MC68HC908GP32CBE [FREESCALE]

MC68HC908GP32CBE;
MC68HC908GP32CBE
型号: MC68HC908GP32CBE
厂家: Freescale    Freescale
描述:

MC68HC908GP32CBE

文件: 总267页 (文件大小:3484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
深圳市南天星电子科技有限公司  
专业代理飞思卡尔  
(Freescale)  
飞思卡尔主要产品  
飞思卡尔产品主要应用  
8 位微控制器  
汽车电子  
16 位微控制器  
数字信号处理器与控制器  
i.MX 应用处理器  
基于 ARM®技术的 Kinetis MCU  
32/64 位微控制器与处理器  
模拟与电源管理器件  
射频器件(LDMOS,收发器)  
传感器(压力,加速度,磁场,  
触摸,电池)  
数据连接  
消费电子  
工业控制  
医疗保健  
电机控制  
网络  
智能能源  
深圳市南天星电子科技有限公司  
电话:075583040796  
传真:075583040790  
邮箱:tiger@soustar.com.cn  
网址:www.soustar.com.cn  
地址:深圳市福田区福明路雷圳大厦 2306 室  
MC68HC908GP32  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908GP32  
Rev. 10  
1/2008  
freescale.com  
深圳市南天星电子科技有限公司  
专业代理  
Freescale  
飞思卡尔  
安森美  
ON Semi  
Atmel  
爱特梅尔  
德州仪器  
模拟器件  
国际整流器  
微芯  
TI  
ADI  
IR  
Microchip  
NXP  
恩智浦  
深圳市南天星电子科技有限公司  
电话:075583040796 83040795  
传真:075583040790  
邮箱:tiger@soustar.com.cn  
网址:www.soustar.com.cn  
地址:深圳市福田区福明路雷圳大厦 2306 室  
MC68HC908GP32  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2001, 2006, 2008. All rights reserved.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
In Table 15-1, second cell in "Comment" column, corrected PTC to  
PTC1.  
199  
337  
387  
397  
341  
In Figure 21-2, Timebase control register, bit 0 is a reserved bit.  
July,  
5
2001  
Updated crystal oscillator component values in 23.17.1 CGM  
Component Specifications.  
Added appendix A: MC68HC08GP32 — ROM part.  
Section 22. Timer Interface Module (TIM) — Timer discrepancies  
corrected throughout this section.  
August,  
6
2002  
Section 24. Mechanical Specifications — Replaced incorrect 44-pin QFP  
drawing, case 824E to case 824A.  
393  
Throughout  
46  
August,  
6.1  
Updated to meet Freescale identity guidelines.  
2005  
3.5 Clock Generator Module (CGM) — Updated description to remove  
erroneous information.  
March,  
7
2006  
19.16.1 CGM Component Specifications — Updated to reflect correct  
values.  
250  
April,  
8
12.5.1 Port D Data Register — Corrected the description of the slave  
select (SS) bit.  
123  
2007  
June,  
9
Never released. Typos.  
N/A  
2007  
Deleted the Resets and Interrupts Chapter because it was redundant  
Chapter 2 Memory — Removed DMA bit references  
N/A  
N/A  
N/A  
Chapter 2 Memory — Integrated RAM and FLASH sections  
2.6 FLASH Memory — Updated FLASH erase, programming, and block  
protect information  
38  
4.7.1 ADC Status and Control Register — Corrected COCO bit  
description  
56  
January,  
10  
9.4 Interrupts — Updated External Interrupt Module information  
103  
105  
115  
131  
133  
135  
2008  
Chapter 10 Keyboard Interrupt (KBI) Module — Updated KBI module  
information  
Chapter 12 Input/Output (I/O) Ports — Added unused pins note  
Chapter 13 Serial Communications Interface Module (SCI) — Removed  
DMA references  
Figure 13-1. SCI Module Block Diagram — Replaced SCI block diagram  
Figure 13-4. SCI Transmitter Block Diagram — Replaced SCI  
transmitter block diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
4
Freescale Semiconductor  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Figure 13-5. SCI Receiver Block Diagram — Replaced SCI receiver  
block diagram  
138  
157  
172  
175  
175  
177  
212  
215  
Chapter 14 System Integration Module (SIM) — Corrected Break  
interrupt and SBSW bit descriptions  
14.7.2 SIM Reset Status Register — Updated SIM reset status register  
information  
Chapter 15 Serial Peripheral Interface Module (SPI) — Deleted IIC  
reference  
January,  
10  
2008  
Chapter 15 Serial Peripheral Interface Module (SPI) — Removed DMA  
references  
Figure 15-2. SPI Module Block Diagram — Replaced SPI module block  
diagram  
Table 17-3. Mode, Edge, and Level Selection — Added software output  
compare to mode table  
Chapter 18 Development Support — Integrated Break module and  
monitor mode chapters into Development Support Chapter  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
5
Revision History  
MC68HC908GP32 Data Sheet, Rev. 10  
6
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Chapter 3 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Chapter 4 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Chapter 5 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Chapter 6 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Chapter 7 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 8 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Chapter 9 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Chapter 10 Keyboard Interrupt (KBI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Chapter 11 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Chapter 12 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Chapter 13 Serial Communications Interface Module (SCI) . . . . . . . . . . . . . . . . . . . . . . .131  
Chapter 14 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Chapter 15 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
Chapter 16 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
Chapter 17 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
Chapter 18 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
Chapter 19 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
Chapter 20 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Chapter 21 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
7
List of Chapters  
MC68HC908GP32 Data Sheet, Rev. 10  
8
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
1.2  
1.2.1  
1.2.2  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Standard Features of the MC68HC908GP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features of the CPU08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
1.3  
1.4  
1.5  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
1.5.9  
1.5.10  
1.5.11  
1.5.12  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CGM Power Supply Pins (V  
and V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DDA  
SSA  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ADC Power Supply/Reference Pins (V /V and V /V ). . . . . . . . . . . . . . . . 27  
DDAD REFH  
SSAD REFL  
Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Port C I/O Pins (PTC6–PTC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Port E I/O Pins (PTE1/RxD–PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.6  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.6.1  
2.6.7  
2.6.8  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
9
Table of Contents  
Chapter 3  
Low-Power Modes  
3.1  
3.1.1  
3.1.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.2  
3.2.1  
3.2.2  
Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.3  
3.3.1  
3.3.2  
Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.4  
3.4.1  
3.4.2  
Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.5  
3.5.1  
3.5.2  
Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.6  
3.6.1  
3.6.2  
Computer Operating Properly Module (COP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.7  
3.7.1  
3.7.2  
External Interrupt Module (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.8  
3.8.1  
3.8.2  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.9  
3.9.1  
3.9.2  
Low-Voltage Inhibit Module (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.10 Serial Communications Interface Module (SCI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.10.1  
3.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.11 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.11.1  
3.11.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.12 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.12.1  
3.12.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.13 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.13.1  
3.13.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.14 Exiting Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.15 Exiting Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
MC68HC908GP32 Data Sheet, Rev. 10  
10  
Freescale Semiconductor  
Chapter 4  
Analog-to-Digital Converter (ADC)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.6  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.6.1  
4.6.2  
4.6.3  
ADC Analog Power Pin (V  
ADC Analog Ground Pin (V  
)/ADC Voltage Reference High Pin (V  
) . . . . . . . . . . . 55  
) . . . . . . . . . . . 56  
DDAD  
REFH  
)/ADC Voltage Reference Low Pin (V  
SSAD  
REFL  
ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADIN  
4.7  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
4.7.1  
4.7.2  
4.7.3  
Chapter 5  
Clock Generator Module (CGM)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Manual and Automatic PLL Bandwidth Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
5.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
SSA  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Oscillator Stop Mode Enable Bit (OSCSTOPENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
11  
Table of Contents  
5.4.10  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.5  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
PLL VCO Range Select Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
PLL Reference Divider Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
5.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5.7  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.7.1  
5.7.2  
5.7.3  
5.8  
Acquisition/Lock Time Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
5.8.1  
5.8.2  
5.8.3  
Chapter 6  
Configuration Register (CONFIG)  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Chapter 7  
Computer Operating Properly (COP)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.3.7  
7.3.8  
7.4  
7.5  
7.6  
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.7  
7.7.1  
7.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
MC68HC908GP32 Data Sheet, Rev. 10  
12  
Freescale Semiconductor  
Chapter 8  
Central Processor Unit (CPU)  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
8.5  
8.5.1  
8.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
8.6  
8.7  
8.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Chapter 9  
External Interrupt (IRQ)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
9.3  
9.3.1  
9.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
MODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
MODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
9.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.6  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.7  
9.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
IRQ Input Pins (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Chapter 10  
Keyboard Interrupt (KBI) Module  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.4 Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
10.4.1  
10.4.2  
10.4.3  
MODEK = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
MODEK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
13  
Table of Contents  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.7 KBI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.8.1  
KBI Input Pins (KBI7:KBI0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.9 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.9.1  
10.9.2  
Keyboard Status and Control Register (INTKBSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Keyboard Interrupt Enable Register (INTKBIER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Chapter 11  
Low-Voltage Inhibit (LVI)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
11.6.1  
11.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Chapter 12  
Input/Output (I/O) Ports  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
12.2.1  
12.2.2  
12.2.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
12.3.1  
12.3.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
12.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
12.4.1  
12.4.2  
12.4.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
12.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
12.5.1  
12.5.2  
12.5.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
12.6 Port E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
12.6.1  
12.6.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
MC68HC908GP32 Data Sheet, Rev. 10  
14  
Freescale Semiconductor  
Chapter 13  
Serial Communications Interface Module (SCI)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
13.4.1  
13.4.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.4.2.6  
13.4.3  
13.4.3.1  
13.4.3.2  
13.4.3.3  
13.4.3.4  
13.4.3.5  
13.4.3.6  
13.4.3.7  
13.4.3.8  
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.5.1  
13.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.6 SCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
13.7.1  
13.7.2  
PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.8.1  
13.8.2  
13.8.3  
13.8.4  
13.8.5  
13.8.6  
13.8.7  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
14.2 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
14.2.1  
14.2.2  
14.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
14.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
15  
Table of Contents  
14.3.1  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
14.3.2  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Monitor Mode Entry Module Reset (MODRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.3.2.1  
14.3.2.2  
14.3.2.3  
14.3.2.4  
14.3.2.5  
14.3.2.6  
14.4 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.4.1  
14.4.2  
14.4.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.5 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
14.5.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
14.5.1.1  
14.5.1.2  
14.5.1.3  
14.5.2  
14.5.3  
14.5.4  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
14.6.1  
14.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
14.7 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
14.7.1  
14.7.2  
14.7.3  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Chapter 15  
Serial Peripheral Interface Module (SPI)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
15.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
15.4.1  
15.4.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
15.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
15.5.1  
15.5.2  
15.5.3  
15.5.4  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
15.6 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
15.7 Error Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
15.7.1  
15.7.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
15.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
15.9 Resetting the SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
MC68HC908GP32 Data Sheet, Rev. 10  
16  
Freescale Semiconductor  
15.10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.10.1  
15.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.11 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
15.12.1  
15.12.2  
15.12.3  
15.12.4  
15.12.5  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.13 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
15.13.1  
15.13.2  
15.13.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Chapter 16  
Timebase Module (TBM)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.4 Timebase Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
16.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
16.6.1  
16.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Chapter 17  
Timer Interface Module (TIM)  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
17.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
17.4.1  
17.4.2  
17.4.3  
17.4.3.1  
17.4.3.2  
17.4.4  
17.4.4.1  
17.4.4.2  
17.4.4.3  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
17.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
17.6.1  
17.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
17.7 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
17  
Table of Contents  
17.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
17.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
17.9.1  
17.9.2  
17.9.3  
17.9.4  
17.9.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
TIM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Chapter 18  
Development Support  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
18.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
18.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.2.1.1  
18.2.1.2  
18.2.1.3  
18.2.2  
18.2.2.1  
18.2.2.2  
18.2.2.3  
18.2.2.4  
18.2.3  
18.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
18.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
18.3.1.1  
18.3.1.2  
18.3.1.3  
18.3.1.4  
18.3.1.5  
18.3.1.6  
18.3.1.7  
18.3.2  
Chapter 19  
Electrical Specifications  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
19.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
19.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
19.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
19.5 5.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
19.6 3.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
19.7 5.0-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
19.8 3.0-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
19.9 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
19.10 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
19.11 Typical Supply Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
MC68HC908GP32 Data Sheet, Rev. 10  
18  
Freescale Semiconductor  
19.12 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
19.13 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
19.14 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
19.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
19.16 Clock Generation Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
19.16.1  
19.16.2  
CGM Component Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
19.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
Chapter 20  
Mechanical Specifications  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Chapter 21  
Ordering Information  
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
21.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
19  
Table of Contents  
MC68HC908GP32 Data Sheet, Rev. 10  
20  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908GP32 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
1.2 Features  
For convenience, features have been organized to reflect:  
Standard features of the MC68HC908GP32  
Features of the CPU08  
1.2.1 Standard Features of the MC68HC908GP32  
High-performance M68HC08 architecture optimized for C-compilers  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
8-MHz internal bus frequency  
FLASH program memory security  
On-chip programming firmware for use with host personal computer which does not require high  
voltage for entry  
(1)  
In-system programming  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset and selectable trip points for 3.0-V and 5.0-V  
operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
Low-power design; fully static with stop and wait modes  
Standard low-power modes of operation:  
Wait mode  
Stop mode  
Master reset pin and power-on reset (POR)  
32 Kbytes of on-chip FLASH memory with in-circuit programming capabilities of FLASH program  
memory  
512 bytes of on-chip random-access memory (RAM)  
Serial peripheral interface module (SPI)  
Serial communications interface module (SCI)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
21  
General Description  
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture,  
output compare, and PWM capability on each channel  
8-channel, 8-bit successive approximation analog-to-digital converter (ADC)  
BREAK module (BRK) to allow single breakpoint setting during in-circuit debugging  
Internal pullups on IRQ and RST to reduce customer system cost  
Clock generator module with on-chip 32-kHz crystal compatible PLL (phase-lock loop)  
Up to 33 general-purpose input/output (I/O) pins, including:  
26 shared-function I/O pins  
Five or seven dedicated I/O pins, depending on package choice  
Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis.  
During output mode, pullups are disengaged.  
High current 10-mA sink/10-mA source capability on all port pins  
Higher current 15-mA sink/source capability on PTC0–PTC4  
Timebase module with clock prescaler circuitry for eight user selectable periodic real-time  
interrupts with optional active clock source during stop mode for periodic wakeup from stop using  
an external 32-kHz crystal  
Oscillator stop mode enable bit (OSCSTOPENB) in the CONFIG register to allow user selection of  
having the oscillator enabled or disabled during stop mode  
8-bit keyboard wakeup port  
40-pin plastic dual-in-line package (PDIP), 42-pin shrink dual-in-line package (SDIP), or 44-pin  
quad flat pack (QFP)  
Specific features of the MC68HC908GP32 in 40-pin PDIP are:  
Port C is only 5 bits: PTC0–PTC4  
Port D is only 6 bits: PTD0–PTD5; single 2-channel TIM module  
Specific features of the MC68HC908GP32 in 42-pin SDIP are:  
Port C is only 5 bits: PTC0–PTC4  
Port D is 8 bits: PTD0–PTD7; dual 2-channel TIM modules  
Specific features of the MC68HC908GP32 in 44-pin QFP are:  
Port C is 7 bits: PTC0–PTC6  
Port D is 8 bits: PTD0–PTD7; dual 2-channel TIM modules  
1.2.2 Features of the CPU08  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
MC68HC908GP32 Data Sheet, Rev. 10  
22  
Freescale Semiconductor  
MCU Block Diagram  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908GP32. Text in parentheses within a module block  
indicates the module name. Text in parentheses next to a signal indicates the module which uses the  
signal.  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–  
PTA0/KBD0 †  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT BREAK  
MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 32,256 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT MODULE  
USER RAM — 512 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 307 BYTES  
PTC6 †  
PTC5 †  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
USER FLASH VECTOR SPACE — 36 BYTES  
PTC4 † ‡  
PTC3 † ‡  
PTC2 † ‡  
PTC1 † ‡  
PTC0 † ‡  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
CLOCK GENERATOR MODULE  
OSC1  
32-kHz OSCILLATOR  
OSC2  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTD7/T2CH1 †  
PTD6/T2CH0 †  
PTD5/T1CH1 †  
PTD4/T1CH0 †  
PTD3/SPSCK †  
PTD2/MOSI †  
PTD1/MISO †  
PTD0/SS †  
PHASE-LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
24 INTR SYSTEM INTEGRATION  
MODULE  
* RST  
* IRQ  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
MONITOR MODULE  
V
/V  
DDAD REFH  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
PTE1/RxD  
PTE0/TxD  
DATA BUS SWITCH  
MODULE  
V
/V  
SSAD REFL  
POWER-ON RESET  
MODULE  
MEMORY MAP  
MODULE  
V
SECURITY  
MODULE  
DD  
V
SS  
POWER  
CONFIGURATION REGISTER 1  
MODULE  
V
DDA  
V
SSA  
MONITOR MODE ENTRY  
MODULE  
CONFIGURATION REGISTER 2  
MODULE  
† Ports are software configurable with pullup device if input port.  
