44-pin QFP packages.  
Advance Information  
40  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
1.6.14 Port E I/O Pins (PTE1/RxD–PTE0/TxD)  
PTE0–PTE1 are general-purpose, bidirectional I/O port pins. These pins  
can also be programmed to be serial communications interface (SCI)  
pins. See Section 18. Serial Communications Interface Module (SCI)  
and Section 16. Input/Output (I/O) Ports.  
NOTE: Any unused inputs and I/O ports should be tied to an appropriate logic  
level (either V or V ). Although the I/O ports of the  
DD  
SS  
MC68HC908GP20 do not require termination, termination is  
recommended to reduce the possibility of static damage.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
41  
Advance Information  
42  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .43  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
2.2 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 20 Kbytes of FLASH memory, 19,968 bytes of user space  
• 512 bytes of random-access memory (RAM)  
• 36 bytes of user-defined vectors  
• 307 bytes of monitor ROM  
2.3 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address  
reset if illegal address resets are enabled. In the memory map  
(Figure 2-1) and in register figures in this document, unimplemented  
locations are shaded.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
43  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In the Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.5 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area  
of $0000–$003F. Additional I/O registers have these addresses:  
• $FE00; SIM break status register, SBSR  
• $FE01; SIM reset status register, SRSR  
• $FE02; reserved, SUBAR  
• $FE03; SIM break flag control register, SBFCR  
• $FE04; interrupt status register 1, INT1  
• $FE05; interrupt status register 2, INT2  
• $FE06; interrupt status register 3, INT3  
• $FE07; reserved, FLTCR  
• $FE08; FLASH control register, FLCR  
• $FE09; break address register high, BRKH  
• $FE0A; break address register low, BRKL  
• $FE0B; break status and control register, BRKSCR  
• $FE0C; LVI status register, LVISR  
• $FF80; FLASH block protect register, FLBPR  
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector  
locations.  
Advance Information  
44  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
$0000  
I/O Registers  
64 Bytes  
$003F  
$0040  
RAM  
512 Bytes  
$023F  
$0240  
Unimplemented  
44,480 Bytes  
$AFFF  
$B000  
FLASH Memory  
19,968 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved (SUBAR)  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved (FLTCR)  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Unimplemented  
3 Bytes  
$FE0F  
Figure 2-1. Memory Map  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
45  
$FE10  
Unimplemented  
16 Bytes  
Reserved for Compatibility with Monitor Code  
for A-Family Parts  
$FE1F  
$FE20  
Monitor ROM  
307 Bytes  
$FF52  
$FF53  
Unimplemented  
45 Bytes  
$FF7F  
$FF80  
$FF81  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
91 Bytes  
$FFDB  
$FFDC  
Note: $FFF6–$FFFD  
reserved for  
8 security bytes  
FLASH Vectors  
36 Bytes  
$FFFF  
Figure 2-1. Memory Map (Continued)  
Advance Information  
46  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
0
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
Port C Data Register  
(PTC)  
PTD7  
Port D Data Register  
(PTD)  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
DDRB6  
0
DDRB5  
0
DDRB4  
0
DDRB3  
0
DDRB2  
0
Data Direction Register B  
(DDRB)  
0
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
47  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$000A  
Unimplemented Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
DDRE1  
0
0
DDRE0  
0
Read:  
Data Direction Register E  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(DDRE)  
0
0
0
0
0
0
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Port A Input Pullup Enable  
Register (PTAPUE)  
0
0
0
0
0
0
0
0
0
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Port C Input Pullup Enable  
Register (PTCPUE)  
0
0
0
0
0
0
0
0
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Port D Input Pullup Enable  
Register (PTDPUE)  
0
SPRIE  
0
0
0
0
0
0
0
SPE  
0
0
DMAS  
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPTIE  
0
SPI Control Register  
(SPCR)  
0
1
0
1
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN  
SPR1  
SPR0  
SPI Status and Control  
Register (SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
LOOPS  
0
ENSCI  
0
TXINV  
0
M
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
SCI Control Register 1  
(SCC1)  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)  
Advance Information  
48  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCTIE  
SCI Control Register 2  
(SCC2)  
$0014  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
IMASKK MODEK  
and Control Register Write:  
(INTKBSCR)  
Reset:  
0
KBIE7  
0
0
0
0
0
0
KBIE1  
0
0
Read:  
KBIE6  
0
KBIE5  
0
KBIE4  
0
KBIE3  
KBIE2  
0
KBIE0  
Keyboard Interrupt Enable  
Write:  
Register (INTKBIER)  
Reset:  
0
0
0
R
0
Read: TBIF  
Write:  
TBR2  
TBR1  
TBR0  
TBIE  
TBON  
0
Time Base Module Control  
Register (TBCR)  
TACK  
0
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
IRQF1  
0
IMASK1 MODE1  
IRQ Status and Control  
Register (INTSCR)  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
49  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
PMPSGV- OSC-  
LVEN STOPENB  
SCIBD-  
SRC  
Configuration Register 2  
$001E  
(CONFIG2)† Write:  
Reset:  
0
0
0
0
0
0
0
STOP  
0
0
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
Configuration Register 1  
$001F  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(CONFIG1)  
0
TOF  
0
0
0
0
0
0
0
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Timer 1 Status and Control  
Register (T1SC)  
TRST  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter Register  
High (T1CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 1 Counter Register  
Low (T1CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Counter Modulo  
Register High (T1MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
1
6
1
5
1
4
1
3
2
1
Timer 1 Counter Modulo  
Register Low (T1MODL)  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 0  
Write:  
Register High (T1CH0H)  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 1 Channel 0  
Register Low (T1CH0L)  
Write:  
Reset:  
Indeterminate after reset  
† One-time writeable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).  
= Unimplemented R = Reserved U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)  
Advance Information  
50  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
CH1IE  
0
5
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
0
Timer 1 Channel 1 Status  
$0028  
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 1  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
Write:  
Register High (T1CH1H)  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Timer 1 Channel 1  
Register Low (T1CH1L)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
TOF  
0
TRST  
0
0
TOIE  
TSTOP  
PS2  
PS1  
Timer 2 Status and Control  
Write:  
0
0
Register (T2SC)  
Reset:  
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter Register  
High (T2CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 2 Counter Register  
Low (T2CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Counter Modulo  
Register High (T2MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
1
6
1
5
1
4
1
3
2
1
Timer 2 Counter Modulo  
Register Low (T2MODL)  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 2 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T2SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Channel 0  
Register High (T2CH0H)  
Write:  
Reset:  
Indeterminate after reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
51  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 0  
Register Low (T2CH0L)  
$0032  
Indeterminate after reset  
Read: CH1F  
0
Timer 2 Channel 1 Status  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
and Control Register Write:  
0
0
(T2SC1)  
Reset:  
0
0
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Channel 1  
Register High (T2CH1H)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 1  
Register Low (T2CH1L)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
Write:  
(PCTL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
LOCK  
AUTO  
ACQ  
R
PLL Bandwidth Control  
Write:  
Register (PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
PLL Multiplier Select High  
Write:  
Register (PMSH)  
Reset:  
Read:  
0
0
0
0
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
PLL Multiplier Select Low  
Write:  
Register (PMSL)  
Reset:  
Read:  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
PLL VCO Select Range  
Write:  
Register (PMRS)  
Reset:  
Read:  
0
0
1
0
0
0
0
0
RDS3  
0
RDS2  
0
RDS1  
0
RDS0  
1
PLL Reference Divider  
Select Register (PMDS)  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)  
Advance Information  
52  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
Analog-to-Digital Status  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
and Control Register Write:  
R
0
(ADSCR)  
Reset:  
0
AD6  
R
0
AD5  
R
1
AD4  
R
1
AD3  
R
1
AD2  
R
1
AD1  
R
1
AD0  
R
Read:  
AD7  
R
Analog-to-Digital Data  
$003D  
$003E  
$003F  
$FE00  
Write:  
Register (ADR)  
Reset:  
Read:  
Indeterminate after reset  
0
0
R
0
0
R
0
0
R
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADICLK  
R
Analog-to-Digital Input  
Clock Register (ADCLK)  
Write:  
Reset:  
Read:  
0
0
Unimplemented Write:  
Reset:  
Read:  
SBSW  
NOTE  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
SIM Break Status Register  
Write:  
(SBSR)  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
(SRSR)  
POR:  
Read:  
Write:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SIM Upper Byte Address  
$FE02  
Register (SUBAR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE04  
$FE05  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
R
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
53  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R
0
Interrupt Status Register 3  
(INT3)  
$FE06  
R
0
R
0
R
0
R
0
R
0
0
0
R
R
R
0
R
0
R
R
0
R
0
R
0
FLASH Test Control  
Register (FLTCR)  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FF80  
$FFFF  
0
FDIV1  
0
0
0
FDIV0  
BLK1  
0
BLK0  
0
HVEN  
MARGIN ERASE  
PGM  
0
FLASH Control Register  
(FLCR)  
0
0
11  
0
0
10  
0
0
9
0
1
Bit 15  
0
14  
13  
0
12  
0
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
0
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
BRKA  
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Write:  
LVI Status Register  
(LVISR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
Bit 7  
U
0
6
0
5
0
Bit 4  
U
0
BPR3  
U
0
BPR2  
U
0
BPR1  
U
0
BPR0  
U
FLASH Block Protect  
Register (FLBPR)  
U
U
Low byte of reset vector  
COP Control Register  
(COPCTL)  
Writing clears COP counter (any value)  
Unaffected by reset  
† Non-volatile FLASH register  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)  
Advance Information  
54  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Lowest  
Vector  
Timebase Vector (High)  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Timebase Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
PLL Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
55  
Advance Information  
56  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 3. Low-Power Modes  
3.1 Contents  
3.2  
3.2.1  
3.2.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
3.3  
3.3.1  
3.3.2  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
3.4  
3.4.1  
3.4.2  
Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
3.5  
3.5.1  
3.5.2  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . .60  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
3.6  
3.6.1  
3.6.2  
Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . . . .60  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
3.7  
3.7.1  
3.7.2  
Computer Operating Properly Module (COP). . . . . . . . . . . . . .61  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
3.8  
3.8.1  
3.8.2  
External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .62  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
3.9  
3.9.1  
3.9.2  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . .62  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . .63  
3.10.1  
3.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
57  
3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . .63  
3.11.1  
3.11.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . .64  
3.12.1  
3.12.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
3.13 Timer Interface Module (TIM1 and TIM2). . . . . . . . . . . . . . . . .64  
3.13.1  
3.13.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.14.1  
3.14.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
3.2 Introduction  
The MCU may enter two low-power modes: wait mode and stop mode.  
They are common to all HC08 MCUs and are entered through instruction  
execution. This section describes how each module acts in the low-  
power modes.  
3.2.1 Wait Mode  
The WAIT instruction puts the MCU in a low-power standby mode in  
which the CPU clock is disabled but the bus clock continues to run.  
Power consumption can be further reduced by disabling the LVI module  
and/or the timebase module through bits in the CONFIG register. (See  
Section 8. Configuration Register (CONFIG).)  
Advance Information  
58  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
3.2.2 Stop Mode  
Stop mode is entered when a STOP instruction is executed. The CPU  
clock is disabled and the bus clock is disabled if the OSCSTOPENB bit  
in the CONFIG register is at a logic 0. (See Section 8. Configuration  
Register (CONFIG).)  
3.3 Analog-to-Digital Converter (ADC)  
3.3.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH4–ADCH0 bits in the ADC status  
and control register before executing the WAIT instruction.  
3.3.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode after an external interrupt. Allow one conversion  
cycle to stabilize the analog circuitry.  
3.4 Break Module (BRK)  
3.4.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if the BW  
bit in the break status register is set.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
59  
3.4.2 Stop Mode  
The break module is inactive in stop mode. A break interrupt causes exit  
from stop mode and sets the BW bit in the break status register. The  
STOP instruction does not affect break module register states.  
3.5 Central Processor Unit (CPU)  
3.5.1 Wait Mode  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
3.5.2 Stop Mode  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
3.6 Clock Generator Module (CGM)  
3.6.1 Wait Mode  
The CGM remains active in wait mode. Before entering wait mode,  
software can disengage and turn off the PLL by clearing the BCS and  
PLLON bits in the PLL control register (PCTL). Less power-sensitive  
Advance Information  
60  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
applications can disengage the PLL without turning it off. Applications  
that require the PLL to wake the MCU from wait mode also can deselect  
the PLL output without turning off the PLL.  
3.6.2 Stop Mode  
If the OSCSTOPEN bit in the CONFIG register is cleared (default), then  
the STOP instruction disables the CGM (oscillator and phase-locked  
loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK,  
divided by two driving CGMOUT, the PLL automatically clears the BCS  
bit in the PLL control register (PCTL), thereby selecting the crystal clock,  
CGMXCLK, divided by two as the source of CGMOUT. When the MCU  
recovers from STOP, the crystal clock divided by two drives CGMOUT  
and BCS remains clear.  
If the OSCSTOPEN bit in the CONFIG register is set, then the phase  
locked loop is shut off but the oscillator will continue to operate in stop  
mode.  
3.7 Computer Operating Properly Module (COP)  
3.7.1 Wait Mode  
The COP remains active in wait mode. To prevent a COP reset during  
wait mode, periodically clear the COP counter in a CPU interrupt routine  
or a DMA service routine.  
3.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
61  
The STOP bit in the configuration register (CONFIG) enables the STOP  
instruction. To prevent inadvertently turning off the COP with a STOP  
instruction, disable the STOP instruction by clearing the STOP bit.  
3.8 External Interrupt Module (IRQ)  
3.8.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing the IMASK1 bit  
in the IRQ status and control register enables IRQ CPU interrupt  
requests to bring the MCU out of wait mode.  
3.8.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK1 bit  
in the IRQ status and control register enables IRQ CPU interrupt  
requests to bring the MCU out of stop mode.  
3.9 Keyboard Interrupt Module (KBI)  
3.9.1 Wait Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
3.9.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
Advance Information  
62  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
3.10 Low-Voltage Inhibit Module (LVI)  
3.10.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
3.10.2 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of stop mode.  
3.11 Serial Communications Interface Module (SCI)  
3.11.1 Wait Mode  
The SCI module remains active in wait mode. Any enabled CPU  
interrupt request from the SCI module can bring the MCU out of wait  
mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
3.11.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after the MCU  
exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
63  
3.12 Serial Peripheral Interface Module (SPI)  
3.12.1 Wait Mode  
The SPI module remains active in wait mode. Any enabled CPU interrupt  
request from the SPI module can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
3.12.2 Stop Mode  
The SPI module is inactive in stop mode. The STOP instruction does not  
affect SPI register states. SPI operation resumes after an external  
interrupt. If stop mode is exited by reset, any transfer in progress is  
aborted, and the SPI is reset.  
3.13 Timer Interface Module (TIM1 and TIM2)  
3.13.1 Wait Mode  
The TIM remains active in wait mode. Any enabled CPU interrupt  
request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
3.13.2 Stop Mode  
The TIM is inactive in stop mode. The STOP instruction does not affect  
register states or the state of the TIM counter. TIM operation resumes  
when the MCU exits stop mode after an external interrupt.  
Advance Information  
64  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
3.14 Timebase Module (TBM)  
3.14.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before enabling the WAIT  
instruction.  
3.14.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the oscillator has been enabled to operate during stop mode  
through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from  
stop mode.  
If the oscillator has not been enabled to operate in stop mode, the  
timebase module will not be active during stop mode. In stop mode, the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the  
power consumption by stopping the timebase before enabling the STOP  
instruction.  
3.15 Exiting Wait Mode  
These events restart the CPU clock and load the program counter with  
the reset vector or with an interrupt vector:  
• External reset — A logic 0 on the RST pin resets the MCU and  
loads the program counter with the contents of locations $FFFE  
and $FFFF.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
65  
• External interrupt — A high-to-low transition on an external  
interrupt pin (IRQ pin) loads the program counter with the contents  
of locations: $FFFA and $FFFB; IRQ pin.  
• Break interrupt — A break interrupt loads the program counter  
with the contents of $FFFC and $FFFD.  
• Computer operating properly module (COP) reset — A timeout of  
the COP counter resets the MCU and loads the program counter  
with the contents of $FFFE and $FFFF.  
• Low-voltage inhibit module (LVI) reset — A power supply voltage  
below the V  
voltage resets the MCU and loads the program  
tripf  
counter with the contents of locations $FFFE and $FFFF.  
• Clock generator module (CGM) interrupt — A CPU interrupt  
request from the phase-locked loop (PLL) loads the program  
counter with the contents of $FFF8 and $FFF9.  
• Keyboard module (KBI) interrupt — A CPU interrupt request from  
the KBI module loads the program counter with the contents of  
$FFE0 and $FFE1.  
• Timer 1 interface module (TIM1) interrupt — A CPU interrupt  
request from the TIM1 loads the program counter with the  
contents of:  
– $FFF2 and $FFF3; TIM1 overflow  
– $FFF4 and $FFF5; TIM1 channel 1  
– $FFF6 and $FFF7; TIM1 channel 0  
• Timer 2 interface module (TIM2) interrupt — A CPU interrupt  
request from the TIM2 loads the program counter with the  
contents of:  
– $FFEC and $FFED; TIM2 overflow  
– $FFEE and $FFEF; TIM2 channel 1  
– $FFF0 and $FFF1; TIM2 channel 0  
• Serial peripheral interface module (SPI) interrupt — A CPU  
interrupt request from the SPI loads the program counter with the  
contents of:  
– $FFE8 and $FFE9; SPI transmitter  
– $FFEA and $FFEB; SPI receiver  
Advance Information  
66  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Serial communications interface module (SCI) interrupt — A CPU  
interrupt request from the SCI loads the program counter with the  
contents of:  
– $FFE2 and $FFE3; SCI transmitter  
– $FFE4 and $FFE5; SCI receiver  
– $FFE6 and $FFE7; SCI receiver error  
• Analog-to-digital converter module (ADC) interrupt — A CPU  
interrupt request from the ADC loads the program counter with the  
contents of: $FFDE and $FFDF; ADC conversion complete.  
• Timebase module (TBM) interrupt — A CPU interrupt request from  
the TBM loads the program counter with the contents of: $FFDC  
and $FFDD; TBM interrupt.  
3.16 Exiting Stop Mode  
These events restart the system clocks and load the program counter  
with the reset vector or with an interrupt vector:  
• External reset — A logic 0 on the RST pin resets the MCU and  
loads the program counter with the contents of locations $FFFE  
and $FFFF.  
• External interrupt — A high-to-low transition on an external  
interrupt pin loads the program counter with the contents of  
locations:  
– $FFFA and $FFFB; IRQ pin  
– $FFE0 and $FFE1; keyboard interrupt pins  
• Low-voltage inhibit (LVI) reset — A power supply voltage below  
the LVI  
voltage resets the MCU and loads the program counter  
tripf  
with the contents of locations $FFFE and $FFFF.  
• Break interrupt — A break interrupt loads the program counter  
with the contents of locations $FFFC and $FFFD.  
• Timebase module (TBM) interrupt — A TBM interrupt loads the  
program counter with the contents of locations $FFDC and $FFDD  
when the timebase counter has rolled over. This allows the TBM  
to generate a periodic wakeup from stop mode.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
67  
Upon exit from stop mode, the system clocks begin running after an  
oscillator stabilization delay. A 12-bit stop recovery counter inhibits the  
system clocks for 4096 CGMXCLK cycles after the reset or external  
interrupt.  
The short stop recovery bit, SSREC, in the configuration register  
controls the oscillator stabilization delay during stop recovery. Setting  
SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32  
CGMXCLK cycles.  
NOTE: Use the full stop recovery time (SSREC = 0) in applications that use an  
external crystal.  
Advance Information  
68  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 4. Resets and Interrupts  
4.1 Contents  
4.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.3.1  
4.3.3.2  
4.3.3.3  
4.3.3.4  
4.3.3.5  
4.3.4  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
External Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
COP Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . .74  
4.4  
4.4.1  
4.4.2  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
CGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
TIM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
TIM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
SCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
KBD0–KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
4.4.2.1  
4.4.2.2  
4.4.2.3  
4.4.2.4  
4.4.2.5  
4.4.2.6  
4.4.2.7  
4.4.2.8  
4.4.2.9  
4.4.2.10  
4.4.2.11  
4.4.3  
4.4.3.1  
4.4.3.2  
4.4.3.3  
ADC (Analog-to-Digital Converter). . . . . . . . . . . . . . . . . .83  
TBM (Timebase Module) . . . . . . . . . . . . . . . . . . . . . . . . .83  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .85  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .86  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
69  
4.2 Introduction  
Resets and interrupts are responses to exceptional events during  
program execution. A reset re-initializes the MCU to its startup condition.  
An interrupt vectors the program counter to a service routine.  
4.3 Resets  
A reset immediately returns the MCU to a known startup condition and  
begins program execution from a user-defined memory location.  
4.3.1 Effects  
A reset:  
• Immediately stops the operation of the instruction being executed  
• Initializes certain control and status bits  
• Loads the program counter with a user-defined reset vector  
address from locations $FFFE and $FFFF  
• Selects CGMXCLK divided by four as the bus clock  
4.3.2 External Reset  
A logic 0 applied to the RST pin for a time, t , generates an external  
IRL  
reset. An external reset sets the PIN bit in the SIM reset status register.  
Advance Information  
70  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
4.3.3 Internal Reset  
Sources:  
• Power-on reset (POR)  
• Computer operating properly (COP)  
• Low-power reset circuits  
• Illegal opcode  
• Illegal address  
All internal reset sources pull the RST pin low for 32 CGMXCLK cycles  
to allow resetting of external devices. The MCU is held in reset for an  
additional 32 CGMXCLK cycles after releasing the RST pin.  
PULLED LOW BY MCU  
RST PIN  
32 CYCLES  
32 CYCLES  
CGMXCLK  
INTERNAL  
RESET  
Figure 4-1. Internal Reset Timing  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
71  
4.3.3.1 Power-On Reset  
A power-on reset (POR) is an internal reset caused by a positive  
transition on the V pin. V at the POR must go completely to 0 V to  
DD  
DD  
reset the MCU. This distinguishes between a reset and a POR. The POR  
is not a brown-out detector, low-voltage detector, or glitch detector.  
A power-on reset:  
• Holds the clocks to the CPU and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles  
• Drives the RST pin low during the oscillator stabilization delay  
• Releases the RST pin 32 CGMXCLK cycles after the oscillator  
stabilization delay  
• Releases the CPU to begin the reset vector sequence 64  
CGMXCLK cycles after the oscillator stabilization delay  
• Sets the POR and LP bits in the SIM reset status register and  
clears all other bits in the register  
OSC1  
PORRST(1)  
4096  
32  
32  
CYCLES CYCLES CYCLES  
CGMXCLK  
CGMOUT  
RST PIN  
INTERNAL  
RESET  
1. PORRST is an internally generated power-on reset pulse.  
Figure 4-2. Power-On Reset Recovery  
Advance Information  
72  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
4.3.3.2 COP Reset  
A COP reset is an internal reset caused by an overflow of the COP  
counter. A COP reset sets the COP bit in the system integration module  
(SIM) reset status register.  
To clear the COP counter and prevent a COP reset, write any value to  
the COP control register at location $FFFF.  
4.3.3.3 Low-Voltage Inhibit Reset  
A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in  
the power supply voltage to the LVI voltage.  
tripf  
An LVI reset:  
• Holds the clocks to the CPU and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles after the power  
supply voltage rises to the LVI  
voltage  
tripr  
• Drives the RST pin low for as long as V is below the LVI  
DD  
tripr  
voltage and during the oscillator stabilization delay  
• Releases the RST pin 32 CGMXCLK cycles after the oscillator  
stabilization delay  
• Releases the CPU to begin the reset vector sequence  
64 CGMXCLK cycles after the oscillator stabilization delay  
• Sets the LVI bit in the SIM reset status register  
4.3.3.4 Illegal Opcode Reset  
An illegal opcode reset is an internal reset caused by an opcode that is  
not in the instruction set. An illegal opcode reset sets the ILOP bit in the  
SIM reset status register.  
If the stop enable bit, STOP, in the mask option register is a logic 0, the  
STOP instruction causes an illegal opcode reset.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
73  
4.3.3.5 Illegal Address Reset  
An illegal address reset is an internal reset caused by opcode fetch from  
an unmapped address. An illegal address reset sets the ILAD bit in the  
SIM reset status register.  
A data fetch from an unmapped address does not generate a reset.  
4.3.4 SIM Reset Status Register  
This read-only register contains flags to show reset sources. All flag bits  
are automatically cleared following a read of the register. Reset service  
can read the SIM reset status register to clear the register after power-  
on reset and to determine the source of any subsequent reset.  
The register is initialized on powerup as shown with the POR bit set and  
all other bits cleared. During a POR or any other internal reset, the RST  
pin is pulled low. After the pin is released, it will be sampled 32 XCLK  
cycles later. If the pin is not above a VIH at that time, then the PIN bit in  
the SRSR may be set in addition to whatever other bits are set.  
NOTE: Only a read of the SIM reset status register clears all reset flags. After  
multiple resets from different sources without reading the register,  
multiple flags remain set.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
0
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Flag  
1 = Power-on reset since last read of SRSR  
0 = Read of SRSR since last power-on reset  
Advance Information  
74  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
PIN — External Reset Flag  
1 = External reset via RST pin since last read of SRSR  
0 = POR or read of SRSR since last external reset  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by timeout of COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by low-power supply voltage  
0 = POR or read of SRSR  
4.4 Interrupts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. An interrupt does not stop the operation of  
the instruction being executed, but begins when the current instruction  
completes its operation.  
4.4.1 Effects  
An interrupt:  
• Saves the CPU registers on the stack. At the end of the interrupt,  
the RTI instruction recovers the CPU registers from the stack so  
that normal processing can resume.  
• Sets the interrupt mask (I bit) to prevent additional interrupts.  
Once an interrupt is latched, no other interrupt can take  
precedence, regardless of its priority.  
• Loads the program counter with a user-defined vector address  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
75  
CONDITION CODE REGISTER  
ACCUMULATOR  
5
4
3
2
1
1
2
3
4
5
INDEX REGISTER (LOW BYTE)*  
PROGRAM COUNTER (HIGH BYTE)  
PROGRAM COUNTER (LOW BYTE)  
STACKING  
ORDER  
UNSTACKING  
ORDER  
$00FF DEFAULT ADDRESS ON RESET  
*High byte of index register is not stacked.  
Figure 4-4. Interrupt Stacking Order  
After every instruction, the CPU checks all pending interrupts if the I bit  
is not set. If more than one interrupt is pending when an instruction is  
done, the highest priority interrupt is serviced first. In the example shown  
in Figure 4-5, if an interrupt is pending upon exit from the interrupt  
service routine, the pending interrupt is serviced before the LDA  
instruction is executed.  
Advance Information  
76  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 4-5. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, save the  
H register and then restore it prior to exiting the routine.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
77  
FROM RESET  
YES  
BREAK  
INTERRUPT  
?
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
CGM  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
?
YES  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION  
?
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION  
?
NO  
Figure 4-6. Interrupt Processing  
Advance Information  
78  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
4.4.2 Sources  
The sources in Table 4-1 can generate CPU interrupt requests.  
Table 4-1. Interrupt Sources  
Reset  
None  
None  
IRQF  
PLLF  
CH0F  
CH1F  
TOF  
None  
None  
None  
None  
IF1  
0
0
1
2
3
4
5
6
7
8
$FFFE$FFFF  
$FFFC$FFFD  
$FFFA$FFFB  
$FFF8–$FFF9  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
$FFEC–$FFED  
SWI instruction  
IRQ pin  
IMASK1  
PLLIE  
CH0IE  
CH1IE  
TOIE  
CGM (PLL)  
IF2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receiver full  
SPI overflow  
IF3  
IF4  
IF5  
CH0F  
CH1F  
TOF  
CH0IE  
CH1IE  
TOIE  
IF6  
IF7  
IF8  
SPRF  
OVRF  
MODF  
SPTE  
OR  
SPRIE  
ERRIE  
ERRIE  
SPTIE  
ORIE  
IF9  
9
$FFEA–$FFEB  
$FFE8–$FFE9  
SPI mode fault  
SPI transmitter empty  
SCI receiver overrun  
SCI noise fag  
IF10  
10  
NF  
NEIE  
IF11  
11  
$FFE6–$FFE7  
SCI framing error  
SCI parity error  
SCI receiver full  
SCI input idle  
FE  
FEIE  
PE  
PEIE  
SCRF  
IDLE  
SCTE  
TC  
SCRIE  
ILIE  
IF12  
IF13  
12  
13  
$FFE4–$FFE5  
$FFE2–$FFE3  
SCI transmitter empty  
SCI transmission complete  
Keyboard pin  
SCTIE  
TCIE  
KEYF  
COCO  
TBIF  
IMASKK  
AIEN  
IF14  
IF15  
IF16  
14  
15  
$FFE0–$FFE1  
$FFDE–$FFDF  
ADC conversion complete  
Timebase  
TBIE  
16 $FFDC–$FFDD  
Note:  
1. The I bit in the condition code register is a global mask for all interrupt sources except the  
SWI instruction.  
2. 0 = highest priority  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
79  
4.4.2.1 SWI Instruction  
The software interrupt instruction (SWI) causes a non-maskable  
interrupt.  
NOTE: A software interrupt pushes PC onto the stack. An SWI does not push  
PC – 1, as a hardware interrupt does.  
4.4.2.2 Break Interrupt  
The break module causes the CPU to execute an SWI instruction at a  
software-programmable break point.  
4.4.2.3 IRQ Pin  
4.4.2.4 CGM  
A logic 0 on the IRQ1 pin latches an external interrupt request.  
The CGM can generate a CPU interrupt request every time the phase-  
locked loop circuit (PLL) enters or leaves the locked state. When the  
LOCK bit changes state, the PLL flag (PLLF) is set. The PLL interrupt  
enable bit (PLLIE) enables PLLF CPU interrupt requests. LOCK is in the  
PLL bandwidth control register. PLLF is in the PLL control register.  