‡ Higher current drive port pins  
* Pin contains integrated pullup device  
Figure 1-1. MCU Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
23  
General Description  
1.4 Pin Assignments  
V
(PLL)  
(PLL)  
PTA7/KBD7  
PTA6/KBD6  
PTA5/KBD5  
PTA4/KBD4  
PTA3/KBD3  
PTA2/KBD2  
PTA1/KBD1  
PTA0/KBD0  
DDA  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
SSA  
2
CGMXFC (PLL)  
OSC2  
3
4
OSC1  
RST  
5
6
PTC0  
7
PTC1  
8
V
V
/V  
(ADC)  
(ADC)  
PTC2  
SSAD REFL  
9
/V  
PTC3  
DDAD REFH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTC4  
PTB7/AD7  
PTE0/TxD  
PTE1/RxD  
IRQ  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTB1/AD1  
PTB0/AD0  
V
PTD5/T1CH1  
PTD4/T1CH0  
SS  
V
DD  
Pins Not Available  
on 40-Pin Package  
Internal  
Connection  
Connected to ground  
Connected to ground  
Unconnected  
PTC5  
PTC6  
PTD6/T2CH0  
PTD7/T2CH1  
Unconnected  
Figure 1-2. 40-Pin PDIP Pin Assignments  
MC68HC908GP32 Data Sheet, Rev. 10  
24  
Freescale Semiconductor  
Pin Assignments  
PTA7/KBD7  
PTA6/KBD6  
PTA5/KBD5  
PTA4/KBD4  
PTA3/KBD3  
PTA2/KBD2  
PTA1/KBD1  
PTA0/KBD0  
V
(PLL)  
(PLL)  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
DDA  
V
2
SSA  
CGMXFC (PLL)  
OSC2  
3
4
OSC1  
RST  
5
6
PTC0  
7
PTC1  
8
V
V
/V  
(ADC)  
(ADC)  
SSAD REFL  
PTC2  
9
/V  
DDAD REFH  
PTC3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PTB7/AD7  
PTC4  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTE0/TxD  
PTE1/RxD  
IRQ  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTB1/AD1  
PTB0/AD0  
PTD7/T2CH1  
V
SS  
PTD6/T2CH0  
PTD5/T1CH1  
V
DD  
PTD4/T1CH0  
Pins Not Available  
on 42-Pin Package  
Internal  
Connection  
PTC5  
PTC6  
Connected to ground  
Connected to ground  
Figure 1-3. 42-Pin SDIP Pin Assignments  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
25  
General Description  
RST  
PTC0  
PTA1/KBD1  
PTA0/KBD0  
1
33  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
PTC1  
V
V
/V  
3
SSAD REFL  
PTC2  
/V  
4
DDAD REFH  
PTC3  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
5
PTC4  
6
PTC5  
7
PTC6  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
8
PTE0/TxD  
PTE1/RxD  
IRQ  
9
10  
11  
23  
Figure 1-4. 44-Pin QFP Pin Assignments  
1.5 Pin Functions  
Descriptions of the pin functions are provided here.  
1.5.1 Power Supply Pins (V and V )  
DD  
SS  
V
and V are the power supply and ground pins. The MCU operates from a single power supply.  
SS  
DD  
Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To  
prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5  
shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response  
ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that  
require the port pins to source high current levels.  
MC68HC908GP32 Data Sheet, Rev. 10  
26  
Freescale Semiconductor  
Pin Functions  
MCU  
V
V
SS  
DD  
C1  
0.1 µF  
+
C2  
V
DD  
NOTE: Component values shown  
represent typical applications.  
Figure 1-5. Power Supply Bypassing  
1.5.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Chapter 5 Clock  
Generator Module (CGM).  
1.5.3 External Reset Pin (RST)  
A low on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of  
the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal  
pullup resistor. See Chapter 14 System Integration Module (SIM).  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor.  
See Chapter 9 External Interrupt (IRQ).  
1.5.5 CGM Power Supply Pins (V  
and V  
)
DDA  
SSA  
V
and V  
are the power supply pins for the analog portion of the clock generator module (CGM).  
DDA  
SSA  
Connect the V  
pin to the same voltage potential as V , and the V  
pin to the same voltage  
SSA  
DDA  
DD  
potential as V . Decoupling of these pins should be as per the digital supply. See Chapter 5 Clock  
SS  
Generator Module (CGM)  
1.5.6 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See Chapter 5 Clock Generator Module  
(CGM)  
1.5.7 ADC Power Supply/Reference Pins (V  
/V  
and V  
/V  
)
DDAD REFH  
SSAD REFL  
V
and V  
are the power supply pins for the analog-to-digital converter (ADC). Connect the V  
SSAD DDAD  
DDAD  
pin to the same voltage potential as V , and the V  
pin to the same voltage potential as V .  
DD  
SSAD  
SS  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
27  
General Description  
Decoupling of these pins should be as per the digital supply. See Chapter 4 Analog-to-Digital Converter  
(ADC).  
V
is the high reference supply for the ADC, and is internally connected to V  
. V  
is the low  
REFH  
DDAD  
REFL  
reference supply for the ADC, and is internally connected to V  
.
SSAD  
1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)  
PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be  
programmed to serve as keyboard interrupt pins. See Chapter 12 Input/Output (I/O) Ports and Chapter  
10 Keyboard Interrupt (KBI) Module.  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
1.5.9 Port B I/O Pins (PTB7/AD7–PTB0/AD0)  
PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital  
converter (ADC) inputs. See Chapter 12 Input/Output (I/O) Ports and Chapter 4 Analog-to-Digital  
Converter (ADC).  
1.5.10 Port C I/O Pins (PTC6–PTC0)  
PTC6–PTC0 are general-purpose, bidirectional I/O port pins. See Chapter 12 Input/Output (I/O) Ports.  
PTC5 and PTC6 are only available on 44-pin QFP package.  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
1.5.11 Port D I/O Pins (PTD7/T2CH1–PTD0/SS)  
PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD0–PTD3 can be programmed to be  
serial peripheral interface (SPI) pins, while PTD4–PTD7 can be individually programmed to be timer  
interface module (TIM1 and TIM2) pins. See Chapter 17 Timer Interface Module (TIM), Chapter 15 Serial  
Peripheral Interface Module (SPI), and Chapter 12 Input/Output (I/O) Ports. PTD6 and PTD7 are only  
available on 42-SDIP and 44-pin QFP packages.  
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged  
when configured for output mode. The pullups are selectable on an individual port bit basis.  
1.5.12 Port E I/O Pins (PTE1/RxD–PTE0/TxD)  
PTE0–PTE1 are general-purpose, bidirectional I/O port pins. These pins can also be programmed to be  
serial communications interface (SCI) pins. See Chapter 13 Serial Communications Interface Module  
(SCI) and Chapter 12 Input/Output (I/O) Ports.  
MC68HC908GP32 Data Sheet, Rev. 10  
28  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:  
32,256 bytes of user FLASH memory  
512 bytes of random-access memory (RAM)  
36 bytes of user-defined vectors  
307 bytes of monitor ROM  
2.2 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1)  
and in register figures in this document, unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and  
in register figures in this document, reserved locations are marked with the word Reserved or with the  
letter R.  
2.4 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area of $0000–$003F. Additional I/O  
registers have these addresses:  
$FE00; SIM break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE02; reserved, SUBAR  
$FE03; SIM break flag control register, SBFCR  
$FE04; interrupt status register 1, INT1  
$FE05; interrupt status register 2, INT2  
$FE06; interrupt status register 3, INT3  
$FE07; reserved  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
$FFFF; COP control register, COPCTL  
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
29  
Memory  
$0000  
I/O Registers  
64 Bytes  
$003F  
$0040  
RAM  
512 Bytes  
$023F  
$0240  
Unimplemented  
32,192 Bytes  
$7FFF  
$8000  
FLASH Memory  
32,256 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved (SUBAR)  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Unimplemented  
3 Bytes  
$FE0F  
$FE10  
Unimplemented  
16 Bytes  
Reserved for Compatibility with Monitor Code  
for A-Family Parts  
$FE1F  
$FE20  
Monitor ROM  
307 Bytes  
$FF52  
$FF53  
Unimplemented  
43 Bytes  
$FF7D  
$FF7E  
$FF7F  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
93 Bytes  
$FFDB  
$FFDC  
Note: $FFF6–$FFFD  
reserved for  
8 security bytes  
FLASH Vectors  
36 Bytes  
$FFFF  
Figure 2-1. Memory Map  
MC68HC908GP32 Data Sheet, Rev. 10  
30  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
0
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
Port C Data Register  
(PTC)  
PTD7  
Port D Data Register  
(PTD)  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
DDRB6  
0
DDRB5  
0
DDRB4  
0
DDRB3  
0
DDRB2  
0
Data Direction Register B  
(DDRB)  
0
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
DDRE1  
0
0
DDRE0  
0
Read:  
Data Direction Register E  
(DDRE)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
$000E  
Register Write:  
(PTCPUE)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
Register Write:  
(PTDPUE)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
SPE  
0
0
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPTIE  
0
SPI Control Register  
(SPCR)  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register Write:  
(SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
SCI Control Register 1  
(SCC1)  
0
TCIE  
0
0
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
0
0
0
R8  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
SCP0  
R
SCR2  
SCR1  
SCR0  
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
0
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
IMASKK  
MODEK  
and Control Register Write:  
(INTKBSCR)  
Reset:  
Read:  
0
0
KBIE6  
0
0
KBIE5  
0
0
0
0
KBIE1  
0
0
Keyboard Interrupt Enable  
KBIE7  
KBIE4  
0
KBIE3  
KBIE2  
KBIE0  
Register Write:  
(INTKBIER)  
Reset:  
Read:  
0
0
0
0
TBIE  
0
0
R
0
TBIF  
Time Base Module Control  
TBR2  
TBR1  
TBR0  
TBON  
Register Write:  
(TBCR)  
TACK  
0
Reset:  
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
32  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
IRQF  
2
0
1
IMASK  
0
Bit 0  
Read:  
0
0
0
0
IRQ Status and Control  
MODE  
$001D  
Register Write:  
(INTSCR)  
ACK  
0
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
OSC-  
STOPENB  
Configuration Register 2  
SCIBDSRC  
$001E  
$001F  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
(CONFIG2)† Write:  
Reset:  
0
0
0
0
0
0
SSREC  
0
0
STOP  
0
0
COPD  
0
Read:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVI5OR3†  
Configuration Register 1  
(CONFIG1)†  
Write:  
Reset:  
Read:  
0
TOF  
0
0
0
0
0
0
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Register Write:  
(T1SC)  
TRST  
0
Reset:  
Read:  
0
0
1
0
0
0
9
0
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High Write:  
(T1CNTH)  
Reset:  
Read:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
Read:  
0
Bit 15  
1
0
0
0
0
0
0
0
Timer 1 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1MODH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
1
1
1
1
1
1
Bit 0  
1
Timer 1 Counter Modulo  
Register Low  
(T1MODL)  
Bit 7  
6
1
5
1
4
1
3
2
1
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Timer 1 Channel 0 Status and  
Control Register (T1SC0)  
0
Timer 1 Channel 0  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1CH0H)  
Reset:  
Read:  
Indeterminate after reset  
Timer 1 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH0L)  
Reset:  
Indeterminate after reset  
† One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).  
Read:  
Write:  
Reset:  
Read:  
CH1F  
0
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Timer 1 Channel 1 Status and  
Control Register (T1SC1)  
$0028  
$0029  
$002A  
0
0
0
0
0
0
0
9
0
Timer 1 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T1CH1H)  
Reset:  
Read:  
Indeterminate after reset  
Timer 1 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH1L)  
Reset:  
Indeterminate after reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
33  
Memory  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
Timer 2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$002B  
Register Write:  
(T2SC)  
TRST  
0
Reset:  
Read:  
0
0
1
0
0
0
9
0
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High Write:  
(T2CNTH)  
$002C  
$002D  
$002E  
$002F  
Reset:  
Read:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
(T2CNTL)  
Reset:  
Read:  
0
Bit 15  
1
0
0
0
0
0
0
0
Timer 2 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2MODH)  
Reset:  
Read:  
1
1
1
1
1
1
1
Bit 0  
1
Timer 2 Counter Modulo  
Bit 7  
6
1
5
1
4
1
3
2
1
Register Low Write:  
(T2MODL)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Timer 2 Channel 0 Status and  
Control Register (T2SC0)  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
0
Timer 2 Channel 0  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2CH0H)  
Reset:  
Read:  
Indeterminate after reset  
Timer 2 Channel 0  
6
5
0
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH0L)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Indeterminate after reset  
CH1F  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Timer 2 Channel 1 Status and  
Control Register (T2SC1)  
0
0
0
0
0
0
0
9
0
Timer 2 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T2CH1H)  
Reset:  
Read:  
Indeterminate after reset  
Timer 2 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH1L)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Indeterminate after reset  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
(PCTL)  
0
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
Register Write:  
(PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
PLL Multiplier Select High  
Register Write:  
(PMSH)  
Reset:  
Read:  
0
MUL7  
0
0
MUL6  
1
0
MUL5  
0
0
PLL Multiplier Select Low  
MUL4  
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
Register Write:  
(PMSL)  
Reset:  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
34  
Freescale Semiconductor  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
$003A  
Register Write:  
(PMRS)  
Reset:  
Read:  
0
0
1
0
0
0
0
0
PLL Reference Divider  
RDS3  
0
RDS2  
0
RDS1  
0
RDS0  
1
$003B  
$003C  
$003D  
$003E  
$003F  
$FE00  
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
Read: COCO  
Analog-to-Digital Status and  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Control Register Write:  
(ADSCR)  
R
0
Reset:  
Read:  
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
Analog-to-Digital Data  
Register Write:  
(ADR)  
Reset:  
Read:  
0
ADIV2  
0
0
ADIV1  
0
0
ADIV0  
0
0
ADICLK  
0
0
0
0
0
0
0
0
0
Analog-to-Digital Clock  
Register Write:  
(ADCLK)  
Reset:  
Read:  
0
0
0
0
Unimplemented Write:  
Reset:  
Read:  
SBSW  
Note  
0
R
R
R
R
R
R
R
0
SIM Break Status Register  
(SBSR)  
Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
SIM Reset Status Register  
(SRSR)  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
Write:  
POR:  
1
0
0
0
0
0
0
0
Read:  
SIM Upper Byte Address  
Register Write:  
(SUBAR)  
R
R
R
R
R
R
R
R
Reset:  
Read:  
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(SBFCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
R
0
R
0
R
0
R
R
0
R
0
R
0
R
0
Reserved Write:  
Reset:  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
35  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
HVEN  
MASS  
ERASE  
FLASH Control Register  
(FLCR)  
$FE08  
0
Bit 15  
0
0
0
13  
0
0
12  
0
0
11  
0
0
10  
0
0
9
0
1
Break Address  
14  
Bit 8  
0
$FE09  
$FE0A  
$FE0B  
Register High Write:  
(BRKH)  
Reset:  
Read:  
0
Break Address  
Register Low Write:  
(BRKL)  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
$FE0C LVI Status Register (LVISR) Write:  
Reset:  
0
BPR7  
U
0
BPR6  
U
0
BPR5  
U
0
BPR4  
U
0
BPR3  
U
0
BPR2  
U
0
BPR1  
U
0
BPR0  
U
Read:  
FLASH Block Protect  
Register Write:  
$FF7E  
$FFFF  
(FLBPR)  
Reset:  
Read:  
Write:  
Reset:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
Writing clears COP counter (any value)  
Unaffected by reset  
† Non-volatile FLASH register  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6)  
MC68HC908GP32 Data Sheet, Rev. 10  
36  
Freescale Semiconductor  
Input/Output (I/O) Section  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
Timebase Vector (High)  
Timebase Vector (Low)  
Lowest  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
PLL Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
37  
Memory  
2.5 Random-Access Memory (RAM)  
This section describes the 512 bytes of RAM (random-access memory).  
Addresses $0040 through $023F are RAM locations. The location of the stack RAM is programmable.  
The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently  
access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
2.6 FLASH Memory  
This subsection describes the operation of the embedded FLASH memory. This memory can be read,  
programmed, and erased from a single external supply. The program, erase, and read operations are  
enabled through the use of an internal charge pump.  
2.6.1 Functional Description  
The FLASH memory is an array of 32,256 bytes with an additional 36 bytes of user vectors and one byte  
of block protection. An erased bit reads as 1 and a programmed bit reads as a 0. Memory in the FLASH  
array is organized into two rows per page basis. The page size is 128 bytes per page. Hence the minimum  
erase page size is 128 bytes and the minimum program row size is 64 bytes. Program and erase  
operation operations are facilitated through control bits in FLASH Control Register (FLCR). Details for  
these operations appear later in this section. The address ranges for the user memory, control registers,  
and vectors are:  
$8000–$FDFF; user memory.  
$FF7E; FLASH block protect register.  
$FE08; FLASH control register.  
$FFDC–$FFFF; these locations are reserved for user-defined interrupt and reset vectors.  
Programming tools are available from Freescale. Contact your local Freescale representative for more  
information.  
MC68HC908GP32 Data Sheet, Rev. 10  
38  
Freescale Semiconductor  
FLASH Memory  
NOTE  
(1)  
A security feature prevents viewing of the FLASH contents.  
2.6.2 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program and erase operations  
in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 32Kbyte FLASH array for mass erase operation.  
1 = MASS erase operation selected  
0 = PAGE erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
2.6.3 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (128 bytes) of FLASH memory.  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the page address range of the block to be erased.  
4. Wait for a time, t  
(min. 10 µs)  
nvs  
5. Set the HVEN bit.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
39  
Memory  
6. Wait for a time, t  
(min. 1 ms or 4 ms)  
Erase  
7. Clear the ERASE bit.  
8. Wait for a time, t (min. 5 µs)  
nvh  
9. Clear the HVEN bit.  
10. After a time, t (typ. 1 µs), the memory can be accessed again in read mode.  
rcv  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from FLASH memory. While these operations must  
be performed in the order shown, other unrelated operations may occur  
between the steps.  
In applications that need more than 1000 program/erase cycles, use the 4-ms page erase specification  
to get improved long-term reliability. Any application can use this 4-ms page erase specification.  
However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times,  
and speed is important, use the 1-ms page erase specification to get a shorter cycle time.  
2.6.4 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory.  
1. Set both the ERASE bit, and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
(1)  
3. Write any data to any FLASH address within the FLASH memory address range.  
4. Wait for a time, t  
(min. 10 µs)  
nvs  
5. Set the HVEN bit.  
6. Wait for a time, t  
(min. 4 ms)  
MErase  
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, t  
(min. 100 µs)  
nvhl  
9. Clear the HVEN bit.  
10. After a time, t (min. 1 µs), the memory can be accessed again in read mode.  
rcv  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
2.6.5 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $0080 and $XXC0.  
1. When in Monitor mode, with security sequence failed (see 18.3.2 Security), write to the FLASH block protect register instead  
of any FLASH address.  
MC68HC908GP32 Data Sheet, Rev. 10  
40  
Freescale Semiconductor  
FLASH Memory  
During the programming cycle, make sure that all addresses being written to fit within one of the ranges  
specified above. Attempts to program addresses in different row ranges in one programming cycle will  
fail. Use this step-by-step procedure to program a row of FLASH memory (Figure 2-4 is a flowchart  
representation).  
NOTE  
Only bytes which are currently $FF may be programmed.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address range desired.  
4. Wait for a time, t  
(min. 10 µs).  
nvs  
5. Set the HVEN bit.  
6. Wait for a time, t  
(min. 5 µs).  
pgs  
7. Write data to the FLASH address to be programmed. (See note.)  
8. Wait for a time, t (min. 30 µs).  
PROG  
9. Repeat step 7 and 8 until all the bytes within the row are programmed.  
10. Clear the PGM bit. (See note.)  
11. Wait for a time, t  
(min. 5 µs).  
nvh  
12. Clear the HVEN bit.  
13. After time, t (typical 1 µs), the memory can be accessed in read mode again.  
RCV  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations can not be performed by  
code being executed from the same FLASH array.  