4.4.2.5 TIM1  
TIM1 CPU interrupt sources:  
• TIM1 overflow flag (TOF) — The TOF bit is set when the TIM1  
counter value rolls over to $0000 after matching the value in the  
TIM1 counter modulo registers. The TIM1 overflow interrupt  
enable bit, TOIE, enables TIM1 overflow CPU interrupt requests.  
TOF and TOIE are in the TIM1 status and control register.  
• TIM1 channel flags (CH1F–CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. The channel  
x interrupt enable bit, CHxIE, enables channel x TIM1 CPU  
interrupt requests. CHxF and CHxIE are in the TIM1 channel x  
status and control register.  
Advance Information  
80  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
4.4.2.6 TIM2  
TIM2 CPU interrupt sources:  
• TIM2 overflow flag (TOF) — The TOF bit is set when the TIM2  
counter value rolls over to $0000 after matching the value in the  
TIM2 counter modulo registers. The TIM2 overflow interrupt  
enable bit, TOIE, enables TIM2 overflow CPU interrupt requests.  
TOF and TOIE are in the TIM2 status and control register.  
• TIM2 channel flags (CH1F–CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. The channel  
x interrupt enable bit, CHxIE, enables channel x TIM2 CPU  
interrupt requests. CHxF and CHxIE are in the TIM2 channel x  
status and control register.  
4.4.2.7 SPI  
SPI CPU interrupt sources:  
• SPI receiver full bit (SPRF) — The SPRF bit is set every time a  
byte transfers from the shift register to the receive data register.  
The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU  
interrupt requests. SPRF is in the SPI status and control register  
and SPRIE is in the SPI control register.  
• SPI transmitter empty (SPTE) — The SPTE bit is set every time a  
byte transfers from the transmit data register to the shift register.  
The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU  
interrupt requests. SPTE is in the SPI status and control register  
and SPTIE is in the SPI control register.  
• Mode fault bit (MODF) — The MODF bit is set in a slave SPI if the  
SS pin goes high during a transmission with the mode fault enable  
bit (MODFEN) set. In a master SPI, the MODF bit is set if the SS  
pin goes low at any time with the MODFEN bit set. The error  
interrupt enable bit, ERRIE, enables MODF CPU interrupt  
requests. MODF, MODFEN, and ERRIE are in the SPI status and  
control register.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
81  
• Overflow bit (OVRF) — The OVRF bit is set if software does not  
read the byte in the receive data register before the next full byte  
enters the shift register. The error interrupt enable bit, ERRIE,  
enables OVRF CPU interrupt requests. OVRF and ERRIE are in  
the SPI status and control register.  
4.4.2.8 SCI  
SCI CPU interrupt sources:  
• SCI transmitter empty bit (SCTE) — SCTE is set when the SCI  
data register transfers a character to the transmit shift register.  
The SCI transmit interrupt enable bit, SCTIE, enables transmitter  
CPU interrupt requests. SCTE is in SCI status register 1. SCTIE is  
in SCI control register 2.  
• Transmission complete bit (TC) — TC is set when the transmit  
shift register and the SCI data register are empty and no break or  
idle character has been generated. The transmission complete  
interrupt enable bit, TCIE, enables transmitter CPU interrupt  
requests. TC is in SCI status register 1. TCIE is in SCI control  
register 2.  
• SCI receiver full bit (SCRF) — SCRF is set when the receive shift  
register transfers a character to the SCI data register. The SCI  
receive interrupt enable bit, SCRIE, enables receiver CPU  
interrupts. SCRF is in SCI status register 1. SCRIE is in SCI  
control register 2.  
• Idle input bit (IDLE) — IDLE is set when 10 or 11 consecutive logic  
1s shift in from the RxD pin. The idle line interrupt enable bit, ILIE,  
enables IDLE CPU interrupt requests. IDLE is in SCI status  
register 1. ILIE is in SCI control register 2.  
• Receiver overrun bit (OR) — OR is set when the receive shift  
register shifts in a new character before the previous character  
was read from the SCI data register. The overrun interrupt enable  
bit, ORIE, enables OR to generate SCI error CPU interrupt  
requests. OR is in SCI status register 1. ORIE is in SCI control  
register 3.  
Advance Information  
82  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Noise flag (NF) — NF is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, enables NF to  
generate SCI error CPU interrupt requests. NF is in SCI status  
register 1. NEIE is in SCI control register 3.  
• Framing error bit (FE) — FE is set when a logic 0 occurs where the  
receiver expects a stop bit. The framing error interrupt enable bit,  
FEIE, enables FE to generate SCI error CPU interrupt requests.  
FE is in SCI status register 1. FEIE is in SCI control register 3.  
• Parity error bit (PE) — PE is set when the SCI detects a parity error  
in incoming data. The parity error interrupt enable bit, PEIE,  
enables PE to generate SCI error CPU interrupt requests. PE is in  
SCI status register 1. PEIE is in SCI control register 3.  
4.4.2.9 KBD0–KBD7 Pins  
A logic 0 on a keyboard interrupt pin latches an external interrupt  
request.  
4.4.2.10 ADC (Analog-to-Digital Converter)  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. The COCO/IDMAS bit is not  
used as a conversion complete flag when interrupts are enabled.  
4.4.2.11 TBM (Timebase Module)  
The timebase module can interrupt the CPU on a regular basis with a  
rate defined by TBR2–TBR0. When the timebase counter chain rolls  
over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
83  
4.4.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 4-2 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 4-2. Interrupt Source Flags  
Interrupt Status  
Interrupt Source  
Register Flag  
Reset  
SWI instruction  
IRQ pin  
IF1  
CGM (PLL)  
IF2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receive  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
IF9  
SPI transmit  
SCI error  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
SCI receive  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase  
Advance Information  
84  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
4.4.3.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
IF5  
R
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF6  
R
R
0
R
0
0
0
0
0
0
0
R = Reserved  
Figure 4-7. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 and Bit 0 — Always read 0  
4.4.3.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
IF13  
R
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF14  
R
0
0
0
0
0
0
0
0
R = Reserved  
Figure 4-8. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
85  
4.4.3.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R = Reserved  
Figure 4-9. Interrupt Status Register 3 (INT3)  
IF16–IF15 — Interrupt Flags 16–15  
This flag indicates the presence of an interrupt request from the source  
shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bits 7–2 — Always read 0  
Advance Information  
86  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 5. Analog-to-Digital Converter (ADC)  
5.1 Contents  
5.2  
5.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
5.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Voltage Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Accuracy and Precision. . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.5  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.7.1  
ADC Analog Power Pin (V  
)/ADC Voltage  
DDAD  
Reference High Pin (V  
) . . . . . . . . . . . . . . . . . . . . .92  
REFH  
5.7.2  
5.7.3  
ADC Analog Ground Pin (V  
)/ADC Voltage  
) . . . . . . . . . . . . . . . . . . . . . .92  
SSAD  
Reference Low Pin (V  
REFL  
ADC Voltage In (ADV ) . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
IN  
5.8  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . .93  
ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
5.8.1  
5.8.2  
5.8.3  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
87  
5.2 Introduction  
5.3 Features  
This section describes the 8-bit analog-to-digital converter (ADC).  
Features of the ADC module include:  
• Eight channels with multiplexed input  
• Linear successive approximation with monotonicity  
• 8-bit resolution  
• Single or continuous conversion  
• Conversion complete flag or conversion complete interrupt  
• Selectable ADC clock  
5.4 Functional Description  
The ADC provides eight pins for sampling external sources at pins  
PTB7/AD7–PTB0/AD0. An analog multiplexer allows the single ADC  
converter to select one of eight ADC channels as ADC voltage in  
(ADCV ). ADCV is converted by the successive approximation  
IN  
IN  
register-based analog-to-digital converter. When the conversion is  
completed, ADC places the result in the ADC data register and sets a  
flag or generates an interrupt. (See Figure 5-1.)  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. If the MCU has no DMA,  
any DMA-related register bits should be left in their reset state for  
expected MCU operation.  
Advance Information  
88  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
INTERNAL  
DATA BUS  
READ DDRB/DDRB  
WRITE DDRB/DDRD  
DISABLE  
DDRBx  
PTBx  
RESET  
WRITE PTB  
PTB/Dx  
ADC CHANNEL x  
READ PTB  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
(ADVIN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
)
INTERRUPT  
LOGIC  
CHANNEL  
SELECT  
ADC  
ADC CLOCK  
AIEN  
COCO  
CGMXCLK  
BUS CLOCK  
CLOCK  
GENERATOR  
ADIV2–ADIV0  
ADICLK  
Figure 5-1. ADC Block Diagram  
5.4.1 ADC Port I/O Pins  
PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins  
that share with the ADC channels. The channel select bits define which  
ADC channel/port pin will be used as the input signal. The ADC  
overrides the port I/O logic by forcing that pin as input to the ADC. The  
remaining ADC channels/port pins are controlled by the port I/O logic  
and can be used as general-purpose I/O. Writes to the port register or  
DDR will not have any affect on the port pin that is selected by the ADC.  
Read of a port pin in use by the ADC will return a logic 0.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
89  
5.4.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the  
REFH  
signal to $FF (full scale). If the input voltage equals V  
, the ADC  
SSAD  
converts it to $00. Input voltages between V  
and V  
are a  
REFH  
SSAD  
straight-line linear conversion. All other input voltages will result in $FF,  
if greater than V  
.
REFH  
NOTE: Input voltage should not exceed the analog supply voltages.  
5.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. One conversion will take  
between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits  
should be set to provide a 1-MHz ADC clock frequency.  
16-17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time x bus frequency  
5.4.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with  
new data after each conversion. Data from the previous conversion will  
be overwritten whether that data has been read or not. Conversions will  
continue until the ADCO bit is cleared. The COCO/IDMAS bit is set after  
the first conversion and will stay set until the next write of the ADC status  
and control register or the next read of the ADC data register.  
In single conversion mode, conversion begins with a write to the  
ADSCR. Only one conversion occurs between writes to the ADSCR.  
5.4.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
Advance Information  
90  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
5.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating CPU  
interrupts after each ADC conversion. A CPU interrupt is generated if the  
COCO/IDMAS bit is at logic 0. If COCO/IDMAS bit is set, a DMA interrupt  
is generated. The COCO/IDMAS bit is not used as a conversion  
complete flag when interrupts are enabled.  
5.6 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power-  
consumption standby modes.  
5.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH4–ADCH0 bits in the ADC status  
and control register before executing the WAIT instruction.  
5.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode after an external interrupt. Allow one conversion  
cycle to stabilize the analog circuitry.  
5.7 I/O Signals  
The ADC module has eight pins shared with port B,  
PTB7/AD7–PTB0/AD0.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
91  
5.7.1 ADC Analog Power Pin (V  
)/ADC Voltage Reference High Pin (V  
)
DDAD  
REFH  
The ADC analog portion uses V  
as its power pin. Connect the  
DDAD  
V
pin to the same voltage potential as V . External filtering may  
DDAD  
DD  
be necessary to ensure clean V  
for good results.  
DDAD  
NOTE:  
For maximum noise immunity, route V  
carefully and place bypass  
DDAD  
capacitors as close as possible to the package.  
5.7.2 ADC Analog Ground Pin (V  
)/ADC Voltage Reference Low Pin (V  
)
SSAD  
REFL  
The ADC analog portion uses V  
as its ground pin. Connect the  
SSAD  
V
pin to the same voltage potential as V .  
SS  
SSAD  
NOTE: Route V  
cleanly to avoid any offset errors.  
SSAD  
5.7.3 ADC Voltage In (ADV )  
IN  
ADV is the input voltage signal from one of the eight ADC channels to  
IN  
the ADC module.  
5.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
• ADC status and control register (ADSCR)  
• ADC data register (ADR)  
• ADC clock register (ADCLK)  
Advance Information  
92  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
5.8.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described  
here.  
Address: $0003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
COCO/  
IDMAS  
Write:  
Reset:  
0
Figure 5-2. ADC Status and Control Register (ADSCR)  
COCO/IDMAS — Conversions Complete/Interrupt DMA Select Bit  
When the AIEN bit is a logic 0, the COCO/IDMAS is a read-only bit  
which is set each time a conversion is completed except in the  
continuous conversion mode where it is set after the first conversion.  
This bit is cleared whenever the ADSCR is written or whenever the  
ADR is read.  
If the AIEN bit is a logic 1, the COCO/IDMAS is a read/write bit which  
selects either CPU or DMA to service the ADC interrupt request. Reset  
clears this bit.  
1 = Conversion completed (AIEN = 0)/DMA interrupt (AIEN = 1)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
CAUTION: Because the MC68HC908GP20 does NOT have a DMA module, the  
IDMAS bit should NEVER be set when AIEN is set. Doing so will mask  
ADC interrupts and cause unwanted results.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
93  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
completed between writes to the ADSCR when this bit is cleared.  
Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 16  
ADC channels. Only eight channels, AD7–AD0, are available on this  
MCU. The channels are detailed in Table 5-1. Care should be taken  
when using a port pin as both an analog and digital input  
simultaneously to prevent switching noise from corrupting the analog  
signal. (See Table 5-1.)  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not being used.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
The voltage levels supplied from internal reference nodes, as specified  
in Table 5-1, are used to verify the operation of the ADC converter both  
in production test and for user applications.  
Advance Information  
94  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 5-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
V
V
REFH  
SSAD  
ADC power off  
NOTE: If any unused channels are selected, the resulting ADC conversion will be unknown  
or reserved.  
5.8.2 ADC Data Register  
One 8-bit result register, ADC data register (ADR), is provided. This  
register is updated each time an ADC conversion completes.  
Address: $0003D  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 5-3. ADC Data Register (ADR)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
95  
5.8.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the  
ADC.  
Address: $0003E  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
ADIV2  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 5-4. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by  
the ADC to generate the internal ADC clock. Table 5-2 shows the  
available clock configurations. The ADC clock should be set to  
approximately 1 MHz.  
Table 5-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
Advance Information  
96  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz,  
CGMXCLK can be used as the clock source for the ADC. If CGMXCLK  
is less than 1 MHz, use the PLL-generated bus clock as the clock  
source. As long as the internal ADC clock is at approximately 1 MHz,  
correct operation can be guaranteed.  
1 = Internal bus clock  
0 = External clock (CGMXCLK)  
ADC input clock frequency  
----------------------------------------------------------------------- = 1 M H z  
ADIV2–ADIV0  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
97  
Advance Information  
98  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 6. Break Module (BRK)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
6.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Flag Protection During Break Interrupts . . . . . . . . . . . . . .102  
CPU During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .102  
TIMI and TIM2 During Break Interrupts. . . . . . . . . . . . . . .102  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . .102  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
6.6  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Break Status and Control Register . . . . . . . . . . . . . . . . . .103  
Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . .104  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .106  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
6.2 Introduction  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
99  
6.3 Features  
Features of the break module include:  
• Accessible input/output (I/O) registers during the break interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
6.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 6-1 shows the structure of the break module.  
Advance Information  
100  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 6-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
1
3
0
2
1
BW  
NOTE  
0
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R
0
0
R
0
0
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
R
0
R
0
R
1
R
0
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE09  
$FE0A  
$FE0B  
0
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
Note: Writing a logic 0 clears BW.  
= Unimplemented  
R
= Reserved  
Figure 6-2. I/O Register Summary  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
101  
6.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
6.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC and $FFFD ($FEFC and  
$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
6.4.3 TIMI and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
6.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
the RST pin.  
is present on  
TST  
6.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
6.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set. See Section 3. Low-Power Modes. Clear the BW bit by writing  
logic 0 to it.  
Advance Information  
102  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
6.5.2 Stop Mode  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
6.6 Break Module Registers  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• SIM break status register (SBSR)  
• SIM break flag control register (SBFCR)  
6.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0B  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 6-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
103  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
6.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
$FE09  
Address:  
Bit 7  
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 6-4. Break Address Register High (BRKH)  
Address: $FE0A  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 6-5. Break Address Register Low (BRKL)  
Advance Information  
104  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
6.6.3 Break Status Register  
The break status register (SBSR) contains a flag to indicate that a break  
caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Address: $FE00  
Bit 7  
0
6
0
5
0
4
3
0
2
0
1
BW  
NOTE  
0
Bit 0  
0
Read:  
Write:  
Reset:  
1
R
R
0
R
0
R
R
0
R
0
R
0
1
0
Note: Writing a logic 0 clears BW.  
R
= Reserved  
Figure 6-6. SIM Break Status Register (SBSR)  
BW — Break Wait Bit  
This read/write bit is set when a break interrupt causes an exit from  
wait mode. Clear BW by writing a logic 0 to it. Reset clears BW.  
1 = Break interrupt during wait mode  
0 = No break interrupt during wait mode  
BW can be read within the break interrupt routine. The user can modify  
the return address on the stack by subtracting 1 from it. The following  
code is an example.  
This code works if the H register was stacked in the break interrupt  
routine. Execute this code at the end of the break interrupt routine.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not BW, do RTI  
BRCLR BW,BSR, RETURN ; See if wait mode or stop mode  
; was exited by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low byte.  
; Else deal with high byte also.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
105  
6.6.4 Break Flag Control Register  
The break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 6-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Advance Information  
106  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 7. Clock Generator Module (CGMC)  
7.1 Contents  
7.2  
7.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
7.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .111  
PLL Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .113  
Manual and Automatic PLL Bandwidth Modes . . . . . . . . .113  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .119  
Base Clock Selector Circuit. . . . . . . . . . . . . . . . . . . . . . . .119  
CGMC External Connections . . . . . . . . . . . . . . . . . . . . . .120  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
7.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Output Pin (OSC2). . . . . . . . . . . . . . . . .121  
External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . .122  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
7.5.8  
7.5.9  
7.5.10  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .122  
DDA  
PLL Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .122  
SSA  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . .122  
Oscillator Stop Mode Enable Bit (OSCSTOPENB) . . . . . .122  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . .123  
CGMC Base Clock Output (CGMOUT). . . . . . . . . . . . . . .123  
CGMC CPU Interrupt (CGMINT). . . . . . . . . . . . . . . . . . . .123  
7.6  
CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . .127  
PLL Multiplier Select Register High. . . . . . . . . . . . . . . . . .129  
PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . .130  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
107  
7.6.5  
7.6.6  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . .131  
PLL Reference Divider Select Register. . . . . . . . . . . . . . .132  
7.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
7.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
CGMC During Break Interrupts . . . . . . . . . . . . . . . . . . . . .134  
7.8.1  
7.8.2  
7.8.3  
7.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .135  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . .135  
Parametric Influences on Reaction Time . . . . . . . . . . . . .136  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
7.9.1  
7.9.2  
7.9.3  
7.2 Introduction  
This section describes the clock generator module. The CGMC  
generates the crystal clock signal, CGMXCLK, which operates at the  
frequency of the crystal. The CGMC also generates the base clock  
signal, CGMOUT, which is based on either the crystal clock divided by  
two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In  
user mode, CGMOUT is the clock from which the SIM derives the  
system clocks, including the bus clock, which is at a frequency of  
CGMOUT/2. In monitor mode, PTC3 determines the bus clock. The PLL  
is a fully functional frequency generator designed for use with crystals or  
ceramic resonators. The PLL can generate an 8-MHz bus frequency  
using a 32-kHz crystal.  
Advance Information  
108  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.3 Features  
Features of the CGMC include:  
• Phase-locked loop with output frequency in integer multiples of an  
integer dividend of the crystal reference  
• Low-frequency crystal operation with low-power operation and  
high-output frequency resolution  
• Programmable prescaler for power-of-two increases in frequency  
• Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
• Automatic bandwidth control mode for low-jitter operation  
• Automatic frequency lock detector  
• CPU interrupt on entry or exit from locked condition  
• Configuration register bit to allow oscillator operation during stop  
mode  
7.4 Functional Description  
The CGMC consists of three major submodules:  
• Crystal oscillator circuit — The crystal oscillator circuit generates  
the constant crystal frequency clock, CGMXCLK.  
• Phase-locked loop (PLL) — The PLL generates the  
programmable VCO frequency clock, CGMVCLK.  
• Base clock selector circuit — This software-controlled circuit  
selects either CGMXCLK divided by two or the VCO clock,  
CGMVCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from either CGMOUT or CGMXCLK.  
Figure 7-1 shows the structure of the CGMC.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
109  
OSCILLATOR (OSC)  
OSC2  
CGMXCLK  
(TO: SIM, TIMTB15A, ADC)  
OSC1  
SIMOSCEN (FROM SIM)  
OSCSTOPENB  
(FROM CONFIG)  
PHASE-LOCKED LOOP (PLL)  
CGMRDV  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
CGMOUT  
A
B
CLOCK  
SELECT  
CIRCUIT  
÷
2
BCS  
(TO SIM)  
S*  
SIMDIV2  
*WHEN S = 1,  
CGMOUT = B  
RDS3–RDS0  
VDDA  
VSSA  
(FROM SIM)  
VPR1–VPR0  
VRS7–VRS0  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
CGMVCLK  
PLL ANALOG  
PLLIREQ  
(TO SIM)  
AUTOMATIC  
MODE  
CONTROL  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL11–MUL0  
PRE1–PRE0  
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
Figure 7-1. CGMC Block Diagram  
Advance Information  
110  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.4.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an  
external crystal. The OSC1 pin is the input to the amplifier and the OSC2  
pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) or the OSCSTOPENB bit in the CONFIG register enable  
the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and  
runs at a rate equal to the crystal frequency. CGMXCLK is then buffered  
to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing  
for operation. The duty cycle of CGMXCLK is not guaranteed to be 50%  
and depends on external factors, including the crystal and related  
external components. An externally generated clock also can feed the  
OSC1 pin of the crystal oscillator circuit. Connect the external clock to  
the OSC1 pin and let the OSC2 pin float.  
7.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
7.4.3 PLL Circuits  
The PLL consists of these circuits:  
• Voltage-controlled oscillator (VCO)  
• Reference divider  
• Frequency prescaler  
• Modulo VCO frequency divider  
• Phase detector  
• Loop filter  
• Lock detector  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
111  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGM/XFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
.
VRS  
Modulating the voltage on the CGM/XFC pin changes the frequency  
within this range. By design, f is equal to the nominal center-of-range  
VRS  
frequency, f  
factor, E, or (L × 2 )f  
, (38.4 kHz) times a linear factor, L, and a power-of-two  
NOM  
E
.
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, f , and is fed to the PLL through a  
RCLK  
programmable modulo reference divider, which divides f  
by a  
RCLK  
factor, R. The divider’s output is the final reference clock, CGMRDV,  
running at a frequency, f = f /R. With an external crystal  
RDV  
RCLK  
(30 kHz–100 kHz), always set R = 1 for specified performance. With an  
external high-frequency clock source, use R to divide the external  
frequency to between 30 kHz and 100 kHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, f  
, is  
VCLK  
fed back through a programmable prescale divider and a programmable  
modulo divider. The prescaler divides the VCO clock by a power-of-two  
factor P and the modulo divider reduces the VCO clock by a factor, N.  
The dividers’ output is the VCO feedback clock, CGMVDV, running at a  
P
frequency, f  
= f  
/(N × 2 ). (See 7.4.6 Programming the PLL for  
VDV  
VCLK  
more information.)  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the DC voltage on the external capacitor connected  
to CGM/XFC based on the width and direction of the correction pulse.  
The filter can make fast or slow corrections depending on its mode,  
described in 7.4.4 Acquisition and Tracking Modes. The value of the  
external capacitor and the reference frequency determines the speed of  
the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
Advance Information  
112  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
frequency, f  
. The circuit determines the mode of the PLL and the lock  
RDV  
condition based on this comparison.  
7.4.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
• Acquisition mode — In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL  
startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in  
acquisition mode, the ACQ bit is clear in the PLL bandwidth control  
register. (See 7.6.2 PLL Bandwidth Control Register.)  
• Tracking mode — In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. (See 7.4.8 Base Clock Selector Circuit.) The PLL is  
automatically in tracking mode when not in acquisition mode or  
when the ACQ bit is set.  
7.4.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically. Automatic mode is recommended for most  
users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT. (See 7.6.2 PLL Bandwidth Control Register.) If PLL  
interrupts are enabled, the software can wait for a PLL interrupt request  
and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (during PLL startup, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
113  
to use as the source for the base clock. (See 7.4.8 Base Clock Selector  
Circuit.) If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
(See 7.7 Interrupts for information and precautions on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth  
control mode:  
• The ACQ bit (See 7.6.2 PLL Bandwidth Control Register.) is a  
read-only indicator of the mode of the filter. (See 7.4.4  
Acquisition and Tracking Modes.)  
• The ACQ bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 7.9 Acquisition/Lock Time  
Specifications for more information.)  
• The LOCK bit is a read-only indicator of the locked state of the  
PLL.  
• The LOCK bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 7.9 Acquisition/Lock Time  
Specifications for more information.)  
• CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s  
lock condition changes, toggling the LOCK bit. (See 7.6.1 PLL  
Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode  
is used by systems that do not require an indicator of the lock condition  
for proper operation. Such systems typically operate well below  
f
.
BUSMAX  
Advance Information  
114  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
The following conditions apply when in manual mode:  
• ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
• Before entering tracking mode (ACQ = 1), software must wait a  
given time, t  
(See 7.9 Acquisition/Lock Time  
ACQ  
Specifications.), after turning on the PLL by setting PLLON in the  
PLL control register (PCTL).  
• Software must wait a given time, t , after entering tracking mode  
AL  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
• The LOCK bit is disabled.  
• CPU interrupts from the CGMC are disabled.  
7.4.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE: The round function in the following equations means that the real  
number should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, f  
.
BUSDES  
2. Calculate the desired VCO frequency (four times the desired bus  
frequency).  
f
= 4 × f  
VCLKDES  
BUSDES  
3. Choose a practical PLL (crystal) reference frequency, f  
, and  
RCLK  
the reference clock divider, R. Typically, the reference crystal is  
32.768 kHz and R = 1.  
Frequency errors to the PLL are corrected at a rate of f  
/R. For  
RCLK  
stability and lock time reduction, this rate must be as fast as  
possible. The VCO frequency must be an integer multiple of this  
rate. The relationship between the VCO frequency, f  
, and the  
VCLK  
reference frequency, f  
, is  
RCLK  
P
2 N  
= ----------- (f  
f
)
RCLK  
VCLK  
R
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
115  
P, the power of two multiplier, and N, the range multiplier, are  
integers.  
In cases where desired bus frequency has some tolerance,  
choose f  
to a value determined either by other module  
RCLK  
requirements (such as modules which are clocked by CGMXCLK),  
cost requirements, or ideally, as high as the specified range  
allows. See Section 23. Preliminary Electrical Specifications.  
Choose the reference divider, R = 1. After choosing N and P, the  
actual bus frequency can be determined using equation in 2  
above.  
When the tolerance on the bus frequency is tight, choose f  
to  
RCLK  
an integer divisor of f  
, and R = 1. If f  
cannot meet this  
BUSDES  
RCLK  
requirement, use the following equation to solve for R with  
practical choices of f  
lowest R.  
, and choose the f  
that gives the  
RCLK  
RCLK  
f
f
VCLKDES  
VCLKDES  
-------------------------  
-------------------------  
R = round R  
×
integer  
MAX  
f
f
RCLK  
RCLK  
4. Select a VCO frequency multiplier, N.  
R × f  
VCLKDES  
------------------------------------  
N = round  
f
RCLK  
Reduce N/R to the lowest possible R.  
5. If N is < N  
, use P = 0. If N > N  
, choose P using this table:  
max  
max  
Current N Value  
P
0
1
2
3
0 < N N  
max  
N
< N N  
× 2  
max  
max  
N
N
× 2 < N N  
× 4 < N N  
× 4  
× 8  
max  
max  
max  
max  
Advance Information  
116  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Then recalculate N:  
R × f  
VCLKDES  
------------------------------------  
N = round  
P
f
× 2  
RCLK  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
117  
6. Calculate and verify the adequacy of the VCO and bus  
frequencies f  
and f  
.
VCLK  
f
BUS  
P
= (2 × N R) × f  
VCLK  
RCLK  
f
= (f  
) ⁄ 4  
VCLK  
BUS  
7. Select the VCO’s power-of-two range multiplier E, according to  
this table:  
Frequency Range  
0 < fVCLK < 9,830,400  
E
0
1
2
9,830,400 fVCLK < 19,660,800  
19,660,800 fVCLK < 39,321,600  
NOTE: Do not program E to a value of 3.  
8. Select a VCO linear range multiplier, L, where f  
= 38.4 kHz  
NOM  
f
VCLK  
--------------------------  
L = round  
E
2 × f  
NOM  
9. Calculate and verify the adequacy of the VCO programmed  
center-of-range frequency, f . The center-of-range frequency is  
VRS  
the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
E
f
= (L × 2 )f  
VRS  
NOM  
For proper operation,  
E
f
× 2  
NOM  
f
f  
--------------------------  
VRS  
VCLK  
2
10. Verify the choice of P, R, N, E, and L by comparing f  
to f  
VRS  
VCLK  
and f  
. For proper operation, f  
must be within the  
VCLKDES  
VCLK  
application’s tolerance of f  
, and f  
must be as close as  
VCLKDES  
VRS  
possible to f  
.
VCLK  
NOTE: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
Advance Information  
118  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
11. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program  
the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program  
the binary equivalent of E.  
c. In the PLL multiplier select register low (PMSL) and the PLL  
multiplier select register high (PMSH), program the binary  
equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the  
binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program  
the binary coded equivalent of R.  
Table 7-1 provides numeric examples (numbers are in hexadecimal  
notation):  
Table 7-1. Numeric Example  
f
f
RCLK  
R
1
1
1
1
1
1
1
1
N
P
0
0
0
0
0
0
0
0
E
0
1
1
1
2
2
2
2
L
BUS  
2.0 MHz  
2.4576 MHz  
2.5 MHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
F5  
D1  
80  
83  
D1  
80  
82  
C0  
D0  
12C  
132  
1E9  
258  
263  
384  
3D1  
4.0 MHz  
4.9152 MHz  
5.0 MHz  
7.3728 MHz  
8.0 MHz  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
119  
7.4.7 Special Programming Exceptions  
The programming method described in 7.4.6 Programming the PLL  
does not account for three possible exceptions. A value of 0 for R, N, or  
L is meaningless when used in the equations given. To account for these  
exceptions:  
• A 0 value for R or N is interpreted exactly the same as a value of 1.  
• A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock.  
(See 7.4.8 Base Clock Selector Circuit.)  
7.4.8 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The  
two input clocks go through a transition control circuit that waits up to  
three CGMXCLK cycles and three CGMVCLK cycles to change from  
one clock source to the other. During this time, CGMOUT is held in  
stasis. The output of the transition control circuit is then divided by two  
to correct the duty cycle. Therefore, the bus clock frequency, which is  
one-half of the base clock frequency, is one-fourth the frequency of the  
selected clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source  
if the PLL is not turned on. The PLL cannot be turned off if the VCO clock  
is selected. The PLL cannot be turned on or off simultaneously with the  
selection or deselection of the VCO clock. The VCO clock also cannot  
be selected as the base clock source if the factor L is programmed to a  
0. This value would set up a condition inconsistent with the operation of  
the PLL, so that the PLL would be disabled and the crystal clock would  
be forced as the source of the base clock.  
Advance Information  
120  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.4.9 CGMC External Connections  
In its typical configuration, the CGMC requires up to nine external  
components. Five of these are for the crystal oscillator and two or four  
are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator  
configuration, as shown in Figure 7-2. Figure 7-2 shows only the logical  
representation of the internal components and may not represent actual  
circuitry. The oscillator configuration uses five components:  
• Crystal, X  
1
• Fixed capacitor, C  
1
• Tuning capacitor, C (can also be a fixed capacitor)  
2
• Feedback resistor, R  
B
• Series resistor, R  
S
The series resistor (R ) is included in the diagram to follow strict Pierce  
S
oscillator guidelines. Refer to the crystal manufacturer’s data for more  
information regarding values for C1 and C2.  
Figure 7-2 also shows the external components for the PLL:  
• Bypass capacitor, C  
• Filter network  
BYP  
Routing should be done with great care to minimize signal cross talk and  
noise.  
See 23.17.1 CGM Component Specifications for capacitor and  
resistor values.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
121  
SIMOSCEN  
OSCSTOPENB  
(FROM CONFIG)  
CGMXCLK  
CGMXFC  
VSSA  
OSC1  
OSC2  
VDDA  
VDD  
RB  
10 k  
CBYP  
0.1 µF  
0.01 µF  
RS  
0.47 µF  
X1  
C1  
C2  
Note: Filter network in box can be replaced with a 0.47 µF capacitor, but will degrade stability.  
Figure 7-2. CGMC External Connections  
7.5 I/O Signals  
The following paragraphs describe the CGMC I/O signals.  
7.5.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
7.5.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
Advance Information  
122  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.5.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. An external filter network is connected to this pin. (See  
Figure 7-2.)  
NOTE: To prevent noise problems, the filter network should be placed as close  
to the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
7.5.4 PLL Analog Power Pin (V  
)
DDA  
V
V
is a power pin used by the analog portions of the PLL. Connect the  
DDA  
DDA  
pin to the same voltage potential as the V pin.  
DD  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
7.5.5 PLL Analog Ground Pin (V  
)
SSA  
V
is a ground pin used by the analog portions of the PLL. Connect  
SSA  
the V  
pin to the same voltage potential as the V pin.  
SSA  
SS  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
SSA  
capacitors as close as possible to the package.  
7.5.6 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables the oscillator and PLL.  
7.5.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB)  
OSCSTOPENB is a bit in the CONFIG register that enables the oscillator  
to continue operating during stop mode. If this bit is set, the Oscillator  
continues running during stop mode. If this bit is not set (default), the  
oscillator is controlled by the SIMOSCEN signal which will disable the  
oscillator during stop mode.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
123  
7.5.8 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed  
of the crystal (f ) and comes directly from the crystal oscillator circuit.  
XCLK  
Figure 7-2 shows only the logical relation of CGMXCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
CGMXCLK is unknown and may depend on the crystal and other  
external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at startup.  
7.5.9 CGMC Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGMC. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by  
two or the VCO clock, CGMVCLK, divided by two.  
7.5.10 CGMC CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
7.6 CGMC Registers  
These registers control and monitor operation of the CGMC:  
• PLL control register (PCTL)  
(See 7.6.1 PLL Control Register.)  
• PLL bandwidth control register (PBWC)  
(See 7.6.2 PLL Bandwidth Control Register.)  
• PLL multiplier select register high (PMSH)  
(See 7.6.3 PLL Multiplier Select Register High.)  
• PLL multiplier select register low (PMSL)  
(See 7.6.4 PLL Multiplier Select Register Low.)  
Advance Information  
124  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• PLL VCO range select register (PMRS)  
(See 7.6.5 PLL VCO Range Select Register.)  
• PLL reference divider select register (PMDS)  
(See 7.6.6 PLL Reference Divider Select Register.)  
Figure 7-3 is a summary of the CGMC registers.  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PLLF  
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
(PCTL)  
$0036  
0
0
0
0
0
0
0
0
0
0
LOCK  
AUTO  
ACQ  
R
PLL Bandwidth Control  
Register (PBWC)  
$0037  
$0038  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
PLL Multiplier Select High  
Register (PMSH)  
0
0
0
0
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
PLL Multiplier Select Low  
Register (PMSL)  
$0039  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
PLL VCO Select Range  
Register (PMRS)  
$003A  
$003B  
NOTES:  
0
0
1
0
0
0
0
0
RDS3  
RDS2  
0
RDS1  
0
RDS0  
1
PLL Reference Divider  
Select Register (PMDS)  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 7-3. CGMC I/O Register Summary  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
125  
7.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, the base clock selector bit, the prescaler bits, and  
the VCO power-of-two range selector bits.  
Address: $0036  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
0
= Unimplemented  
Figure 7-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE  
cannot be written and reads as logic 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF always  
reads as logic 0 when the AUTO bit in the PLL bandwidth control  
register (PBWC) is clear. Clear the PLLF bit by reading the PLL control  
register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
Advance Information  
126  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). (See 7.4.8 Base Clock Selector  
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU  
is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output,  
CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGMC  
output, CGMOUT. CGMOUT frequency is one-half the frequency of  
the selected clock. BCS cannot be set while the PLLON bit is clear.  
After toggling BCS, it may take up to three CGMXCLK and three  
CGMVCLK cycles to complete the transition from one source clock to  
the other. During the transition, CGMOUT is held in stasis. (See 7.4.8  
Base Clock Selector Circuit.) Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMVCLK requires two writes to the PLL control  
register. (See 7.4.8 Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler  
power-of-two multiplier, P. (See 7.4.3 PLL Circuits and 7.4.6  
Programming the PLL.) PRE1 and PRE0 cannot be written when the  
PLLON bit is set. Reset clears these bits.  
NOTE: The value of P is normally 0 when using a 32.768-kHz crystal as the  
reference.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
127  
Table 7-2. PRE 1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and 0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range  
multiplier E that, in conjunction with L (See 7.4.3 PLL Circuits, 7.4.6  
Programming the PLL, and 7.6.5 PLL VCO Range Select Register.)  
controls the hardware center-of-range frequency, f  
. VPR1:VPR0  
VRS  
cannot be written when the PLLON bit is set. Reset clears these bits.  
Table 7-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
0
1
1
2
4
8
01  
10  
2
(1)  
11  
3
1. Do not program E to a value of 3.  
7.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
• Selects automatic or manual (software-controlled) bandwidth  
control mode  
• Indicates when the PLL is locked  
• In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
• In manual operation, forces the PLL into acquisition or tracking  
mode  
Address: $0037  
Advance Information  
128  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Bit 7  
AUTO  
0
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
Write:  
Reset:  
LOCK  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. The write one function of this bit is  
reserved for test, so this bit must always be written a 0. Reset clears  
the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL  
is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
129  
7.6.3 PLL Multiplier Select Register High  
The PLL multiplier select register high (PMSH) contains the  
programming information for the high byte of the modulo feedback  
divider.  
Address: $0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 7-6. PLL Multiplier Select Register High (PMSH)  
MUL11–MUL8 — Multiplier Select Bits  
These read/write bits control the high byte of the modulo feedback  
divider that selects the VCO frequency multiplier N. (See 7.4.3 PLL  
Circuits and 7.4.6 Programming the PLL.) A value of $0000 in the  
multiplier select registers configures the modulo feedback divider the  
same as a value of $0001. Reset initializes the registers to $0040 for  
a default multiply value of 64.  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
PMSH[7:4] — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
Advance Information  
130  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.6.4 PLL Multiplier Select Register Low  
The PLL multiplier select register low (PMSL) contains the programming  
information for the low byte of the modulo feedback divider.  
Address: $0038  
Bit 7  
MUL7  
0
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
Figure 7-7. PLL Multiplier Select Register Low (PMSL)  
MUL7–MUL0 — Multiplier Select Bits  
These read/write bits control the low byte of the modulo feedback  
divider that selects the VCO frequency multiplier, N. (See 7.4.3 PLL  
Circuits and 7.4.6 Programming the PLL.) MUL7–MUL0 cannot be  
written when the PLLON bit in the PCTL is set. A value of $0000 in the  
multiplier select registers configures the modulo feedback divider the  
same as a value of $0001. Reset initializes the register to $40 for a  
default multiply value of 64.  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
131  
7.6.5 PLL VCO Range Select Register  
NOTE: PMRS may be called PVRS on other HC08 derivatives.  
The PLL VCO range select register (PMRS) contains the programming  
information required for the hardware configuration of the VCO.  
Address: $003A  
Bit 7  
VRS7  
0
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
Figure 7-8. PLL VCO Range Select Register (PMRS)  
VRS7–VRS0 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L which, in conjunction with E (See 7.4.3 PLL Circuits, 7.4.6  
Programming the PLL, and 7.6.1 PLL Control Register.), controls  
the hardware center-of-range frequency, f  
. VRS7–VRS0 cannot  
VRS  
be written when the PLLON bit in the PCTL is set. (See 7.4.7 Special  
Programming Exceptions.) A value of $00 in the VCO range select  
register disables the PLL and clears the BCS bit in the PLL control  
register (PCTL). (See 7.4.8 Base Clock Selector Circuit and 7.4.7  
Special Programming Exceptions.). Reset initializes the register to  
$40 for a default range multiply value of 64.  
NOTE: The VCO range select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
Advance Information  
132  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.6.6 PLL Reference Divider Select Register  
NOTE: PMDS may be called PRDS on other HC08 derivatives.  
The PLL reference divider select register (PMDS) contains the  
programming information for the modulo reference divider.  
Address: $003B  
Bit 7  
0
6
0
5
0
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 7-9. PLL Reference Divider Select Register (PMDS)  
RDS3–RDS0 — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects  
the reference division factor, R. (See 7.4.3 PLL Circuits and 7.4.6  
Programming the PLL.) RDS7–RDS0 cannot be written when the  
PLLON bit in the PCTL is set. A value of $00 in the reference divider  
select register configures the reference divider the same as a value of  
$01. (See 7.4.7 Special Programming Exceptions.) Reset initializes  
the register to $01 for a default divide value of 1.  
NOTE: The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE: The default divide value of 1 is recommended for all applications.  
PMDS7–PMDS4 — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
133  
7.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the VCO clock, CGMVCLK, divided by two can be  
selected as the CGMOUT source by setting BCS in the PCTL. When the  
PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not frequency sensitive,  
interrupts should be disabled to prevent PLL interrupt service routines  
from impeding software performance or from exceeding stack  
limitations.  
NOTE: Software can select the CGMVCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
7.8 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby  
modes.  
7.8.1 Wait Mode  
The WAIT instruction does not affect the CGMC. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL) to save power. Less  
power-sensitive applications can disengage the PLL without turning it  
off, so that the PLL clock is immediately available at WAIT exit. This  
would be the case also when the PLL is to wake the MCU from wait  
Advance Information  
134  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
mode, such as when the PLL is first enabled and waiting for LOCK or  
LOCK is lost.  
7.8.2 Stop Mode  
If the OSCSTOPENB bit in the CONFIG register is cleared (default),  
then the STOP instruction disables the CGMC (oscillator and phase  
locked loop) and holds low all CGMC outputs (CGMXCLK, CGMOUT,  
and CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK,  
divided by two driving CGMOUT, the PLL automatically clears the BCS  
bit in the PLL control register (PCTL), thereby selecting the crystal clock,  
CGMXCLK, divided by two as the source of CGMOUT. When the MCU  
recovers from STOP, the crystal clock divided by two drives CGMOUT  
and BCS remains clear.  
If the OSCSTOPENB bit in the CONFIG register is set, then the phase  
locked loop is shut off but the oscillator will continue to operate in stop  
mode.  
7.8.3 CGMC During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 19.8.3 SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
the PLL control register during the break state without affecting the PLLF  
bit.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
135  
7.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
7.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percent of the  
step input or when the output settles to the desired value plus or minus  
a percent of the frequency change. Therefore, the reaction time is  
constant in this definition, regardless of the size of the step input. For  
example, consider a system with a 5 percent acquisition time tolerance.  
If a command instructs the system to change from 0 Hz to 1 MHz, the  
acquisition time is the time taken for the frequency to reach  
1 MHz ±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is  
operating at 1 MHz and suffers a –100-kHz noise hit, the acquisition time  
is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5%  
of the 100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
Advance Information  
136  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, f  
. This frequency is the input to the phase  
RDV  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is under user control via the choice of crystal  
frequency f  
and the R value programmed in the reference divider.  
XCLK  
(See 7.4.3 PLL Circuits, 7.4.6 Programming the PLL, and 7.6.6 PLL  
Reference Divider Select Register.)  
Another critical parameter is the external filter network. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is  
proportional to the capacitance. The size of the capacitor also is related  
to the stability of the PLL. If the capacitor is too small, the PLL cannot  
make small enough adjustments to the voltage and the system cannot  
lock. If the capacitor is too large, the PLL may not be able to adjust the  
voltage in a reasonable time. (See 7.9.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to V  
. The  
DDA  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
137  
filter capacitor, filter capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
7.9.3 Choosing a Filter  
As described in 7.9.2 Parametric Influences on Reaction Time, the  
external filter network is critical to the stability and reaction time of the  
PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Either of the filter networks in Figure 7-10 is recommended when using  
a 32.768-kHz reference crystal. Figure 7-10 (a) is used for applications  
requiring better stability. Figure 7-10 (b) is used in low-cost applications  
where stability is not critical.  
CGMXFC  
CGMXFC  
10 k  
0.01 µF  
0.47 µF  
0.47 µF  
VSSA  
VSSA  
(a)  
(b)  
Figure 7-10. PLL Filter  
Advance Information  
138  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 8. Configuration Register (CONFIG)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.2 Introduction  
This section describes the configuration registers, CONFIG1 and  
CONFIG2. The configuration registers enable or disable these options:  
• Stop mode recovery time (32 CGMXCLK cycles or 4096  
CGMXCLK cycles)  
18  
4
13  
4
• COP timeout period (2 – 2 or 2 – 2 CGMXCLK cycles)  
• STOP instruction  
• Computer operating properly module (COP)  
• Low-voltage inhibit (LVI) module control and voltage trip point  
selection  
• Enable/disable the oscillator (OSC) during stop mode  
8.3 Functional Description  
The configuration registers are used in the initialization of various  
options. The configuration registers can be written once after each reset.  
All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU, it is recommended that  
these registers be written immediately after reset. The configuration  
registers are located at $001E and $001F. The configuration register  
may be read at anytime.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
139  
NOTE: On a FLASH device, the options except LVI5OR3 are one-time writeable  
by the user after each reset. The LVI5OR3 bit is one-time writeable by  
the user only after each POR (power-on reset). The CONFIG registers  
are not in the FLASH memory but are special registers containing one-  
time writeable latches after each reset. Upon a reset, the CONFIG  
registers default to predetermined settings as shown in Figure 8-1 and  
Figure 8-2.  
Address: $001E  
Bit 7  
0
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
PMPSGV- OSC-  
LVEN STOPENB  
SCIBD-  
SRC  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 8-1. Configuration Register 2 (CONFIG2)  
Address: $001F  
Bit 7  
6
5
4
3
2
1
STOP  
0
Bit 0  
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
Write:  
Reset:  
0
0
0
0
See Note  
0
Note: LVI5OR3 bit is only reset via POR (power-on reset)  
Figure 8-2. Configuration Register 1 (CONFIG1)  
PMPSGVLVEN — FLASH Charge Pump Select Gate Voltage  
Low-Voltage Enable Bit  
PMPSGVLVEN enables low-voltage mode in the charge pump voltage  
regulator circuit. Setting this bit turns the voltage regulator off to  
conserve power (Recommended for voltage operation below 3.6 V  
where voltage regulation is not needed). Clearing this bit turns the  
regulator on (default setting) for operation above 3.6 V.  
1 = Voltage regulator turned off (V < 3.6 V)  
DD  
0 = Voltage regulator turned on (V > 3.6 V) (default)  
DD  
Advance Information  
140  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: For V > 3.6 V:  
DD  
The voltage regular must always be enabled. The charge pump must  
have the voltage regulator on to provide the proper voltage to the  
FLASH memory.  
For V < 3.6 V:  
DD  
The voltage regulator may be disabled to conserve power. The charge  
pump does not use the voltage regulator when V is less than 3.6 V,  
DD  
so the voltage regulator can be turned off.  
Leaving the voltage regulator enabled will not cuase any harm. The  
chip will merely consume more power than necessary.  
OSCSTOPENB— Oscillator Stop Mode Enable Bar Bit  
OSCSTOPENB enables the oscillator to continue operating during  
stop mode. Setting the OSCSTOPENB bit allows the oscillator to  
operate continuously even during stop mode. This is useful for driving  
the timebase module to allow it to generate periodic wakeup while in  
stop mode. (See 3.6 Clock Generator Module (CGM) subsection  
3.6.2 Stop Mode.)  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
SCIBDSRC — SCI Baud Rate Clock Source Bit  
SCIBDSRC controls the clock source used for the SCI. The setting of  
this bit affects the frequency at which the SCI operates.  
1 = Internal data bus clock used as clock source for SCI  
0 = External oscillator used as clock source for SCI  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. (See  
Section 9. Computer Operating Properly (COP).)  
13  
4
1 = COP timeout period = 2 – 2 CGMXCLK cycles  
18  
4
0 = COP timeout period = 2 – 2 CGMXCLK cycles  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
141  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP. (See  
3.6.2 Stop Mode.)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. (See Section  
14. Low-Voltage Inhibit (LVI).)  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. (See Section 14. Low-Voltage  
Inhibit (LVI).)  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. (See  
Section 14. Low-Voltage Inhibit (LVI).) The voltage mode selected  
for the LVI should match the operating V . See Section 23.  
DD  
Preliminary Electrical Specifications for the LVI’s voltage trip points  
for each of the modes.  
1 = LVI operates in 5-V mode.  
0 = LVI operates in 3-V mode.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32  
CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLKC cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
Advance Information  
142  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: When the LVISTOP is enabled, the system stabilization time for power  
on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a  
delay longer than the enable time for the LVI. There is no period where  
the MCU is not protected from a low power condition. However, when  
using the short stop recovery configuration option, the 32-CGMXCLK  
delay is less than the LVI’s turn-on time and there exists a period in  
startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 9. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
143  
Advance Information  
144  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 9. Computer Operating Properly (COP)  
9.1 Contents  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
9.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
CGMXCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
STOP Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
COPRS (COP Rate Select). . . . . . . . . . . . . . . . . . . . . . . .148  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.4.7  
9.4.8  
9.5  
9.6  
9.7  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
9.8  
9.8.1  
9.8.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
9.9  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .150  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
145  
9.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the CONFIG register.  
9.3 Functional Description  
Figure 9-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
CGMXCLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(FROM CONFIG)  
Figure 9-1. COP Block Diagram  
Advance Information  
146  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler counter. If not cleared by software, the COP counter overflows  
18  
4
13  
4
and generates an asynchronous reset after 2 – 2 or 2 – 2  
CGMXCLK cycles, depending on the state of the COP rate select bit,  
13  
4
COPRS, in the configuration register. With a 2 – 2 CGMXCLK cycle  
overflow option, a 32.768-kHz crystal gives a COP timeout period of  
250 ms. Writing any value to location $FFFF before an overflow occurs  
prevents a COP reset by clearing the COP counter and stages 12  
through 5 of the prescaler.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the  
COP bit in the reset status register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held  
at V  
. During the break state, V  
on the RST pin disables the COP.  
TST  
TST  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
9.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 9-1.  
9.4.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency  
is equal to the crystal frequency.  
9.4.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
147  
9.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 9.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the prescaler. Reading the COP control register returns the low byte  
of the reset vector.  
9.4.4 Power-On Reset  
9.4.5 Internal Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096  
CGMXCLK cycles after power-up.  
An internal reset clears the COP prescaler and the COP counter.  
9.4.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
9.4.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register. (See Section 8. Configuration Register  
(CONFIG).)  
9.4.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register. (See Section 8. Configuration Register  
(CONFIG).)  
Advance Information  
148  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
9.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 9-2. COP Control Register (COPCTL)  
9.6 Interrupts  
The COP does not generate CPU interrupt requests.  
9.7 Monitor Mode  
When monitor mode is entered with V  
on the IRQ pin, the COP is  
TST  
disabled as long as V  
remains on the IRQ pin or the RST pin. When  
TST  
monitor mode is entered by having blank reset vectors and not having  
on the IRQ pin, the COP is automatically disabled until a POR  
V
TST  
occurs.  
9.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
149  
9.8.1 Wait Mode  
9.8.2 Stop Mode  
The COP remains active during wait mode. To prevent a COP reset  
during wait mode, periodically clear the COP counter in a CPU interrupt  
routine.  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction.  
When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an  
illegal opcode reset.  
9.9 COP Module During Break Mode  
The COP is disabled during a break interrupt when V  
is present on  
TST  
the RST pin.  
Advance Information  
150  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 10. Central Processor Unit (CPU)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
10.4.1  
10.4.2  
10.4.3  
10.4.4  
10.4.5  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Stack Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Program Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . .156  
10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . .158  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
10.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . .159  
10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Freescale document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
151  
10.3 Features  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-bit index register with x-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64-Kbyte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
• Low-power stop and wait modes  
10.4 CPU Registers  
Figure 10-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
Advance Information  
152  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
V
0
C
1
1
H
I
N
Z
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 10-1. CPU Registers  
10.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 10-2. Accumulator (A)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
153  
10.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 10-3. Index Register (H:X)  
10.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Advance Information  
154  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
0
8
0
7
1
6
1
5
1
4
1
3
1
2
1
1
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
1
Figure 10-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
10.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 10-5. Program Counter (PC)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
155  
10.4.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 10-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction uses  
the states of the H and C flags to determine the appropriate correction  
factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
Advance Information  
156  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting bit  
7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
157  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
10.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Freescale document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
10.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
10.6.1 Wait Mode  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
Advance Information  
158  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
10.6.2 Stop Mode  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
10.7 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
159  
10.8 Instruction Set Summary  
Table 10-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
AND #opr  
AND opr  
IMM  
DIR  
EXT  
IX2  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
Logical AND  
A (A) & (M)  
0
↕ ↕ –  
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
58  
–  
–  
↕ ↕ ↕  
↕ ↕ ↕  
C
0
68 ff  
78  
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37 dd  
47  
4
1
1
4
3
5
57  
C
Arithmetic Shift Right  
67 ff  
77  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
Advance Information  
160  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90 rr  
92 rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
IX2  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
Bit Test  
(A) & (M)  
0
↕ ↕ –  
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
– REL  
93 rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
3
3
3
3
3
3
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
Branch if Interrupt Mask Set  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
161  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BNE rel  
Branch if Not Equal  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
– REL  
– REL  
– REL  
26 rr  
2A rr  
20 rr  
3
3
3
BPL rel  
BRA rel  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
Advance Information  
162  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CMP #opr  
IMM  
DIR  
EXT  
IX2  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
Compare A with M  
(A) – (M)  
–  
↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F1  
CMP opr,SP  
CMP opr,SP  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33 dd  
43  
4
1
1
4
3
5
COMX  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
↕ ↕ 1  
COM opr,X  
COM ,X  
COM opr,SP  
63 ff  
73  
9E63 ff  
SP1  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
–  
↕ ↕ ↕  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
Compare X with M  
(X) – (M)  
–  
↕ ↕ ↕  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)10  
U –  
↕ ↕ ↕ INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
3B dd rr  
4B rr  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
6B ff rr  
7B rr  
IX  
SP1  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
5A  
Decrement  
Divide  
–  
↕ ↕ –  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
IX  
6A ff  
7A  
9E6A ff  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
0
↕ ↕ INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
Exclusive OR M with A  
A (A M)  
↕ ↕ –  
F8  
9EE8 ff  
9ED8 ee ff  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
163  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
INC opr  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C dd  
4C  
4
1
1
4
3
5
INCA  
INCX  
5C  
Increment  
Jump  
–  
↕ ↕ –  
INC opr,X  
INC ,X  
6C ff  
7C  
9E6C ff  
INC opr,SP  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
PC Jump Address  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
IX2  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
↕ ↕ –  
↕ ↕ –  
↕ ↕ –  
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45 ii jj  
55 dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
–  
–  
↕ ↕ ↕  
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0 ↕ ↕  
64 ff  
74  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
↕ ↕ –  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
Advance Information  
164  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
NEG opr  
DIR  
INH  
INH  
IX1  
IX  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGA  
NEGX  
50  
Negate (Two’s Complement)  
–  
↕ ↕ ↕  
NEG opr,X  
NEG ,X  
60 ff  
70  
9E60 ff  
NEG opr,SP  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
IX2  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
Inclusive OR A and M  
A (A) | (M)  
0
↕ ↕ –  
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
–  
–  
↕ ↕ ↕  
↕ ↕ ↕  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
IX  
69 ff  
79  
9E69 ff  
b7  
b0  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
4
1
1
4
3
5
56  
C
66 ff  
76  
b7  
b0  
SP1  
9E66 ff  
RSP  
RTI  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
80  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
– INH  
81  
4
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
165  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
SBC #opr  
IMM  
DIR  
EXT  
IX2  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
Subtract with Carry  
A (A) – (M) – (C)  
–  
↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F2  
SBC opr,SP  
SBC opr,SP  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
F7  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
↕ ↕ – DIR  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
– INH  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
FF  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
↕ ↕ ↕  
IX1  
Subtract  
A (A) (M)  
–  
IX  
SP1  
SP2  
F0  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
84  
97  
85  
2
1
1
– INH  
– INH  
Transfer CCR to A  
A (CCR)  
Advance Information  
166  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
TST opr  
DIR  
INH  
INH  
IX1  
IX  
3D dd  
4D  
3
1
1
3
2
4
TSTA  
TSTX  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
↕ ↕ –  
TST opr,X  
TST ,X  
6D ff  
7D  
9E6D ff  
TST opr,SP  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD Direct to direct addressing mode  
DIR Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
&
|
( )  
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH Inherent addressing mode  
IX  
Indexed, no offset addressing mode  
–( ) Negation (two’s complement)  
IX+  
Indexed, no offset, post increment addressing mode  
#
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
10.9 Opcode Map  
See Table 10-2.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
167  
Table 10-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
INH  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
5
CMP  
SP2  
5
SBC  
SP2  
5
CPX  
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
CMP  
IX1  
3
SBC  
IX1  
3
CPX  
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
4
CMP  
SP1  
4
SBC  
SP1  
4
CPX  
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
2
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
BLT  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
3
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
2
CPX  
3
CPX  
4
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
BLE  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1  
2
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
3
BIT  
4
BIT  
5
BIT  
SP2  
5
LDA  
SP2  
5
STA  
SP2  
5
EOR  
3
BIT  
IX1  
3
LDA  
IX1  
4
BIT  
SP1  
4
LDA  
SP1  
4
STA  
SP1  
4
EOR  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
3
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
IX1  
4
LSL  
1
CLC  
INH  
1
3
EOR  
4
EOR  
3
EOR  
8
BRSET4 BSET4 BHCC  
LSL  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
SP2  
5
ADC  
SP2  
IX1  
3
SP1  
4
ADC  
SP1  
4
ROL  
3
ADC  
4
ADC  
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
INH  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
ADC  
IX1  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
SP1  
5
4
DEC  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
SP2  
IX1  
SP1  
5
3
3
5
3
ADD  
4
ADD  
5
3
ADD  
IX1  
3
JMP  
IX1  
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1  
5
SP2  
SP1  
4
INC  
2
JMP  
DIR  
4
JSR  
4
JMP  
BRSET6 BSET6  
INCA  
INCX  
INC  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
SP1  
4
2
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
JSR  
BRCLR6 BCLR6  
TST  
SP1  
NOP  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
4
BRSET7 BSET7  
MOV  
IX+D  
LDX  
LDX  
IX1  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
1
1
4
4
SP2  
3
3
SP1  
3
CLR  
4
2
CLR  
IX  
3
STX  
4
STX  
5
STX  
SP2  
3
4
STX  
SP1  
BRCLR7 BCLR7  
DIR DIR  
CLR  
SP1  
STX  
3
2
REL 2 DIR  
3
1
IX1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Advance Information — MC68HC908GP20  
Section 11. FLASH Memory  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
11.5 Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
11.5.1  
11.5.2  
FLASH Charge Pump Frequency Control. . . . . . . . . . . . .173  
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
11.6 FLASH Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
11.7 FLASH Program/Margin Read Operation. . . . . . . . . . . . . . . .177  
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
11.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . .181  
11.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program, erase, and read operations are enabled  
through the use of an internal charge pump.  