NOTE  
While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps. Care must be taken  
within the FLASH array memory space such as the COP control register  
(COPCTL) at $FFFF.  
NOTE  
It is highly recommended that interrupts be disabled during program/ erase  
operations.  
NOTE  
Do not exceed t  
maximum or t maximum. t is defined as the  
PROG  
HV HV  
cumulative high voltage programming time to the same row before next  
erase. t must satisfy this condition:  
HV  
t
+ t  
+ t  
+ (t  
x 64) t maximum  
NVS  
NVH  
PGS  
PROG HV  
Refer to 19.17 Memory Characteristics.  
NOTE  
The time between programming the FLASH address change (step 7 to  
step 7), or the time between the last FLASH programmed to clearing the  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
41  
Memory  
PGM bit (step 7 to step 10) must not exceed the maximum programming  
time, t maximum.  
PROG  
NOTE  
Be cautious when programming the FLASH array to ensure that  
non-FLASH locations are not used as the address that is written to when  
selecting either the desired row address range in step 3 of the algorithm or  
the byte to be programmed in step 7 of the algorithm. This applies  
particularly to $FFD4–$FFDF.  
2.6.6 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made for protecting a block of memory from unintentional erase or program  
operations due to system malfunction. This protection is done by using of a FLASH Block Protect Register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH  
memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or  
PROGRAM operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit  
MC68HC908GP32 Data Sheet, Rev. 10  
42  
Freescale Semiconductor  
FLASH Memory  
1
2
3
Set PGM bit  
Algorithm for programming  
a row (64 bytes) of FLASH memory  
Read the FLASH block protect register  
Write any data to any FLASH address  
within the row address range desired  
4
5
6
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
7
8
Write data to the FLASH address  
to be programmed  
Wait for a time, tPROG  
Completed  
Y
programming  
this row?  
N
10  
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
11  
12  
13  
must not exceed the maximum programming  
time, tPROG max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of programming  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
43  
Memory  
When the FLBPR is programmed with all 0’s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in  
2.6.6.1 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any  
erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is  
disabled whenever any block is protected (FLBPR does not equal $FF). The presence of a V  
on the  
TST  
IRQ pin will bypass the block protection so that all of the memory included in the block protect register is  
open for program and erase operations.  
NOTE  
The FLASH block protect register is not protected with special hardware or  
software. Therefore, if this page is not protected by FLBPR the register is  
erased by either a page or mass erase operation.  
2.6.6.1 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and  
therefore can only be written during a programming sequence of the FLASH memory. The value in this  
register determines the starting location of the protected range within the FLASH memory.  
Address:  
$FF7E  
Bit 7  
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
BPR7  
U
U = Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
These eight bits represent bits [14:7] of a 16-bit memory address.  
Bit-15 is 1 and bits [6:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be XX00 and XX80 (128 bytes page boundaries)  
within the FLASH memory.  
16-bit memory address  
Start address of FLASH block protect  
0
0
0
0
0
0
0
FLBPR value  
1
Figure 2-6. FLASH Block Protect Start Address  
MC68HC908GP32 Data Sheet, Rev. 10  
44  
Freescale Semiconductor  
FLASH Memory  
Examples of protect start address:  
BPR[7:0]  
$00  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$8080 (1000 0000 1000 0000)  
$8100 (1000 0001 0000 0000)  
and so on...  
$01 (0000 0001)  
$02 (0000 0010)  
$FE (1111 1110)  
$FF00 (1111 1111 0000 0000)  
The entire FLASH memory is not protected.  
$FF  
Note: The end address of the protected range is always $FFFF.  
2.6.7 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a program or erase operation on the  
FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode.  
2.6.8 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the  
FLASH memory directly, but there will not be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase operation on the  
FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode  
NOTE  
Standby Mode is the power saving mode of the FLASH module in which all  
internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
45  
Memory  
MC68HC908GP32 Data Sheet, Rev. 10  
46  
Freescale Semiconductor  
Chapter 3  
Low-Power Modes  
3.1 Introduction  
The MCU may enter two low-power modes: wait mode and stop mode. They are common to all HC08  
MCUs and are entered through instruction execution. This section describes how each module acts in the  
low-power modes.  
3.1.1 Wait Mode  
The WAIT instruction puts the MCU in a low-power standby mode in which the CPU clock is disabled but  
the bus clock continues to run. Power consumption can be further reduced by disabling the LVI module  
and/or the timebase module through bits in the CONFIG register. (See Chapter 6 Configuration Register  
(CONFIG).)  
3.1.2 Stop Mode  
Stop mode is entered when a STOP instruction is executed. The CPU clock is disabled and the bus clock  
is disabled if the OSCSTOPENB bit in the CONFIG register is at a logic 0. (See Chapter 6 Configuration  
Register (CONFIG).)  
3.2 Analog-to-Digital Converter (ADC)  
3.2.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing  
the WAIT instruction.  
3.2.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one  
conversion cycle to stabilize the analog circuitry.  
3.3 Break Module (BRK)  
3.3.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from  
the return address on the stack if the SBSW bit in the break status register is set.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
47  
Low-Power Modes  
3.3.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does not affect break module register  
states.  
3.4 Central Processor Unit (CPU)  
3.4.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
3.4.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
3.5 Clock Generator Module (CGM)  
3.5.1 Wait Mode  
The CGM remains active in wait mode. Before entering wait mode, software can disengage and turn off  
the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive  
applications can disengage the PLL without turning it off. Applications that require the PLL to wake the  
MCU from wait mode also can deselect the PLL output without turning off the PLL.  
3.5.2 Stop Mode  
If the OSCSTOPEN bit in the CONFIG register is cleared (default), then the STOP instruction disables  
the CGM (oscillator and phase-locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the OSCSTOPEN bit in the CONFIG register is set, then the phase locked loop is shut off but the  
oscillator will continue to operate in stop mode.  
3.6 Computer Operating Properly Module (COP)  
3.6.1 Wait Mode  
The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the  
COP counter in a CPU interrupt routine.  
MC68HC908GP32 Data Sheet, Rev. 10  
48  
Freescale Semiconductor  
External Interrupt Module (IRQ)  
3.6.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
The STOP bit in the configuration register (CONFIG) enables the STOP instruction. To prevent  
inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the  
STOP bit.  
3.7 External Interrupt Module (IRQ)  
3.7.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing the IMASK bit in the IRQ status and control  
register enables IRQ CPU interrupt requests to bring the MCU out of wait mode.  
3.7.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK bit in the IRQ status and control  
register enables IRQ CPU interrupt requests to bring the MCU out of stop mode.  
3.8 Keyboard Interrupt Module (KBI)  
3.8.1 Wait Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
3.8.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
3.9 Low-Voltage Inhibit Module (LVI)  
3.9.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
3.9.2 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module  
can generate a reset and bring the MCU out of stop mode.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
49  
Low-Power Modes  
3.10 Serial Communications Interface Module (SCI)  
3.10.1 Wait Mode  
The SCI module remains active in wait mode. Any enabled CPU interrupt request from the SCI module  
can bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
3.10.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI  
module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
3.11 Serial Peripheral Interface Module (SPI)  
3.11.1 Wait Mode  
The SPI module remains active in wait mode. Any enabled CPU interrupt request from the SPI module  
can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
3.11.2 Stop Mode  
The SPI module is inactive in stop mode. The STOP instruction does not affect SPI register states. SPI  
operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is  
aborted, and the SPI is reset.  
3.12 Timer Interface Module (TIM1 and TIM2)  
3.12.1 Wait Mode  
The TIM remains active in wait mode. Any enabled CPU interrupt request from the TIM can bring the MCU  
out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
3.12.2 Stop Mode  
The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the  
TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.  
MC68HC908GP32 Data Sheet, Rev. 10  
50  
Freescale Semiconductor  
Timebase Module (TBM)  
3.13 Timebase Module (TBM)  
3.13.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before enabling the WAIT instruction.  
3.13.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the oscillator has been  
enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active  
during stop mode. In stop mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the power consumption by stopping  
the timebase before enabling the STOP instruction.  
3.14 Exiting Wait Mode  
These events restart the CPU clock and load the program counter with the reset vector or with an interrupt  
vector:  
External reset — A logic 0 on the RST pin resets the MCU and loads the program counter with the  
contents of locations $FFFE and $FFFF.  
External interrupt — A high-to-low transition on an external interrupt pin (IRQ pin) loads the  
program counter with the contents of locations: $FFFA and $FFFB; IRQ pin.  
Break interrupt — A break interrupt loads the program counter with the contents of $FFFC and  
$FFFD.  
Computer operating properly module (COP) reset — A timeout of the COP counter resets the MCU  
and loads the program counter with the contents of $FFFE and $FFFF.  
Low-voltage inhibit module (LVI) reset — A power supply voltage below the V  
voltage resets the  
tripf  
MCU and loads the program counter with the contents of locations $FFFE and $FFFF.  
Clock generator module (CGM) interrupt — A CPU interrupt request from the phase-locked loop  
(PLL) loads the program counter with the contents of $FFF8 and $FFF9.  
Keyboard module (KBI) interrupt — A CPU interrupt request from the KBI module loads the  
program counter with the contents of $FFE0 and $FFE1.  
Timer 1 interface module (TIM1) interrupt — A CPU interrupt request from the TIM1 loads the  
program counter with the contents of:  
$FFF2 and $FFF3; TIM1 overflow  
$FFF4 and $FFF5; TIM1 channel 1  
$FFF6 and $FFF7; TIM1 channel 0  
Timer 2 interface module (TIM2) interrupt — A CPU interrupt request from the TIM2 loads the  
program counter with the contents of:  
$FFEC and $FFED; TIM2 overflow  
$FFEE and $FFEF; TIM2 channel 1  
$FFF0 and $FFF1; TIM2 channel 0  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
51  
Low-Power Modes  
Serial peripheral interface module (SPI) interrupt — A CPU interrupt request from the SPI loads  
the program counter with the contents of:  
$FFE8 and $FFE9; SPI transmitter  
$FFEA and $FFEB; SPI receiver  
Serial communications interface module (SCI) interrupt — A CPU interrupt request from the SCI  
loads the program counter with the contents of:  
$FFE2 and $FFE3; SCI transmitter  
$FFE4 and $FFE5; SCI receiver  
$FFE6 and $FFE7; SCI receiver error  
Analog-to-digital converter module (ADC) interrupt — A CPU interrupt request from the ADC loads  
the program counter with the contents of: $FFDE and $FFDF; ADC conversion complete.  
Timebase module (TBM) interrupt — A CPU interrupt request from the TBM loads the program  
counter with the contents of: $FFDC and $FFDD; TBM interrupt.  
3.15 Exiting Stop Mode  
These events restart the system clocks and load the program counter with the reset vector or with an  
interrupt vector:  
External reset — A logic 0 on the RST pin resets the MCU and loads the program counter with the  
contents of locations $FFFE and $FFFF.  
External interrupt — A high-to-low transition on an external interrupt pin loads the program counter  
with the contents of locations:  
$FFFA and $FFFB; IRQ pin  
$FFE0 and $FFE1; keyboard interrupt pins  
Low-voltage inhibit (LVI) reset — A power supply voltage below the LVI  
voltage resets the MCU  
tripf  
and loads the program counter with the contents of locations $FFFE and $FFFF.  
Break interrupt — A break interrupt loads the program counter with the contents of locations  
$FFFC and $FFFD.  
Timebase module (TBM) interrupt — A TBM interrupt loads the program counter with the contents  
of locations $FFDC and $FFDD when the timebase counter has rolled over. This allows the TBM  
to generate a periodic wakeup from stop mode.  
Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit  
stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external  
interrupt.  
The short stop recovery bit, SSREC, in the configuration register controls the oscillator stabilization delay  
during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32  
CGMXCLK cycles.  
NOTE  
Use the full stop recovery time (SSREC = 0) in applications that use an  
external crystal.  
MC68HC908GP32 Data Sheet, Rev. 10  
52  
Freescale Semiconductor  
Chapter 4  
Analog-to-Digital Converter (ADC)  
4.1 Introduction  
This section describes the 8-bit analog-to-digital converter (ADC).  
4.2 Features  
Features of the ADC module include:  
Eight channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
4.3 Functional Description  
The ADC provides eight pins for sampling external sources at pins PTB7/AD7–PTB0/AD0. An analog  
multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in  
(V  
). V  
is converted by the successive approximation register-based analog-to-digital converter.  
ADIN  
ADIN  
When the conversion is completed, ADC places the result in the ADC data register and sets a flag or  
generates an interrupt. (See Figure 4-1.)  
4.3.1 ADC Port I/O Pins  
PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The  
channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides  
the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are  
controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or DDR  
will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC  
will return a logic 0.  
4.3.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the signal to $FF (full scale). If the  
REFH  
input voltage equals V  
, the ADC converts it to $00. Input voltages between V  
and V  
are a  
REFL  
REFH  
REFL  
straight-line linear conversion.  
NOTE  
Inside the ADC module, the reference voltages V  
is connected to the  
REFH  
ADC analog power, V  
; and V  
is connected to the ADC analog  
DDAD  
REFL  
ground, V  
. Therefore, the ADC input voltage should not exceed these  
SSAD  
analog supply voltages.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC)  
INTERNAL  
DATA BUS  
READ DDRBx  
WRITE DDRBx  
DISABLE  
DDRBx  
PTBx  
RESET  
WRITE PTBx  
PTBx  
ADC CHANNEL x  
READ PTBx  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
(V  
)
ADIN  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADC  
ADC CLOCK  
AIEN COCO  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV2–ADIV0 ADICLK  
Figure 4-1. ADC Block Diagram  
NOTE  
Connect the V  
connect the V  
pin to the same voltage potential as the V pin, and  
pin to the same voltage potential as the V pin.  
SS  
DDAD  
SSAD  
DD  
The V  
pin should be routed carefully for maximum noise immunity.  
DDAD  
4.3.3 Conversion Time  
Conversion starts after a write to the ADSCR. One conversion will take between 16 and 17 ADC clock  
cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC clock frequency.  
16 to 17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
MC68HC908GP32 Data Sheet, Rev. 10  
54  
Freescale Semiconductor  
Interrupts  
4.3.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with new data after each conversion.  
Data from the previous conversion will be overwritten whether that data has been read or not.  
Conversions will continue until the ADCO bit is cleared. The COCO bit is set after the first conversion and  
will stay set until the next read of the ADC data register.  
In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs  
between writes to the ADSCR.  
When a conversion is in process and the ADSCR is written, the current conversion data should be  
discarded to prevent an incorrect reading.  
4.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
4.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC  
conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a  
conversion complete flag when interrupts are enabled.  
4.5 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power- consumption standby modes.  
4.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing  
the WAIT instruction.  
4.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one  
conversion cycle to stabilize the analog circuitry.  
4.6 I/O Signals  
The ADC module has eight pins shared with port B, PTB7/AD7–PTB0/AD0.  
4.6.1 ADC Analog Power Pin (V  
)/ADC Voltage Reference High Pin (V  
)
REFH  
DDAD  
The ADC analog portion uses V  
as its power pin. Connect the V  
pin to the same voltage  
DDAD  
DDAD  
potential as V . External filtering may be necessary to ensure clean V  
for good results.  
DD  
DDAD  
NOTE  
For maximum noise immunity, route V  
carefully and place bypass  
DDAD  
capacitors as close as possible to the package.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
55  
Analog-to-Digital Converter (ADC)  
4.6.2 ADC Analog Ground Pin (V  
)/ADC Voltage Reference Low Pin (V  
)
REFL  
SSAD  
The ADC analog portion uses V  
as its ground pin. Connect the V  
pin to the same voltage  
SSAD  
SSAD  
potential as V .  
SS  
NOTE  
Route V  
cleanly to avoid any offset errors.  
SSAD  
4.6.3 ADC Voltage In (V  
)
ADIN  
V
is the input voltage signal from one of the eight ADC channels to the ADC module.  
ADIN  
4.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADCLK)  
4.7.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described here.  
Address:  
$003C  
Bit 7  
COCO  
R
6
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
AIEN  
0
0
R
= Reserved  
Figure 4-2. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion.  
COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It  
always reads as a 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)  
NOTE  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
MC68HC908GP32 Data Sheet, Rev. 10  
56  
Freescale Semiconductor  
I/O Registers  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR register at the end of each  
conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared.  
Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC channels. Only eight  
channels, AD7–AD0, are available on this MCU. The channels are detailed in Table 4-1. Care should  
be taken when using a port pin as both an analog and digital input simultaneously to prevent switching  
noise from corrupting the analog signal. (See Table 4-1.)  
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for  
reduced power consumption for the MCU when the ADC is not being used.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
The voltage levels supplied from internal reference nodes, as specified in Table 4-1, are used to verify  
the operation of the ADC converter both in production test and for user applications.  
Table 4-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
Reserved  
VREFH  
VREFL  
1
1
1
1
1
1
1
1
0
1
ADC power off  
NOTE: If any unused channels are selected, the resulting ADC conversion will be unknown  
or reserved.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
57  
Analog-to-Digital Converter (ADC)  
4.7.2 ADC Data Register  
One 8-bit result register, ADC data register (ADR), is provided. This register is updated each time an ADC  
conversion completes.  
Address:  
$003D  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. ADC Data Register (ADR)  
4.7.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the ADC.  
Address:  
$003E  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
0
0
0
0
= Unimplemented  
Figure 4-4. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal  
ADC clock. Table 4-2 shows the available clock configurations. The ADC clock should be set to  
approximately 1 MHz.  
Table 4-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
MC68HC908GP32 Data Sheet, Rev. 10  
58  
Freescale Semiconductor  
I/O Registers  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or CGMXCLK as the input clock source to generate the internal  
ADC clock. Reset selects CGMXCLK as the ADC clock source.  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz, CGMXCLK can be used as the  
clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the  
clock source. As long as the internal ADC clock is at approximately 1 MHz, correct operation can be  
guaranteed.  
1 = Internal bus clock  
0 = External clock (CGMXCLK)  
ADC input clock frequency  
----------------------------------------------------------------------- = 1MHz  
ADIV 2–ADIV 0  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
59  
Analog-to-Digital Converter (ADC)  
MC68HC908GP32 Data Sheet, Rev. 10  
60  
Freescale Semiconductor  
Chapter 5  
Clock Generator Module (CGM)  
5.1 Introduction  
This section describes the clock generator module. The CGM generates the crystal clock signal,  
CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock  
signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL)  
clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the  
system clocks, including the bus clock, which is at a frequency of CGMOUT/2. In monitor mode, PTC3  
determines the bus clock. The PLL is a fully functional frequency generator designed for use with crystals  
or ceramic resonators. The PLL can generate an 8-MHz bus frequency using a 32-kHz crystal.  