11.3 Functional Description  
The FLASH memory is an array of 19,968 bytes with an additional 36  
bytes of user vectors and one byte of block protection. An erased bit  
reads as logic 0 and a programmed bit reads as a logic 1. Program and  
erase operations are facilitated through control bits in a memory mapped  
register. Details for these operations appear later in this section. Memory  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
169  
in the FLASH array is organized into pages within rows. There are eight  
pages of memory per row with eight bytes per page. The minimum erase  
block size is a single row, 64 bytes. Programming is performed on a per  
page basis; eight bytes at a time. The address ranges for the user  
memory and vectors are:  
• $B000–$FDFF; user memory  
• $FF80; block protect register  
• $FE08; FLASH control register  
• $FFDC–$FFFF; These locations are reserved for user-defined  
interrupt and reset vectors.  
When programming the FLASH, just enough program time must be used  
to program a page. Too much program time can result in a program  
disturb condition, in which case an erased bit on the row being  
programmed becomes unintentionally programmed. Program disturb is  
avoided by using an iterative program and margin read technique known  
as the smart page programming algorithm. The smart programming  
algorithm is required whenever programming the array (see 11.7 FLASH  
Program/Margin Read Operation).  
To avoid the program disturb issue, each row should not be programmed  
more than eight times before it is erased. The eight program cycle  
maximum per row aligns with the architecture’s eight pages of storage  
per row. The margin read step of the smart programming algorithm is  
used to ensure programmed bits are programmed to sufficient margin for  
data retention over the device lifetime.  
Row architecture for this array is:  
• $B000-$B03F; row0  
• $B040-$B07F; row1  
• $B080-$B0BF; row2  
• ----------------------------  
• $FFC0-$FFFF; row 319  
Programming tools are available from Freescale. Contact your local  
Freescale representative for more information.  
Advance Information  
170  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
1
NOTE: A security feature prevents viewing of the FLASH contents.  
11.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program, erase,  
and margin read operations.  
Address: $FE08  
Bit 7  
FDIV1  
0
6
FDIV0  
0
5
BLK1  
0
4
BLK0  
0
3
HVEN  
0
2
1
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
MARGIN ERASE  
0
0
Figure 11-1. FLASH Control Register (FLCR)  
FDIV1 — Frequency Divide Control Bit  
This read/write bit together with FDIV0 selects the value by which the  
charge pump clock is divided from the system clock. See 11.5.1  
FLASH Charge Pump Frequency Control.  
FDIV0 — Frequency Divide Control Bit  
This read/write bit together with FDIV1 selects the value by which the  
charge pump clock is divided from the system clock. See 11.5.1  
FLASH Charge Pump Frequency Control.  
BLK1— Block Erase Control Bit  
This read/write bit together with BLK0 allows erasing of blocks of  
varying size. See 11.6 FLASH Erase Operation for a description of  
available block sizes.  
BLK0 — Block Erase Control Bit  
This read/write bit together with BLK1 allows erasing of blocks of  
varying size. See 11.6 FLASH Erase Operation for a description of  
available block sizes.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
171  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for  
program/margin read or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MARGIN — Margin Read Control Bit  
This read/write bit configures the memory for margin read operation.  
MARGIN cannot be set if the HVEN = 1. MARGIN will return to unset  
automatically if asserted when HVEN is set.  
1 = Margin read operation selected  
0 = Margin read operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE  
is interlocked with the PGM bit such that both bits cannot be equal to  
1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM  
is interlocked with the ERASE bit such that both bits cannot be equal  
to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
Advance Information  
172  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
11.5 Charge Pump  
The internal FLASH charge pump is an analog circuit that provides the  
proper voltage to the FLASH memory when reading, programming, and  
erasing the memory arrays.  
11.5.1 FLASH Charge Pump Frequency Control  
The internal charge pump required for program, margin read, and erase  
operations is designed to operate most efficiently with a 2 MHz clock.  
The charge pump clock is derived from the bus clock. Table 11-1 shows  
how the FDIV bits are used to select a charge pump frequency based on  
the bus clock frequency. Program and erase operations cannot be  
performed if the bus clock frequency is below 2 MHz.  
.
Table 11-1. Charge Pump Clock Frequency  
FDIV1  
FDIV0  
Pump Clock Frequency  
Bus frequency ÷ 1  
Bus frequency ÷ 2  
Bus frequency ÷ 2  
Bus frequency ÷ 4  
Bus Clock Frequency  
1.8 to 2.5 MHz  
0
0
1
1
0
1
0
1
3.6 to 5.0 MHz  
3.6 to 5.0 MHz  
7.2 to 10.0 MHz  
11.5.2 Voltage Regulator  
The PMPSGVLVEN bit in the configuration register (CONFIG) enables  
or disables the voltage regulator in the internal charge pump. For V  
DD  
greater than 3.6 V, the supply regulator must be enabled at all times for  
the charge pump to supply the proper voltage to the FLASH memory.  
For V less than 3.6 V, the voltage regulator may be disabled to  
DD  
conserve power. The charge pump no longer needs the voltage  
regulator and can supply the proper voltage to the FLASH memory  
without it. Leaving the voltage regulator enabled will not cause any harm.  
The chip will merely consume more power than necessary. See  
Section 8. Configuration Register (CONFIG).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
173  
11.6 FLASH Erase Operation  
Use this step-by-step procedure to erase a block of FLASH memory to  
read as logic 0:  
1. If operating voltage is below 3.6 V, set the PMPSGVLVEN bit in  
the CONFIG2 register. (See 8.3 Functional Description.)  
2. Set the ERASE bit, the BLK0, BLK1, FDIV0, and FDIV1 bits in the  
FLASH control register. See Table 11-1 for FDIV settings. See  
Table 11-2 for block sizes.  
3. To ensure target portion of array is unprotected, read the FLASH  
block protect register. (See 11.8 FLASH Block Protection.)  
4. Write to any FLASH address with any data within the block  
address range desired.  
5. Set the HVEN bit.  
6. Wait for a time, t  
.
Erase  
7. Clear the HVEN bit.  
8. Wait for a time, t , for the high voltages to dissipate.  
Kill  
9. Clear the ERASE bit.  
10. After a time, t  
mode.  
, the memory can be accessed again in read  
HVD  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps. Do not exceed t  
maximum.  
Erase  
Table 11-2 shows the various block sizes which can be erased in one  
erase operation. A write to a particular address will erase varying block  
sizes. The first column of the table shows a particular address bit and  
the second column shows the address value of that bit which will select  
a particular desired erase address array (fifth column) when selected  
with the appropriate BLK1 (third column) and BLK0 (fourth column) bits.  
The corresponding array size that will be erased is shown in the last  
column of the table as well as the critical address bits which are affected.  
Advance Information  
174  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 11-2. Erase Block Sizes  
Write to  
Address  
Bit  
Array Size  
(Critical  
Address Bits)  
Address  
Value  
BLK1 BLK0  
Desired Erase Address Range  
Any  
FLASH  
address  
Full array: 20 KBytes  
(A14–A0,  
Any FLASH Address)  
Any  
0
0
$B000–$FDFF and $FFDC–$FFFF  
4/5 array: 16 Kbytes  
(A14 = 1)  
A14  
A14  
1
0
0
0
1
1
$C000–$FDFF and $FFDC–$FFFF  
$B000–$BFFF  
1/5 array: 4 Kbytes  
(A14 = 0)  
Address range determined by value  
of A15–A10, while A9 = 1:  
$<A15–A12><A11,A10,10><0000><0000>  
–$<A15–A12><A11,A10,11><1111><1111>  
Eight rows:  
512 bytes  
(A14–A9, A9 = 1)  
A9  
A9  
A6  
A6  
1
0
1
0
1
1
1
1
0
0
1
1
Address range determined by value  
of A15–A10, while A9 = 0:  
$<A15–A12><A11,A10,00><0000><0000>  
–$<A15–A12><A11,A10,01><1111><1111>  
Eight rows:  
512 bytes  
(A14–A9, A9 = 0)  
Address range determined by value  
of A15–A7, while A6 = 1:  
$<A15–A12><A11:A8><A7,100><0000>  
–$<A15–A12><A11:A8><A7,111><1111>  
Single row: 64 bytes  
(A14–A6, A6 = 1)  
Address range determined by value  
of A15–A7, while A6 = 0:  
$<A15–A12><A11:A8><A7,000><0000>  
–$<A15–A12><A11:A8><A7,011><1111>  
Single row: 64 bytes  
(A14–A6, A6 = 0)  
In step 4 of the erase operation, the desired erase addresses are latched  
and used to determine the location of the block to be erased. For the full  
array (BLK1 = BLK0 = 0), the only requirement is that the FLASH  
memory be selected. Writing to any address in the range $B000 to  
$FDFF or the vectors in the address range $FFDC to $FFFF will enable  
the full array erase. This case is shown in Table 11-2.  
In the 4/5 array case in Table 11-2 (A14 = 1, BLK1 = 0, BLK0 = 1), the  
state of A14 = 1 determines that the range from $C000 to $FDFF and  
$FFDC to $FFFF is erased. For example, writing to address $D123  
(A14 = 1, BLK1 = 0, BLK0 = 1) will erase the range $C000 to $FDFF and  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
175  
$FFDC to $FFFF. This block erase can also be accomplished by writing  
to any FLASH address in which A14 = 1 while BLK1 = 0 and BLK0 = 1.  
In the 1/5 array case (A14 = 0, BLK1 = 0, BLK0 = 1) the state of  
A14 = 0 determines that the range from $B000 to $BFFF is erased. For  
example, writing to address $B123 (A14 = 0, BLK1 = 0, BLK0 = 1) will  
erase the range $B000 to $BFFF. This block erase can also be  
accomplished by writing to any FLASH address in which A14 = 0 while  
BLK1 = 0 and BLK0 = 1.  
In the 8 row case (A9 = 1, BLK1 = 1, BLK0 = 0), the state of A9=1  
determines that the range from  
$<A15:A12><A11,A10,10><0000><0000> to  
$<A15:A12><A11,A10,11><1111><1111> is erased. Address bits  
A15–A10 indicate arbitrary address bit values defined in the desired  
erase address range while the remaining lower bits A9–A0 are fixed as  
shown. For example, writing to address $FB10 (1111 1011 0001 0000  
binary) (A9 = 1, BLK1 = 1, BLK0 = 0) will erase the range $FA00  
(1111 1010 0000 0000 binary) to $FBFF (1111 1011 1111 1111 binary).  
In the other 8 row case (A9 = 0, BLK1 = 1, BLK0 = 0), the state of  
A9 = 0 determines that the range from  
$<A15:A12><A11,A10,00><0000><0000> to  
$<A15:A12><A11,A10,01><1111><1111> is erased. Address bits  
A15–A10 indicate arbitrary address bit values defined in the desired  
erase address range while the remaining lower bits A9–A0 are fixed as  
shown. For example, writing to address $FD10 (1111 1101 0001 0000  
binary) (A9 = 0, BLK1 = 1, BLK0 = 0) will erase the range $FC00 (1111  
1100 0000 0000 binary) to $FDFF (1111 1101 1111 1111 binary).  
In the single row case (A6 = 1, BLK1 = 1, BLK0 = 1), the state of  
A6 = 1 determines that the range from  
$<A15:A12><A11:A8><A7,100><0000> to  
$<A15:A12><A11:A8><A7,111><1111> is erased. Address bits  
A15–A7 indicate arbitrary address bit values defined in the desired erase  
address range while the remaining lower bits A6–A0 are fixed as shown.  
For example, writing to address $BC60 (1011 1100 0110 0000 binary)  
(A6 = 1, BLK1 = 1, BLK0 = 1) will erase the range $BC40 (1011 1100  
0100 0000 binary) to $BC7F (1011 1100 0111 1111 binary).  
Advance Information  
176  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
In the other “single row case” (A6 = 0, BLK1 = 1, BLK0 = 1), the state of  
A6 = 0 determines that the range from  
$<A15:A12><A11:A8><A7,000><0000> to  
$<A15:A12><A11:A8><A7,011><1111> is erased. Address bits  
A15–A7 indicate arbitrary address bit values defined in the desired erase  
address range while the remaining lower bits A6–A0 are fixed as shown.  
For example, writing to address $BC87 (1011 1100 1000 0111 binary)  
(A6 = 0, BLK1 = 1, BLK0 = 1) will erase the range $BC80 (1011 1100  
1000 0000 binary) to $BCBF (1011 1100 1011 1111 binary).  
11.7 FLASH Program/Margin Read Operation  
NOTE: After a total of eight program operations have been applied to a row, the  
row must be erased before further programming to avoid program  
disturb. An erased byte will read $00.  
Programming of the FLASH memory is done on a page basis. A page  
consists of eight consecutive bytes starting from address $XXX0 or  
$XXX8. The purpose of the margin read mode is to ensure that data has  
been programmed with sufficient margin for long-term data retention.  
During margin read, the control gates of the selected memory bits are  
held at a slightly negative voltage by an internal charge pump. While  
performing a margin read, the operation is the same as for ordinary read  
mode except that a built-in counter stretches the data access for an  
additional eight cycles to allow sensing of the lower cell current. Margin  
read mode imposes a more stringent read condition on the bitcell to  
ensure the bitcell is programmed with enough margin for long-term data  
retention. During these eight cycles the COP counter continues to run.  
The user must account for these extra cycles within COP feed loops. A  
margin read cycle can only follow a program operation.  
NOTE: To overwrite a memory location, it must first be erased to 0s then  
programmed to the new value. For instance, if a location previously has  
been programmed to $AA (1010 1010 binary) and the value should be  
changed to $55 (0101 0101 binary), it is necessary to erase $AA to $00  
FIRST before programming to $55. If the erase operation in this  
example is not performed and $AA is simply re-programmed to $55, then  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
177  
the location will be read as $FF (1111 1111 binary). (0s cannot be  
programmed. 0s only result from the erase operation.)  
To program and margin read the FLASH memory, use this procedure:  
1. If operating voltage is below 3.6 V, set the PMPSGVLVEN bit in  
the CONFIG2 register. (See 8.3 Functional Description.)  
2. Set the PGM, FDIV1, and FDIV0 bits in the FLASH control  
register. This configures the memory for program operation and  
enables the latching of address and data for programming.  
3. Read from the FLASH block protect register.  
4. Write data to the eight bytes of the page being programmed. This  
requires eight separate write operations.  
5. Set the HVEN bit.  
6. Wait for a time, t  
.
PROG  
7. Clear the HVEN bit.  
8. Wait for a time, t  
.
HVTV  
9. Set the MARGIN bit.  
10. Wait for a time, t  
.
VTP  
11. Clear the PGM bit.  
12. Wait for a time, t  
.
HVD  
13. Read back data in margin read mode. This is done in eight  
separate read operations which are each stretched by eight  
cycles.  
14. Clear the MARGIN bit.  
15. Repeat steps 2 through 14 for each page until the data verifies.  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps.  
This program/margin read sequence is repeated throughout the memory  
until all data is programmed. For minimum overall programming time and  
least program disturb effect, the smart programming algorithm in Figure  
11-2 should be followed.  
Advance Information  
178  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Smart Programming Algorithm  
PROGRAM FLASH  
Page Program/Margin Read Procedure  
Note: This algorithm is mandatory for programming the FLASH.  
INITIALIZE ATTEMPT  
COUNTER TO 0  
Note: This page program algorithm assumes the page/s  
to be programmed are initially erased.  
SET PGM BIT AND FDIV BITS  
READ FLASH BLOCK  
PROTECT REGISTER  
WRITE DATA TO SELECTED PAGE  
SET HVEN BIT  
WAIT tPROG  
CLEAR HVEN BIT  
WAIT tHVTV  
SET MARGIN BIT  
WAIT tVTP  
CLEAR PGM BIT  
WAIT tHVD  
MARGIN READ PAGE OF DATA  
CLEAR MARGIN BIT  
INCREMENT ATTEMPT COUNTER  
N
N
ATTEMPT COUNT  
MARGIN READ DATA  
EQUAL TO  
EQUAL TO  
FLSPULSES?  
WRITE DATA?  
Y
Y
PROGRAMMING OPERATION  
FAILED  
PROGRAMMING OPERATION  
COMPLETE  
Figure 11-2. Smart Programming Algorithm  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
179  
11.8 FLASH Block Protection  
NOTE: In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
blocks of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by reserving a location in the  
memory for block protect information and requiring that this location be  
read to enable setting of the HVEN bit. When the block protect register  
is read, its contents are latched by the FLASH control logic. If the  
address range for an erase or program operation includes a protected  
block, the PGM or ERASE bit is cleared which prevents the HVEN bit in  
the FLASH control register from being set so that no high voltage is  
allowed in the array.  
When the block protect register is erased (all 0s), the entire memory is  
accessible for program and erase. When bits within the register are  
programmed, they lock blocks of memory address ranges as shown in  
11.9 FLASH Block Protect Register. The block protect register itself  
can be erased or programmed only with an external voltage, V  
,
TST  
present on the IRQ pin. This voltage also allows entry from reset into the  
monitor mode.  
Advance Information  
180  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
11.9 FLASH Block Protect Register  
The block protect register (FLBPR) is implemented as a byte within the  
FLASH memory. Each bit, when programmed, protects a range of  
addresses in the FLASH.  
Address: $FF80  
Bit 7  
Bit 7  
U
6
Bit 6  
U
5
Bit 5  
U
4
Bit 4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
U = Unaffected by reset. Initial value from factory is 0.  
Figure 11-3. FLASH Block Protect Register (FLBPR)  
BPR3 — Block Protect Register Bit 3  
This bit protects the memory contents in the address range $C000 to  
$FFFF.  
1 = Address range protected from erase or program  
0 = Address range open to erase or program  
BPR2 — Block Protect Register Bit 2  
In a larger memory, this bit would protect the memory contents in the  
address range $A000 to $FFFF. It is redundant in this implementation.  
Setting this bit locks everything from $B000 to $FFFF.  
1 = Address range protected from erase or program  
0 = Address range open to erase or program  
BPR1 — Block Protect Register Bit 1  
In a larger memory, this bit would protect the memory contents in the  
address range $9000 to $FFFF. It is redundant in this implementation.  
Setting this bit locks everything from $B000 to $FFFF.  
1 = Address range protected from erase or program  
0 = Address range open to erase or program  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
181  
BPR0 — Block Protect Register Bit 0  
In a larger memory, this bit would protect the memory contents in the  
address range $8000 to $FFFF. It is redundant in this implementation.  
Setting this bit locks everything from $B000 to $FFFF.  
1 = Address range protected from erase or program  
0 = Address range open to erase or program  
Bit 7, Bit 6, Bit 5, and Bit 4  
These bits do not affect FLASH block protection. They are extra bits  
that can be used by the user as readable/writeable bits.  
1 = Bit is set  
0 = Bit is cleared  
By programming the block protect bits, a portion of the memory will be  
locked so that no further erase or program operations may be  
performed. Programming more than one bit at a time is redundant. If  
both BPR3 and BPR2 are set, for instance, the address range $B000  
through $FFFF is locked. If all bits are erased, then all of the memory is  
available for erase and program. The presence of a voltage V  
on the  
TST  
IRQ pin will bypass the block protection so that all of the memory,  
including the block protect register, is open for program and erase  
operations.  
11.10 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a  
program or erase operation on the FLASH. When the MCU is put into  
wait mode, the charge pump for the FLASH is disabled so that either a  
program or erase operation will not continue. If the memory is in either  
program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1,  
HVEN = 1), then it will remain in that mode during wait. Exit from wait  
must now be done with a reset rather than an interrupt because if exiting  
wait with an interrupt, the memory will not be in read mode and the  
interrupt vector cannot be read from the memory.  
Advance Information  
182  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
11.11 Stop Mode  
When the MCU is put into stop mode, if the FLASH is in read mode, it  
will be put into low-power standby. Exit from stop is possible with an  
external interrupt, such as IRQ, keyboard interrupt, or reset.  
The STOP instruction should not be executed while performing a  
program or erase operation on the FLASH. When the MCU is put into  
stop mode, the charge pump for the FLASH is disabled so that either a  
program or erase operation will not continue. If the memory is in either  
program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1,  
HEVEN = 1), then it will remain in that mode during stop. In this case,  
exit from stop must be done with a reset rather than an interrupt because  
if exiting stop with an interrupt, the memory will not be in read mode and  
the interrupt vector cannot be read from the memory.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
183  
Advance Information  
184  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 12. External Interrupt (IRQ)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
12.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .189  
12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .189  
12.2 Introduction  
12.3 Features  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include:  
• A dedicated external interrupt pin (IRQ)  
• IRQ interrupt control bits  
• Hysteresis buffer  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Internal pullup resistor  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
185  
12.4 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 12-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
• Software clear — Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (INTSCR). Writing a logic 1 to the ACK bit clears  
the IRQ latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE bit in the INTSCR controls the triggering sensitivity  
of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt remains set  
until a vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the  
interrupt remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
Advance Information  
186  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
ACK  
RESET  
TO CPU FOR  
VECTOR  
BIL/BIH  
FETCH  
INSTRUCTIONS  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
IRQ  
CK  
IRQ  
FF  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 12-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF  
MODE  
0
IRQ Status and Control  
Register (INTSCR)  
$001D  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 12-2. IRQ I/O Register Summary  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
187  
12.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-  
level-sensitive. With MODE set, both of the following actions must occur  
to clear IRQ:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (INTSCR).  
The ACK bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent  
transitions on the IRQ pin. A falling edge that occurs after writing  
to the ACK bit another interrupt request. If the IRQ mask bit,  
IMASK, is clear, the CPU loads the program counter with the  
vector address at locations $FFFA and $FFFB.  
• Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic  
0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic  
1 may occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
The IRQF bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
Advance Information  
188  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
12.6 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear the latch during the break state. See Section 6. Break  
Module (BRK).  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a logic 0 to  
the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ interrupt flags.  
12.7 IRQ Status and Control Register  
The IRQ status and control register (INTSCR) controls and monitors  
operation of the IRQ module. The INTSCR:  
• Shows the state of the IRQ flag  
• Clears the IRQ latch  
• Masks IRQ interrupt request  
• Controls triggering sensitivity of the IRQ interrupt pin  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
189  
Address: $001D  
Bit 7  
Read:  
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
IRQF  
Write:  
ACK  
0
Reset:  
0
0
= Unimplemented  
Figure 12-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always  
reads as logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Advance Information  
190  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 13. Keyboard Interrupt Module (KBI)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
13.6.1  
13.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .196  
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
13.8.1  
13.8.2  
Keyboard Status and Control Register . . . . . . . . . . . . . . .197  
Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . .198  
13.2 Introduction  
The keyboard interrupt module (KBI) provides eight independently  
maskable external interrupts.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
191  
13.3 Features  
• Eight keyboard interrupt pins with separate keyboard interrupt  
enable bits and one keyboard interrupt mask  
• Hysteresis buffers  
• Programmable edge-only or edge- and level- interrupt sensitivity  
• Exit from low-power modes  
• I/O (input/output) port bit(s) software configurable with pullup  
device(s) if configured as input port bit(s)  
13.4 Functional Description  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port A pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin also enables its internal  
pullup device. A logic 0 applied to an enabled keyboard interrupt pin  
latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
• If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
• If the keyboard interrupt is falling edge- and low-level sensitive, an  
interrupt request is present as long as any keyboard interrupt pin  
is low and the pin is keyboard interrupt enabled.  
Advance Information  
192  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBD0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
.
.
D
Q
TO PULLUP ENABLE  
SYNCHRONIZER  
CK  
KB0IE  
KEYBOARD  
INTERRUPT  
REQUEST  
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBD7  
MODEK  
TO PULLUP ENABLE  
KB7IE  
Figure 13-1. Keyboard Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
IMASKK MODEK  
$001A  
and Control Register Write:  
(INTKBSCR)  
Reset:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
KBIE2  
0
Keyboard Interrupt Enable  
$001B  
Write:  
Register (INTKBIER)  
Reset:  
= Unimplemented  
Figure 13-2. I/O Register Summary  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low-level sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register (INTKBSCR). The ACKK bit is useful in applications that  
poll the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFE0 and  
$FFE1.  
• Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and read the data  
register.  
Advance Information  
194  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
13.5 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pullup to reach a logic 1. Therefore, a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
13.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
195  
13.6.1 Wait Mode  
13.6.2 Stop Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
13.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
SIM break flag control register (SBFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect. (See 13.8.1 Keyboard Status and  
Control Register.)  
Advance Information  
196  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
13.8 I/O Registers  
These registers control and monitor operation of the keyboard module:  
• Keyboard status and control register (INTKBSCR)  
• Keyboard interrupt enable register (INTKBIER)  
13.8.1 Keyboard Status and Control Register  
The keyboard status and control register:  
• Flags keyboard interrupt requests  
• Acknowledges keyboard interrupt requests  
• Masks keyboard interrupt requests  
• Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. Keyboard Status and Control Register (INTKBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as logic 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset  
clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
197  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests. Reset  
clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
13.8.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port A  
pin to operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin to latch interrupt requests. Reset clears the keyboard  
interrupt enable register.  
1 = PTAx pin enabled as keyboard interrupt pin  
0 = PTAx pin not enabled as keyboard interrupt pin  
Advance Information  
198  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
14.4.1  
14.4.2  
14.4.3  
14.4.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . .202  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .202  
LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.2 Introduction  
14.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the V pin and can force a reset when the V  
DD  
DD  
voltage falls below the LVI trip falling voltage, V  
.
TRIPF  
Features of the LVI module include:  
• Programmable LVI reset  
• Selectable LVI trip voltage  
• Programmable stop mode operation  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
199  
14.4 Functional Description  
Figure 14-1 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator. Clearing the LVI power disable bit, LVIPWRD, enables the  
LVI to monitor V voltage. Clearing the LVI reset disable bit, LVIRSTD,  
DD  
enables the LVI module to generate a reset when V falls below a  
DD  
voltage, V  
. Setting the LVI enable in stop mode bit, LVISTOP,  
TRIPF  
enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip  
point bit, LVI5OR3, enables the trip point voltage,V , to be  
TRIPF  
configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip  
point voltage, V , to be configured for 3-V operation. The actual trip  
TRIPF  
points are shown in Section 23. Preliminary Electrical Specifications.  
NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3 V.  
If a 5-V system is used, the user must set the LVI5OR3 bit to raise the  
trip point to 5-V operation. Note that this must be done after every power-  
on reset since the default will revert back to 3-V mode after each power-  
on reset. If the V supply is below the 5-V mode trip voltage but above  
DD  
the 3-V mode trip voltage when POR is released, the part will operate  
because V  
defaults to 3-V mode after a POR. So, in a 5-V system  
TRIPF  
care must be taken to ensure that V is above the 5-V mode trip voltage  
DD  
after POR is released.  
NOTE: If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on  
reset while the V supply is not above the V  
for 5-V mode, the  
DD  
TRIPR  
MCU will immediately go into reset. The LVI in this case will hold the part  
in reset until either V goes above the rising 5-V trip point, V  
,
TRIPR  
DD  
which will release reset or V decreases to approximately 0 V which will  
DD  
re-trigger the power-on reset and reset the trip point to 3-V operation.  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration  
register (MOR1). See 8.3 Functional Description for details of the LVI’s  
configuration bits. Once an LVI reset occurs, the MCU remains in reset  
until V rises above a voltage, V  
, which causes the MCU to exit  
DD  
TRIPR  
reset. See 19.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the  
interaction between the SIM and the LVI. The output of the comparator  
controls the state of the LVIOUT flag in the LVI status register (LVISR).  
Advance Information  
200  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG  
FROM CONFIG  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
VDD > LVITrip = 0  
DD LVITrip = 1  
LVI RESET  
LOW VDD  
DETECTOR  
V
LVIOUT  
LVI5OR3  
FROM CONFIG  
Figure 14-1. LVI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
Read: LVIOUT  
Write:  
6
5
4
3
2
1
Bit 0  
0
0
0
0
0
0
0
LVI Status Register  
(LVISR)  
$FE0C  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-2. LVI I/O Register Summary  
14.4.1 Polled LVI Operation  
In applications that can operate at V levels below the V  
level,  
DD  
TRIPF  
software can monitor V by polling the LVIOUT bit. In the configuration  
DD  
register, the LVIPWRD bit must be at logic 0 to enable the LVI module,  
and the LVIRSTD bit must be at logic 1 to disable LVI resets.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
201  
14.4.2 Forced Reset Operation  
In applications that require V to remain above the V  
level,  
TRIPF  
DD  
enabling LVI resets allows the LVI module to reset the MCU when V  
DD  
falls below the V  
level. In the configuration register, the LVIPWRD  
TRIPF  
and LVIRSTD bits must be at logic 0 to enable the LVI module and to  
enable LVI resets.  
14.4.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having V fall below V  
), the LVI  
TRIPF  
DD  
will maintain a reset condition until V rises above the rising trip point  
DD  
voltage, V  
. This prevents a condition in which the MCU is  
TRIPR  
continually entering and exiting reset if V is approximately equal to  
DD  
V
. V  
is greater than V  
by the hysteresis voltage, V  
.
TRIPF  
TRIPR  
TRIPF  
HYS  
14.4.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is  
configured for 5-V or 3-V protection.  
NOTE: The microcontroller is guaranteed to operate at a minimum supply  
voltage. The trip point (V  
[5 V] or V  
[3 V]) may be lower than  
TRIPF  
TRIPF  
this. (See Section 23. Preliminary Electrical Specifications for the  
actual trip point voltages.)  
Advance Information  
202  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
14.5 LVI Status Register  
The LVI status register (LVISR) indicates if the V voltage was  
DD  
detected below the V  
level.  
TRIPF  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
4
0
3
0
2
0
1
0
Bit 0  
0
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the  
DD  
V
trip voltage. (See Table 14-1.) Reset clears the LVIOUT bit.  
TRIPF  
Table 14-1. LVIOUT Bit Indication  
V
LVIOUT  
DD  
V
> V  
0
DD  
TRIPR  
TRIPF  
V
< V  
1
DD  
V
< V < V  
TRIPR  
Previous value  
TRIPF  
DD  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
203  
14.6 LVI Interrupts  
The LVI module does not generate interrupt requests.  