5.2 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal  
reference  
Low-frequency crystal operation with low-power operation and high-output frequency resolution  
Programmable prescaler for power-of-two increases in frequency  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
Configuration register bit to allow oscillator operation during stop mode  
5.3 Functional Description  
The CGM consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates the constant crystal frequency  
clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock,  
CGMVCLK.  
Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by  
two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives  
the system clocks from either CGMOUT or CGMXCLK.  
Figure 5-1 shows the structure of the CGM.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
61  
Clock Generator Module (CGM)  
OSCILLATOR (OSC)  
OSC2  
CGMXCLK  
(TO: SIM, TIMTB15A, ADC)  
OSC1  
SIMOSCEN (FROM SIM)  
OSCSTOPENB  
(FROM CONFIG)  
PHASE-LOCKED LOOP (PLL)  
CGMRDV  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
A
B
CGMOUT  
(TO SIM)  
CLOCK  
SELECT  
CIRCUIT  
÷ 2  
S*  
BCS  
R
RDS3–RDS0  
SIMDIV2  
*WHEN S = 1,  
CGMOUT = B  
V
V
SSA  
DDA  
(FROM SIM)  
VPR1–VPR0  
VRS7–VRS0  
L
E
2
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
CGMVCLK  
PLL ANALOG  
AUTOMATIC  
MODE  
CONTROL  
PLLIREQ  
(TO SIM)  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL11–MUL0  
N
PRE1–PRE0  
P
2
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
Figure 5-1. CGM Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
62  
Freescale Semiconductor  
Functional Description  
5.3.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the  
input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) or the OSCSTOPENB bit in the CONFIG register enable the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal  
frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of  
CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related  
external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator  
circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.  
5.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending  
on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes  
either automatically or manually.  
5.3.3 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Reference divider  
Frequency prescaler  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies and for maximum  
immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
. Modulating the voltage on the  
VRS  
CGM/XFC pin changes the frequency within this range. By design, f  
is equal to the nominal  
VRS  
center-of-range frequency, f  
, (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or  
NOM  
E
(L × 2 )f  
.
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,  
, and is fed to the PLL through a programmable modulo reference divider, which divides f by a  
f
RCLK  
RCLK  
factor, R. The divider’s output is the final reference clock, CGMRDV, running at a frequency,  
= f /R. With an external crystal (30 kHz–100 kHz), always set R = 1 for specified performance.  
f
RDV  
RCLK  
With an external high-frequency clock source, use R to divide the external frequency to between 30 kHz  
and 100 kHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, f  
, is fed back through a programmable  
VCLK  
prescale divider and a programmable modulo divider. The prescaler divides the VCO clock by a  
power-of-two factor P and the modulo divider reduces the VCO clock by a factor, N. The dividers’ output  
P
is the VCO feedback clock, CGMVDV, running at a frequency, f  
Programming the PLL for more information.)  
= f  
/(N × 2 ). (See 5.3.6  
VDV  
VCLK  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
63  
Clock Generator Module (CGM)  
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock,  
CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The  
loop filter then slightly alters the DC voltage on the external capacitor connected to CGM/XFC based on  
the width and direction of the correction pulse. The filter can make fast or slow corrections depending on  
its mode, described in 5.3.4 Acquisition and Tracking Modes. The value of the external capacitor and the  
reference frequency determines the speed of the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final  
reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final  
reference frequency, f  
this comparison.  
. The circuit determines the mode of the PLL and the lock condition based on  
RDV  
5.3.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating modes:  
Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the  
VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in  
the PLL bandwidth control register. (See 5.5.2 PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the  
VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL  
enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected  
as the base clock source. (See 5.3.8 Base Clock Selector Circuit.) The PLL is automatically in  
tracking mode when not in acquisition mode or when the ACQ bit is set.  
5.3.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.  
Automatic mode is recommended for most users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between  
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 5.5.2 PLL  
Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt  
request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit  
continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK bit is  
set, the VCO clock is safe to use as the source for the base clock. (See 5.3.8 Base Clock Selector Circuit.)  
If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a  
severe noise hit and the software must take appropriate action, depending on the application. (See 5.6  
Interrupts for information and precautions on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth control mode:  
The ACQ bit (See 5.5.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of  
the filter. (See 5.3.4 Acquisition and Tracking Modes.)  
The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 5.8 Acquisition/Lock Time Specifications for  
more information.)  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
MC68HC908GP32 Data Sheet, Rev. 10  
64  
Freescale Semiconductor  
Functional Description  
The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 5.8 Acquisition/Lock Time Specifications for  
more information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling  
the LOCK bit. (See 5.5.1 PLL Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not  
require an indicator of the lock condition for proper operation. Such systems typically operate well below  
f
.
BUSMAX  
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual  
mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time, t  
(See 5.8  
ACQ  
Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL  
control register (PCTL).  
Software must wait a given time, t , after entering tracking mode before selecting the PLL as the  
AL  
clock source to CGMOUT (BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
5.3.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE  
The round function in the following equations means that the real number  
should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, f  
.
BUSDES  
2. Calculate the desired VCO frequency (four times the desired bus frequency).  
f
= 4 × f  
VCLKDES  
BUSDES  
3. Choose a practical PLL (crystal) reference frequency, f  
, and the reference clock divider, R.  
RCLK  
Typically, the reference crystal is 32.768 kHz and R = 1.  
Frequency errors to the PLL are corrected at a rate of f  
/R. For stability and lock time reduction,  
RCLK  
this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate.  
The relationship between the VCO frequency, f  
, and the reference frequency, f  
, is  
VCLK  
RCLK  
P
2 N  
= ------------ (f  
R
f
)
VCLK  
RCLK  
P, the power of two multiplier, and N, the range multiplier, are integers.  
In cases where desired bus frequency has some tolerance, choose f  
to a value determined  
RCLK  
either by other module requirements (such as modules which are clocked by CGMXCLK), cost  
requirements, or ideally, as high as the specified range allows. See Chapter 19 Electrical  
Specifications. Choose the reference divider, R = 1. After choosing N and P, the actual bus  
frequency can be determined using equation in 2 above.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
65  
Clock Generator Module (CGM)  
When the tolerance on the bus frequency is tight, choose f  
to an integer divisor of f  
,
RCLK  
BUSDES  
and R = 1. If f  
cannot meet this requirement, use the following equation to solve for R with  
RCLK  
practical choices of f  
, and choose the f  
that gives the lowest R.  
RCLK  
RCLK  
f
f
VCLKDES  
VCLKDES  
R = round R  
×
integer  
-------------------------  
-------------------------  
MAX  
f
f
RCLK  
RCLK  
4. Select a VCO frequency multiplier, N.  
R × f  
VCLKDES  
N = round  
------------------------------------  
f
RCLK  
Reduce N/R to the lowest possible R.  
5. If N is < N  
, use P = 0. If N > N  
, choose P using this table:  
max  
max  
Current N Value  
P
0 < N N  
0
max  
< N N  
N
× 2  
1
2
3
max  
max  
N
N
× 2 < N N  
× 4 < N N  
× 4  
max  
max  
max  
max  
× 8  
Then recalculate N:  
R × f  
VCLKDES  
------------------------------------  
P
N = round  
f
× 2  
RCLK  
6. Calculate and verify the adequacy of the VCO and bus frequencies f  
and f  
.
VCLK  
BUS  
P
f
= (2 × N R) × f  
VCLK  
RCLK  
f
= (f  
) ⁄ 4  
VCLK  
BUS  
7. Select the VCO’s power-of-two range multiplier E, according to this table:  
Frequency Range  
0 < fVCLK < 9,830,400  
E
0
1
2
9,830,400 fVCLK < 19,660,800  
19,660,800 fVCLK < 39,321,600  
NOTE: Do not program E to a value of 3.  
8. Select a VCO linear range multiplier, L, where f  
= 38.4 kHz  
NOM  
f
VCLK  
L = round  
--------------------------  
E
2 × f  
NOM  
MC68HC908GP32 Data Sheet, Rev. 10  
66  
Freescale Semiconductor  
Functional Description  
9. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, f  
. The  
VRS  
center-of-range frequency is the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
E
f
= (L × 2 )f  
VRS  
NOM  
For proper operation,  
E
f
× 2  
NOM  
---------------------------  
f
f  
VCLK  
VRS  
2
10. Verify the choice of P, R, N, E, and L by comparing f  
to f  
and f  
. For proper  
VCLK  
VRS  
VCLKDES  
operation, f  
must be within the application’s tolerance of f  
, and f  
must be as close  
VRS  
VCLK  
VCLKDES  
as possible to f  
.
VCLK  
NOTE  
Exceeding the recommended maximum bus frequency or VCO frequency  
can crash the MCU.  
11. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E.  
c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high  
(PMSH), program the binary equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program the binary coded equivalent of  
R.  
NOTE  
The values for P, E, N, L, and R can only be programmed when the PLL is  
off (PLLON = 0).  
Table 5-1 provides numeric examples (numbers are in hexadecimal notation):  
Table 5-1. Numeric Example  
fBUS  
fRCLK  
R
1
1
1
1
1
1
1
1
N
P
0
0
0
0
0
0
0
0
E
0
1
1
1
2
2
2
2
L
2.0 MHz  
2.4576 MHz  
2.5 MHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
F5  
D1  
80  
83  
D1  
80  
82  
C0  
D0  
12C  
132  
1E9  
258  
263  
384  
3D1  
4.0 MHz  
4.9152 MHz  
5.0 MHz  
7.3728 MHz  
8.0 MHz  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
67  
Clock Generator Module (CGM)  
5.3.7 Special Programming Exceptions  
The programming method described in 5.3.6 Programming the PLL does not account for three possible  
exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for  
these exceptions:  
A 0 value for R or N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the source for the base clock.  
(See 5.3.8 Base Clock Selector Circuit.)  
5.3.8 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the  
source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits  
up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other.  
During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by  
two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock  
frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock  
cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if  
the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or  
deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the  
factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the  
PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base  
clock.  
5.3.9 CGM External Connections  
In its typical configuration, the CGM requires up to nine external components. Five of these are for the  
crystal oscillator and two or four are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 5-2.  
Figure 5-2 shows only the logical representation of the internal components and may not represent actual  
circuitry. The oscillator configuration uses five components:  
Crystal, X  
1
Fixed capacitor, C  
1
Tuning capacitor, C (can also be a fixed capacitor)  
2
Feedback resistor, R  
B
Series resistor, R  
S
The series resistor (R ) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the  
S
crystal manufacturer’s data for more information regarding values for C1 and C2.  
Figure 5-2 also shows the external components for the PLL:  
Bypass capacitor, C  
Filter network  
BYP  
Routing should be done with great care to minimize signal cross talk and noise.  
See 19.16.1 CGM Component Specifications for capacitor and resistor values.  
MC68HC908GP32 Data Sheet, Rev. 10  
68  
Freescale Semiconductor  
I/O Signals  
SIMOSCEN  
OSCSTOPENB  
(FROM CONFIG)  
CGMXCLK  
V
V
DDA  
OSC1  
OSC2  
RS  
CGMXFC  
SSA  
V
DD  
RB  
10 kΩ  
CBYP  
0.1 µF  
0.01 µF  
0.033 µF  
X1  
C1  
C2  
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.  
Figure 5-2. CGM External Connections  
5.4 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
5.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
5.4.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
5.4.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is  
connected to this pin. (See Figure 5-2.)  
NOTE  
To prevent noise problems, the filter network should be placed as close to  
the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
69  
Clock Generator Module (CGM)  
5.4.4 PLL Analog Power Pin (V  
)
DDA  
V
is a power pin used by the analog portions of the PLL. Connect the V  
pin to the same voltage  
DDA  
DDA  
potential as the V pin.  
DD  
NOTE  
carefully for maximum noise immunity and place bypass  
Route V  
DDA  
capacitors as close as possible to the package.  
5.4.5 PLL Analog Ground Pin (V  
)
SSA  
V
is a ground pin used by the analog portions of the PLL. Connect the V  
pin to the same voltage  
SSA  
SSA  
potential as the V pin.  
SS  
NOTE  
carefully for maximum noise immunity and place bypass  
Route V  
SSA  
capacitors as close as possible to the package.  
5.4.6 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and  
PLL.  
5.4.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB)  
OSCSTOPENB is a bit in the CONFIG register that enables the oscillator to continue operating during  
stop mode. If this bit is set, the Oscillator continues running during stop mode. If this bit is not set (default),  
the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode.  
5.4.8 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (f  
) and comes  
XCLK  
directly from the crystal oscillator circuit. Figure 5-2 shows only the logical relation of CGMXCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at startup.  
5.4.9 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks.  
CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK,  
divided by two.  
5.4.10 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
MC68HC908GP32 Data Sheet, Rev. 10  
70  
Freescale Semiconductor  
CGM Registers  
5.5 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL)  
(See 5.5.1 PLL Control Register.)  
PLL bandwidth control register (PBWC)  
(See 5.5.2 PLL Bandwidth Control Register.)  
PLL multiplier select register high (PMSH)  
(See 5.5.3 PLL Multiplier Select Register High.)  
PLL multiplier select register low (PMSL)  
(See 5.5.4 PLL Multiplier Select Register Low.)  
PLL VCO range select register (PMRS)  
(See 5.5.5 PLL VCO Range Select Register.)  
PLL reference divider select register (PMDS)  
(See 5.5.6 PLL Reference Divider Select Register.)  
Figure 5-3 is a summary of the CGM registers.  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
PLLF  
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
(PCTL)  
$0036  
0
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
$0037  
$0038  
Register Write:  
(PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
PLL Multiplier Select High  
Register Write:  
(PMSH)  
Reset:  
Read:  
0
0
0
0
PLL Multiplier Select Low  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
$0039  
Register Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
$003A  
$003B  
NOTES:  
Register Write:  
(PMRS)  
Reset:  
Read:  
0
0
1
0
0
0
0
0
PLL Reference Divider  
RDS3  
RDS2  
0
RDS1  
0
RDS0  
1
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 5-3. CGM I/O Register Summary  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
71  
Clock Generator Module (CGM)  
5.5.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base  
clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits.  
Address:  
$0036  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
0
0
= Unimplemented  
Figure 5-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting  
the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE  
cannot be written and reads as logic 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the  
PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control  
register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF  
bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE  
Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be  
cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 5.3.8 Base Clock  
Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock,  
CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the  
frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS,  
it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one  
source clock to the other. During the transition, CGMOUT is held in stasis. (See 5.3.8 Base Clock  
Selector Circuit.) Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE  
PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base clock  
MC68HC908GP32 Data Sheet, Rev. 10  
72  
Freescale Semiconductor  
CGM Registers  
if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and  
BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0),  
selecting CGMVCLK requires two writes to the PLL control register. (See  
5.3.8 Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See  
5.3.3 PLL Circuits and 5.3.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the  
PLLON bit is set. Reset clears these bits.  
NOTE  
The value of P is normally 0 when using a 32.768-kHz crystal as the  
reference.  
Table 5-2. PRE1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction  
with L (See 5.3.3 PLL Circuits, 5.3.6 Programming the PLL, and 5.5.5 PLL VCO Range Select  
Register.) controls the hardware center-of-range frequency, f  
the PLLON bit is set. Reset clears these bits.  
. VPR1:VPR0 cannot be written when  
VRS  
Table 5-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
11  
0
1
2
1
2
4
8
3(1)  
1. Do not program E to a value of 3.  
5.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
73  
Clock Generator Module (CGM)  
Address:  
$0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
Write:  
Reset:  
LOCK  
AUTO  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 5-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual  
operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK,  
is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0  
and has no meaning. The write one function of this bit is reserved for test, so this bit must always be  
written a 0. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode  
or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is  
in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is  
stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
5.5.3 PLL Multiplier Select Register High  
The PLL multiplier select register high (PMSH) contains the programming information for the high byte of  
the modulo feedback divider.  
Address:  
$0038  
Bit 7  
0
6
0
5
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 5-6. PLL Multiplier Select Register High (PMSH)  
MUL11–MUL8 — Multiplier Select Bits  
These read/write bits control the high byte of the modulo feedback divider that selects the VCO  
frequency multiplier N. (See 5.3.3 PLL Circuits and 5.3.6 Programming the PLL.) A value of $0000 in  
MC68HC908GP32 Data Sheet, Rev. 10  
74  
Freescale Semiconductor  
CGM Registers  
the multiplier select registers configures the modulo feedback divider the same as a value of $0001.  
Reset initializes the registers to $0040 for a default multiply value of 64.  
NOTE  
The multiplier select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1).  
Bit7–Bit4 — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
5.5.4 PLL Multiplier Select Register Low  
The PLL multiplier select register low (PMSL) contains the programming information for the low byte of  
the modulo feedback divider.  
Address:  
$0038  
Bit 7  
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
MUL7  
0
Figure 5-7. PLL Multiplier Select Register Low (PMSL)  
MUL7–MUL0 — Multiplier Select Bits  
These read/write bits control the low byte of the modulo feedback divider that selects the VCO  
frequency multiplier, N. (See 5.3.3 PLL Circuits and 5.3.6 Programming the PLL.) MUL7–MUL0 cannot  
be written when the PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers  
configures the modulo feedback divider the same as a value of $0001. Reset initializes the register to  
$40 for a default multiply value of 64.  
NOTE  
The multiplier select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1).  
5.5.5 PLL VCO Range Select Register  
NOTE  
PMRS may be called PVRS on other HC08 derivatives.  
The PLL VCO range select register (PMRS) contains the programming information required for the  
hardware configuration of the VCO.  
Address:  
$003A  
Bit 7  
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
VRS7  
0
Figure 5-8. PLL VCO Range Select Register (PMRS)  
VRS7–VRS0 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with  
E (See 5.3.3 PLL Circuits, 5.3.6 Programming the PLL, and 5.5.1 PLL Control Register.), controls the  
hardware center-of-range frequency, f  
. VRS7–VRS0 cannot be written when the PLLON bit in the  
VRS  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
75  
Clock Generator Module (CGM)  
PCTL is set. (See 5.3.7 Special Programming Exceptions.) A value of $00 in the VCO range select  
register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 5.3.8 Base  
Clock Selector Circuit and 5.3.7 Special Programming Exceptions.). Reset initializes the register to  
$40 for a default range multiply value of 64.  
NOTE  
The VCO range select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
5.5.6 PLL Reference Divider Select Register  
NOTE  
PMDS may be called PRDS on other HC08 derivatives.  
The PLL reference divider select register (PMDS) contains the programming information for the modulo  
reference divider.  
Address:  
$003B  
Bit 7  
0
6
0
5
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 5-9. PLL Reference Divider Select Register (PMDS)  
RDS3–RDS0 — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects the reference division factor, R.  
(See 5.3.3 PLL Circuits and 5.3.6 Programming the PLL.) RDS7–RDS0 cannot be written when the  
PLLON bit in the PCTL is set. A value of $00 in the reference divider select register configures the  
reference divider the same as a value of $01. (See 5.3.7 Special Programming Exceptions.) Reset  
initializes the register to $01 for a default divide value of 1.  
NOTE  
The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE  
The default divide value of 1 is recommended for all applications.  
Bit7–Bit4 — Unimplemented Bits  
These bits have no function and always read as 0s.  
5.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU  
interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL)  
enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether  
MC68HC908GP32 Data Sheet, Rev. 10  
76  
Freescale Semiconductor  
Special Modes  
interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and  
PLLF reads as logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry  
into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can  
be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock  
frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency  
sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software  
performance or from exceeding stack limitations.  
NOTE  
Software can select the CGMVCLK divided by two as the CGMOUT source  
even if the PLL is not locked (LOCK = 0). Therefore, software should make  
sure the PLL is locked before setting the BCS bit.  
5.7 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby modes.  
5.7.1 Wait Mode  
The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and  
turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power.  
Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is  
immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from  
wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.  
5.7.2 Stop Mode  
If the OSCSTOPENB bit in the CONFIG register is cleared (default), then the STOP instruction disables  
the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the  
PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal  
clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the  
crystal clock divided by two drives CGMOUT and BCS remains clear.  
If the OSCSTOPENB bit in the CONFIG register is set, then the phase locked loop is shut off but the  
oscillator will continue to operate in stop mode.  
5.7.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 14.7.3 SIM Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write the PLL control register during the break state without affecting  
the PLLF bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
77  
Clock Generator Module (CGM)  
5.8 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design  
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock  
times.  
5.8.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified  
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or  
when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the  
output settles to the desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input. For example, consider  
a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from  
0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz 50 kHz.  
Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise  
hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz 5 kHz. Five kHz = 5% of the  
100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system takes to reduce the error  
between the actual output and the desired output to within specified tolerances. Therefore, the acquisition  
or lock time varies according to the original error in the output. Minor errors may not even be registered.  
Typical PLL applications prefer to use this definition because the system requires the output frequency to  
be within a certain tolerance of the desired frequency regardless of the size of the initial error.  
5.8.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still providing the highest possible  
stability. These reaction times are not constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL is the reference frequency, f  
.
RDV  
This frequency is the input to the phase detector and controls how often the PLL makes corrections. For  
stability, the corrections must be small compared to the desired frequency, so several corrections are  
required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make  
these corrections. This parameter is under user control via the choice of crystal frequency f  
and the  
XCLK  
R value programmed in the reference divider. (See 5.3.3 PLL Circuits, 5.3.6 Programming the PLL, and  
5.5.6 PLL Reference Divider Select Register.)  
Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by  
adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size  
of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make  
small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL  
may not be able to adjust the voltage in a reasonable time. (See 5.8.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to V  
. The power supply potential alters the  
DDA  
characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if  
they vary within a known range at very slow speeds. Noise on the power supply is not acceptable,  
because it causes small frequency errors which continually change the acquisition time of the PLL.  
MC68HC908GP32 Data Sheet, Rev. 10  
78  
Freescale Semiconductor  
Acquisition/Lock Time Specifications  
Temperature and processing also can affect acquisition time because the electrical characteristics of the  
PLL change. The part operates as specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of the PLL. These factors include  
noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the  
circuit board, and even humidity or circuit board contamination.  
5.8.3 Choosing a Filter  
As described in 5.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the  
stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Either of the filter networks in Figure 5-10 is recommended when using a 32.768kHz reference crystal.  
Figure 5-10 (a) is used for applications requiring better stability. Figure 5-10 (b) is used in low-cost  
applications where stability is not critical.  
CGMXFC  
CGMXFC  
10 kΩ  
0.01 µF  
0.47 µF  
0.033 µF  
V
SSA  
V
SSA  
(a)  
(b)  
Figure 5-10. PLL Filter  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
79  
Clock Generator Module (CGM)  
MC68HC908GP32 Data Sheet, Rev. 10  
80  
Freescale Semiconductor  
Chapter 6  
Configuration Register (CONFIG)  
6.1 Introduction  
This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers  
enable or disable these options:  
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)  
COP timeout period (262,128 or 8176 CGMXCLK cycles)  
STOP instruction  
Computer operating properly module (COP)  
Low-voltage inhibit (LVI) module control and voltage trip point selection  
Enable/disable the oscillator (OSC) during stop mode  
6.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU, it is recommended that these registers be written  
immediately after reset. The configuration registers are located at $001E and $001F. The configuration  
register may be read at anytime.  
NOTE  
On a FLASH device, the options except LVI5OR3 are one-time writeable  
by the user after each reset. The LVI5OR3 bit is one-time writeable by the  
user only after each POR (power-on reset). The CONFIG registers are not  
in the FLASH memory but are special registers containing one-time  
writeable latches after each reset. Upon a reset, the CONFIG registers  
default to predetermined settings as shown in Figure 6-1 and Figure 6-2.  
Address:  
$001E  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
OSCSTOPENB SCIBDSRC  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 6-1. Configuration Register 2 (CONFIG2)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
81  
Configuration Register (CONFIG)  
Address:  
$001F  
Bit 7  
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVI5OR3  
See Note  
0
0
0
Note: LVI5OR3 bit is only reset via POR (power-on reset)  
Figure 6-2. Configuration Register 1 (CONFIG1)  
OSCSTOPENB— Oscillator Stop Mode Enable Bar Bit  
OSCSTOPENB enables the oscillator to continue operating during stop mode. Setting the  
OSCSTOPENB bit allows the oscillator to operate continuously even during stop mode. This is useful  
for driving the timebase module to allow it to generate periodic wakeup while in stop mode. (See 3.5  
Clock Generator Module (CGM) subsection 3.5.2 Stop Mode.)  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
SCIBDSRC — SCI Baud Rate Clock Source Bit  
SCIBDSRC controls the clock source used for the SCI. The setting of this bit affects the frequency at  
which the SCI operates.  
1 = Internal data bus clock used as clock source for SCI  
0 = External oscillator used as clock source for SCI  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. (See Chapter 7 Computer Operating  
Properly (COP).)  
1 = COP timeout period = 8176 CGMXCLK cycles  
0 = COP timeout period = 262,128 CGMXCLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP. (See  
3.5.2 Stop Mode.)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. (See Chapter 11 Low-Voltage Inhibit (LVI).)  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. (See Chapter 11 Low-Voltage Inhibit (LVI).)  
1 = LVI module power disabled  
0 = LVI module power enabled  
MC68HC908GP32 Data Sheet, Rev. 10  
82  
Freescale Semiconductor  
Functional Description  
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. (See Chapter 11 Low-Voltage Inhibit  
(LVI).) The voltage mode selected for the LVI should match the operating V . See Chapter 19  
DD  
Electrical Specifications for the LVI’s voltage trip points for each of the modes.  
1 = LVI operates in 5-V mode.  
0 = LVI operates in 3-V mode.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a  
4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLKC cycles  
NOTE  
Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
NOTE  
When the LVISTOP is enabled, the system stabilization time for power on  
reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay  
longer than the enable time for the LVI. There is no period where the MCU  
is not protected from a low power condition. However, when using the short  
stop recovery configuration option, the 32-CGMXCLK delay is less than the  
LVI’s turn-on time and there exists a period in startup where the LVI is not  
protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Chapter 7 Computer Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
83  
Configuration Register (CONFIG)  
MC68HC908GP32 Data Sheet, Rev. 10  
84  
Freescale Semiconductor  
Chapter 7  
Computer Operating Properly (COP)  
7.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
CONFIG register.  
7.2 Functional Description  
Figure 7-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
CGMXCLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(FROM CONFIG)  
Figure 7-1. COP Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
85  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by  
software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176  
CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration  
register. With a 8176 CGMXCLK cycle overflow option, a 32.768-kHz crystal gives a COP timeout period  
of 250 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by  
clearing the COP counter and stages 12 through 5 of the prescaler.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status  
register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ is held at V  
. During the break state,  
TST  
V
on the RST pin disables the COP.  
TST  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
7.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 7-1.  
7.3.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.  
7.3.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
7.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 7.4 COP Control Register) clears the COP  
counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low  
byte of the reset vector.  
7.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.  
7.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
7.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the COP prescaler.  
MC68HC908GP32 Data Sheet, Rev. 10  
86  
Freescale Semiconductor  
COP Control Register  
7.3.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. (See  
Chapter 6 Configuration Register (CONFIG).)  
7.3.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register.  
(See Chapter 6 Configuration Register (CONFIG).)  
7.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 7-2. COP Control Register (COPCTL)  
7.5 Interrupts  
The COP does not generate CPU interrupt requests.  
7.6 Monitor Mode  
When monitor mode is entered with V  
on the IRQ pin, the COP is disabled as long as V  
remains  
TST  
TST  
on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not  
having V on the IRQ pin, the COP is automatically disabled until a POR occurs.  
TST  
7.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.7.1 Wait Mode  
The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear  
the COP counter in a CPU interrupt routine.  
7.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
87  
Computer Operating Properly (COP)  
To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available  
that disables the STOP instruction. When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.  
7.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when V  
is present on the RST pin.  
TST  
MC68HC908GP32 Data Sheet, Rev. 10  
88  
Freescale Semiconductor  
Chapter 8  
Central Processor Unit (CPU)  
8.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
8.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
8.3 CPU Registers  
Figure 8-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
89  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 8-1. CPU Registers  
8.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands  
and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 8-2. Accumulator (A)  
8.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 8-3. Index Register (H:X)  
MC68HC908GP32 Data Sheet, Rev. 10  
90  
Freescale Semiconductor  
CPU Registers  
8.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 8-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
8.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 8-5. Program Counter (PC)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
91  
Central Processor Unit (CPU)  
8.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 8-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908GP32 Data Sheet, Rev. 10  
92  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
8.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
8.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
8.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
8.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
93  
Central Processor Unit (CPU)  
8.7 Instruction Set Summary  
Table 8-1 provides a summary of the M68HC08 instruction set.  
Table 8-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908GP32 Data Sheet, Rev. 10  
94  
Freescale Semiconductor  
Instruction Set Summary  
Table 8-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
95  
Central Processor Unit (CPU)  
Table 8-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
(A)  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
10  
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
DIV  
INH  
52  
7
H Remainder  
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908GP32 Data Sheet, Rev. 10  
96  
Freescale Semiconductor  
Instruction Set Summary  
Table 8-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
b7  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
97  
Central Processor Unit (CPU)  
Table 8-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908GP32 Data Sheet, Rev. 10  
98  
Freescale Semiconductor  
Opcode Map  
Table 8-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
A (CCR)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
(SP) (H:X) – 1  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
8.8 Opcode Map  
See Table 8-2.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
99  
Table 8-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
CMP  
3
CMP  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
CMP  
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
1
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
INH  
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
3
4
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
SP2  
IX1  
SP1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
4
DEC  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1  
5
INH  
SP2  
IX1  
SP1  
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
INCA  
INCX  
INC  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
INH  
1
IX1  
3
SP1  
4
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
SP1  
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
CLR  
SP1  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 9  
External Interrupt (IRQ)  
9.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
9.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin IRQ  
IRQ interrupt control bits  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup device  
9.3 Functional Description  
A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request. Figure 9-1  
shows the structure of the IRQ module.  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
IRQ VECTOR  
FETCH  
DECODER  
V
DD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
IRQ LATCH  
MODE  
HIGH  
VOLTAGE  
DETECT  
TO MONITOR  
MODE SELECT  
(NOTE)  
NOTE: On FLASH devices, high-voltage disables FLASH block protection.  
Figure 9-1. IRQ Module Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
101  
External Interrupt (IRQ)  
Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the  
following actions occurs:  
IRQ vector fetch. An IRQ vector fetch automatically generates an interrupt acknowledge signal that  
clears the latch that caused the vector fetch.  
Software clear. Software can clear the IRQ latch by writing a 1 to ACK in the interrupt status and  
control register (INTSCR).  
Reset. A reset automatically clears the IRQ latch.  
The external IRQ pin is falling edge sensitive out of reset and is software-configurable to be either falling  
edge or falling edge and low level sensitive. MODE in INTSCR controls the triggering sensitivity of the  
IRQ pin.  
ACK is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. A trigger  
event (falling edge or low level) that occurs after writing to ACK latches another interrupt request.  
IRQF in INTSCR can be read to check for pending interrupts. IRQF is not affected by IMASK, which  
makes it useful in applications where polling is preferred.  
When set, IMASK in INTSCR masks the IRQ interrupt request.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including the IRQ interrupt request.  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. An IRQ vector fetch,  
software clear, or reset clears the IRQ latch.  
9.3.1 MODE = 1  
If MODE is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set, both of  
the following actions must occur to clear the IRQ interrupt request:  
Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.  
IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal  
to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK  
in INTSCR.  
The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false IRQ interrupts  
by masking interrupt requests in the interrupt routine.  
9.3.2 MODE = 0  
If MODE is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch or  
software clear immediately clears the IRQ latch.  
MC68HC908GP32 Data Sheet, Rev. 10  
102  
Freescale Semiconductor  
Interrupts  
9.4 Interrupts  
The interrupt flag (IRQF) is set when the IRQ pin is asserted based on the IRQ mode. The IRQ interrupt  
mask bit, IMASK, is used to enable or disable IRQ interrupt requests.  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
9.5.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of wait mode.  
9.5.2 Stop Mode  
The IRQ module remains active in stop mode and provides an asynchronous wakeup. Clearing IMASK  
in INTSCR enables IRQ interrupt requests to bring the MCU out of stop mode.  
9.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits  
during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
9.7 I/O Signals  
The IRQ module does not share its pin with any module on this MCU.  
9.7.1 IRQ Input Pins (IRQ)  
The IRQ pin provides a maskable external interrupt source. The IRQ pin contains an internal pullup  
device.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
103  
External Interrupt (IRQ)  
9.8 Registers  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks the IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-2. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is set when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads 0.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables the IRQ interrupt request.  
1 = IRQ interrupt request disabled  
0 = IRQ interrupt request enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
1 = IRQ interrupt request on falling edges and low levels  
0 = IRQ interrupt request on falling edges only  
MC68HC908GP32 Data Sheet, Rev. 10  
104  
Freescale Semiconductor  
Chapter 10  
Keyboard Interrupt (KBI) Module  
10.1 Introduction  
The keyboard interrupt module (KBI) provides independently maskable external interrupts.  
The KBI shares its pins with general-purpose input/output (I/O) port pins.  
10.2 Features  
Features of the keyboard interrupt module include:  
Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Pullup device automatically enabled when pin is used for KBI input  
Programmable edge-only or edge and level interrupt sensitivity  
Exit from low-power modes  
10.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins.  
These pins can be enabled/disabled independently of each other.  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
KBI0  
V
DD  
KBIE0  
KEYF  
CLR  
D
Q
SYNCHRONIZER  
CK  
IMASKK  
KBIx  
KBI LATCH  
KEYBOARD  
INTERRUPT  
REQUEST  
KBIEx  
MODEK  
Figure 10-1. Keyboard Interrupt Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
105  
Keyboard Interrupt (KBI) Module  
10.4 Keyboard Operation  
Writing to the KBIEx bits in the keyboard interrupt enable register (INTKBIER) independently enables or  
disables each KBI pin. Enabling a keyboard interrupt pin also enables its internal pullup device  
irrespective of PUEx bits in the input pullup enable register. A low applied to an enabled keyboard  
interrupt pin latches a keyboard interrupt request.  
The keyboard interrupt latch is set when one or more keyboard interrupt input goes low after all were high.  
MODEK in the keyboard status and control register (INTKBSCR) controls the triggering mode of the  
keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does  
not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt  
request on one input because another input remains low, software can disable the latter input while  
it is low.  
If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as  
long as any keyboard interrupt input is low.  
10.4.1 MODEK = 1  
If MODEK is set, the keyboard interrupt inputs are both falling edge and low-level sensitive. With MODEK  
set, both of the following actions must occur to clear a keyboard interrupt request:  
Return of all enabled keyboard interrupt inputs to a high level. As long as any enabled keyboard  
interrupt pin is low, the keyboard interrupt remains active.  
Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to  
clear the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in  
INTKBSCR. ACKK is useful in applications that poll the keyboard interrupt inputs and require  
software to clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can  
also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt inputs. A falling edge that occurs after writing to ACKK latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the KBI vector address.  
The KBI vector fetch or software clear and the return of all enabled keyboard interrupt pins to a high level  
may occur in any order.  
Reset clears the keyboard interrupt request and MODEK, clearing the interrupt request even if a keyboard  
interrupt input stays low.  
10.4.2 MODEK = 0  
If MODEK is clear, the keyboard interrupt pin is falling-edge sensitive only. A KBI vector fetch or software  
clear immediately clears the KBI latch.  
The keyboard flag bit (KEYF) in INTKBSCR can be read to check for pending interrupts. KEYF is not  
affected by IMASKK, which makes it useful in applications where polling is preferred.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
MC68HC908GP32 Data Sheet, Rev. 10  
106  
Freescale Semiconductor  
Interrupts  
10.4.3 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to pull the pin to a high level.  
Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting IMASKK in INTKBSCR.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in INTKBIER.  
3. Write to ACKK in INTKBSCR to clear any false interrupts.  
4. Clear IMASKK.  
An interrupt signal on an edge sensitive pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge and level sensitive pin must be acknowledged after a delay that depends on  
the external load.  
10.5 Interrupts  
The following KBI source can generate interrupt requests:  
Keyboard flag (KEYF) — KEYF is set when any enabled KBI pin is asserted based on the KBI  
mode. The keyboard interrupt mask bit, IMASKK, is used to enable or disable KBI interrupt  
requests.  