14.7 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
14.7.1 Wait Mode  
14.7.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
If enabled in stop mode (LVISTOP set), the LVI module remains active  
in stop mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of stop mode.  
Advance Information  
204  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 15. Monitor ROM (MON)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
15.4.1  
15.4.2  
15.4.3  
15.4.4  
15.4.5  
Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
15.2 Introduction  
This section describes the monitor ROM (MON) and the monitor mode  
entry methods. The monitor ROM allows complete testing of the MCU  
through a single-wire interface with a host computer. Monitor mode entry  
can be achieved without use of the higher test voltage, V  
, as long as  
TST  
vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
205  
15.3 Features  
Features of the monitor ROM include:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• Execution of code in RAM or FLASH  
1
• FLASH memory security feature  
• FLASH memory programming interface  
• Enhanced PLL (phase-locked loop) option to allow use of external  
32.768-kHz crystal to generate internal frequency of 2.4576 MHz  
• 307 bytes monitor ROM code size ($FE20 to $FF52)  
• Monitor mode entry without high voltage, V  
blank ($FFFE and $FFFF contain $00)  
, if reset vector is  
TST  
• Standard monitor mode entry if high voltage, V  
IRQ  
, is applied to  
TST  
15.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 15-1 shows an example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute code downloaded into RAM by a host  
computer while most MCU pins retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
the PTA0 pin. A level-shifting and multiplexing interface is required  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Advance Information  
206  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
68HC08  
RST  
0.1 µF  
V
TST  
RESET VECTORS  
$FFFE  
(SEE NOTE 3)  
10 kΩ  
$FFFF  
(SEE NOTES 2  
AND 3)  
C
SW2  
IRQ  
C
D
V
DDA  
V
DDA  
CGMXFC  
10 k  
0.47 µF  
SW3  
(SEE NOTE 2)  
C
C
OSC1  
6–30 pF  
1
20  
MC145407  
D
+
+
+
+
OSC2  
PTA7  
10  
10  
µ
F
F
10 µF  
SW4  
(SEE NOTE 2)  
3
4
18  
17  
V
V
V
SS  
32.768 kHz XTAL  
V
/V  
SSAD REFL  
330 k  
D
SSA  
6–30 pF  
DD  
10 µF  
µ
2
19  
DB-25  
2
V
5
6
16  
15  
DD  
V
3
7
DD  
V
/V  
DDAD REFH  
0.1 µF  
V
DD  
V
DD  
1
2
6
4
14  
3
MC74HC125  
10 k  
PTA0  
PTC3  
5
V
DD  
V
DD  
7
A
PTC0  
PTC1  
SW1  
(SEE NOTE 1)  
B
Notes:  
1. For monitor mode entry when IRQ = VTST  
:
SW1: Position A — Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4  
SW1: Position B — Bus clock = CGMXCLK ÷ 2  
2. SW2, SW3, and SW4: Position C — Enter monitor mode using external oscillator.  
SW2, SW3, and SW4: Position D — Enter monitor mode using external XTAL and internal PLL.  
3. See Table 15-1 for IRQ voltage level requirements.  
Figure 15-1. Monitor Mode Circuit  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
207  
between PTA0 and the host computer. PTA0 is used in a wired-OR  
configuration and requires a pullup resistor.  
The monitor code has been updated from previous versions of the  
monitor code to allow enabling the PLL to generate the internal clock,  
provided the reset vector is blank, when the device is being clocked by  
a low-frequency crystal. This addition, which is enabled when IRQ is  
held low out of rest, is intended to support serial communication/  
programming at 9600 baud in monitor mode by stepping up the external  
frequency (assumed to be 32.768 kHz) by a fixed amount to generate  
the desired internal frequency (2.4576 MHz). Since this feature is  
enabled only when IRQ is held low out of reset, it cannot be used when  
the reset vector is non-zero because entry into monitor mode in this case  
requires V  
on IRQ.  
TST  
15.4.1 Entering Monitor Mode  
Table 15-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a POR and will  
allow communication at 9600 baud provided one of the following sets of  
conditions is met:  
1. If $FFFE and $FFFF contain non-zero values:  
– The external clock is 4.9152 MHz with PTC3 low or  
9.8304 MHz with PTC3 high  
– IRQ = V  
(PLL off)  
TST  
2. If $FFFE and $FFFF contain zero values:  
– The external clock is 9.8304 MHz  
– IRQ = V (this can be implemented through the internal IRQ  
DD  
pullup; PLL off)  
3. If $FFFE and $FFFF contain zero values:  
– The external clock is 32.768 kHz (crystal)  
– IRQ = V (this setting initiates the PLL to boost the external  
SS  
32.768 kHz to an internal bus frequency of 2.4576 MHz)  
If V  
is applied to IRQ and PTC3 is low upon monitor mode entry  
TST  
(above condition set 1), the bus frequency is a divide-by-two of the input  
clock. If PTC3 is high with V applied to IRQ upon monitor mode entry,  
TST  
the bus frequency will be a divide-by-four of the input clock. Holding the  
Advance Information  
208  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 15-1. Monitor Mode Signal Requirements and Options  
For Serial  
Communication  
External  
Clock(1)  
$FFFE/  
$FFFF  
Bus  
Frequency  
IRQ  
RESET  
PLL PTC0 PTC1 PTC3  
CGMOUT  
COP  
Comment  
Baud  
PTA0 PTA7  
Rate(2) (3)  
X
GND  
X
X
X
X
1
X
0
X
0
X
0
0
Disabled  
Disabled  
X
X
0
No operation until  
reset goes high  
VTST  
VDD  
or  
VTST  
OFF  
4.9152  
MHz  
4.9152  
MHz  
2.4576  
MHz  
1
0
1
9600  
DNA  
PTC0 and PTC  
voltages only  
required if  
X
IRQ = VTST  
;
PTC3 determines  
frequency divider  
VTST  
VDD  
or  
VTST  
X
OFF  
1
0
1
9.8304  
MHz  
4.9152  
MHz  
2.4576  
MHz  
Disabled  
1
0
1
9600  
DNA  
PTC0 and PTC1  
voltages only  
required if  
X
IRQ = VTST  
;
PTC3 determines  
frequency divider  
VDD  
VDD  
$0000  
$0000  
OFF  
ON  
X
X
X
X
X
X
9.8304  
MHz  
4.9152  
MHz  
2.4576  
MHz  
Disabled  
Disabled  
1
X
1
0
1
0
1
9600  
DNA  
9600  
DNA  
External frequency  
always divided by 4  
GND  
VDD  
32.768  
kHz  
4.9152  
MHz  
2.4576  
MHz  
PLL enabled  
(BCS set)  
in monitor code  
X
VDD  
or  
GND  
VTST  
$0000  
OFF  
X
X
X
X
X
X
X
Enabled  
Enabled  
X
X
X
Enters user  
mode — will  
encounter an illegal  
address reset  
VDD  
or  
VDD  
or  
Non-zero OFF  
X
X
Enters user mode  
GND  
VTST  
Notes:  
1. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator  
2. PTA0 = 1 if serial communication; PTA0 = X if parallel communication  
3. PTA7 = 0 serial, PTA7 = 1 parallel communication for security code entry  
4. DNA = does not apply, X = don’t care  
PTC3 pin low when entering monitor mode causes a bypass of a divide-  
by-two stage at the oscillator only if V is applied to IRQ. In this event,  
TST  
the CGMOUT frequency is equal to the CGMXCLK frequency, and the  
OSC1 input directly generates internal bus clocks. In this case, the  
OSC1 signal must have a 50% duty cycle at maximum bus frequency.  
If entering monitor mode without high voltage on IRQ (above condition  
set 2 or 3, where applied voltage is either V or V ), then all port C pin  
DD  
SS  
requirements and conditions, including the PTC3 frequency divisor  
selection, are not in effect. This is to reduce circuit requirements when  
performing in-circuit programming.  
NOTE: If the reset vector is blank and monitor mode is entered, the chip will see  
an additional reset cycle after the initial POR reset. Once the part has  
been programmed, the traditional method of applying a voltage, V  
IRQ must be used to enter monitor mode.  
, to  
TST  
The COP module is disabled in monitor mode based on these  
conditions:  
• If monitor mode was entered as a result of the reset vector being  
blank (above condition set 2 or 3), the COP is always disabled  
regardless of the state of IRQ or RST.  
• If monitor mode was entered with V  
on IRQ (condition set 1),  
TST  
then the COP is disabled as long as V  
or RST.  
is applied to either IRQ  
TST  
The second condition states that as long as V  
is maintained on the  
TST  
IRQ pin after entering monitor mode, or if V  
is applied to RST after  
TST  
the initial reset to get into monitor mode (when V  
was applied to IRQ),  
TST  
then the COP will be disabled. In the latter situation, after V  
is applied  
TST  
to the RST pin, V  
can be removed from the IRQ pin in the interest of  
TST  
freeing the IRQ for normal functionality in monitor mode.  
Figure 15-2 shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and just 1 x V voltage is applied to the IRQ  
DD  
pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
9600, as the internal bus frequency is automatically set to the external  
frequency divided by four.  
Advance Information  
210  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 15-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with pin configuration shown in Figure 15-1 by  
pulling RST low and then high. The rising edge of RST latches monitor  
mode. Once monitor mode is latched, the values on the specified pins  
can change.  
Once out of reset, the MCU waits for the host to send eight security  
bytes. (See 15.5 Security.) After the security bytes, the MCU sends a  
break signal (10 consecutive logic 0s) to the host, indicating that it is  
ready to receive a command.  
NOTE: The PTA7 pin must remain at logic 0 for 24 bus cycles after the RST pin  
goes high to enter monitor mode properly.  
In monitor mode, the MCU uses different vectors for reset, SWI  
(software interrupt), and break interrupt than those for user mode. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE: Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST low will not exit  
monitor mode in this situation.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
211  
Table 15-2 summarizes the differences between user mode and monitor  
mode.  
Table 15-2. Mode Differences  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
15.4.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5  
BIT 7  
Figure 15-3. Monitor Data Format  
15.4.3 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 15-4. Break Transaction  
Advance Information  
212  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
15.4.4 Baud Rate  
The communication baud rate is controlled by the crystal frequency and  
the state of the PTC3 pin (when IRQ is set to V ) upon entry into  
TST  
monitor mode. When PTC3 is high, the divide by ratio is 1024. If the  
PTC3 pin is at logic 0 upon entry into monitor mode, the divide by ratio  
is 512.  
If monitor mode was entered with V on IRQ, then the divide by ratio is  
DD  
set at 1024, regardless of PTC3. If monitor mode was entered with V  
SS  
on IRQ, then the internal PLL steps up the external frequency, presumed  
to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor  
mode entry require that the reset vector is blank.  
Table 15-3 lists external frequencies required to achieve a standard  
baud rate of 9600 BPS. Other standard baud rates can be accomplished  
using proportionally higher or lower frequency generators. If using a  
crystal as the clock source, be aware of the upper frequency limit that the  
internal clock module can handle. See 23.8 5.0-V Control Timing and  
23.9 3.0-V Control Timing for this limit.  
Table 15-3. Monitor Baud Rate Selection  
External  
Frequency  
Internal  
Frequency  
Baud Rate  
(BPS)  
IRQ  
PTC3  
4.9152 MHz  
9.8304 MHz  
9.8304 MHz  
32.768 kHz  
V
0
1
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
9600  
9600  
9600  
9600  
TST  
V
TST  
V
X
X
DD  
V
SS  
15.4.5 Commands  
The monitor ROM firmware uses these commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
• IWRITE (indexed write)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
213  
• READSP (read stack pointer)  
• RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-5. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 15-6. Write Transaction  
Advance Information  
214  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
A brief description of each monitor mode command is given in  
Table 15-4 through Table 15-9.  
Table 15-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand  
2-byte address in high-byte:low-byte order  
Returns contents of specified address  
Data  
Returned  
Opcode  
$4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Table 15-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by  
data byte  
Operand  
Data  
Returned  
None  
Opcode  
$49  
FROM  
HOST  
Command Sequence  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
215  
Table 15-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand  
2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
Returned  
Opcode  
$1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 15-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Single data byte  
Data  
Returned  
None  
$19  
Opcode  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
Advance Information  
216  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64-Kbyte memory map.  
Table 15-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Data  
Returned  
Returns incremented stack pointer value (SP + 1) in high-byte:low-  
byte order  
Opcode  
$0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 15-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand  
None  
None  
$28  
Data  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
217  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER SP + 1  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 2  
SP + 3  
SP + 4  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER SP + 5  
LOW BYTE OF PROGRAM COUNTER SP + 6  
SP + 7  
Figure 15-7. Stack Pointer at Monitor Mode Entry  
15.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons,  
program locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 15-8.)  
Advance Information  
218  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
VDD  
RST  
PA7  
4096 + 32 CGMXCLK CYCLES  
24 BUS CYCLES  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PA0  
1
1
4
1
4
2
1
NOTES:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-8. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6–$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $40 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
219  
If the security sequence fails, the device can be reset and brought up in  
monitor mode to attempt another entry. After failing the security  
sequence, the FLASH mode can also be bulk erased by executing an  
erase routine that was downloaded into internal RAM. The bulk erase  
operation clears the security code locations so that all eight security  
bytes become $00.  
Advance Information  
220  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 16. Input/Output (I/O) Ports  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
16.3.1  
16.3.2  
16.3.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .226  
Port A Input Pullup Enable Register . . . . . . . . . . . . . . . . .228  
16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
16.4.1  
16.4.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .230  
16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
16.5.1  
16.5.2  
16.5.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .233  
Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . .235  
16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
16.6.1  
16.6.2  
16.6.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . .238  
Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . .240  
16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
16.7.1  
16.7.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .242  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
221  
16.2 Introduction  
Thirty-three (33) bidirectional input-output (I/O) pins form five parallel  
ports. All I/O pins are programmable as inputs or outputs. All individual  
bits within port A, port C, and port D are software configurable with pullup  
devices if configured as input port bits. The pullup devices are  
automatically and dynamically disabled when a port bit is switched to  
output mode.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either V or  
DD  
V . Although the I/O ports do not require termination for proper  
SS  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
0
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
Port C Data Register  
(PTC)  
PTD7  
Port D Data Register  
(PTD)  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
0
DDRA0  
0
Data Direction Register A  
(DDRA)  
= Unimplemented  
Figure 16-1. I/O Port Register Summary  
Advance Information  
222  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
DDRB7  
Data Direction Register B  
(DDRB)  
$0005  
0
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
$0006  
$0007  
$0008  
$000C  
$000D  
$000E  
$000F  
0
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
0
0
0
0
0
0
0
0
0
0
DDRE1  
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
0
0
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Port A Input Pullup Enable  
Register (PTAPUE)  
0
0
0
0
0
0
0
0
0
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Port C Input Pullup Enable  
Register (PTCPUE)  
0
0
0
0
0
0
0
0
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Port D Input Pullup Enable  
Register (PTDPUE)  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-1. I/O Port Register Summary (Continued)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
223  
Table 16-1. Port Control Register Bits Summary  
Port  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
DDR  
Module Control  
KBIE0  
Pin  
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
DDRE0  
DDRE1  
PTA0/KBD0  
PTA1/KBD1  
PTA2/KBD2  
PTA3/KBD3  
PTA4/KBD4  
PTA5/KBD5  
PTA6/KBD6  
PTA7/KBD7  
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD6  
PTB7/ATD7  
PTC0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
CH0  
A
KBD  
CH1  
CH2  
CH3  
B
ADC  
CH4  
CH5  
CH6  
CH7  
PTC1  
PTC2  
C
PTC3  
PTC4  
PTC5  
PTC6  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/T2CH0  
PTD7/T2CH1  
PTE0/TxD  
PTE1/RxD  
SPI  
D
E
TIM1  
TIM2  
SCI  
Advance Information  
224  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
16.3 Port A  
Port A is an 8-bit special-function port that shares all eight of its pins with  
the keyboard interrupt (KBI) module. Port A also has software  
configurable pullup devices if configured as an input port.  
16.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight  
port A pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTA7  
Write:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
KBD4 KBD3  
Alternate  
KBD7  
KBD6  
KBD5  
KBD2  
KBD1  
KBD0  
Function:  
Figure 16-2. Port A Data Register (PTA)  
PTA7–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
KBD7–KBD0 — Keyboard Inputs  
The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard  
interrupt control register (KBICR) enable the port A pins as external  
interrupt pins. See Section 13. Keyboard Interrupt Module (KBI).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
225  
16.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Address: $0004  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Figure 16-3. Data Direction Register A (DDRA)  
DDRA7–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA7–DDRA0, configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 16-4 shows the port A I/O logic.  
Advance Information  
226  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
PTAx  
V
DD  
PTAPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTA ($0000)  
Figure 16-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-2 summarizes  
the operation of the port A pins.  
Table 16-2. Port A Pin Functions  
Accesses  
Accesses to PTA  
to DDRA  
PTAPUE Bit  
DDRA Bit PTA Bit  
I/O Pin Mode  
Read/Write  
Read  
Pin  
Write  
(1)  
(4)  
(3)  
(3)  
1
0
0
1
X
Input, V  
DDRA7–DDRA0  
DDRA7–DDRA0  
DDRA7–DDRA0  
PTA7–PTA0  
PTA7–PTA0  
DD  
(2)  
0
X
X
Input, Hi-Z  
Output  
Pin  
X
PTA7–PTA0  
PTA7–PTA0  
NOTES:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
227  
16.3.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software  
configurable pullup device for each of the eight port A pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRA, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRA is configured for output  
mode.  
Address: $0004  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 16-5. Port A Input Pullup Enable Register (PTAPUE)  
PTAPUE7–PTAPUE0 — Port A Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port A pin configured to have internal pullup  
0 = Corresponding port A pin has internal pullup disconnected  
Advance Information  
228  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
16.4 Port B  
Port B is an 8-bit special-function port that shares all eight of its pins with  
the analog-to-digital converter (ADC) module.  
16.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight  
port pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTB7  
Write:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
AD4 AD3  
Alternate  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Function:  
Figure 16-6. Port B Data Register (PTB)  
PTB7–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
AD7–AD0 — Analog-to-Digital Input Bits  
AD7–AD0 are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits in the ADC status and  
control register define which port B pin will be used as an ADC input  
and overrides any control from the port I/O logic by forcing that pin as  
the input to the analog circuitry.  
NOTE: Care must be taken when reading port B while applying analog voltages  
to AD7–AD0 pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTBx/ADx pin, while PTB is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
229  
16.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Address: $0005  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 16-7. Data Direction Register B (DDRB)  
DDRB7–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB7–DDRB0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 16-8 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 16-8. Port B I/O Circuit  
Advance Information  
230  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-3 summarizes  
the operation of the port B pins.  
Table 16-3. Port B Pin Functions  
Accesses  
to DDRB  
Accesses to PTB  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read/Write  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
DDRB7–DDRB0  
DDRB7–DDRB0  
PTB7–PTB0  
X
PTB7–PTB0  
PTB7–PTB0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
231  
16.5 Port C  
Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has  
software configurable pullup devices if configured as an input port.  
16.5.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the  
seven port C pins.  
Address: $0002  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 16-9. Port C Data Register (PTC)  
PTC6–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
Advance Information  
232  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
16.5.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is  
an input or an output. Writing a logic 1 to a DDRC bit enables the output  
buffer for the corresponding port C pin; a logic 0 disables the output  
buffer.  
Address: $0006  
Bit 7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 16-10. Data Direction Register C (DDRC)  
DDRC6–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC6–DDRC0, configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 16-11 shows the port C I/O logic.  
NOTE: For those devices packaged in a 40-pin dual in-line package, set DDRC6  
and DDRC5 to a 1 to configure PTC5 and PTC6 as outputs.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
233  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
PTCx  
V
DD  
PTCPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTC ($0002)  
Figure 16-11. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-4 summarizes  
the operation of the port C pins.  
Table 16-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE Bit DDRC Bit PTC Bit I/O Pin Mode  
Read  
Write  
(1)  
(4)  
(2)  
(3)  
(3)  
1
0
0
0
1
X
Input, V  
DDRC6–DDRC0  
DDRC6–DDRC0  
DDRC6–DDRC0  
Pin  
Pin  
PTC6–PTC0  
PTC6–PTC0  
DD  
X
Input, Hi-Z  
Output  
X
X
PTC6–PTC0  
PTC6–PTC0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
Advance Information  
234  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
16.5.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software  
configurable pullup device for each of the seven port C pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRC, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRC is configured for output  
mode.  
Address: $000E  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE6–PTCPUE0 — Port C Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port C pin configured to have internal pullup  
0 = Corresponding port C pin internal pullup disconnected  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
235  
16.6 Port D  
Port D is an 8-bit special-function port that shares four of its pins with the  
serial peripheral interface (SPI) module and four of its pins with two timer  
interface (TIM1 and TIM2) modules. Port D also has software  
configurable pullup devices if configured as an input port.  
16.6.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the eight  
port D pins.  
NOTE: Bit 7 and bit 6 of PTD are not available in a 40-pin dual in-line  
package.  
Address: $0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
T1CH0 SPSCK  
Alternate  
Function:  
T2CH1  
T2CH0  
T1CH1  
MOSI  
MISO  
SS  
Figure 16-13. Port D Data Register (PTD)  
PTD7–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
T2CH1 and T2CH0 — Timer 2 Channel I/O Bits  
The PTD7/T2CH1–PTD6/T2CH0 pins are the TIM2 input  
capture/output compare pins. The edge/level select bits,  
ELSxB:ELSxA, determine whether the PTD7/T2CH1–PTD6/T2CH0  
pins are timer channel I/O pins or general-purpose I/O pins. See  
Section 22. Timer Interface Module (TIM).  
Advance Information  
236  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
T1CH1 and T1CH0 — Timer 1 Channel I/O Bits  
The PTD7/T1CH1–PTD6/T1CH0 pins are the TIM1 input  
capture/output compare pins. The edge/level select bits, ELSxB and  
ELSxA, determine whether the PTD7/T1CH1–PTD6/T1CH0 pins are  
timer channel I/O pins or general-purpose I/O pins. See Section 22.  
Timer Interface Module (TIM).  
SPSCK — SPI Serial Clock  
The PTD3/SPSCK pin is the serial clock input of the SPI module.  
When the SPE bit is clear, the PTD3/SPSCK pin is available for  
general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTD2/MOSI pin is the master out/slave in terminal of the SPI  
module. When the SPE bit is clear, the PTD2/MOSI pin is available for  
general-purpose I/O.  
MISO — Master In/Slave Out  
The PTD1/MISO pin is the master in/slave out terminal of the SPI  
module. When the SPI enable bit, SPE, is clear, the SPI module is  
disabled, and the PTD0/SS pin is available for general-purpose I/O.  
Data direction register D (DDRD) does not affect the data direction of  
port D pins that are being used by the SPI module. However, the  
DDRD bits always determine whether reading port D returns the states  
of the latches or the states of the pins. See Table 16-5.  
SS — Slave Select  
The PTD0/SS pin is the slave select input of the SPI module. When  
the SPE bit is clear, or when the SPI master bit, SPMSTR, is set, the  
PTD0/SS pin is available for general-purpose I/O. When the SPI is  
enabled, the DDRB0 bit in data direction register B (DDRB) has no  
effect on the PTD0/SS pin.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
237  
16.6.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is  
an input or an output. Writing a logic 1 to a DDRD bit enables the output  
buffer for the corresponding port D pin; a logic 0 disables the output  
buffer.  
Address: $0007  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Figure 16-14. Data Direction Register D (DDRD)  
DDRD7–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD7–DDRD0, configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 16-15 shows the port D I/O logic.  
NOTE: For those devices packaged in a 40-pin dual in-line package, set DDRC7  
and DDRC6 to a 1 to configure PTD6 and PTD7 as outputs.  
Advance Information  
238  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
PTDx  
RESET  
WRITE PTD ($0003)  
PTDx  
VDD  
PTDPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTD ($0003)  
Figure 16-15. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx  
data latch. When bit DDRDx is a logic 0, reading address $0003 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-5 summarizes  
the operation of the port D pins.  
Table 16-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE Bit DDRD Bit PTD Bit I/O Pin Mode  
Read  
Write  
(1)  
(4)  
(2)  
(3)  
(3)  
1
0
0
0
1
X
Input, V  
DDRD7–DDRD0  
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
Pin  
PTD7–PTD0  
PTD7–PTD0  
DD  
X
Input, Hi-Z  
Output  
X
X
PTD7–PTD0  
PTD7–PTD0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
239  
16.6.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software  
configurable pullup device for each of the eight port D pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRD, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRD is configured for output  
mode.  
Address: $000F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 16-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE7–PTDPUE0 — Port D Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port D pin configured to have internal pullup  
0 = Corresponding port D pin has internal pullup disconnected  
16.7 Port E  
Port E is a 2-bit special-function port that shares two of its pins with the  
serial communications interface (SCI) module.  
Advance Information  
240  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
16.7.1 Port E Data Register  
The port E data register contains a data latch for each of the two port E  
pins.  
Address: $0008  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTE1  
PTE0  
Unaffected by reset  
Alternate  
Function:  
RxD  
TxD  
= Unimplemented  
Figure 16-17. Port E Data Register (PTE)  
PTE1 and PTE0 — Port E Data Bits  
PTE1 and PTE0 are read/write, software programmable bits. Data  
direction of each port E pin is under the control of the corresponding  
bit in data direction register E.  
NOTE: Data direction register E (DDRE) does not affect the data direction of  
port E pins that are being used by the SCI module. However, the DDRE  
bits always determine whether reading port E returns the states of the  
latches or the states of the pins. See Table 16-6.  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the SCI module. When  
the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and  
the PTE1/RxD pin is available for general-purpose I/O. See Section  
18. Serial Communications Interface Module (SCI).  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module.  
When the enable SCI bit, ENSCI, is clear, the SCI module is disabled,  
and the PTE0/TxD pin is available for general-purpose I/O. See  
Section 18. Serial Communications Interface Module (SCI).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
241  
16.7.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is  
an input or an output. Writing a logic 1 to a DDRE bit enables the output  
buffer for the corresponding port E pin; a logic 0 disables the output  
buffer.  
Address: $000C  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 16-18. Data Direction Register E (DDRE)  
DDRE1 and DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE1 and DDRE0, configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 16-19 shows the port E I/O logic.  
Advance Information  
242  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
PTEx  
RESET  
WRITE PTE ($0008)  
READ PTE ($0008)  
PTEx  
Figure 16-19. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx  
data latch. When bit DDREx is a logic 0, reading address $0008 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-6 summarizes  
the operation of the port E pins.  
Table 16-6. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE Bit  
PTE Bit  
I/O Pin Mode  
Read  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRE1–DDRE0  
DDRE1–DDRE0]  
Pin  
PTE1–PTE0  
X
Output  
PTE1–PTE0  
PTE1–PTE0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
243  
Advance Information  
244  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 17. Random-Access Memory (RAM)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.2 Introduction  
This section describes the 512 bytes of RAM (random-access memory).  
17.3 Functional Description  
Addresses $0040 through $023F are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 192 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode  
instructions can efficiently access all page zero RAM locations. Page  
zero RAM, therefore, provides ideal locations for frequently accessed  
global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
245  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Advance Information  
246  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 18. Serial Communications Interface Module  
(SCI)  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
18.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.5.1  
18.5.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .255  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .257  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
18.5.2.1  
18.5.2.2  
18.5.2.3  
18.5.2.4  
18.5.2.5  
18.5.2.6  
18.5.3  
18.5.3.1  
18.5.3.2  
18.5.3.3  
18.5.3.4  
18.5.3.5  
18.5.3.6  
18.5.3.7  
18.5.3.8  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
18.6.1  
18.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .268  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
18.8.1  
18.8.2  
PTE0/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . .268  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . .269  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
247  
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
18.9.1  
18.9.2  
18.9.3  
18.9.4  
18.9.5  
18.9.6  
18.9.7  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .278  
SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .284  
18.2 Introduction  
This section describes the serial communications interface (SCI)  
module, which allows high-speed asynchronous communications with  
peripheral devices and other MCUs.  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. This MCU does not have  
the DMA function. Any DMA-related register bits should be left in their  
reset state for normal MCU operation.  
18.3 Features  
Features of the SCI module include:  
• Full-duplex operation  
• Standard mark/space non-return-to-zero (NRZ) format  
• 32 programmable baud rates  
• Programmable 8-bit or 9-bit character length  
• Separately enabled transmitter and receiver  
• Separate receiver and transmitter CPU interrupt requests  
• Programmable transmitter output polarity  
Advance Information  
248  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Two receiver wakeup methods:  
– Idle line wakeup  
– Address mark wakeup  
• Interrupt-driven operation with eight interrupt flags:  
– Transmitter empty  
– Transmission complete  
– Receiver full  
– Idle receiver input  
– Receiver overrun  
– Noise error  
– Framing error  
– Parity error  
• Receiver framing error detection  
• Hardware parity checking  
• 1/16 bit-time noise detection  
• Configuration register bit, SCIBDSRC, to allow selection of baud  
rate clock source  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
249  
18.4 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
• RxD (receive data)  
• TxD (transmit data)  
SCI I/O (input/output) lines are implemented by sharing parallel I/O port  
pins. The full name of an SCI input or output reflects the name of the  
shared port pin. Table 18-1 shows the full names and the generic names  
of the SCI I/O pins.  
The generic pin names appear in the text of this section.  
Table 18-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
18.5 Functional Description  
Figure 18-1 shows the structure of the SCI module. The SCI allows full-  
duplex, asynchronous, NRZ serial communication among the MCU and  
remote devices, including other MCUs. The transmitter and receiver of  
the SCI operate independently, although they use the same baud rate  
generator. During normal operation, the CPU monitors the status of the  
SCI, writes the data to be transmitted, and processes received data.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC, of the CONFIG2 register ($001E). Source  
selection values are shown in Figure 18-1.  