10.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
10.6.1 Wait Mode  
The KBI module remains active in wait mode. Clearing IMASKK in INTKBSCR enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
10.6.2 Stop Mode  
The KBI module remains active in stop mode. Clearing IMASKK in INTKBSCR enables keyboard interrupt  
requests to bring the MCU out of stop mode.  
10.7 KBI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits  
during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
107  
Keyboard Interrupt (KBI) Module  
10.8 I/O Signals  
The KBI module can share its pins with the general-purpose I/O pins.  
10.8.1 KBI Input Pins (KBI7:KBI0)  
Each KBI pin is independently programmable as an external interrupt source. Each KBI pin when enabled  
will automatically configure a pullup device.  
10.9 Registers  
The following registers control and monitor operation of the KBI module:  
INTKBSCR (keyboard interrupt status and control register)  
INTKBIER (keyboard interrupt enable register)  
10.9.1 Keyboard Status and Control Register (INTKBSCR)  
Features of the INTKBSCR:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 10-2. Keyboard Status and Control Register (INTKBSCR)  
Bits 7–4 — Not used  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.  
1 = Keyboard interrupt requests disabled  
0 = Keyboard interrupt requests enabled  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
MC68HC908GP32 Data Sheet, Rev. 10  
108  
Freescale Semiconductor  
Registers  
10.9.2 Keyboard Interrupt Enable Register (INTKBIER)  
INTKBIER enables or disables each keyboard interrupt pin.  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 10-3. Keyboard Interrupt Enable Register (INTKBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch KBI interrupt  
requests.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
109  
Keyboard Interrupt (KBI) Module  
MC68HC908GP32 Data Sheet, Rev. 10  
110  
Freescale Semiconductor  
Chapter 11  
Low-Voltage Inhibit (LVI)  
11.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the V pin  
DD  
and can force a reset when the V voltage falls below the LVI trip falling voltage, V  
.
DD  
TRIPF  
11.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
11.3 Functional Description  
Figure 11-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module  
contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD,  
enables the LVI to monitor V voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI  
DD  
module to generate a reset when V falls below a voltage, V  
. Setting the LVI enable in stop mode  
DD  
TRIPF  
bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3,  
enables the trip point voltage, V , to be configured for 5-V operation. Clearing the LVI5OR3 bit  
TRIPF  
enables the trip point voltage, V  
, to be configured for 3-V operation. The actual trip points are shown  
TRIPF  
in Chapter 19 Electrical Specifications.  
NOTE  
After a power-on reset (POR) the LVI’s default mode of operation is 3 V. If  
a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip  
point to 5-V operation. Note that this must be done after every power-on  
reset since the default will revert back to 3-V mode after each power-on  
reset. If the V supply is below the 5-V mode trip voltage but above the  
DD  
3-V mode trip voltage when POR is released, the part will operate because  
V
defaults to 3-V mode after a POR. So, in a 5-V system care must be  
TRIPF  
taken to ensure that V is above the 5-V mode trip voltage after POR is  
DD  
released.  
NOTE  
If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on  
reset while the V supply is not above the V  
for 5-V mode, the MCU  
DD  
TRIPR  
will immediately go into reset. The LVI in this case will hold the part in reset  
until either V goes above the rising 5-V trip point, V , which will  
DD  
TRIPR  
release reset or V decreases to approximately 0 V which will re-trigger  
DD  
the power-on reset and reset the trip point to 3-V operation.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
111  
Low-Voltage Inhibit (LVI)  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register (CONFIG1). See 6.2  
Functional Description for details of the LVI’s configuration bits. Once an LVI reset occurs, the MCU  
remains in reset until V rises above a voltage, V  
, which causes the MCU to exit reset. See  
DD  
TRIPR  
14.3.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The  
output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
FROM CONFIG1  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
V
V
> LVI  
= 0  
= 1  
LVI RESET  
DD  
DD  
Trip  
LOW V  
DETECTOR  
DD  
LVI  
Trip  
LVIOUT  
LVI5OR3  
FROM CONFIG1  
Figure 11-1. LVI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
Read: LVIOUT  
6
5
4
3
2
1
Bit 0  
0
0
0
0
0
0
0
$FE0C LVI Status Register (LVISR) Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-2. LVI I/O Register Summary  
11.3.1 Polled LVI Operation  
In applications that can operate at V levels below the V  
level, software can monitor V by polling  
DD  
DD  
TRIPF  
the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI  
module, and the LVIRSTD bit must be at logic 1 to disable LVI resets.  
11.3.2 Forced Reset Operation  
In applications that require V to remain above the V  
level, enabling LVI resets allows the LVI  
DD  
TRIPF  
module to reset the MCU when V falls below the V  
level. In the configuration register, the  
DD  
TRIPF  
LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.  
MC68HC908GP32 Data Sheet, Rev. 10  
112  
Freescale Semiconductor  
LVI Status Register  
11.3.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having V fall below V  
), the LVI will maintain a reset condition until  
TRIPF  
DD  
V
rises above the rising trip point voltage, V  
. This prevents a condition in which the MCU is  
DD  
TRIPR  
continually entering and exiting reset if V is approximately equal to V  
. V  
is greater than  
DD  
TRIPF  
TRIPR  
V
by the hysteresis voltage, V  
.
TRIPF  
HYS  
11.3.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V  
protection.  
NOTE  
The microcontroller is guaranteed to operate at a minimum supply voltage.  
The trip point (V  
[5 V] or V  
[3 V]) may be lower than this. (See  
TRIPF  
TRIPF  
Chapter 19 Electrical Specifications for the actual trip point voltages.)  
11.4 LVI Status Register  
The LVI status register (LVISR) indicates if the V voltage was detected below the V  
level.  
DD  
TRIPF  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the V  
trip voltage.  
DD  
TRIPF  
(See Table 11-1.) Reset clears the LVIOUT bit.  
Table 11-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
11.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
113  
Low-Voltage Inhibit (LVI)  
11.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
11.6.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
11.6.2 Stop Mode  
If enabled in stop mode (LVISTOP set), the LVI module remains active in stop mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU out of stop mode.  
MC68HC908GP32 Data Sheet, Rev. 10  
114  
Freescale Semiconductor  
Chapter 12  
Input/Output (I/O) Ports  
12.1 Introduction  
Thirty-three (33) bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable  
as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with  
pullup devices if configured as input port bits. The pullup devices are automatically and dynamically  
disabled when a port bit is switched to output mode.  
Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess  
current caused by floating inputs, and enhances immunity during noise or transient events. Termination  
methods include:  
1. Configuring unused pins as outputs and driving high or low;  
2. Configuring unused pins as inputs and enabling internal pull-ups;  
3. Configuring unused pins as inputs and using external pull-up or pull-down resistors.  
Never connect unused pins directly to V or V .  
DD  
SS  
Since some general-purpose I/O pins are not available on all packages, these pins must be terminated  
as well. Either method 1 or 2 above are appropriate.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
0
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
Port C Data Register  
(PTC)  
PTD7  
Port D Data Register  
(PTD)  
= Unimplemented  
Figure 12-1. I/O Port Register Summary  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
115  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Data Direction Register A  
(DDRA)  
$0004  
DDRB7  
DDRB6  
0
DDRB5  
0
DDRB4  
0
DDRB3  
0
DDRB2  
0
DDRB1  
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
$0005  
$0006  
$0007  
$0008  
$000C  
$000D  
$000E  
$000F  
0
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
0
0
0
0
0
0
0
0
0
0
DDRE1  
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
0
0
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Register Write:  
(PTCPUE)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register Write:  
(PTDPUE)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-1. I/O Port Register Summary (Continued)  
MC68HC908GP32 Data Sheet, Rev. 10  
116  
Freescale Semiconductor  
Introduction  
Table 12-1. Port Control Register Bits Summary  
Port  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
DDR  
Module Control  
Pin  
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
DDRE0  
DDRE1  
KBIE0  
PTA0/KBD0  
PTA1/KBD1  
PTA2/KBD2  
PTA3/KBD3  
PTA4/KBD4  
PTA5/KBD5  
PTA6/KBD6  
PTA7/KBD7  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
PTC0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
A
KBD  
B
ADC  
ADCH4–ADCH0  
PTC1  
PTC2  
C
PTC3  
PTC4  
PTC5  
PTC6  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/T2CH0  
PTD7/T2CH1  
PTE0/TxD  
PTE1/RxD  
SPI  
SPE  
D
E
ELS0B:ELS0A  
ELS1B:ELS1A  
ELS0B:ELS0A  
ELS1B:ELS1A  
TIM1  
TIM2  
SCI  
ENSCI  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
117  
Input/Output (I/O) Ports  
12.2 Port A  
Port A is an 8-bit special-function port that shares all eight of its pins with the keyboard interrupt (KBI)  
module. Port A also has software configurable pullup devices if configured as an input port.  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Write:  
Reset:  
Unaffected by reset  
KBD4 KBD3  
Alternate Function:  
KBD7  
KBD6  
KBD5  
KBD2  
KBD1  
KBD0  
Figure 12-2. Port A Data Register (PTA)  
PTA7–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
KBD7–KBD0 — Keyboard Inputs  
The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard interrupt control register (KBICR)  
enable the port A pins as external interrupt pins. (see Chapter 10 Keyboard Interrupt (KBI) Module)  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a  
logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the  
output buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 12-3. Data Direction Register A (DDRA)  
DDRA7–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port  
A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HC908GP32 Data Sheet, Rev. 10  
118  
Freescale Semiconductor  
Port A  
Figure 12-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
PTAx  
V
DD  
PTAPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTA ($0000)  
Figure 12-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a  
logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-2 summarizes the operation of the port A pins.  
Table 12-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE Bit  
DDRA Bit  
PTA Bit  
I/O Pin Mode  
Read  
Write  
(4)  
X(1)  
X
PTA7–PTA0(3)  
1
0
DDRA7–DDRA0  
Pin  
Input, VDD  
Input, Hi-Z(2)  
Output  
PTA7–PTA0(3)  
PTA7–PTA0  
0
X
0
1
DDRA7–DDRA0  
DDRA7–DDRA0  
Pin  
X
PTA7–PTA0  
NOTES:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device  
12.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each  
of the eight port A pins. Each bit is individually configurable and requires that the data direction register,  
DDRA, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRA is configured for output mode.  
Address: $000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
119  
Input/Output (I/O) Ports  
PTAPUE7–PTAPUE0 — Port A Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port A pin configured to have internal pullup  
0 = Corresponding port A pin has internal pullup disconnected  
12.3 Port B  
Port B is an 8-bit special-function port that shares all eight of its pins with the analog-to-digital converter  
(ADC) module.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Write:  
Reset:  
Unaffected by reset  
AD4 AD3  
Alternate Function:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Figure 12-6. Port B Data Register (PTB)  
PTB7–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
AD7–AD0 — Analog-to-Digital Input Bits  
AD7–AD0 are pins used for the input channels to the analog-to-digital converter module. The channel  
select bits in the ADC status and control register define which port B pin will be used as an ADC input  
and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry.  
NOTE  
Care must be taken when reading port B while applying analog voltages to  
AD7–AD0 pins. If the appropriate ADC channel is not enabled, excessive  
current drain may occur if analog voltages are applied to the PTBx/ADx pin,  
while PTB is read as a digital input. Those ports not selected as analog  
input channels are considered digital I/O ports.  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a  
logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the  
output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-7. Data Direction Register B (DDRB)  
MC68HC908GP32 Data Sheet, Rev. 10  
120  
Freescale Semiconductor  
Port B  
DDRB7–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB7–DDRB0], configuring all port  
B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 12-8 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 12-8. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a  
logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-3 summarizes the operation of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
Write  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
PTB7–PTB0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
121  
Input/Output (I/O) Ports  
12.4 Port C  
Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has software configurable pullup  
devices if configured as an input port.  
12.4.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the seven port C pins.  
NOTE  
Bit 6 and bit 5 of PTC are not available in a 40-pin dual in-line package and  
42-pin shrink dual in-line package.  
Address:  
$0002  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 12-9. Port C Data Register (PTC)  
PTC6–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
12.4.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a  
logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the  
output buffer.  
Address:  
$0006  
Bit 7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 12-10. Data Direction Register C (DDRC)  
DDRC6–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC6–DDRC0, configuring all port  
C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
MC68HC908GP32 Data Sheet, Rev. 10  
122  
Freescale Semiconductor  
Port C  
Figure 12-11 shows the port C I/O logic.  
NOTE  
For those devices packaged in a 40-pin dual in-line package and 42-pin  
shrink dual in-line package, PTC5 and PTC6 are connected to ground  
internally. DDRC5 and DDRC6 should be set to a 0 to configure PTC5 and  
PTC6 as inputs.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
V
DD  
PTCPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTC ($0002)  
Figure 12-11. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a  
logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-4 summarizes the operation of the port C pins.  
Table 12-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE Bit  
DDRC Bit  
PTC Bit  
I/O Pin Mode  
Read  
Write  
(4)  
X(1)  
X
PTC6–PTC0(3)  
1
0
DDRC6–DDRC0  
Pin  
Input, VDD  
Input, Hi-Z(2)  
Output  
PTC6–PTC0(3)  
PTC6–PTC0  
0
X
0
1
DDRC6–DDRC0  
DDRC6–DDRC0  
Pin  
X
PTC6–PTC0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
123  
Input/Output (I/O) Ports  
12.4.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each  
of the seven port C pins. Each bit is individually configurable and requires that the data direction register,  
DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRC is configured for output mode.  
Address:  
$000E  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE6–PTCPUE0 — Port C Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port C pin configured to have internal pullup  
0 = Corresponding port C pin internal pullup disconnected  
12.5 Port D  
Port D is an 8-bit special-function port that shares four of its pins with the serial peripheral interface (SPI)  
module and four of its pins with two timer interface (TIM1 and TIM2) modules. Port D also has software  
configurable pullup devices if configured as an input port.  
12.5.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the eight port D pins.  
NOTE  
Bit 7 and bit 6 of PTD are not available in a 40-pin dual in-line package.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Write:  
Reset:  
Unaffected by reset  
T1CH0 SPSCK  
Alternate Function: T2CH1  
T2CH0  
T1CH1  
MOSI  
MISO  
SS  
Figure 12-13. Port D Data Register (PTD)  
PTD7–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
T2CH1 and T2CH0 — Timer 2 Channel I/O Bits  
The PTD7/T2CH1–PTD6/T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level  
select bits, ELSxB:ELSxA, determine whether the PTD7/T2CH1–PTD6/T2CH0 pins are timer channel  
I/O pins or general-purpose I/O pins. See Chapter 17 Timer Interface Module (TIM).  
MC68HC908GP32 Data Sheet, Rev. 10  
124  
Freescale Semiconductor  
Port D  
T1CH1 and T1CH0 — Timer 1 Channel I/O Bits  
The PTD7/T1CH1–PTD6/T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level  
select bits, ELSxB and ELSxA, determine whether the PTD7/T1CH1–PTD6/T1CH0 pins are timer  
channel I/O pins or general-purpose I/O pins. See Chapter 17 Timer Interface Module (TIM).  
SPSCK — SPI Serial Clock  
The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE bit is clear, the  
PTD3/SPSCK pin is available for general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear,  
the PTD2/MOSI pin is available for general-purpose I/O.  
MISO — Master In/Slave Out  
The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit,  
SPE, is clear, the SPI module is disabled, and the PTD1/MISO pin is available for general-purpose I/O.  
Data direction register D (DDRD) does not affect the data direction of port D pins that are being used  
by the SPI module. However, the DDRD bits always determine whether reading port D returns the  
states of the latches or the states of the pins. See Table 12-5.  
SS — Slave Select  
The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the  
SPI master bit, SPMSTR, is set, the PTD0/SS pin is available for general-purpose I/O. When the SPI  
is enabled, the DDRD0 bit in data direction register D (DDRD) has no effect on the PTD0/SS pin.  
12.5.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a  
logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the  
output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 12-14. Data Direction Register D (DDRD)  
DDRD7–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD7–DDRD0, configuring all port  
D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
125  
Input/Output (I/O) Ports  
Figure 12-15 shows the port D I/O logic.  
NOTE  
For those devices packaged in a 40-pin dual in-line package, PTD6 and  
PTD7 are not connected. DDRD6 and DDRD7 should be set to a 1 to  
configure PTD6 and PTD7 as outputs.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
V
DD  
PTDPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTD ($0003)  
Figure 12-15. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a  
logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-5 summarizes the operation of the port D pins.  
Table 12-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE Bit  
DDRD Bit  
PTD Bit  
I/O Pin Mode  
Read  
Write  
(4)  
X(1)  
X
PTD7–PTD0(3)  
1
0
DDRD7–DDRD0  
Pin  
Input, VDD  
Input, Hi-Z(2)  
Output  
PTD7–PTD0(3)  
PTD7–PTD0  
0
X
0
1
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
X
PTD7–PTD0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
MC68HC908GP32 Data Sheet, Rev. 10  
126  
Freescale Semiconductor  
Port E  
12.5.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each  
of the eight port D pins. Each bit is individually configurable and requires that the data direction register,  
DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port  
bit’s DDRD is configured for output mode.  
Address:  
$000F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 12-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE7–PTDPUE0 — Port D Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an input port bit.  
1 = Corresponding port D pin configured to have internal pullup  
0 = Corresponding port D pin has internal pullup disconnected  
12.6 Port E  
Port E is a 2-bit special-function port that shares two of its pins with the serial communications interface  
(SCI) module.  
12.6.1 Port E Data Register  
The port E data register contains a data latch for each of the two port E pins.  
Address:  
$0008  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
0
PTE1  
PTE0  
Write:  
Reset:  
Unaffected by reset  
Alternate Function:  
RxD  
TxD  
= Unimplemented  
Figure 12-17. Port E Data Register (PTE)  
PTE1 and PTE0 — Port E Data Bits  
PTE1 and PTE0 are read/write, software programmable bits. Data direction of each port E pin is under  
the control of the corresponding bit in data direction register E.  
NOTE  
Data direction register E (DDRE) does not affect the data direction of port  
E pins that are being used by the SCI module. However, the DDRE bits  
always determine whether reading port E returns the states of the latches  
or the states of the pins. See Table 12-6.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
127  
Input/Output (I/O) Ports  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is  
clear, the SCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See  
Chapter 13 Serial Communications Interface Module (SCI).  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is  
clear, the SCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See  
Chapter 13 Serial Communications Interface Module (SCI).  
12.6.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a  
logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the  
output buffer.  
Address:  
$000C  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 12-18. Data Direction Register E (DDRE)  
DDRE1 and DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE1 and DDRE0, configuring all  
port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE  
Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 12-19 shows the port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 12-19. Port E I/O Circuit  
MC68HC908GP32 Data Sheet, Rev. 10  
128  
Freescale Semiconductor  
Port E  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a  
logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 12-6 summarizes the operation of the port E pins.  
Table 12-6. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE Bit  
PTE Bit  
I/O Pin Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTE1–PTE0(3)  
PTE1–PTE0  
0
1
DDRE1–DDRE0  
DDRE1–DDRE0  
Pin  
PTE1–PTE0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
129  
Input/Output (I/O) Ports  
MC68HC908GP32 Data Sheet, Rev. 10  
130  
Freescale Semiconductor  
Chapter 13  
Serial Communications Interface Module (SCI)  
13.1 Introduction  
This section describes the serial communications interface (SCI) module, which allows high-speed  
asynchronous communications with peripheral devices and other MCUs.  
13.2 Features  
Features of the SCI module include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source  
13.3 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
RxD (receive data)  
TxD (transmit data)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
131  
Serial Communications Interface Module (SCI)  
SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI  
input or output reflects the name of the shared port pin. Table 13-1 shows the full names and the generic  
names of the SCI I/O pins.  
The generic pin names appear in the text of this section.  
Table 13-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
13.4 Functional Description  
Figure 13-1 shows the structure of the SCI module. The SCI allows full-duplex, asynchronous, NRZ serial  
communication among the MCU and remote devices, including other MCUs. The transmitter and receiver  
of the SCI operate independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes  
received data.  
The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the  
CONFIG2 register ($001E). Source selection values are shown in Figure 13-1.  
MC68HC908GP32 Data Sheet, Rev. 10  
132  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PTE1/RxD  
PTE0/TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
SCIBDSRC  
FROM  
CONFIG2  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
SL  
A
PRE-  
SCALER  
BAUD  
DIVIDER  
CGMXCLK  
BUS CLOCK  
÷ 4  
X
B
SL = 0 => SCICLK = CGMXCLK  
SL = 1 => SCICLK = BUS CLOCK  
DATA SELECTION  
CONTROL  
÷16  
Figure 13-1. SCI Module Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
133  
Serial Communications Interface Module (SCI)  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
TXINV  
SCI Control Register 1  
(SCC1)  
$0013  
0
0
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
0
0
0
R8  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
= Unimplemented  
R
= Reserved U = Unaffected  
Figure 13-2. SCI I/O Register Summary  
13.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 13-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 13-3. SCI Data Formats  
MC68HC908GP32 Data Sheet, Rev. 10  
134  
Freescale Semiconductor  
Functional Description  
13.4.2 Transmitter  
Figure 13-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Source  
selection values are shown in Figure 13-4.  
SCIBDSRC  
FROM  
CONFIG2  
SL  
X
CGMXCLK  
BUS CLOCK  
SL = 0 => SCICLK = CGMXCLK  
SL = 1 => SCICLK = BUS CLOCK  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
PTE0/TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
TRANSMITTER CPU  
INTERRUPT REQUEST  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SCTE  
SBK  
SCTIE  
SCTIE  
LOOPS  
ENSCI  
TE  
TC  
TC  
TCIE  
TCIE  
Figure 13-4. SCI Transmitter Block Diagram  
13.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3)  
is the ninth bit (bit 8).  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
135  
Serial Communications Interface Module (SCI)  
13.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the PTE0/TxD pin. The SCI  
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.  
To initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register  
2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing  
to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the  
transmit shift register. A logic 1 stop bit goes into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the PTE0/TxD pin goes to the idle  
condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the  
transmitter and receiver relinquish control of the port E pins.  
13.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break  
character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character  
length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads  
break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the  
end of a break character guarantees the recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a  
logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
13.4.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends  
on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.  
MC68HC908GP32 Data Sheet, Rev. 10  
136  
Freescale Semiconductor  
Functional Description  
If the TE bit is cleared during a transmission, the PTE0/TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
NOTE  
When queueing an idle character, return the TE bit to logic 1 before the stop  
bit of the current character shifts out to the TxD pin. Setting TE after the  
stop bit appears on TxD causes data previously written to the SCDR to be  
lost.  
Toggle the TE bit for a queued idle character when the SCTE bit becomes  
set and just before writing the next byte to the SCDR.  
13.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at  
logic 1. (See 13.8.1 SCI Control Register 1.)  
13.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and  
the SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
13.4.3 Receiver  
Figure 13-5 shows the structure of the SCI receiver.  
13.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
13.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the PTE1/RxD pin. The SCI  
data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that  
the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the  
SCRF bit generates a receiver CPU interrupt request.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
137  
Serial Communications Interface Module (SCI)  
INTERNAL BUS  
SCR2  
SCR1  
SCR0  
SCIBDSRC  
FROM  
CONFIG2  
SCP1  
SCI DATA REGISTER  
SCP0  
SL  
X
PRE- BAUD  
SCALER DIVIDER  
CGMXCLK  
BUS CLOCK  
÷ 16  
÷ 4  
11-BIT  
RECEIVE SHIFT REGISTER  
SL = 0 => SCICLK = CGMXCLK  
SL = 1 => SCICLK = BUS CLOCK  
DATA  
RECOVERY  
PTE1/RxD  
H
8
7
6
5
4
3
2
1
0
L
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
ERROR CPU  
INTERRUPT REQUEST  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-5. SCI Receiver Block Diagram  
MC68HC908GP32 Data Sheet, Rev. 10  
138  
Freescale Semiconductor  
Functional Description  
13.4.3.3 Data Sampling  
The receiver samples the PTE1/RxD pin at the RT clock rate. The RT clock is an internal signal with a  
frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at  
the following times (see Figure 13-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit  
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three  
logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
PTE1/RxD  
SAMPLES  
START BIT  
QUALIFICATION  
START BIT  
DATA  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 13-2 summarizes the results of the start bit verification samples.  
Table 13-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit  
verification is not successful, the RT clock is reset and a new search for a start bit begins.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
139  
Serial Communications Interface Module (SCI)  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 13-3 summarizes the results of the data bit samples.  
Table 13-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-4  
summarizes the results of the stop bit samples.  
Table 13-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
13.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character,  
it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
13.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
MC68HC908GP32 Data Sheet, Rev. 10  
140  
Freescale Semiconductor  
Functional Description  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 13-7 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
141  
Serial Communications Interface Module (SCI)  
Fast Data Tolerance  
Figure 13-8 shows how much a fast received character can be misaligned without causing a noise error  
or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
-------------------------  
154  
˙
× 100 = 3.90%  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
13.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
MC68HC908GP32 Data Sheet, Rev. 10  
142  
Freescale Semiconductor  
Functional Description  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the PTE1/RxD pin can bring  
the receiver out of the standby state:  
Address mark — An address mark is a logic 1 in the most significant bit position of a received  
character. When the WAKE bit is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can  
then compare the character containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and processes the characters that  
follow. If they are not the same, software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition — When the WAKE bit is clear, an idle character on the PTE1/RxD pin  
wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes  
the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line  
type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after  
the start bit or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
13.4.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in  
from the PTE1/RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to  
generate CPU interrupt requests.  
13.4.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate SCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects  
a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error  
CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data.  
The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt  
requests.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
143  
Serial Communications Interface Module (SCI)  
13.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
13.5.1 Wait Mode  
The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
Refer to Chapter 3 Low-Power Modes for information on exiting wait mode.  
13.5.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
Refer to Chapter 3 Low-Power Modes for information on exiting stop mode.  
13.6 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
13.7 I/O Signals  
Port E shares two of its pins with the SCI module. The two SCI I/O pins are:  
PTE0/TxD — Transmit data  
PTE1/RxD — Receive data  
13.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the SCI transmitter. The SCI shares the PTE0/TxD pin  
with port E. When the SCI is enabled, the PTE0/TxD pin is an output regardless of the state of the DDRE2  
bit in data direction register E (DDRE).  
MC68HC908GP32 Data Sheet, Rev. 10  
144  
Freescale Semiconductor  
I/O Registers  
13.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI shares the PTE1/RxD pin with  
port E. When the SCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit  
in data direction register E (DDRE).  
13.8 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
13.8.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
Figure 13-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the PTE1/RxD pin is disconnected from  
the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
145  
Serial Communications Interface Module (SCI)  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 13-5.)  
The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most  
significant bit position of a received character or an idle condition on the PTE1/RxD pin. Reset clears  
the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The  
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then  
a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning  
the count after the stop bit avoids false idle character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 13-5.) When enabled, the parity function  
inserts a parity bit in the most significant bit position. (See Figure 13-3.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd parity or even parity.  
(See Table 13-5.) Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
MC68HC908GP32 Data Sheet, Rev. 10  
146  
Freescale Semiconductor  
I/O Registers  
Table 13-5. Character Format Selection  
Control Bits  
Character Format  
M
0
1
0
0
1
1
PEN and PTY  
Start Bits  
Data Bits  
Parity  
None  
None  
Even  
Odd  
Stop Bits  
Character Length  
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
Even  
Odd  
13.8.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 13-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset  
clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears  
the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears  
the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
147  
Serial Communications Interface Module (SCI)  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the  
transmit shift register to the PTE0/TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the PTE0/TxD returns to the idle condition (logic 1). Clearing and then  
setting TE during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic  
1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s between them. Reset clears the  
SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the SCI to send a break character  
instead of a preamble.  
MC68HC908GP32 Data Sheet, Rev. 10  
148  
Freescale Semiconductor  
I/O Registers  
13.8.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted  
Enables these interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address:  
$0015  
Bit 7  
R8  
6
5
R
0
4
R
0
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
T8  
U
U
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 13-11. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect  
on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the parity error bit, PE.  
(See 13.8.4 SCI Status Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
149  
Serial Communications Interface Module (SCI)  
13.8.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 13-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set.  
TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may  
be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data  
register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input.  
IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
MC68HC908GP32 Data Sheet, Rev. 10  
150  
Freescale Semiconductor  
I/O Registers  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 13-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the PTE1/RxD pin. NF generates an  
SCI error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1  
and then reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
151  
Serial Communications Interface Module (SCI)  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error  
CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates  
an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1  
with PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
13.8.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
MC68HC908GP32 Data Sheet, Rev. 10  
152  
Freescale Semiconductor  
I/O Registers  
Address:  
$0017  
Bit 7  
6
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
= Unimplemented  
Figure 13-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on the PTE1/RxD pin. In  
SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is  
cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set  
and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear  
on the PTE1/RxD pin followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit  
search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start  
bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling  
RPF before disabling the SCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
13.8.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the SCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the SCDR accesses the read-only received data bits, R7:R0. Writing to the SCDR writes the  
data to be transmitted, T7:T0. Reset has no effect on the SCDR.  
NOTE  
Do not use read/modify/write instructions on the SCI data register.  
13.8.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
153  
Serial Communications Interface Module (SCI)  
Address:  
$0019  
Bit 7  
6
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCR2  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 13-16. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in Table 13-6. Reset clears SCP1  
and SCP0.  
Table 13-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 13-7. Reset clears  
SCR2–SCR0.  
Table 13-7. SCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
64 × PD × BD  
where:  
SCI clock source = f  
or CGMXCLK (selected by SCIBDSRC bit in CONFIG2 register)  
BUS  
PD = prescaler divisor  
BD = baud rate divisor  
Table 13-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when f  
selected as SCI clock source.  
is  
BUS  
MC68HC908GP32 Data Sheet, Rev. 10  
154  
Freescale Semiconductor  
I/O Registers  
Table 13-8. SCI Baud Rate Selection Examples  
Baud Rate  
(fBUS = 4.9152 MHz)  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
SCP1 and SCP0  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
155  
Serial Communications Interface Module (SCI)  
MC68HC908GP32 Data Sheet, Rev. 10  
156  
Freescale Semiconductor  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction  
This section describes the system integration module (SIM). Together with the CPU, the SIM controls all  
MCU activities. A block diagram of the SIM is shown in Figure 14-1. Table 14-1 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and COP timeout  
Interrupt arbitration  
Table 14-1 shows the internal signal names used in this section.  
Table 14-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
157  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
V
DD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
RESET PIN CONTROL  
CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 14-1. SIM Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read:  
SIM Reset Status Register  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
$FE01  
$FE02  
Write:  
(SRSR)  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SIM Upper Byte Address  
Register (SUBAR)  
Write:  
Reset:  
= Unimplemented  
R
= Reserved  
Figure 14-2. SIM I/O Register Summary  
MC68HC908GP32 Data Sheet, Rev. 10  
158  
Freescale Semiconductor  
SIM Bus Clock Control and Generation  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
$FE04  
$FE05  
$FE06  
R
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
0
R
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 14-2. SIM I/O Register Summary (Continued)  
14.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 14-3. This clock can  
come from either an external oscillator or from the on-chip PLL. (See Chapter 5 Clock Generator Module  
(CGM).)  
OSC2  
OSC1  
OSCILLATOR (OSC)  
CGMXCLK  
TO TIMTB15A, ADC  
SIM  
SIMOSCEN  
OSCSTOPENB  
FROM  
CONFIG  
SIM COUNTER  
IT12  
TO REST  
OF CHIP  
CGMRCLK  
CGMOUT  
SIMDIV2  
BUS CLOCK  
GENERATORS  
IT23  
÷ 2  
TO REST  
OF CHIP  
PHASE-LOCKED LOOP (PLL)  
PTC3  
MONITOR MODE  
USER MODE  
Figure 14-3. CGM Clock Signals  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
159  
System Integration Module (SIM)  
14.2.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four  
or the PLL output (CGMVCLK) divided by four.  
14.2.2 Clock Startup from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks  
start upon completion of the timeout.  
14.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows CGMXCLK to clock the SIM  
counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This  
timeout is selectable as 4096 or 32 CGMXCLK cycles. (See 14.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
14.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 14.4 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 14.7 SIM Registers.)  
14.3.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset.  
See Table 14-2 for details. Figure 14-4 shows the relative timing.  
Table 14-2. Reset Recovery Type  
Reset Recovery Type  
POR/LVI  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
All others  
MC68HC908GP32 Data Sheet, Rev. 10  
160  
Freescale Semiconductor  
Reset and System Initialization  
CGMOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 14-4. External Reset Timing  
14.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles.  
See Figure 14-5. An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI,  
or POR. (See Figure 14-6.)  
NOTE  
For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK  
cycles during which the SIM forces the RST pin low. The internal reset  
signal then follows the sequence from the falling edge of RST shown in  
Figure 14-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 14-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 14-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
14.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU and memories are released  
from reset to allow the reset vector sequence to occur.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
161  
System Integration Module (SIM)  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow  
stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are  
cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 14-7. POR Recovery  
14.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least  
every 8176 CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible  
out of reset to guarantee the maximum amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at V  
while the MCU is in monitor  
TST  
mode. The COP module can be disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of  
external noise. During a break state, V  
on the RST pin disables the COP module.  
TST  
14.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
MC68HC908GP32 Data Sheet, Rev. 10  
162  
Freescale Semiconductor  
SIM Counter  
If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as  
an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
14.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources.  
14.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the V voltage falls to the  
DD  
LVI  
voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin  
TRIPF  
(RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK  
cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively  
pulls down the RST pin for all internal reset sources.  
14.3.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to the SIM when monitor mode is  
entered in the condition where the reset vectors are blank ($FF). (see 18.3 Monitor Module (MON)) When  
MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal  
reset sources.  
14.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the  
clock for the COP module. The SIM counter is 13 bits long and is clocked by the falling edge of  
CGMXCLK.  
14.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to  
drive the bus clock state machine.  
14.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of  
4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned  
oscillators that do not require long startup times from stop mode. External crystal applications should use  
the full stop recovery time, that is, with SSREC cleared.  
14.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 14.6.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. (See 14.3.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
163  
System Integration Module (SIM)  
14.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts:  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
14.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 14-8 shows  
interrupt entry timing. Figure 14-9 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared). (See Figure 14-10.)  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 14-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
R/W  
CCR  
A
X
PC – 1 [15:8] PC – 1 [7:0] OPCODE OPERAND  
Figure 14-9. Interrupt Recovery Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
164  
Freescale Semiconductor  
Exception Control  
FROM RESET  
YES  
BREAK  
INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
IRQ  
INTERRUPT?  
NO  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 14-10. Interrupt Processing  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
165  
System Integration Module (SIM)  
14.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt  
is serviced first. Figure 14-11 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 14-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
14.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC908GP32 Data Sheet, Rev. 10  
166  
Freescale Semiconductor  
Exception Control  
14.5.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 14-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 14-3. Interrupt Sources  
Interrupt Status  
Register Flag  
Priority  
Highest  
Interrupt Source  
Reset  
SWI instruction  
IRQ pin  
IF1  
PLL  
IF2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receiver full  
SPI transmitter empty  
SCI receive error  
SCI receive  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
IF9  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase module  
Lowest  
Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-12. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 1–6  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
167  
System Integration Module (SIM)  
Bit 0 and Bit 1 — Always read 0  
Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-13. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 14-14. Interrupt Status Register 3 (INT3)  
Bits 7–2 — Always read 0  
IF16–IF15 — Interrupt Flags 16–15  
These flags indicate the presence of an interrupt request from the source shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
14.5.2 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
14.5.3 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting  
its break interrupt output. (See Chapter 17 Timer Interface Module (TIM).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module  
to see how each module is affected by the break state.  
MC68HC908GP32 Data Sheet, Rev. 10  
168  
Freescale Semiconductor  
Low-Power Modes  
14.5.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
14.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
14.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 14-15 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if  
the module is active or inactive in wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit,  
COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is  
enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 14-15. Wait Mode Entry Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
169  
System Integration Module (SIM)  
Figure 14-16 and Figure 14-17 show the timing for WAIT recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin, CPU interrupt, or break interrupt  
Figure 14-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 14-17. Wait Recovery from Internal Reset  
14.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping  
the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the mask option  
register (MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK  
cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup  
times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit unless the OSCSTOPEN bit is set in CONFIG2.  
MC68HC908GP32 Data Sheet, Rev. 10  
170  
Freescale Semiconductor  
SIM Registers  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 14-18 shows stop mode entry timing.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note : Previous data can be operand data or the STOP opcode, depending  
on the last instruction.  
Figure 14-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 14-19. Stop Mode Recovery from Interrupt or Break  
14.7 SIM Registers  
The SIM has three memory-mapped registers. Table 14-4 shows the mapping of these registers.  
Table 14-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
171  
System Integration Module (SIM)  
14.7.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait  
mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
= Reserved  
Note: Writing a logic 0 clears SBSW.  