Advance Information  
250  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PTE1/RxD  
PTE0/TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
SCIBDSRC  
FROM  
M
BKF  
RPF  
ENSCI  
CONFIG  
WAKE  
ILTY  
PEN  
PTY  
SL  
A
PRE-  
BAUD  
CGMXCLK  
IT12  
÷ 4  
X
SCALER  
DIVIDER  
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
³ ÷ 16  
Figure 18-1. SCI Module Block Diagram  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
251  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCI Control Register 1  
(SCC1)  
$0013  
0
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 18-2. SCI I/O Register Summary  
Advance Information  
252  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
18.5.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 18-3.  
8-BIT DATA FORMAT  
PARITY  
BIT M IN SCC1 CLEAR  
NEXT  
START  
BIT  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
BIT 8  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
STOP  
BIT  
Figure 18-3. SCI Data Formats  
18.5.2 Transmitter  
Figure 18-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC. Source selection values are shown in  
Figure 18-4.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
253  
SCIBDSRC  
FROM  
CONFIG2  
SL  
A
CGMXCLK  
IT12  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
INTERNAL BUS  
PRE-  
BAUD  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCALER DIVIDER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
PTE0/TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
SCTIE  
LOOPS  
ENSCI  
TE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 18-4. SCI Transmitter  
Advance Information  
254  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
18.5.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
18.5.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the PTE0/TxD pin. The SCI data register (SCDR) is the write-only  
buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit position of the transmit shift register. A logic 1 stop bit goes  
into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the  
PTE0/TxD pin goes to the idle condition, logic 1. If at any time software  
clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port E pins.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
255  
18.5.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
• Sets the framing error bit (FE) in SCS1  
• Sets the SCI receiver full bit (SCRF) in SCS1  
• Clears the SCI data register (SCDR)  
• Clears the R8 bit in SCC3  
• Sets the break flag bit (BKF) in SCS2  
• May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception in progress flag (RPF) bits  
18.5.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the PTE0/TxD pin becomes  
idle after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
Advance Information  
256  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the TxD pin. Setting TE after  
the stop bit appears on TxD causes data previously written to the SCDR  
to be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit  
becomes set and just before writing the next byte to the SCDR.  
18.5.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values, including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
(See 18.9.1 SCI Control Register 1.)  
18.5.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI  
transmitter:  
• SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
• Transmission complete (TC) — The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
257  
18.5.3 Receiver  
Figure 18-5 shows the structure of the SCI receiver.  
18.5.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
18.5.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the PTE1/RxD pin. The SCI data register (SCDR) is the read-only  
buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
Advance Information  
258  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
INTERNAL BUS  
SCIBDSRC  
FROM  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
CONFIG2  
SCI DATA REGISTER  
SL  
A
CGMXCLK  
IT12  
PRE-  
BAUD  
X
÷ 4  
÷ 16  
B
SCALER DIVIDER  
11-BIT  
SL = 0 => X = A  
RECEIVE SHIFT REGISTER  
SL = 1 => X = B  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
PTE1/RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
DMARE  
ILIE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 18-5. SCI Receiver Block Diagram  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
259  
18.5.3.3 Data Sampling  
The receiver samples the PTE1/RxD pin at the RT clock rate. The RT  
clock is an internal signal with a frequency 16 times the baud rate. To  
adjust for baud rate mismatch, the RT clock is resynchronized at the  
following times (see Figure 18-6):  
• After every start bit  
• After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
PTE1/RxD  
SAMPLES  
START BIT  
QUALIFICATION  
START BIT  
DATA  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 18-6. Receiver Data Sampling  
Advance Information  
260  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 18-2 summarizes the results of  
the start bit verification samples.  
Table 18-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
Start bit verification is not successful if any two of the three verification  
samples are logic 1s. If start bit verification is not successful, the RT  
clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 18-3 summarizes the  
results of the data bit samples.  
Table 18-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
261  
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 18-4 summarizes the results of the stop bit  
samples.  
Table 18-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
18.5.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is  
set.  
18.5.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above  
the receiver baud rate. Accumulated bit time misalignment can cause  
one of the three stop bit data samples to fall outside the actual stop bit.  
Then a noise error occurs. If more than one of the samples is outside the  
stop bit, a framing error occurs. In most applications, the baud rate  
Advance Information  
262  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
tolerance is much more than the degree of misalignment that is likely to  
occur.  
As the receiver samples an incoming character, it resynchronizes the RT  
clock on any valid falling edge within the character. Resynchronization  
within characters corrects misalignments between transmitter bit times  
and receiver bit times.  
Slow Data Tolerance  
Figure 18-7 shows how much a slow received character can be  
misaligned without causing a noise error or a framing error. The slow  
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit  
data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 18-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 18-7, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
263  
With the misaligned character shown in Figure 18-7, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 18-8 shows how much a fast received character can be  
misaligned without causing a noise error or a framing error. The fast stop  
bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 18-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 18-8, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
·
154 160  
× 100 = 3.90%  
-------------------------  
154  
Advance Information  
264  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 18-8, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
18.5.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the PTE1/RxD pin can bring the receiver out of the standby  
state:  
• Address mark — An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
• Idle input line condition — When the WAKE bit is clear, an idle  
character on the PTE1/RxD pin wakes the receiver from the  
standby state by clearing the RWU bit. The idle character that  
wakes the receiver does not set the receiver idle bit, IDLE, or the  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
265  
SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines  
whether the receiver begins counting logic 1s as idle character bits  
after the start bit or after the stop bit.  
NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
18.5.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI  
receiver:  
• SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
• Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the PTE1/RxD pin. The idle  
line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to  
generate CPU interrupt requests.  
18.5.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt  
requests:  
• Receiver overrun (OR) — The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
• Noise flag (NF) — The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
Advance Information  
266  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Framing error (FE) — The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
• Parity error (PE) — The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
18.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
18.6.1 Wait Mode  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode, the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Refer to Section 3. Low-Power Modes for information on exiting wait  
mode.  
18.6.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect SCI register states. SCI module  
operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
267  
Refer to Section 3. Low-Power Modes for information on exiting stop  
mode.  
18.7 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
18.8 I/O Signals  
Port E shares two of its pins with the SCI module. The two SCI I/O pins  
are:  
• PTE0/TxD — Transmit data  
• PTE1/RxD — Receive data  
18.8.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the SCI transmitter. The  
SCI shares the PTE0/TxD pin with port E. When the SCI is enabled, the  
PTE0/TxD pin is an output regardless of the state of the DDRE2 bit in  
data direction register E (DDRE).  
Advance Information  
268  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
18.8.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI  
shares the PTE1/RxD pin with port E. When the SCI is enabled, the  
PTE1/RxD pin is an input regardless of the state of the DDRE1 bit in data  
direction register E (DDRE).  
18.9 I/O Registers  
These I/O registers control and monitor SCI operation:  
• SCI control register 1 (SCC1)  
• SCI control register 2 (SCC2)  
• SCI control register 3 (SCC3)  
• SCI status register 1 (SCS1)  
• SCI status register 2 (SCS2)  
• SCI data register (SCDR)  
• SCI baud rate register (SCBR)  
18.9.1 SCI Control Register 1  
SCI control register 1:  
• Enables loop mode operation  
• Enables the SCI  
• Controls output polarity  
• Controls character length  
• Controls SCI wakeup method  
• Controls idle character detection  
• Enables parity function  
• Controls parity type  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
269  
Address: $0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
LOOPS  
Write:  
Reset:  
0
Figure 18-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
PTE1/RxD pin is disconnected from the SCI, and the transmitter  
output goes into the receiver input. Both the transmitter and the  
receiver must be enabled to use loop mode. Reset clears the LOOPS  
bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and  
disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
Advance Information  
270  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. (See Table 18-5.) The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit position of a received  
character or an idle condition on the PTE1/RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as  
idle character bits. The counting begins either after the start bit or after  
the stop bit. If the count begins after the start bit, then a string of logic  
1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 18-5.)  
When enabled, the parity function inserts a parity bit in the most  
significant bit position. (See Figure 18-3.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
271  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity. (See Table 18-5.) Reset clears the PTY  
bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 18-5. Character Format Selection  
Control Bits  
PEN and  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
PTY  
0X  
0X  
10  
Bits  
0
1
0
0
1
1
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
11  
10  
Even  
Odd  
11  
18.9.2 SCI Control Register 2  
SCI control register 2:  
• Enables the following CPU interrupt requests:  
– Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
– Enables the TC bit to generate transmitter CPU interrupt  
requests  
– Enables the SCRF bit to generate receiver CPU interrupt  
requests  
– Enables the IDLE bit to generate receiver CPU interrupt  
requests  
Advance Information  
272  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
• Enables the transmitter  
• Enables the receiver  
• Enables SCI wakeup  
• Transmits SCI break characters  
Address: $0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 18-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU  
interrupt requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
273  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
PTE0/TxD pin. If software clears the TE bit, the transmitter completes  
any transmission in progress before the PTE0/TxD returns to the idle  
condition (logic 1). Clearing and then setting TE during a transmission  
queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
Advance Information  
274  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character  
followed by a logic 1. The logic 1 after the break character guarantees  
recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no logic 1s between  
them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK before the preamble begins causes the SCI to send a  
break character instead of a preamble.  
18.9.3 SCI Control Register 3  
SCI control register 3:  
• Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
• Enables these interrupts:  
– Receiver overrun interrupts  
– Noise error interrupts  
– Framing error interrupts  
• Parity error interrupts  
Address: $0015  
Bit 7  
R8  
6
T8  
U
5
4
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
DMARE DMATE  
U
0
0
= Unimplemented  
U = Unaffected  
Figure 18-11. SCI Control Register 3 (SCC3)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
275  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth  
bit (bit 8) of the transmitted character. T8 is loaded into the transmit  
shift register at the same time that the SCDR is loaded into the transmit  
shift register. Reset has no effect on the T8 bit.  
DMARE — DMA Receive Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt  
requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt  
requests enabled  
Advance Information  
276  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated  
by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated  
by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated  
by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt  
requests generated by the parity error bit, PE. (See 18.9.4 SCI Status  
Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
277  
18.9.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
• Transfer of SCDR data to transmit shift register complete  
• Transmission complete  
• Transfer of receive shift register data to SCDR complete  
• Receiver input idle  
• Receiver overrun  
• Noisy data  
• Framing error  
• Parity error  
Address: $0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 18-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
Advance Information  
278  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is automatically cleared when data, preamble or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the IDLE  
bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
279  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 18-13 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next flag-clearing  
sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the flag-  
clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
PTE1/RxD pin. NF generates an NF CPU interrupt request if the NEIE  
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
Advance Information  
280  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 18-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates a PE CPU interrupt request if the PEIE  
bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set  
and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
281  
18.9.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
• Break character detected  
• Incoming data  
Address: $0017  
Bit 7  
6
5
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
= Unimplemented  
Figure 18-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break  
character on the PTE1/RxD pin. In SCS1, the FE and SCRF bits are  
also set. In 9-bit character transmissions, the R8 bit in SCC3 is  
cleared. BKF does not generate a CPU interrupt request. Clear BKF  
by reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the PTE1/RxD pin followed by another break character. Reset  
clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch) or when the receiver  
detects an idle character. Polling RPF before disabling the SCI module  
or entering stop mode can show whether a reception is in progress.  
1 = Reception in progress  
0 = No reception in progress  
Advance Information  
282  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
18.9.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus  
and the receive and transmit shift registers. Reset has no effect on data  
in the SCI data register.  
Address: $0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 18-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits,  
R7:R0. Writing to address $0018 writes the data to be transmitted,  
T7:T0. Reset has no effect on the SCI data register.  
NOTE: Do not use read/modify/write instructions on the SCI data register.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
283  
18.9.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver  
and the transmitter.  
Address: $0019  
Bit 7  
0
6
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCR2  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 18-16. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 18-6. Reset clears SCP1 and SCP0.  
Table 18-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 18-7. Reset clears SCR2–SCR0.  
Advance Information  
284  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 18-7. SCI Baud Rate Selection  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
f
BUS  
baud rate = ------------------------------------  
64 × PD × BD  
where:  
f
= bus frequency  
BUS  
PD = prescaler divisor  
BD = baud rate divisor  
SCI_BDSRC is an input to the SCI. Normally it will be tied off low at the  
top level to select the bus clock as the clock source. This makes the  
formula:  
f
BUS  
baud rate = ------------------------------------  
64 × PD × BD  
Table 18-8 shows the SCI baud rates that can be generated with a  
4.9152-MHz bus clock.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
285  
Table 18-8. SCI Baud Rate Selection Examples  
Baud Rate  
SCP1 and  
SCP0  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
(f  
= 4.9152 MHz)  
BUS  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
Advance Information  
286  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 19. System Integration Module (SIM)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .291  
19.3.1  
19.3.2  
19.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Clock Startup from POR or LVI Reset. . . . . . . . . . . . . . . .292  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . .292  
19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .292  
19.4.1  
19.4.2  
External Pin Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
Active Resets from Internal Sources. . . . . . . . . . . . . . . . .294  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Computer Operating Properly (COP) Reset. . . . . . . . . .296  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .297  
Monitor Mode Entry Module Reset (MODRST) . . . . . . .297  
19.4.2.1  
19.4.2.2  
19.4.2.3  
19.4.2.4  
19.4.2.5  
19.4.2.6  
19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
19.5.1  
19.5.2  
19.5.3  
SIM Counter During Power-On Reset. . . . . . . . . . . . . . . .297  
SIM Counter During Stop Mode Recovery . . . . . . . . . . . .298  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . .298  
19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
19.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .302  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
Status Flag Protection in Break Mode. . . . . . . . . . . . . . . .305  
19.6.1.1  
19.6.1.2  
19.6.1.3  
19.6.2  
19.6.3  
19.6.4  
19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
19.7.1  
19.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
287  
19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
19.8.1  
19.8.2  
19.8.3  
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . .308  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .310  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . .311  
19.2 Introduction  
This section describes the system integration module (SIM). Together  
with the CPU, the SIM controls all MCU activities. A block diagram of the  
SIM is shown in Figure 19-1. Table 19-1 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that  
coordinates CPU and exception timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals:  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Table 19-1 shows the internal signal names used in this section.  
Advance Information  
288  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET PIN CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 19-1. SIM Block Diagram  
Table 19-1. Signal Name Conventions  
Signal Name  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
CGMXCLK  
CGMVCLK  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
289  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
R
0
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
(SRSR)  
POR:  
Read:  
Write:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SIM Upper Byte Address  
$FE02  
Register (SUBAR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE04  
$FE05  
$FE06  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-2. SIM I/O Register Summary  
Advance Information  
290  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 19-3. This clock can  
come from either an external oscillator or from the on-chip PLL. (See  
Section 7. Clock Generator Module (CGMC).)  
OSC2  
OSC1  
OSCILLATOR (OSC)  
CGMXCLK  
TO TIMTB15A, ADC  
SIM  
SIMOSCEN  
OSCSTOPENB  
FROM  
CONFIG  
SIM COUNTER  
IT12  
TO REST  
OF CHIP  
CGMRCLK  
CGMOUT  
SIMDIV2  
BUS CLOCK  
GENERATORS  
IT23  
÷ 2  
TO REST  
OF CHIP  
PHASE-LOCKED LOOP (PLL)  
PTC3  
MONITOR MODE  
USER MODE  
Figure 19-3. CGM Clock Signals  
19.3.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator  
output (CGMXCLK) divided by four or the PLL output (CGMVCLK)  
divided by four. See Section 12. External Interrupt (IRQ).  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
291  
19.3.2 Clock Startup from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module  
generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 CGMXCLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this  
entire period. The IBUS clocks start upon completion of the timeout.  
19.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 CGMXCLK cycles. (See 19.7.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
19.4 Reset and System Initialization  
The MCU has these reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Low-voltage inhibit module (LVI)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
Advance Information  
292  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
An internal reset clears the SIM counter (see 19.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). (See 19.8 SIM Registers.)  
19.4.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 CGMXCLK cycles, assuming that neither the POR nor  
the LVI was the source of the reset. See Table 19-2 for details. Figure  
19-4 shows the relative timing.  
Table 19-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 19-4. External Reset Timing  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
293  
19.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles. See Figure  
19-5. An internal reset can be caused by an illegal address, illegal  
opcode, COP timeout, LVI, or POR. (See Figure 19-6.)  
NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
then follows the sequence from the falling edge of RST shown in Figure  
19-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 19-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 19-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
Advance Information  
294  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables CGMOUT.  
• Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 19-7. POR Recovery  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
295  
19.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 12 through 4  
of the SIM counter. The SIM counter output, which occurs at least every  
13  
4
2 – 2 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at  
V
+ V while the MCU is in monitor mode. The COP module can be  
HI  
DD  
disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ pin. This prevents the COP from  
becoming disabled as a result of external noise. During a break state,  
V
+ V on the RST pin disables the COP module.  
HI  
DD  
19.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
19.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
Advance Information  
296  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the V voltage falls to the LVI voltage. The LVI bit in the SIM reset  
DD  
TRIPF  
status register (SRSR) is set, and the external reset pin (RST) is held low  
while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four  
CGMXCLK cycles later, the CPU is released from reset to allow the reset  
vector sequence to occur. The SIM actively pulls down the RST pin for  
all internal reset sources.  
19.4.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to  
the SIM when monitor mode is entered in the condition where the reset  
vectors are blank ($00). (See 15.4.1 Entering Monitor Mode.) When  
MODRST gets asserted, an internal reset occurs. The SIM actively pulls  
down the RST pin for all internal reset sources.  
19.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 13 bits long and is clocked by the falling edge of CGMXCLK.  
19.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the clock generation module (CGM) to drive the  
bus clock state machine.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
297  
19.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic 1, then the stop recovery is  
reduced from the normal delay of 4096 CGMXCLK cycles down to 32  
CGMXCLK cycles. This is ideal for applications using canned oscillators  
that do not require long startup times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC  
cleared.  
19.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 19.7.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. (See  
19.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
19.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
• Interrupts:  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
19.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
Advance Information  
298  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
processing can resume. Figure 19-8 shows interrupt entry timing.  
Figure 19-9 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared). (See Figure  
19-10.)  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY  
PC1[7:0]  
PC–1[15:8]  
X
A
CCR  
V DATA H V DATA L  
OPCODE  
R/W  
Figure 19-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1 [7:0] PC–1[15:8] OPCODE OPERAND  
R/W  
Figure 19-9. Interrupt Recovery Timing  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
299  
FROM RESET  
BREAK  
YES  
INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
IRQ0  
INTERRUPT?  
YES  
YES  
NO  
IRQ  
INTERRUPT?  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
NO  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 19-10. Interrupt Processing  
Advance Information  
300  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register) and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 19-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 19-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
301  
19.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
19.6.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 19-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 19-3. Interrupt Sources  
Interrupt Status  
Register Flag  
Priority  
Highest  
Interrupt Source  
Reset  
SWI instruction  
IRQ pin  
I1  
PLL  
I2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receiver full  
SPI transmitter empty  
SCI receive error  
SCI receive  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
I10  
I11  
I12  
I13  
I14  
I15  
I16  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase module  
Lowest  
Advance Information  
302  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Interrupt Status  
Register 1  
Address: $FE04  
Bit 7  
6
5
I4  
R
0
4
I3  
R
0
3
I2  
R
0
2
I1  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I6  
R
0
I5  
R
R
0
R
0
0
R
= Reserved  
Figure 19-12. Interrupt Status Register 1 (INT1)  
I6–I1 — Interrupt Flags 1–6  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
Interrupt Status  
Register 2  
Address: $FE05  
Bit 7  
I14  
R
6
5
I12  
R
4
I11  
R
3
I10  
R
2
I9  
R
0
1
I8  
R
0
Bit 0  
I7  
Read:  
Write:  
Reset:  
I13  
R
R
0
0
0
0
0
0
R
= Reserved  
Figure 19-13. Interrupt Status Register 2 (INT2)  
I14–I7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
303  
Interrupt Status  
Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
0
1
I16  
R
Bit 0  
I15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 19-14. Interrupt Status Register 3 (INT3)  
Bits 7–2 — Always read 0  
I16–I15 — Interrupt Flags 16–15  
These flags indicate the presence of an interrupt request from the  
source shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
19.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
19.6.3 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. (See  
Section 22. Timer Interface Module (TIM).) The SIM puts the CPU into  
the break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
Advance Information  
304  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.6.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a 2-step clearing mechanism — for example, a read of  
one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
19.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described in  
the following subsections. Both STOP and WAIT clear the interrupt mask  
(I) in the condition code register, allowing interrupts to occur.  
19.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 19-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
305  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the mask  
option register is logic 0, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 19-15. Wait Mode Entry Timing  
Figure 19-16 and Figure 19-17 show the timing for WAIT recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin, CPU interrupt, or break interrupt  
Figure 19-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 19-17. Wait Recovery from Internal Reset  
Advance Information  
306  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
19.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and  
CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop  
recovery time is selectable using the SSREC bit in the mask option  
register (MOR). If SSREC is set, stop recovery is reduced from the  
normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for  
applications using canned oscillators that do not require long startup  
times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 19-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note : Previous data can be operand data or the STOP opcode, depending  
on the last instruction.  
Figure 19-18. Stop Mode Entry Timing  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
307  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 19-19. Stop Mode Recovery from Interrupt or Break  
19.8 SIM Registers  
The SIM has three memory-mapped registers. Table 19-4 shows the  
mapping of these registers.  
Table 19-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
19.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from stop mode or wait mode.  
Address: $FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
R
R
(1)  
Note  
0
0
0
0
R
= Reserved  
Note: 1. Writing a logic 0 clears SBSW.  
Figure 19-20. SIM Break Status Register (SBSR)  
Advance Information  
308  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic 0 to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt.  
0 = Stop mode or wait mode was not exited by break interrupt.  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing 0 to the SBSW bit clears it.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
309  
19.8.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset  
provided all previous reset status bits have been cleared. Clear the SIM  
reset status register by reading it. A power-on reset sets the POR bit and  
clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
Advance Information  
310  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations  
$FFFE and $FFFF are $00 after POR while IRQ = V  
0 = POR or read of SRSR  
DD  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
19.8.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to  
clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 19-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
311  
Advance Information  
312  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 20. Serial Peripheral Interface Module (SPI)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.4 Pin Name Conventions and I/O Register Addresses . . . . . . .315  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
20.5.1  
20.5.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
20.6.1  
20.6.2  
20.6.3  
20.6.4  
Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . .319  
Transmission Format When CPHA = 0. . . . . . . . . . . . . . .320  
Transmission Format When CPHA = 1. . . . . . . . . . . . . . .322  
Transmission Initiation Latency. . . . . . . . . . . . . . . . . . . . .323  
20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .325  
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
20.8.1  
20.8.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.11.2 Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .334  
20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . .335  
20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . .335  
20.13.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
313  
20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.14.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .340  
20.14.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
20.2 Introduction  
20.3 Features  
This section describes the serial peripheral interface (SPI) module,  
which allows full-duplex, synchronous, serial communications with  
peripheral devices.  
Features of the SPI module include:  
• Full-duplex operation  
• Master and slave modes  
• Double-buffered operation with separate transmit and receive  
registers  
• Four master mode frequencies (maximum = bus frequency ÷ 2)  
• Maximum slave mode frequency = bus frequency  
• Serial clock with programmable polarity and phase  
• Two separately enabled interrupts:  
– SPRF (SPI receiver full)  
– SPTE (SPI transmitter empty)  
• Mode fault error flag with CPU interrupt capability  
• Overflow error flag with CPU interrupt capability  
• Programmable wired-OR mode  
2
• I C (inter-integrated circuit) compatibility  
• I/O (input/output) port bit(s) software configurable with pullup  
device(s) if configured as input port bit(s)  
Advance Information  
314  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
20.4 Pin Name Conventions and I/O Register Addresses  
The text that follows describes the SPI. The SPI I/O pin names are SS  
(slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI  
(master out slave in), and MISO (master in/slave out). The SPI shares  
four I/O pins with four parallel I/O ports.  
The full names of the SPI I/O pins are shown in Table 20-1. The generic  
pin names appear in the text that follows.  
Table 20-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
Full SPI  
Pin Names:  
SPI PTD1/MISO PTD2/MOSI PTD0/SS PTD3/SPSCK  
V
SS  
20.5 Functional Description  
Figure 20-1 summarizes the SPI I/O registers and Figure 20-2 shows  
the structure of the SPI module.  
Addr.  
Register Name  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
DMAS  
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPI Control Register  
(SPCR)  
$0010  
0
1
0
1
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN  
SPR1  
SPR0  
SPI Status and Control  
Register (SPSCR)  
$0011  
$0012  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
= Unimplemented  
Figure 20-1. SPI I/O Register Summary  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
315  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
FROM SIM  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR SPE  
SELECT  
M
CLOCK  
LOGIC  
S
SPR1  
SPR0  
SPMSTR CPHA  
CPOL  
RESERVED  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
DMAS  
SPE  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RESERVED  
SPI  
CONTROL  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
SPRF  
SPTE  
OVRF  
MODF  
Figure 20-2. SPI Module Block Diagram  
The SPI module allows full-duplex, synchronous, serial communication  
between the MCU and peripheral devices, including other MCUs.  
Software can poll the SPI status flags or SPI operation can be interrupt-  
driven.  
Advance Information  
316  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
If a port bit is configured for input, then an internal pullup device may be  
enabled for that port bit. (See 16.5.3 Port C Input Pullup Enable  
Register.)  
The following paragraphs describe the operation of the SPI module.  
20.5.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is  
set.  
NOTE: Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave  
SPI before disabling the master SPI. (See 20.14.1 SPI Control  
Register.)  
Only a master SPI module can initiate transmissions. Software begins  
the transmission from a master SPI module by writing to the transmit  
data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte  
begins shifting out on the MOSI pin under the control of the serial clock.  
(See Figure 20-3.)  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 20-3. Full-Duplex Master-Slave Connections  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
317  
The SPR1 and SPR0 bits control the baud rate generator and determine  
the speed of the shift register. (See 20.14.2 SPI Status and Control  
Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts  
in from the slave on the master’s MISO pin. The transmission ends when  
the receiver full bit, SPRF, becomes set. At the same time that SPRF  
becomes set, the byte from the slave transfers to the receive data  
register. In normal operation, SPRF signals the end of a transmission.  
Software clears SPRF by reading the SPI status and control register with  
SPRF set and then reading the SPI data register. Writing to the SPI data  
register clears the SPTE bit.  
20.5.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave  
mode, the SPSCK pin is the input for the serial clock from the master  
MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is  
complete. (See 20.8.2 Mode Fault Error.)  
In a slave SPI module, data enters the shift register under the control of  
the serial clock from the master SPI module. After a byte enters the shift  
register of a slave SPI, it transfers to the receive data register, and the  
SPRF bit is set. To prevent an overflow condition, slave software then  
must read the receive data register before another full byte enters the  
shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave  
is the bus clock speed (which is twice as fast as the fastest master  
SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI  
baud rate. The baud rate only controls the speed of the SPSCK  
generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency  
less than or equal to the bus speed.  
Advance Information  
318  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
When the master SPI starts a transmission, the data in the slave shift  
register begins shifting out on the MISO pin. The slave can load its shift  
register with a new byte for the next transmission by writing to its transmit  
data register. The slave must write to its transmit data register at least  
one bus cycle before the master starts the next transmission. Otherwise,  
the byte already in the slave shift register shifts out on the MISO pin.  
Data written to the slave shift register during a transmission remains in  
a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts  
a transmission. When CPHA is clear, the falling edge of SS starts a  
transmission. (See 20.6 Transmission Formats.)  
NOTE: SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
20.6 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted  
out serially) and received (shifted in serially). A serial clock synchronizes  
shifting and sampling on the two serial data lines. A slave select line  
allows selection of an individual slave SPI device; slave devices that are  
not selected do not interfere with SPI bus activities. On a master SPI  
device, the slave select line can optionally be used to indicate multiple-  
master bus contention.  
20.6.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK)  
phase and polarity using two bits in the SPI control register (SPCR). The  
clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission  
format.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
319  
The clock phase (CPHA) control bit selects one of two fundamentally  
different transmission formats. The clock phase and polarity should be  
identical for the master SPI device and the communicating slave device.  
In some cases, the phase and polarity are changed between  
transmissions to allow a master device to communicate with peripheral  
slaves having different requirements.  
NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by  
clearing the SPI enable bit (SPE) .  
20.6.2 Transmission Format When CPHA = 0  
Figure 20-4 shows an SPI transmission in which CPHA is logic 0. The  
figure should not be used as a replacement for data sheet parametric  
information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another  
for CPOL = 1. The diagram may be interpreted as a master or slave  
timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK  
edge is the MSB capture strobe. Therefore, the slave must begin driving  
its data before the first SPSCK edge, and a falling edge on the SS pin is  
used to start the slave data transmission. The slave’s SS pin must be  
toggled back to high and then low again between each byte transmitted  
as shown in Figure 20-5.  
Advance Information  
320  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 20-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 20-5. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the falling edge of SS. Any data  
written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
321  
20.6.3 Transmission Format When CPHA = 1  
Figure 20-6 shows an SPI transmission in which CPHA is logic 1. The  
figure should not be used as a replacement for data sheet parametric  
information. Two waveforms are shown for SPSCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master  
or slave timing diagram since the serial clock (SPSCK), master in/slave  
out (MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 1, the master  
begins driving its MOSI pin on the first SPSCK edge. Therefore, the  
slave uses the first SPSCK edge as a start transmission signal. The SS  
pin can remain low between transmissions. This format may be  
preferable in systems having only one master and only one slave driving  
the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 20-6. Transmission Format (CPHA = 1)  
Advance Information  
322  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the first edge of SPSCK. Any  
data written after the first edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
20.6.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the  
SPDR starts a transmission. CPHA has no effect on the delay to the start  
of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first  
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle  
begins with an edge on the SPSCK line from its inactive to its active  
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay  
from the write to SPDR and the start of the SPI transmission. (See  
Figure 20-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled  
only when both the SPE and SPMSTR bits are set. SPSCK edges occur  
halfway through the low time of the internal MCU clock. Since the SPI  
clock is free-running, it is uncertain where the write to the SPDR occurs  
relative to the slower SPSCK. This uncertainty causes the variation in  
the initiation delay shown in Figure 20-7. This delay is no longer than a  
single SPI bit time. That is, the maximum delay is two MCU bus cycles  
for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32,  
and 128 MCU bus cycles for DIV128.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
323  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 20-7. Transmission Start Delay (Master)  
Advance Information  
324  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
20.7 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be  
queued and transmitted. For an SPI configured as a master, a queued  
data byte is transmitted immediately after the previous transmission has  
completed. The SPI transmitter empty flag (SPTE) indicates when the  
transmit data buffer is ready to accept new data. Write to the transmit  
data register only when the SPTE bit is high. Figure 20-8 shows the  
timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
3 AND CLEARING SPTE BIT.  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
11  
12  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 20-8. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the  
slave precisely timing its writes between transmissions as in a system  
with a single data buffer. Also, if no new data is written to the data buffer,  
the last value contained in the shift register is the next data word to be  
transmitted.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
325  
For an idle master or idle slave that has no data loaded into its transmit  
buffer, the SPTE is set again no more than two bus cycles after the  
transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of  
the shift register cannot occur until the transmission is completed. This  
implies that a back-to-back write to the transmit data register is not  
possible. The SPTE indicates when the next write can occur.  
20.8 Error Conditions  
The following flags signal SPI error conditions:  
• Overflow (OVRF) — Failing to read the SPI data register before  
the next full byte enters the shift register sets the OVRF bit. The  
new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control  
register.  
• Mode fault error (MODF) — The MODF bit indicates that the  
voltage on the slave select pin (SS) is inconsistent with the mode  
of the SPI. MODF is in the SPI status and control register.  
20.8.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still  
has unread data from a previous transmission when the capture strobe  
of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs  
in the middle of SPSCK cycle 7. (See Figure 20-4 and Figure 20-6.) If  
an overflow occurs, all data received after the overflow and before the  
OVRF bit is cleared does not transfer to the receive data register and  
does not set the SPI receiver full bit (SPRF). The unread data that  
transferred to the receive data register before the overflow occurred can  
still be read. Therefore, an overflow error always indicates the loss of  
data. Clear the overflow flag by reading the SPI status and control  
register and then reading the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
Advance Information  
326  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
interrupts share the same CPU interrupt vector. (See Figure 20-11.) It  
is not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,  
watch for an overflow condition. Figure 20-9 shows how it is possible to  
miss an overflow. The first part of Figure 20-9 shows how it is possible  
to read the SPSCR and SPDR to clear the SPRF without problems.  
However, as illustrated by the second transmission example, the OVRF  
bit can be set in between the time that SPSCR and SPDR are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
2
5
5
SPSCR  
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
3
4
CPU READS BYTE 1 IN SPDR,  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
CLEARING SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
Figure 20-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF  
interrupts can be generated until this OVRF is serviced, it is not obvious  
that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the  
SPSCR following the read of the SPDR. This ensures that the OVRF  
was not set before the SPRF was cleared and that future transmissions  
can set the SPRF bit. Figure 20-10 illustrates this process. Generally, to  
avoid this second SPSCR read, enable the OVRF to the CPU by setting  
the ERRIE bit.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
327  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
READ  
2
4
6
9
12  
14  
SPSCR  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 20-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
20.8.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the  
SPSCK and MOSI pins as outputs and the MISO pin as an input.  
Clearing SPMSTR selects slave mode and configures the SPSCK and  
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,  
MODF, becomes set any time the state of the slave select pin, SS, is  
inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault  
error occurs if:  
• The SS pin of a slave SPI goes high during a transmission  
• The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN)  
must be set. Clearing the MODFEN bit does not clear the MODF flag but  
does prevent MODF from being set again after MODF is cleared.  
Advance Information  
328  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
MODF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
interrupts share the same CPU interrupt vector. (See Figure 20-11.) It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode  
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master  
SPI causes the following events to occur:  
• If ERRIE = 1, the SPI generates an SPI receiver/error CPU  
interrupt request.  
• The SPE bit is cleared.  
• The SPTE bit is set.  
• The SPI state counter is cleared.  
• The data direction register of the shared I/O port regains control of  
port drivers.  
NOTE: To prevent bus contention with another master SPI after a mode fault  
error, clear all SPI bits of the data direction register of the shared I/O port  
before enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS  
goes high during a transmission. When CPHA = 0, a transmission begins  
when SS goes low and ends once the incoming SPSCK goes back to its  
idle level following the shift of the eighth data bit. When CPHA = 1, the  
transmission begins when the SPSCK leaves its idle level and SS is  
already low. The transmission continues until the SPSCK returns to its  
idle level following the shift of the last data bit. (See 20.6 Transmission  
Formats.)  
NOTE: Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit  
has no function when SPE = 0. Reading SPMSTR when MODF = 1  
shows the difference between a MODF occurring when the SPI is a  
master and when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)  
and later unselected (SS is at logic 1) even if no SPSCK is sent to that  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
329  
slave. This happens because SS at logic 0 indicates the start of the  
transmission (MISO driven out with the value of MSB) for CPHA = 0.  
When CPHA = 1, a slave can be selected and then later unselected with  
no transmission occurring. Therefore, MODF does not occur since a  
transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI  
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF  
bit does not clear the SPE bit or reset the SPI in any way. Software can  
abort the SPI transmission by clearing the SPE bit of the slave.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK  
clocks, even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then  
write to the SPCR register. This entire clearing mechanism must occur  
with no MODF condition existing or else the flag is not cleared.  
20.9 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt  
requests.  
Table 20-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(DMAS = 0, SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(DMAS = 0, SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF  
Mode fault  
Advance Information  
330  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Reading the SPI status and control register with SPRF set and then  
reading the receive data register clears SPRF. The clearing mechanism  
for the SPTE flag is always just a write to the transmit data register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag  
to generate transmitter CPU interrupt requests, provided that the SPI is  
enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to  
generate receiver CPU interrupt requests, regardless of the state of the  
SPE bit. (See Figure 20-11.)  
The error interrupt enable bit (ERRIE) enables both the MODF and  
OVRF bits to generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from  
being set so that only the OVRF bit is enabled by the ERRIE bit to  
generate receiver/error CPU interrupt requests.  
NOT AVAILABLE  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
DMAS  
NOT AVAILABLE  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 20-11. SPI Interrupt Request Generation  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
331  
The following sources in the SPI status and control register can generate  
CPU interrupt requests:  
• SPI receiver full bit (SPRF) — The SPRF bit becomes set every  
time a byte transfers from the shift register to the receive data  
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF generates an SPI receiver/error CPU interrupt request.  
• SPI transmitter empty (SPTE) — The SPTE bit becomes set every  
time a byte transfers from the transmit data register to the shift  
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE CPU interrupt request.  
20.10 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur  
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the  
following occurs:  
• The SPTE flag is set.  
• Any transmission currently in progress is aborted.  
• The shift register is cleared.  
• The SPI state counter is cleared, making it ready for a new  
complete transmission.  
• All the SPI port logic is defaulted back to being general-purpose  
I/O.  
These items are reset only by a system reset:  
• All control bits in the SPCR register  
• All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,  
and SPR0)  
• The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE  
between transmissions without having to set all control bits again when  
SPE is set back high for the next transmission.  
Advance Information  
332  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
By not resetting the SPRF, OVRF, and MODF flags, the user can still  
service these interrupts after the SPI has been disabled. The user can  
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled  
by a mode fault occuring in an SPI that was configured as a master with  
the MODFEN bit set.  
20.11 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.11.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction.  
In wait mode the SPI module registers are not accessible by the CPU.  
Any enabled CPU interrupt request from the SPI module can bring the  
MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF  
bit to generate CPU interrupt requests by setting the error interrupt  
enable bit (ERRIE). (See 20.9 Interrupts.)  
20.11.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect register conditions. SPI operation  
resumes after an external interrupt. If stop mode is exited by reset, any  
transfer in progress is aborted, and the SPI is reset.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
333  
20.12 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See Section 19. System Integration  
Module (SIM).)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit  
cleared, a write to the transmit data register in break mode does not  
initiate a transmission nor is this data transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared  
has no effect.  
20.13 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel  
I/O port. They are:  
• MISO — Data received  
• MOSI — Data transmitted  
• SPSCK — Serial clock  
• SS — Slave select  
• CGND — Clock ground (internally connected to V )  
SS  
Advance Information  
334  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
2
The SPI has limited inter-integrated circuit (I C) capability (requiring  
software support) as a master in a single-master environment. To  
2
communicate with I C peripherals, MOSI becomes an open-drain output  
2
when the SPWOM bit in the SPI control register is set. In I C  
communication, the MOSI and MISO pins are connected to a  
2
bidirectional pin from the I C peripheral and through a pullup resistor to  
V .  
DD  
20.13.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full  
duplex operation, the MISO pin of the master SPI module is connected  
to the MISO pin of the slave SPI module. The master SPI simultaneously  
receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is  
configured as a slave. The SPI is configured as a slave when its  
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multiple-  
slave system, a logic 1 on the SS pin puts the MISO pin in a high-  
impedance state.  
When enabled, the SPI controls data direction of the MISO pin  
regardless of the state of the data direction register of the shared I/O  
port.  
20.13.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-  
duplex operation, the MOSI pin of the master SPI module is connected  
to the MOSI pin of the slave SPI module. The master SPI simultaneously  
transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin  
regardless of the state of the data direction register of the shared I/O  
port.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
335  
20.13.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and  
slave devices. In a master MCU, the SPSCK pin is the clock output. In a  
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,  
the master and slave MCUs exchange a byte of data in eight serial clock  
cycles.  
When enabled, the SPI controls data direction of the SPSCK pin  
regardless of the state of the data direction register of the shared I/O  
port.  
20.13.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the  
SPI. For an SPI configured as a slave, the SS is used to select a slave.  
For CPHA = 0, the SS is used to define the start of a transmission. (See  
20.6 Transmission Formats.) Since it is used to indicate the start of a  
transmission, the SS must be toggled high and low between each byte  
transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 20-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 20-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured  
as an input. It cannot be used as a general-purpose I/O regardless of the  
state of the MODFEN control bit. However, the MODFEN bit can still  
prevent the state of the SS from creating a MODF error. (See 20.14.2  
SPI Status and Control Register.)  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high-  
impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
Advance Information  
336  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
When an SPI is configured as a master, the SS input can be used in  
conjunction with the MODF flag to prevent multiple masters from driving  
MOSI and SPSCK. (See 20.8.2 Mode Fault Error.) For the state of the  
SS pin to set the MODF flag, the MODFEN bit in the SPSCK register  
must be set. If the MODFEN bit is low for an SPI master, the SS pin can  
be used as a general-purpose I/O under the control of the data direction  
register of the shared I/O port. With MODFEN high, it is an input-only pin  
to the SPI regardless of the state of the data direction register of the  
shared I/O port.  
The CPU can always read the state of the SS pin by configuring the  
appropriate pin as an input and reading the port data register. (See  
Table 20-3.)  
Table 20-3. SPI Configuration  
SPE SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
(1)  
0
1
1
1
X
X
X
0
0
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
1
1
Master without MODF  
Master with MODF  
1
Input-only to SPI  
Note 1. X = Don’t care  
20.13.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the  
ground for the port output buffers. It is internally connected to V as  
SS  
shown in Table 20-1.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
337  
20.14 I/O Registers  
Three registers control and monitor SPI operation:  
• SPI control register (SPCR)  
• SPI status and control register (SPSCR)  
• SPI data register (SPDR)  
20.14.1 SPI Control Register  
The SPI control register:  
• Enables SPI module interrupt requests  
• Configures the SPI module as master or slave  
• Selects serial clock polarity and phase  
• Configures the SPSCK, MOSI, and MISO pins as open-drain  
outputs  
• Enables the SPI module  
Address: $0010  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
DMAS  
SPRIE  
0
0
= Unimplemented  
Figure 20-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPRF bit. The SPRF bit is set when a byte transfers from the shift  
register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests  
0 = SPRF CPU interrupt requests  
Advance Information  
338  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
DMAS —DMA Select Bit  
This read only bit has no effect on this version of the SPI. This bit  
always reads as a 0.  
0 = SPRF DMA and SPTE DMA service requests disabled  
(SPRF CPU and SPTE CPU interrupt requests enabled)  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode  
operation. Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin  
between transmissions. (See Figure 20-4 and Figure 20-6.) To  
transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial  
clock and SPI data. (See Figure 20-4 and Figure 20-6.) To transmit  
data between SPI modules, the SPI modules must have identical  
CPHA values. When CPHA = 0, the SS pin of the slave SPI module  
must be set to logic 1 between bytes. (See Figure 20-12.) Reset sets  
the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI,  
and MISO so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a  
partial reset of the SPI. (See 20.10 Resetting the SPI.) Reset clears  
the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
339  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the  
SPTE bit. SPTE is set when a byte transfers from the transmit data  
register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
20.14.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these  
conditions:  
• Receive data register full  
• Failure to clear SPRF bit before next byte is received (overflow  
error)  
• Inconsistent logic level on SS pin (mode fault error)  
• Transmit data register empty  
The SPI status and control register also contains bits that perform these  
functions:  
• Enable error interrupts  
• Enable mode fault error detection  
• Select master SPI baud rate  
Address: $0011  
Bit 7  
Read: SPRF  
Write:  
6
ERRIE  
0
5
4
3
2
1
Bit 0  
SPR0  
0
OVRF  
MODF  
SPTE  
MODFEN SPR1  
Reset:  
0
0
0
1
0
0
= Unimplemented  
Figure 20-14. SPI Status and Control Register (SPSCR)  
Advance Information  
340  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the  
shift register to the receive data register. SPRF generates a CPU  
interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the  
SPI status and control register with SPRF set and then reading the SPI  
data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate CPU  
interrupt requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte  
in the receive data register before the next full byte enters the shift  
register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the  
OVRF bit by reading the SPI status and control register with OVRF set  
and then reading the receive data register. Reset clears the OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes  
high during a transmission with the MODFEN bit set. In a master SPI,  
the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and  
control register (SPSCR) with MODF set and then writing to the SPI  
control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
341  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data  
register transfers a byte into the shift register. SPTE generates an  
SPTE CPU interrupt request or an SPTE DMA service request if the  
SPTIE bit in the SPI control register is set also.  
NOTE: Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing  
to the transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the  
MODF flag is set, clearing the MODFEN does not clear the MODF flag.  
If the SPI is enabled as a master and the MODFEN bit is low, then the  
SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-  
purpose I/O. When the SPI is enabled as a slave, the SS pin is not  
available as a general-purpose I/O regardless of the value of  
MODFEN. (See 20.13.4 SS (Slave Select).)  
If the MODFEN bit is low, the level of the SS pin does not affect the  
operation of an enabled SPI configured as a master. For an enabled  
SPI configured as a slave, having MODFEN low only prevents the  
MODF flag from being set. It does not affect any other part of SPI  
operation. (See 20.8.2 Mode Fault Error.)  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as  
shown in Table 20-4. SPR1 and SPR0 have no effect in slave mode.  
Reset clears SPR1 and SPR0.  
Advance Information  
342  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Table 20-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
20.14.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and  
the write-only transmit data register. Writing to the SPI data register  
writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive  
data registers are separate registers that can contain different values.  
(See Figure 20-2.)  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after reset  
Figure 20-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE: Do not use read-modify-write instructions on the SPI data register since  
the register read is not the same as the register written.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
343  
Advance Information  
344  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 21. Timebase Module (TBM)  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .347  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.7.1  
21.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.2 Introduction  
21.3 Features  
This section describes the timebase module (TBM). The TBM will  
generate periodic interrupts at user selectable rates using a counter  
clocked by the external crystal clock. This TBM version uses 15 divider  
stages, eight of which are user selectable.  
Features of the TBM module include:  
• Software programmable 1-Hz, 4-Hz, 16-Hz, 256-Hz, 512-Hz,  
1024-Hz, 2048-Hz, and 4096-Hz periodic interrupt using external  
32.768-kHz crystal  
• User selectable oscillator clock source enable during stop mode to  
allow periodic wakeup from stop  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
345  
21.4 Functional Description  
NOTE: This module is designed for a 32.768-kHz oscillator.  
This module can generate a periodic interrupt by dividing the crystal  
frequency, CGMXCLK. The counter is initialized to all 0s when TBON bit  
is cleared. The counter, shown in Figure 21-1, starts counting when the  
TBON bit is set. When the counter overflows at the tap selected by  
TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt  
request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the  
TACK bit. The first time the TBIF flag is set after enabling the timebase  
module, the interrupt is generated at approximately half of the overflow  
period. Subsequent events occur at the exact period.  
TBON  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
CGMXCLK  
TBMINT  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 21-1. Timebase Block Diagram  
Advance Information  
346  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
21.5 Timebase Register Description  
The timebase has one register, the TBCR, which is used to enable the  
timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
TBIF  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
0
2
TBIE  
0
1
TBON  
0
Bit 0  
TBTST*  
0
Read:  
Write:  
Reset:  
TACK  
0
0
= Unimplemented  
* PTM test mode  
Figure 21-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled  
over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2:TBR0 — Timebase Rate Selection  
These read/write bits are used to select the rate of timebase interrupts  
as shown in Table 21-1.  
Table 21-1. Timebase Rate Selection for OSC1 = 32.768 kHz  
Timebase Interrupt Rate  
TBR2  
TBR1  
TBR0  
Divider  
Hz  
1
ms  
1000  
250  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32,768  
8192  
2048  
128  
64  
4
16  
62.5  
~ 3.9  
~2  
256  
512  
1024  
2048  
4096  
32  
~1  
16  
~0.5  
~0.24  
8
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
347  
NOTE: Do not change TBR2–TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACK— Timebase ACKnowledge  
The TACK bit is a write-only bit and always reads as 0. Writing a logic  
1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic  
0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled  
This read/write bit enables the timebase interrupt when the TBIF bit  
becomes set. Reset clears the TBIE bit.  
1 = Timebase interrupt enabled  
0 = Timebase interrupt disabled  
TBON — Timebase Enabled  
This read/write bit enables the timebase. Timebase may be turned off  
to reduce power consumption when its function is not necessary. The  
counter can be initialized by clearing and then setting this bit. Reset  
clears the TBON bit.  
1 = Timebase enabled  
0 = Timebase disabled and the counter initialized to 0s  
21.6 Interrupts  
The timebase module can interrupt the CPU on a regular basis with a  
rate defined by TBR2:TBR0. When the timebase counter chain rolls  
over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
Advance Information  
348  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
21.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
21.7.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before enabling the WAIT  
instruction.  
21.7.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the oscillator has been enabled to operate during stop mode  
through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from  
stop mode.  
If the oscillator has not been enabled to operate in stop mode, the  
timebase module will not be active during STOP mode. In stop mode the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the  
power consumption by stopping the timebase before enabling the STOP  
instruction.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
349  
Advance Information  
350  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 22. Timer Interface Module (TIM)  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
22.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
22.5.1  
22.5.2  
22.5.3  
22.5.4  
22.5.5  
22.5.6  
22.5.7  
22.5.8  
22.5.9  
TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Input Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . .358  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . .359  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . .359  
Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . .360  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . .361  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.7.1  
22.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .364  
22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.10.1 TIM Status and Control Register. . . . . . . . . . . . . . . . . . . .366  
22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .369  
22.10.4 TIMA Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22.10.5 TIM Channel Status and Control Registers. . . . . . . . . . . .371  
22.10.6 TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
351  
22.2 Introduction  
This section describes the timer interface (TIM) module. The TIM is a 2-  
channel timer that provides a timing reference with input capture, output  
compare, and pulse-width-modulation functions. Figure 22-1 is a block  
diagram of the TIM. This particular MCU has two timer interface modules  
which are denoted as TIM1 and TIM2.  
22.3 Features  
Features of the TIM include:  
• Two input capture/output compare channels:  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
• Buffered and unbuffered pulse-width-modulation (PWM) signal  
generation  
• Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
• Free-running or modulo up-count operation  
• Toggle any channel pin on overflow  
• TIM counter stop and reset bits  
• DMA (direct-memory access) service request generation  
(optional, not available on this MCU)  
• Modular architecture expandable to eight channels  
• I/O port bit(s) software configurable with pullup device(s) if  
configured as input port bit(s)  
Advance Information  
352  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
22.4 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM  
input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and  
T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”  
is used to indicate TIM2. The two TIMs share four I/O pins with four port  
D I/O port pins. The full names of the TIM I/O pins are listed in  
Table 22-1. The generic pin names appear in the text that follows.  
Table 22-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTD4/T1CH0  
PTD6/T2CH0  
T[1,2]CH1  
PTD5/T1CH1  
PTD7/T2CH1  
TIM1  
Full TIM  
Pin Names:  
TIM2  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TCH0 may refer generically  
to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
22.5 Functional Description  
NOTE: References to DMA and associated functions are only valid if the MCU  
has a DMA module. This MCU does not have the DMA function. Any  
DMA-related register bits should be left in their reset state for expected  
MCU operation.  
NOTE: References to TCLK and external TIM clock input are only valid if the  
MCU has an external TCLK pin. If the MCU has no external TCLK pin,  
the TIM module must use the internal bus clock prescaler selections.  
Figure 22-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
353  
The two TIM channels (per timer) are programmable independently as  
input capture or output compare channels. If a channel is configured as  
input capture, then an internal pullup device may be enabled for that  
channel. (See 16.5.3 Port C Input Pullup Enable Register.)  
INTERNAL  
TCLK  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
T[1,2]CH0  
CH0F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
DMA0S  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B ELS1A  
PORT  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
LOGIC  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
DMA1S  
CH1IE  
MS1A  
Figure 22-1. TIM Block Diagram  
Figure 22-2 summarizes the timer registers.  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer  
to both T1SC and T2SC.  
Advance Information  
354  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Timer 1 Status and Control  
Register (T1SC)  
$0020  
TRST  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter Register  
High (T1CNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 1 Counter Register  
Low (T1CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Counter Modulo  
Register High (T1MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
1
6
1
5
1
4
1
3
2
1
Timer 1 Counter Modulo  
Register Low (T1MODL)  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 0  
Register High (T1CH0H)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 1 Channel 0  
Register Low (T1CH0L)  
Write:  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
0
Timer 1 Channel 1 Status  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
= Unimplemented  
Figure 22-2. TIM I/O Register Summary (Sheet 1 of 3)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
355  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 1  
$0029  
Register High (T1CH1H)  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Timer 1 Channel 1  
Register Low (T1CH1L)  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
Indeterminate after reset  
TOF  
0
TRST  
0
0
TOIE  
TSTOP  
PS2  
PS1  
Timer 2 Status and Control  
Register (T2SC)  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter Register  
High (T2CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 2 Counter Register  
Low (T2CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Counter Modulo  
Register High (T2MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
6
1
5
1
4
1
3
2
1
Timer 2 Counter Modulo  
Register Low (T2MODL)  
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 2 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T2SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Channel 0  
Register High (T2CH0H)  
Write:  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 22-2. TIM I/O Register Summary (Sheet 2 of 3)  
Advance Information  
356  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 0  
Register Low (T2CH0L)  
$0032  
Indeterminate after reset  
Read: CH1F  
0
Timer 2 Channel 1 Status  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
$0033  
$0034  
$0035  
and Control Register Write:  
0
0
(T2SC1)  
Reset:  
0
0
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Channel 1  
Register High (T2CH1H)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 1  
Register Low (T2CH1L)  
Write:  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 22-2. TIM I/O Register Summary (Sheet 3 of 3)  
22.5.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs or the  
TIM clock pin, TCLK. The prescaler generates seven clock rates from  
the internal bus clock. The prescaler select bits, PS[2:0], in the TIM  
status and control register select the TIM clock source.  
22.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
357  
22.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
22.5.4 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 22.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable channel  
x TIM overflow interrupts and write the new value in the TIM  
overflow interrupt routine. The TIM overflow interrupt occurs at the  
end of the current counter overflow period. Writing a larger value  
in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same  
counter overflow period.  
Advance Information  
358  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
22.5.5 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. Writing to the active  
channel registers is the same as generating unbuffered output  
compares.  
22.5.6 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 22-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIM to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
359  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000. See 22.10.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 22-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
22.5.7 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 22.5.6 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
Advance Information  
360  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable channel x TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current PWM period. Writing a larger value in an output  
compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
22.5.8 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
361  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. Writing to the active channel  
registers is the same as generating unbuffered PWM signals.  
22.5.9 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxB:MSxA. See Table 22-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 22-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
Advance Information  
362  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and clearing  
the TOVx bit generates a 100% duty cycle output. (See 22.10.5 TIM  
Channel Status and Control Registers.)  
22.6 Interrupts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter value rolls over to $0000 after matching the value in the  
TIM counter modulo registers. The TIM overflow interrupt enable  
bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and  
TOIE are in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests and TIM DMA service requests are  
controlled by the channel x interrupt enable bit, CHxIE, and the  
channel x DMA select bit, DMAxS. Channel x TIM CPU interrupt  
requests are enabled when CHxIE:DMAxS = 1:0. Channel x  
TIM DMA service requests are enabled when  
CHxIE:DMAxS = 1:1. CHxF and CHxIE are in the TIM channel x  
status and control register. DMAxS is in the TIM DMA select  
register.  
CAUTION: Because this chip does NOT have a DMA module, CHxIE bit should  
NEVER be set when DMAxS is set. Doing so will mask TIM CPU  
interrupt request and cause unwanted results.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
363  
22.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
22.7.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode, the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
The DMA can service the TIM without exiting wait mode.  
22.7.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIM  
counter. TIM operation resumes when the MCU exits stop mode after an  
external interrupt.  
22.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 19.8.3 SIM Break Flag Control  
Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
Advance Information  
364  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
22.9 I/O Signals  
Port D shares four of its pins with the TIM. (There is an optional TCLK  
which can be used as an external clock input to the TIM prescaler, but is  
not available on this MCU.) The four TIM channel I/O pins are T1CH0,  
T1CH1, T2CH0, and T2CH1 as described in 22.4 Pin Name  
Conventions.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. T1CH0 and T2CH0 can be  
configured as buffered output compare or buffered PWM pins.  
22.10 I/O Registers  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer  
to both T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM control registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0, TSC1)  
• TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
365  
22.10.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 22-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter resets to $0000 after  
reaching the modulo value programmed in the TIM counter modulo  
registers. Clear TOF by reading the TIM status and control register  
when TOF is set and then writing a logic 0 to TOF. If another TIM  
overflow occurs before the clearing sequence is complete, then writing  
logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot  
be lost due to inadvertent clearing of TOF. Reset clears the TOF bit.  
Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
Advance Information  
366  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers. Counting  
resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as logic 0. Reset clears the TRST  
bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
PS2–PS0 — Prescaler Select Bits  
These read/write bits select either the TCLK pin or one of the seven  
prescaler outputs as the input to the TIM counter as Table 22-2 shows.  
Reset clears the PS[2:0] bits.  
Table 22-2. Prescaler Selection  
PS2–PS0  
000  
TIM Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
001  
010  
011  
100  
101  
110  
111  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
367  
22.10.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T1CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T1CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-6. TIM Counter Registers Low (TCNTL)  
Advance Information  
368  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
22.10.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next clock. Writing to the high byte (TMODH) inhibits  
the TOF bit and overflow interrupts until the low byte (TMODL) is written.  
Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T1MODH, $002E  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
1
1
1
1
1
1
1
1
= Unimplemented  
Figure 22-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
1
1
1
1
1
1
1
1
= Unimplemented  
Figure 22-8. TIM Counter Modulo Register Low (TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
369  
22.10.4 TIMA Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T1CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-9. TIM Counter Register High (TCNTH)  
Address: T1CNTL, $0022 and T1CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-10. TIM Counter Register Low (TCNTL)  
Advance Information  
370  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
22.10.5 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
6
CH0IE  
1
5
MS0B  
1
4
MS0A  
1
3
ELS0B  
1
2
ELS0A  
1
1
TOV0  
1
Bit 0  
CH0MAX  
1
Read: CH0F  
Write:  
0
1
Reset:  
Figure 22-11. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
Write:  
0
0
Reset:  
0
Figure 22-12. TIM Channel 1Status and Control Register (TSC1)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
371  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE:DMAxS = 1:0),  
clear CHxF by reading TIM channel x status and control register with  
CHxF set and then writing a logic 0 to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing  
logic 0 to CHxF has no effect. Therefore, an interrupt request cannot  
be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupts and TIM DMA service  
requests on channel x. The DMAxS bit in the TIM DMA select register  
selects channel x TIM DMA service requests or TIM CPU interrupt  
requests.  
NOTE: TIM DMA service requests cannot be used in buffered PWM mode. In  
buffered PWM mode, disable TIM DMA service requests by clearing the  
DMAxS bit in the TIM DMA select register.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests and DMA service requests  
enabled  
0 = Channel x CPU interrupt requests and DMA service requests  
disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and  
control registers.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Advance Information  
372  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation. See Table  
22-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin. See Table 22-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to  
port D, and pin PTDx/TCHx is available as a general-purpose I/O pin.  
Table 22-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
373  
Table 22-3. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
X1  
00  
00  
Output preset  
Pin under port control;  
initial output level low  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output  
compare or  
PWM  
Buffered  
output  
compare or  
buffered PWM  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the PTD/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
Advance Information  
374  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 0, setting the CHxMAX bit forces the duty  
cycle of buffered and unbuffered PWM signals to 100%. As Figure 22-  
13 shows, the CHxMAX bit takes effect in the cycle after it is set or  
cleared. The output stays at the 100% duty cycle level until the cycle  
after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
CHxMAX  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 22-13. CHxMAX Latency  
22.10.6 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
375  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 22-14. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 22-15. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 22-16. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 22-17. TIM Channel 1 Register Low (TCH1L)  
Advance Information  
376  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 23. Preliminary Electrical Specifications  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.6 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .380  
23.7 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .382  
23.8 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384  
23.9 3.0-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
23.10 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .386  
23.11 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . .387  
23.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389  
23.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
23.14 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
23.15 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
23.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .396  
23.17 Clock Generation Module Characteristics . . . . . . . . . . . . . . .396  
23.17.1 CGM Component Specifications . . . . . . . . . . . . . . . . . . . .396  
23.17.2 CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . .397  
23.18 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
377  
23.2 Introduction  
This section contains electrical and timing specifications. These values  
are design targets and have not yet been fully tested.  
23.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 23.6 5.0-V DC Electrical Characteristics for  
guaranteed operating conditions.  
(1)  
Symbol  
Value  
Unit  
V
Characteristic  
Supply voltage  
V
–0.3 to + 6.0  
DD  
Input voltage  
V
V
– 0.3 to V + 0.3  
V
In  
SS  
DD  
Maximum current per pin  
excluding V , V  
and PTC0–PTC4  
I
± 15  
± 25  
mA  
mA  
DD SS,  
Maximum current for pins  
PTC0–PTC4  
I
PTC0–PTC4  
Maximum current into V  
I
150  
150  
mA  
mA  
°C  
DD  
mvdd  
Maximum current out of V  
Storage temperature  
Note:  
I
SS  
mvss  
T
–55 to +150  
stg  
1. Voltages referenced to VSS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
Out  
In  
range V (V or V ) V . Reliability of operation is enhanced if  
SS  
In  
Out  
DD  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V ).  
SS  
DD  
Advance Information  
378  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.4 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
Operating temperature range  
T
–40 to +85  
°C  
A
3.0 ±10%  
5.0 ±10%  
Operating voltage range  
V
V
DD  
23.5 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
°C/W  
W
Thermal resistance  
PDIP (40-pin)  
QFP (44-pin)  
θ
60  
95  
JA  
I/O pin power dissipation  
P
User-Determined  
I/O  
P = (I × V ) + P  
I/O  
D
DD  
DD  
(1)  
Power dissipation  
P
=
W
D
K/(T + 273 °C)  
J
P x (T + 273 °C)  
(2)  
J
A
Constant  
K
WC  
2
+ P × θ  
D
JA  
Average junction temperature  
Maximum junction temperature  
Notes:  
T
T + (P × θ )  
°C  
°C  
J
A
D
JA  
T
125  
JM  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known T and measured  
A
P . With this value of K, P and T can be determined for any value of T .  
D
D
J
A
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
379  
23.6 5.0-V DC Electrical Characteristics  
(2)  
(1)  
Symbol  
Min  
Max  
Unit  
Typ  
Characteristic  
Output high voltage  
(I  
(I  
(I  
= –2.0 mA) all I/O pins  
= –10.0 mA) all I/O pins  
= –10.0 mA) pins PTC0–PTC4 only  
V
V
V
V
V
V
– 0.8  
– 1.5  
– 0.8  
50  
V
V
V
OH  
OH  
DD  
DD  
DD  
Load  
Load  
Load  
OH  
Maximum combined I for port C, port E,  
I
mA  
OH  
OH1  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
I
50  
mA  
mA  
OH  
OH2  
OHT  
port A, port B  
Maximum total I for all port pins  
I
100  
OH  
Output low voltage  
(I  
(I  
(I  
= 1.6 mA) all I/O pins  
= 10 mA) all I/O pins  
= 15 mA) pins PTC0–PTC4 only  
V
V
V
0.4  
1.5  
1.0  
50  
V
V
V
OL  
OL  
Load  
Load  
Load  
OL  
Maximum combined I for port C, port E,  
I
mA  
OL  
OL1  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
I
50  
mA  
mA  
OL  
OL2  
port A, port B  
Maximum total I for all port pins  
I
100  
OL  
OLT  
Input high voltage  
All ports, IRQs, RESET, OSC1  
V
0.7 x V  
V
DD  
V
V
IH  
DD  
Input low voltage  
All ports, IRQs, RESET, OSC1  
V
V
0.2 x V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run  
Wait  
30  
12  
mA  
mA  
(4)  
(5)  
Stop  
I
DD  
25 °C  
5
20  
300  
50  
500  
µA  
µA  
µA  
µA  
µA  
(6)  
25 °C with TBM enabled  
25 °C with LVI and TBM enabled  
–40 °C to 85 °C with TBM enabled  
–40 °C to 85 °C with LVI and TBM enabled  
(6)  
(6)  
(6)  
(7)  
I/O ports Hi-Z leakage current  
Input current  
I
I
±10  
µA  
µA  
IL  
±1  
In  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
R
20  
33  
50  
kΩ  
PU  
Capacitance  
Ports (as input or output)  
C
V
12  
8
Out  
In  
pF  
V
C
Monitor mode entry voltage  
V
+2.5  
DD  
9
TST  
Advance Information  
380  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
(2)  
(1)  
Symbol  
Min  
Max  
Unit  
Typ  
Characteristic  
Low-voltage inhibit, trip falling voltage – target  
Low-voltage inhibit, trip rising voltage – target  
Low-voltage inhibit reset/recover hysteresis – target  
V
4.13  
4.23  
4.3  
4.4  
4.35  
4.45  
V
V
TRIPF  
V
TRIPR  
V
100  
mV  
HYS  
(V  
+ V  
= V  
)
TRIPF  
HYS  
TRIPR  
(8)  
POR rearm voltage  
V
0
0
700  
100  
800  
mV  
mV  
POR  
(9)  
POR reset voltage  
V
PORRST  
(10)  
POR rise time ramp rate  
R
0.035  
V/ms  
POR  
Notes:  
1. V  
= 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
SS A L H  
DD  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source (f = 32.8 MHz). All inputs 0.2 V from rail. No  
DD  
osc  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f  
= 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less  
osc  
DD  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
L
I
. Measured with PLL and LVI enabled.  
DD  
5. Stop I  
is measured with OSC1 = V  
.
DD  
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled. Port B leakage is specified in 23.13 ADC Characteristics.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
381  
23.7 3.0-V DC Electrical Characteristics  
(2)  
(1)  
Symbol  
Min  
Max  
Unit  
Typ  
Characteristic  
Output high voltage  
(I  
(I  
(I  
= –0.6 mA) all I/O pins  
= –4.0 mA) all I/O pins  
= –4.0 mA) pins PTC0–PTC4 only  
V
V
V
V
V
V
– 0.3  
– 1.0  
– 0.5  
30  
V
V
V
OH  
OH  
DD  
DD  
DD  
Load  
Load  
Load  
OH  
Maximum combined I for port C, port E,  
I
mA  
OH  
OH1  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
I
30  
60  
mA  
mA  
OH  
OH2  
OHT  
port A, port B  
Maximum total I for all port pins  
I
OH  
Output low voltage  
(I  
(I  
(I  
= 0.5 mA) all I/O pins  
= 6.0 mA) all I/O pins  
= 10.0 mA) pins PTC0–PTC4 only  
V
V
V
0.3  
1.0  
0.8  
30  
V
V
V
OL  
OL  
Load  
Load  
Load  
OL  
Maximum combined I for port C, port E,  
I
mA  
OL  
OL1  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
I
30  
60  
mA  
mA  
OL  
OL2  
port A, port B  
Maximum total I for all port pins  
I
OLT  
OL  
Input high voltage  
All ports, IRQs, RESET, OSC1  
V
0.7 x V  
V
DD  
V
V
IH  
DD  
Input low voltage  
All ports, IRQs, RESET, OSC1  
V
V
0.3 x V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run  
Wait  
10  
6
mA  
mA  
(4)  
(5)  
Stop  
I
DD  
25 °C  
3
12  
200  
30  
300  
µA  
µA  
µA  
µA  
µA  
(6)  
25 °C with TBM enabled  
25 °C with LVI and TBM enabled  
–40 °C to 85 °C with TBM enabled  
–40 °C to 85 °C with LVI and TBM enabled  
(6)  
(6)  
(6)  
(7)  
I/O ports Hi-Z leakage current  
Input current  
I
I
±10  
µA  
µA  
IL  
±1  
In  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
R
20  
33  
50  
kΩ  
PU  
Capacitance  
Ports (as input or output)  
C
V
12  
8
Out  
In  
pF  
V
C
Monitor mode entry voltage  
V
+2.5  
DD  
9
TST  
Advance Information  
382  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
(2)  
(1)  
Symbol  
Min  
Max  
Unit  
Typ  
Characteristic  
Low-voltage inhibit, trip falling voltage – target  
Low-voltage inhibit, trip rising voltage – target  
Low-voltage inhibit reset/recover hysteresis – target  
V
2.5  
2.6  
2.6  
2.63  
2.73  
V
V
TRIPF  
V
2.66  
TRIPR  
V
60  
mV  
HYS  
(V  
+ V  
= V  
)
TRIPF  
HYS  
TRIPR  
(8)  
POR rearm voltage  
V
0
0
700  
100  
800  
mV  
mV  
POR  
(9)  
POR reset voltage  
V
PORRST  
(10)  
POR rise time ramp rate  
R
0.02  
V/ms  
POR  
Notes:  
1. V  
= 3.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
SS A L H  
DD  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source (f = 16.4 MHz). All inputs 0.2 V from rail. No  
DD  
osc  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f  
= 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less  
osc  
DD  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
L
I
. Measured with PLL and LVI enabled.  
DD  
5. Stop I  
is measured with OSC1 = V  
.
DD  
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum V is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
383  
23.8 5.0-V Control Timing  
(1)  
Symbol  
Min  
Max  
Unit  
Characteristic  
(2)  
Frequency of operation  
Crystal option  
External clock option  
f
32  
dc  
100  
32.8  
kHz  
MHz  
osc  
(3)  
(4)  
Internal operating frequency  
Internal clock period (1/f  
f
122  
50  
8.2  
MHz  
ns  
op  
)
t
OP  
cyc  
IRL  
(5)  
(6)  
RESET input pulse width low  
t
ns  
IRQ interrupt pulse width low  
(edge-triggered)  
t
50  
ns  
ILIH  
IRQ interrupt pulse period  
t
TBD Note 8  
t
cyc  
ILIL  
(7)  
16-bit timer  
Input capture pulse width  
Input capture period  
t
t
TBD  
Note 8  
ns  
TH, TL  
t
t
TLTL  
cyc  
Notes:  
1. V = 0 Vdc; timing shown with respect to 20% V  
and 70% V unless otherwise noted  
SS  
SS  
DD  
2. See 23.17 Clock Generation Module Characteristics for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation.  
See appropriate table for this information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse  
width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to  
execute the interrrupt service routine plus tcyc  
.
Advance Information  
384  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.9 3.0-V Control Timing  
(1)  
Symbol  
Min  
Max  
Unit  
Characteristic  
(2)  
Frequency of operation  
Crystal option  
External clock option  
f
32  
dc  
100  
16.4  
kHz  
MHz  
osc  
(3)  
(4)  
Internal operating frequency  
Internal clock period (1/f  
f
4.1  
MHz  
ns  
op  
)
t
244  
125  
OP  
cyc  
IRL  
(5)  
(6)  
RESET input pulse width low  
t
ns  
IRQ interrupt pulse width low  
(edge-triggered)  
t
125  
ns  
ILIH  
IRQ interrupt pulse period  
t
TBD Note 8  
t
cyc  
ILIL  
(7)  
16-bit timer  
Input capture pulse width  
Input capture period  
t
t
TBD  
Note 8  
ns  
TH, TL  
t
t
TLTL  
cyc  
Notes:  
1. V = 0 Vdc; timing shown with respect to 20% V  
and 70% V unless otherwise noted  
SS  
SS  
DD  
2. See 23.17 Clock Generation Module Characteristics for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation.  
See appropriate table for this information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse  
width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to  
execute the interrrupt service routine plus tCYC  
.
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
385  
23.10 Output High-Voltage Characteristics  
0
–5  
–40  
25  
–10  
–15  
–20  
–25  
–30  
–35  
85  
3
3.5  
4
4.5  
V
OH (V)  
VOH < VDD –0.8 V @ IOH = –2.0 mA  
VOH < VDD –1.5 V @ IOH = –10.0 mA  
Figure 23-1. Typical High-Side Driver  
Characteristics – Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 4.5 Vdc)  
DD  
0
–5  
–10  
–15  
–20  
–25  
–40  
25  
85  
1
1.2  
1.4  
1.6  
VOH (V)  
OH < VDD –0.3 V @ IOH = –0.6 mA  
VOH < VDD –1.0 V @ IOH = –4.0 mA  
1.8  
2
2.2  
2.4  
V
Figure 23-2 .Typical High-Side Driver  
Characteristics – Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc)  
DD  
Advance Information  
386  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.11 Output Low-Voltage Characteristics  
35  
30  
25  
20  
15  
10  
5
–40  
25  
85  
0
0
0.2  
0.4  
0.6  
0.8  
OL(V)  
1
1.2  
1.4  
V
VOL < 0.4 V @ IOL = 1.6 mA  
OL < 1.5 V @ IOL = 10.0 mA  
V
Figure 23-3. Typical Low-Side Driver  
Characteristics – Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 4.5 Vdc)  
DD  
20  
18  
16  
14  
12  
10  
8
–40  
25  
85  
6
4
2
0
0
0.2  
0.4  
0.6  
V
0.8  
OL (V)  
1
1.2  
1.4  
VOL < 0.3 V @ IOL = 0.5 mA  
OL < 1.0V @ IOL = 6.0 mA  
V
Figure 23-4. Typical Low-Side Driver  
Characteristics – Ports PTA7–PTA0, PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc)  
DD  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
387  
70  
60  
50  
40  
30  
20  
10  
0
–40  
25  
85  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
VOL (V)  
VOL < 1.0 V @ IOL = 15 mA  
Figure 23-5. Typical Low-Side Driver Characteristics  
for Higher Current Drive – Ports PTC4–PTC0 (V = 4.5 Vdc)  
DD  
40  
35  
30  
25  
20  
15  
10  
5
-40  
25  
85  
0
0
0.2  
0.4  
0.6  
V
0.8  
OL (V)  
1
1.2  
1.4  
VOL < 0.8 V @ IOL = 10 mA  
Figure 23-6. Typical Low-Side Driver Characteristics  
for Higher Current Drive – Ports PTC4–PTC0 (V = 2.7 Vdc)  
DD  
Advance Information  
388  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.12 Typical Supply Currents  
30  
25  
20  
15  
10  
5
5.5 V  
3.3 V  
0
0
1
2
3
4
5
6
7
8
9
f
bus (MHz)  
Figure 23-7. Typical Operating I with All Modules  
DD  
Turned On (–40 °C to 85 °C)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
fbus (MHz)  
Figure 23-8. Typical Wait Mode I with TBM Enabled,  
DD  
LVI Disabled, and PLL Disabled (–40 °C to 85 °C)  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
389  
6
5
4
3
2
1
0
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
9
f
bus (MHz)  
Figure 23-9. Typical Wait Mode I , with LVI and TBM Enabled,  
DD  
PLL Disabled (–40 °C to 85 °C)  
Advance Information  
390  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.13 ADC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Comments  
should be tied  
Characteristic  
V
DDAD  
2.7  
5.5  
to the same potential  
Supply voltage  
V
(V  
(V  
V
DDAD  
DD  
DD  
as V via separate  
DD  
min)  
max)  
traces.  
V
0
1.5  
V
ADIN  
DDAD  
V
DDAD  
Input voltages  
V
V
<= V  
ADIN REFH  
V
REFH  
Resolution  
B
8
8
Bits  
AD  
AD  
Absolute accuracy  
(V  
= 0 V, VDDAD = V  
=
REFH  
A
± 1/2  
± 1  
LSB  
Includes quantization  
REFL  
5 V ± 10%)  
t
= 1/f  
only at 1 MHz  
, tested  
ADIC  
AIC  
ADC internal clock  
f
0.5  
1.048  
MHz  
V
ADIC  
Conversion range  
Power-up time  
R
V
V
V
REFL  
= V  
AD  
REFL  
REFH  
SS  
t
16  
t
t
cycles  
ADPU  
AIC  
AIC  
Conversion time  
t
16  
5
17  
cycles  
ADC  
t
(2)  
AIC  
Sample time  
t
ADS  
cycles  
Hex  
Hex  
pF  
(3)  
Zero input reading  
Z
00  
FE  
01  
FF  
V
= V  
= V  
ADI  
IN  
REFL  
(3)  
Full-scale reading  
Input capacitance  
F
V
ADI  
IN  
REFH  
C
(20) 8  
Not tested  
ADI  
(4)  
Input leakage  
± 1  
µA  
Port B  
Notes:  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDAD = 5.0 Vdc ± 10%, VSSAD = 0 Vdc, VREFH = 5.0 Vdc ± 10%, VREFL = 0  
2. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
4. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
391  
23.14 5.0-V SPI Characteristics  
Diagram  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Operating frequency  
(1)  
Number  
Master  
Slave  
f
f
f
/128  
DC  
f /2  
OP  
MHz  
MHz  
OP(M)  
OP  
f
OP(S)  
OP  
Cycle time  
Master  
Slave  
1
t
t
2
1
128  
t
t
CYC(M)  
cyc  
cyc  
CYC(S)  
2
3
Enable lead time  
Enable lag time  
t
1
1
t
Lead(S)  
cyc  
cyc  
t
t
Lag(S)  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
t
t
t
–25  
64 t  
ns  
ns  
SCKH(M)  
cyc  
cyc  
1/2 t –25  
SCKH(S)  
cyc  
Clock (SPSCK) low time  
Master  
Slave  
t
t
t
–25  
64 t  
ns  
ns  
SCKL(M)  
cyc  
cyc  
1/2 t –25  
SCKL(S)  
cyc  
Data setup time (inputs)  
Master  
Slave  
t
30  
30  
ns  
ns  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
30  
30  
ns  
ns  
H(M)  
t
H(S)  
(3)  
Access time, slave  
8
9
CPHA = 0  
CPHA = 1  
t
t
0
0
40  
40  
ns  
ns  
A(CP0)  
A(CP1)  
(4)  
Disable time, slave  
t
40  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave  
10  
t
t
50  
50  
ns  
ns  
V(M)  
(5)  
V(S)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
t
t
0
0
ns  
ns  
HO(M)  
HO(S)  
Notes:  
1. Numbers refer to dimensions in Figure 23-10 and Figure 23-11.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
Advance Information  
392  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.15 3.0-V SPI Characteristics  
Diagram  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
(1)  
Number  
Operating frequency  
Master  
Slave  
f
f
f
/128  
DC  
f
/2  
MHz  
MHz  
OP(M)  
OP  
OP  
f
OP(S)  
OP  
Cycle time  
Master  
Slave  
1
t
t
2
1
128  
t
t
CYC(M)  
cyc  
cyc  
CYC(S)  
2
3
Enable lead time  
Enable lag time  
t
1
1
t
Lead(s)  
cyc  
cyc  
t
t
Lag(s)  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
t
t
t
–35  
64 t  
ns  
ns  
SCKH(M)  
cyc  
cyc  
1/2 t –35  
SCKH(S)  
cyc  
Clock (SPSCK) low time  
Master  
Slave  
±
t
t
t
–35  
64 t  
ns  
ns  
SCKL(M)  
cyc  
cyc  
1/2 t –35  
SCKL(S)  
cyc  
Data setup time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
H(M)  
t
H(S)  
(3)  
Access time, slave  
8
9
CPHA = 0  
CPHA = 1  
t
t
0
0
50  
50  
ns  
ns  
A(CP0)  
A(CP1)  
(4)  
Disable time, slave  
t
50  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave  
10  
t
t
60  
60  
ns  
ns  
V(M)  
(5)  
V(S)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
t
t
0
0
ns  
ns  
HO(M)  
HO(S)  
Notes:  
1. Numbers refer to dimensions in Figure 23-10 and Figure 23-11.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
393  
SS  
SS PIN OF MASTER HELD HIGH  
INPUT  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
INPUT  
11  
MASTER MSB OUT  
10  
11  
MOSI  
MASTER LSB OUT  
OUTPUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
SS PIN OF MASTER HELD HIGH  
1
INPUT  
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
MSB IN  
11  
BITS 6–1  
BITS 6–1  
LSB IN  
INPUT  
10  
10  
MOSI  
MASTER MSB OUT  
MASTER LSB OUT  
OUTPUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 23-10. SPI Master Timing  
Advance Information  
394  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
INPUT  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
OUTPUT  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
OUTPUT  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
INPUT  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 23-11. SPI Slave Timing  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
395  
23.16 Timer Interface Module Characteristics  
Characteristic  
Symbol  
, t  
Min  
Max  
Unit  
Input capture pulse width  
t
1
t
cyc  
TIH TIL  
23.17 Clock Generation Module Characteristics  
23.17.1 CGM Component Specifications  
Characteristic  
Symbol  
Min  
30  
Typ  
Max  
Unit  
kHz  
pF  
(1)  
Crystal reference frequency  
f
32.768  
100  
XCLK  
(2)  
Crystal load capacitance  
C
C
C
L
1
2
B
S
(2)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
Series resistor  
6
2 × C  
2 × C  
10  
40  
pF  
L
L
(2)  
6
40  
pF  
R
R
10  
330  
22  
MΩ  
kΩ  
330  
470  
Notes:  
1. Fundamental mode crystals only  
2. Consult crystal manufacturer’s data.  
Advance Information  
396  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
23.17.2 CGM Electrical Specifications  
Description  
Operating voltage  
Symbol  
Min  
2.7  
–40  
30  
Typ  
Max  
5.5  
Unit  
V
V
DD  
o
Operating temperature  
T
25  
32.768  
38.4  
130  
100  
C
Crystal reference frequency  
Range nominal multiplier  
f
kHz  
kHz  
Hz  
RCLK  
f
NOM  
(1)  
VCO center-of-range frequency  
f
38.4 k  
38.4 k  
1
40.0 M  
40.0 M  
255  
4
VRS  
VRS  
L
(2)  
f
Medium-voltage VCO center-of-range frequency  
VCO range linear range multiplier  
VCO power-of-two range multiplier  
VCO multiply factor  
Hz  
E
2
1
N
1
4095  
8
P
VCO prescale multiplier  
2
1
1
Reference divider factor  
R
1
1
15  
VCO operating frequency  
f
38.4 k  
40.0 M  
8.2  
Hz  
MHz  
MHz  
ms  
VCLK  
(1)  
Bus operating frequency  
f
f
BUS  
BUS  
Lock  
Lock  
(2)  
Bus frequency @ medium voltage  
4.1  
Manual acquisition time  
Automatic lock time  
t
t
50  
50  
ms  
f
x
RCLK  
(3)  
PLL jitter  
f
0
0.025%  
x 2 N/4  
Hz  
J
P
External clock input frequency  
PLL disabled  
f
f
dc  
32.8 M  
1.5 M  
Hz  
Hz  
OSC  
External clock input frequency  
PLL enabled  
30 k  
OSC  
Notes:  
1. 5.0 V ± 10% VDD  
2. 3.0 V ± 10% VDD  
3. Deviation of average bus frequency over 2 ms. N = VCO multiplier.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
397  
23.18 Memory Characteristics  
Characteristic  
RAM data retention voltage  
FLASH pages per row  
Symbol  
Min  
1.3  
8
Typ  
Max  
Unit  
V
V
RDR  
8
Pages  
Bytes  
Hz  
FLASH bytes per page  
8
8
(1)  
FLASH read bus clock frequency  
f
32 k  
8.4 M  
Read  
FLASH charge pump clock frequency  
(See 11.5.1 FLASH Charge Pump Frequency  
Control.)  
(2)  
f
1.8  
2.5  
MHz  
Pump  
FLASH block/bulk erase time  
FLASH high-voltage kill time  
FLASH return to read time  
FLASH page program pulses  
FLASH page program step size  
t
100  
200  
50  
20  
ms  
µs  
Erase  
t
Kill  
t
µs  
HVD  
(3)  
fls  
1
TBD  
1.2  
Pulses  
ms  
Pulses  
(4)  
t
1.0  
PROG  
FLASH cumulative program time per row between  
erase cycles  
(5)  
Row  
t
TBD  
ms  
FLASH HVEN low to MARGIN high time  
FLASH MARGIN high to PGM low time  
t
50  
150  
100  
100  
10  
µs  
HVTV  
t
µs  
VTP  
(6)  
FLASH row erase endurance  
Cycles  
Cycles  
Years  
(7)  
FLASH row program endurance  
(8)  
FLASH data retention time  
Notes:  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. fPump is defined as the charge pump clock frequency required for program, erase, and margin read operations.  
3. flsPulses is defined as the number of pulses used to program the FLASH using the required smart program algorithm.  
4. tPROG is defined as the amount of time during one page program cycle that HVEN is held high.  
5. tRow is defined as the cumulative time a row can see the program voltage before the row must be erased before further  
programming.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire temperature range for at least the minimum time specified.  
Advance Information  
398  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 24. Mechanical Specifications  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
24.3 40-Pin Plastic Dual In-Line Package (DIP). . . . . . . . . . . . . . .400  
24.4 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .401  
24.2 Introduction  
This section gives the dimensions for:  
• 40-pin plastic dual in-line package (case 711-03)  
• 44-pin plastic quad flat pack (case 824E-02)  
The following figures show the latest package drawings at the time of this  
publication. To make sure that you have the latest package  
specifications, please visit the Freescale website at http://freescale.com.  
Follow Worldwide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
399  
24.3 40-Pin Plastic Dual In-Line Package (DIP)  
NOTES:  
1. POSITION TOLERANCE OF LEADS (D), SHALL  
BEWITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITIONS, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
40  
1
21  
20  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
B
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
MILLIMETERS  
INCHES  
DIM  
MIN  
MAX  
MIN  
MAX  
A
B
C
D
F
G
H
J
K
L
M
N
51.69  
13.72  
3.94  
0.36  
1.02  
52.45  
14.22  
5.08  
0.56  
1.52  
2.035  
0.540  
0.155  
0.014  
0.040  
2.065  
0.560  
0.200  
0.022  
0.060  
L
A
C
N
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
15.24 BSC  
0°  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.600 BSC  
0°  
0.085  
0.015  
0.135  
J
K
M
H
G
F
D
SEATING  
PLANE  
1°  
1.02  
1°  
0.040  
0.51  
0.020  
Advance Information  
400  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
24.4 44-Pin Plastic Quad Flat Pack (QFP)  
S
M
S
S
S
S
0.20 (0.008)  
T L-M  
N
N
-L-, -M-, -N-  
A
M
0.20 (0.008)  
H L-M  
PIN 1  
0.05 (0.002) L-M  
IDENT  
J1  
J1  
G
44  
34  
33  
1
VIEW Y  
3 PL  
-L-  
-M-  
F
PLATING  
BASE METAL  
J
B1  
VIEW Y  
D
M
S
S
N
0.20 (0.008)  
T L-M  
11  
23  
G 40X  
12  
22  
SECTION J1-J1  
44 PL  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
-N-  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT  
DATUM PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE -T-.  
M
VIEW P  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE -H-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE D DIMENSION TO EXCEED 0.530  
(0.021).  
E
DATUM  
C
-H-  
PLANE  
0.01 (0.004)  
W
-T-  
Y
MILLIMETERS  
INCHES  
MIN MAX  
0.390 0.398  
0.390 0.398  
0.079 0.087  
DIM  
A
MIN  
9.90  
9.90  
2.00  
0.30  
2.00  
0.30  
MAX  
10.10  
10.10  
2.21  
B
C
q1  
D
0.45 0.0118 0.0177  
E
2.10  
0.40  
0.80 BSC  
0.079 0.083  
0.012 0.016  
0.031 BSC  
F
R R1  
G
J
0.13  
0.65  
5°  
0.23  
0.95  
10°  
0.005 0.009  
0.026 0.037  
DATUM  
PLANE  
-H-  
K
R R2  
M
S
5°  
10°  
12.95  
12.95  
0.000  
5°  
13.45  
13.45  
0.210  
10°  
0.510 0.530  
0.510 0.530  
0.000 0.008  
V
W
Y
K
5°  
10°  
q2  
A1  
A1  
0.450 REF  
0.018 REF  
0.005 0.007  
0.063 REF  
B1 0.130  
0.170  
C1  
C1  
R1  
1.600 REF  
0.130  
0.300  
0.300  
10°  
0.005  
0.012  
R2 0.130  
0.005 0.012  
VIEW P  
q1  
q2  
5°  
0°  
5°  
0°  
10°  
7°  
7°  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
401  
Advance Information  
402  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information — MC68HC908GP20  
Section 25. Ordering Information  
25.1 Contents  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
25.2 Introduction  
This section contains ordering numbers for the MC68HC908GP20.  
25.3 MC Order Numbers  
Table 25-1. MC Order Numbers  
Operating  
MC order number(1)  
MC68HC908GP20CP  
temperature range  
–40 °C to +85 °C  
–40 °C to +85 °C  
MC68HC908GP20CFB  
1. P = Plastic dual in-line package  
FB = Plastic quad flat pack  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
Advance Information  
403  
Advance Information  
404  
MC68HC908GP20 Rev 2.1  
Freescale Semiconductor  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
How to Reach Us:  
Home Page:  
www.freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners. The ARM  
POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a  
trademark of ARM Limited. Java and all other Java-based marks are trademarks or  
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The  
Bluetooth trademarks are owned by their proprietor and used by Freescale  
Semiconductor, Inc. under license.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Rev. 2.1  
MC68HC908GP20/D  
08/2005  

相关型号:

MC68HC908GP20CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP20CFB

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8.2MHz, HCMOS, PQFP44, PLASTIC, QFP-44
MOTOROLA

MC68HC908GP20CP

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CB

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CBE

MC68HC908GP32CBE
FREESCALE

MC68HC908GP32CFB

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CP

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CP

M68HC08 Microcontrollers
FREESCALE