Figure 14-20. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
14.7.2 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
MC68HC908GP32 Data Sheet, Rev. 10  
172  
Freescale Semiconductor  
SIM Registers  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ V  
TST  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
14.7.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to clear status bits while the MCU is  
in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 14-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
173  
System Integration Module (SIM)  
MC68HC908GP32 Data Sheet, Rev. 10  
174  
Freescale Semiconductor  
Chapter 15  
Serial Peripheral Interface Module (SPI)  
15.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex,  
synchronous, serial communications with peripheral devices.  
15.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port  
bit(s)  
15.3 Pin Name Conventions  
The text that follows describes the SPI. The SPI I/O pin names are SS (slave select), SPSCK (SPI serial  
clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI  
shares four I/O pins with four parallel I/O ports.  
The full names of the SPI I/O pins are shown in Table 15-1. The generic pin names appear in the text that  
follows.  
Table 15-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
Full SPI  
Pin Names:  
VSS  
SPI PTD1/MISO  
PTD2/MOSI  
PTD0/SS  
PTD3/SPSCK  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
175  
Serial Peripheral Interface Module (SPI)  
15.4 Functional Description  
Figure 15-1 summarizes the SPI I/O registers and Figure 15-2 shows the structure of the SPI module.  
Addr.  
Register Name  
Bit 7  
6
R
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
SPRIE  
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
$0010 SPI Control Register (SPCR) Write:  
Reset:  
0
0
1
0
1
Read:  
SPRF  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN  
SPR1  
SPR0  
SPI Status and Control  
Register (SPSCR)  
$0011  
$0012  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
= Reserved  
= Unimplemented  
R
Figure 15-1. SPI I/O Register Summary  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be  
interrupt-driven.  
If a port bit is configured for input, then an internal pullup device may be enabled for that port bit. (See  
12.4.3 Port C Input Pullup Enable Register.)  
The following paragraphs describe the operation of the SPI module.  
15.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave SPI  
before disabling the master SPI. (See 15.13.1 SPI Control Register.)  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. (See Figure 15-3.)  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 15.13.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s  
MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that  
SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation,  
SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control  
register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the  
SPTE bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
176  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUSCLK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
÷ 128  
PIN  
CONTROL  
LOGIC  
CLOCK  
SELECT  
SPSCK  
SS  
SPMSTR  
SPE  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
SPE  
SPWOM  
SPI  
CONTROL  
SPRF  
SPTE  
OVRF  
MODF  
Figure 15-2. SPI Module Block Diagram  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
DD  
Figure 15-3. Full-Duplex Master-Slave Connections  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
177  
Serial Peripheral Interface Module (SPI)  
15.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input  
for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is complete. (See 15.7.2 Mode Fault Error.)  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data  
register before another full byte enters the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of  
the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. (See 15.5 Transmission Formats.)  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
15.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select  
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere  
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
15.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits  
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects  
an active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing  
the SPI enable bit (SPE).  
MC68HC908GP32 Data Sheet, Rev. 10  
178  
Freescale Semiconductor  
Transmission Formats  
15.5.2 Transmission Format When CPHA = 0  
Figure 15-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a  
replacement for data sheet parametric information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may  
be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave.  
The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS  
line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select  
input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is  
not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured  
as general-purpose I/O not affecting the SPI. (See 15.7.2 Mode Fault Error.) When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first  
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte transmitted as shown in  
Figure 15-5.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-5. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift  
register after the current transmission.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
179  
Serial Peripheral Interface Module (SPI)  
15.5.3 Transmission Format When CPHA = 1  
Figure 15-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins  
are directly connected between the master and the slave. The MISO signal is the output from the slave,  
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The  
slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
15.7.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-6. Transmission Format (CPHA = 1)  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
15.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 15-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since  
the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower  
MC68HC908GP32 Data Sheet, Rev. 10  
180  
Freescale Semiconductor  
Queuing Transmission Data  
SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 15-7. This delay is  
no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 15-7. Transmission Start Delay (Master)  
15.6 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
181  
Serial Peripheral Interface Module (SPI)  
to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 15-8 shows  
the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL =  
1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
BYTE 1  
5
4
3
2
1
6
BYTE 2  
5
4
2
1
6
BYTE 3  
5
4
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 15-8. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes  
between transmissions as in a system with a single data buffer. Also, if no new data is written to the data  
buffer, the last value contained in the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no  
more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur  
until the transmission is completed. This implies that a back-to-back write to the transmit data register is  
not possible. The SPTE indicates when the next write can occur.  
15.7 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift  
register sets the OVRF bit. The new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS)  
is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
MC68HC908GP32 Data Sheet, Rev. 10  
182  
Freescale Semiconductor  
Error Conditions  
15.7.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous  
transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe  
occurs in the middle of SPSCK cycle 7. (See Figure 15-4 and Figure 15-6.) If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not transfer to the receive data  
register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive  
data register before the overflow occurred can still be read. Therefore, an overflow error always indicates  
the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 15-11.)  
It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 15-9 shows how it is possible to miss an overflow. The first part of Figure 15-9 shows how it is  
possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by  
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR  
are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
SPSCR  
2
5
5
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 15-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this  
OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the  
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 15-10 illustrates this process. Generally, to avoid this second  
SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
183  
Serial Peripheral Interface Module (SPI)  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 15-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
15.7.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and  
the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI  
pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state  
of the slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 15-11.)  
It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes to logic 0. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
MC68HC908GP32 Data Sheet, Rev. 10  
184  
Freescale Semiconductor  
Interrupts  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all SPI bits of the data direction register of the shared I/O port before  
enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes  
back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins  
when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK  
returns to its idle level following the shift of the last data bit. (See 15.5 Transmission Formats.)  
NOTE  
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit  
has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows  
the difference between a MODF occurring when the SPI is a master and  
when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and  
later unselected (SS is at logic 1) even if no SPSCK is sent to that slave.  
This happens because SS at logic 0 indicates the start of the transmission  
(MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a  
slave can be selected and then later unselected with no transmission  
occurring. Therefore, MODF does not occur since a transmission was  
never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the  
ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort  
the SPI transmission by clearing the SPE bit of the slave.  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This  
entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.  
15.8 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests.  
Table 15-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request  
(ERRIE = 1)  
MODF  
Mode fault  
SPI receiver/error interrupt request  
(ERRIE = 1)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
185  
Serial Peripheral Interface Module (SPI)  
Reading the SPI status and control register with SPRF set and then reading the receive data register  
clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data  
register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU  
interrupt requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt  
requests, regardless of the state of the SPE bit. (See Figure 15-11.)  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error  
CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests.  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 15-11. SPI Interrupt Request Generation  
The following sources in the SPI status and control register can generate CPU interrupt requests:  
SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift  
register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF generates an SPI receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE CPU interrupt request.  
MC68HC908GP32 Data Sheet, Rev. 10  
186  
Freescale Semiconductor  
Resetting the SPI  
15.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is  
low. Whenever SPE is low, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set back high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
15.10 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
15.10.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can  
bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt  
requests by setting the error interrupt enable bit (ERRIE). (See 15.8 Interrupts.)  
15.10.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
15.11 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See Chapter 14 System Integration Module (SIM).)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
187  
Serial Peripheral Interface Module (SPI)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit  
data register in break mode does not initiate a transmission nor is this data transferred into the shift  
register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect.  
15.12 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel I/O port. They are:  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
CGND — Clock ground (internally connected to V )  
SS  
15.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a  
multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
15.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
15.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
MC68HC908GP32 Data Sheet, Rev. 10  
188  
Freescale Semiconductor  
I/O Signals  
15.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
(See 15.5 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be  
toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 15-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of the SS from creating a MODF error. (See 15.13.2 SPI Status and Control  
Register.)  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 15.7.2 Mode Fault Error.) For the state of  
the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit  
is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and  
reading the port data register. (See Table 15-3.)  
Table 15-3. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
Function of SS Pin  
General-purpose I/O; SS ignored by SPI  
Input-only to SPI  
X(1)  
0
1
1
1
X
X
0
0
Slave  
1
Master without MODF  
Master with MODF  
General-purpose I/O; SS ignored by SPI  
Input-only to SPI  
1
1
Note 1. X = Don’t care  
15.12.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It  
is internally connected to V as shown in Table 15-1.  
SS  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
189  
Serial Peripheral Interface Module (SPI)  
15.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
15.13.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address: $0010  
Bit 7  
SPRIE  
0
6
R
0
5
SPMSTR  
1
4
3
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
CPOL  
CPHA  
0
1
R
= Reserved  
Figure 15-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set  
when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR  
bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See Figure  
15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have identical  
CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See Figure  
15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have identical  
CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1 between  
bytes. (See Figure 15-12.) Reset sets the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins  
become open-drain outputs.  
MC68HC908GP32 Data Sheet, Rev. 10  
190  
Freescale Semiconductor  
I/O Registers  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 15.9  
Resetting the SPI.) Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
15.13.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address: $0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 15-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register  
with SPRF set and then reading the SPI data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears  
the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
191  
Serial Peripheral Interface Module (SPI)  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next full byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data register. Reset clears the  
OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with  
the MODFEN bit set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with  
MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE CPU interrupt request or an SPTE DMA service request if the  
SPTIE bit in the SPI control register is set also.  
NOTE  
Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the  
MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-purpose I/O. When the SPI is  
enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of  
MODFEN. (See 15.12.4 SS (Slave Select).)  
If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. (See 15.7.2 Mode  
Fault Error.)  
MC68HC908GP32 Data Sheet, Rev. 10  
192  
Freescale Semiconductor  
I/O Registers  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 15-4. SPR1 and  
SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.  
Table 15-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
BUSCLK  
Baud rate = -----------------------  
2 × BD  
15.13.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the write-only transmit data  
register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data  
register reads data from the receive data register. The transmit data and receive data registers are  
separate registers that can contain different values. (See Figure 15-2.)  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 15-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register since the  
register read is not the same as the register written.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
193  
Serial Peripheral Interface Module (SPI)  
MC68HC908GP32 Data Sheet, Rev. 10  
194  
Freescale Semiconductor  
Chapter 16  
Timebase Module (TBM)  
16.1 Introduction  
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user  
selectable rates using a counter clocked by the external crystal clock. This TBM version uses 15 divider  
stages, eight of which are user selectable.  
16.2 Features  
Features of the TBM module include:  
Software programmable 1-Hz, 4-Hz, 16-Hz, 256-Hz, 512-Hz, 1024-Hz, 2048-Hz, and 4096-Hz  
periodic interrupt using external 32.768-kHz crystal  
Configurable for operation during stop mode to allow periodic wakeup from stop  
16.3 Functional Description  
NOTE  
This module is designed for a 32.768-kHz oscillator.  
This module can generate a periodic interrupt by dividing the crystal frequency, CGMXCLK. The counter  
is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 16-1, starts counting when  
the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set.  
If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the  
TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated  
at approximately half of the overflow period. Subsequent events occur at the exact period.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
195  
Timebase Module (TBM)  
TBON  
÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
÷ 16  
÷ 2  
÷ 32  
÷ 2  
÷ 64  
CGMXCLK  
÷ 8  
÷ 128  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2 ÷ 2  
÷ 2048  
÷ 2 ÷ 2  
÷ 8192  
÷ 32768  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
SEL  
Figure 16-1. Timebase Block Diagram  
16.4 Timebase Register Description  
The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the  
rate.  
Address:  
$001C  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
R
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
MC68HC908GP32 Data Sheet, Rev. 10  
196  
Freescale Semiconductor  
Interrupts  
TBR2:TBR0 — Timebase Rate Selection  
These read/write bits are used to select the rate of timebase interrupts as shown in Table 16-1.  
Table 16-1. Timebase Rate Selection for OSC1 = 32.768-kHz  
Timebase Interrupt Rate  
TBR2  
TBR1  
TBR0  
Divider  
Hz  
1
ms  
1000  
250  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32768  
8192  
2048  
128  
64  
4
16  
62.5  
~ 3.9  
~2  
256  
512  
1024  
2048  
4096  
32  
~1  
16  
~0.5  
~0.24  
8
NOTE  
Do not change TBR2:TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACK — Timebase ACKnowledge  
The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the  
timebase interrupt flag bit. Writing a logic 0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled  
This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the  
TBIE bit.  
1 = Timebase interrupt enabled  
0 = Timebase interrupt disabled  
TBON — Timebase Enabled  
This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption  
when its function is not necessary. The counter can be initialized by clearing and then setting this bit.  
Reset clears the TBON bit.  
1 = Timebase enabled  
0 = Timebase disabled and the counter initialized to 0s  
16.5 Interrupts  
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2:TBR0. When  
the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
197  
Timebase Module (TBM)  
16.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
16.6.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before enabling the WAIT instruction.  
16.6.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the oscillator has been  
enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active  
during STOP mode. In stop mode the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the power consumption by stopping  
the timebase before enabling the STOP instruction.  
MC68HC908GP32 Data Sheet, Rev. 10  
198  
Freescale Semiconductor  
Chapter 17  
Timer Interface Module (TIM)  
17.1 Introduction  
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a  
timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 17-1  
is a block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.  
17.2 Features  
Features of the TIM include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal generation  
Programmable TIM clock input with 7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
17.3 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are  
T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”  
is used to indicate TIM2. The two TIMs share four I/O pins with four port D I/O port pins. The full names  
of the TIM I/O pins are listed in Table 17-1. The generic pin names appear in the text that follows.  
Table 17-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTD4/T1CH0  
PTD6/T2CH0  
T[1,2]CH1  
PTD5/T1CH1  
PTD7/T2CH1  
TIM1  
TIM2  
Full TIM  
Pin Names:  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TCH0 may refer generically to  
T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
199  
Timer Interface Module (TIM)  
17.4 Functional Description  
Figure 17-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as input capture or output compare  
channels. If a channel is configured as input capture, then an internal pullup device may be enabled for  
that channel. (See 12.5.3 Port D Input Pullup Enable Register.)  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
CH0MAX  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
T[1,2]CH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 17-1. TIM Block Diagram  
Figure 17-2 summarizes the timer registers.  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC and T2SC.  
MC68HC908GP32 Data Sheet, Rev. 10  
200  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Register Write:  
(T1SC)  
Reset:  
TRST  
0
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High Write:  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
(T1CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 1 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1MODH)  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 1 Counter Modulo  
Bit 7  
6
1
5
1
4
1
3
2
1
Register Low Write:  
(T1MODL)  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Timer 1 Channel 0 Status and  
Control Register (T1SC0)  
Write:  
Reset:  
Read:  
0
Timer 1 Channel 0  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1CH0H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
6
5
0
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH0L)  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Timer 1 Channel 1 Status and  
Control Register (T1SC1)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
9
0
Timer 1 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T1CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH1L)  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
TRST  
0
0
Timer 2 Status and Control  
TOIE  
0
TSTOP  
1
PS2  
0
PS1  
0
PS0  
0
Register Write:  
(T2SC)  
Reset:  
0
0
0
= Unimplemented  
Figure 17-2. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
201  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Timer 2 Counter  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$002C  
Register High Write:  
(T2CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
(T2CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 2 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2MODH)  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 2 Counter Modulo  
Register Low  
(T2MODL)  
Bit 7  
6
1
5
1
4
1
3
2
1
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Timer 2 Channel 0 Status and  
Control Register (T2SC0)  
0
Timer 2 Channel 0  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2CH0H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
6
5
0
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH0L)  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Timer 2 Channel 1 Status and  
Control Register (T2SC1)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
9
0
Timer 2 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T2CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH1L)  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 17-2. TIM I/O Register Summary (Sheet 2 of 2)  
MC68HC908GP32 Data Sheet, Rev. 10  
202  
Freescale Semiconductor  
Functional Description  
17.4.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register  
select the TIM clock source.  
17.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM CPU interrupt requests.  
17.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
17.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 17.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
17.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
203  
Timer Interface Module (TIM)  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
17.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 17-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1. Program the TIM to set  
the pin if the polarity of the PWM pulse is 0.  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000. See 17.9.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 17-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
MC68HC908GP32 Data Sheet, Rev. 10  
204  
Freescale Semiconductor  
Functional Description  
17.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 17.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
17.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel  
1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
205  
Timer Interface Module (TIM)  
17.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 17-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB:ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. (See Table 17-3.)  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM  
channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM channel 0 status and  
control register (TSC0) controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. (See 17.9.4 TIM Channel Status and Control Registers.)  
MC68HC908GP32 Data Sheet, Rev. 10  
206  
Freescale Semiconductor  
Interrupts  
17.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
17.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
17.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
17.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode  
after an external interrupt.  
17.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See 14.7.3 SIM Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
207  
Timer Interface Module (TIM)  
17.8 I/O Signals  
Port D shares four of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0,  
and T2CH1 as described in 17.3 Pin Name Conventions.  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.  
17.9 I/O Registers  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0, TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
17.9.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 17-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is  
complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost  
due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
MC68HC908GP32 Data Sheet, Rev. 10  
208  
Freescale Semiconductor  
I/O Registers  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as logic 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as  
Table 17-2 shows. Reset clears the PS[2:0] bits.  
Table 17-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
17.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
209  
Timer Interface Module (TIM)  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-6. TIM Counter Registers Low (TCNTL)  
17.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 17-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 17-8. TIM Counter Modulo Register Low (TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908GP32 Data Sheet, Rev. 10  
210  
Freescale Semiconductor  
I/O Registers  
17.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 17-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
CH1F  
0
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 17-10. TIM Channel 1 Status and Control Register (TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x  
status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore,  
an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
211  
Timer Interface Module (TIM)  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1  
channel 0 and TIM2 channel 0 status and control registers.  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered  
output compare/PWM operation.  
See Table 17-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table  
17-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is  
available as a general-purpose I/O pin. Table 17-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 17-3. Mode, Edge, and Level Selection  
MSxB:MSx  
A
ELSxB:ELSx  
A
Mode  
Configuration  
X0  
X1  
00  
00  
00  
01  
01  
01  
01  
1X  
1X  
1X  
00  
00  
01  
10  
11  
00  
01  
10  
11  
01  
10  
11  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
Output preset  
Input capture  
Toggle output on compare  
Output compare or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
MC68HC908GP32 Data Sheet, Rev. 10  
212  
Freescale Semiconductor  
I/O Registers  
NOTE  
Before enabling a TIM channel register for input capture operation, make  
sure that the PTDx/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect.  
Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow  
0 = Channel x pin does not toggle on TIM counter overflow  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100%. As Figure 17-11 shows, the CHxMAX bit takes effect in the cycle  
after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is  
cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 17-11. CHxMAX Latency  
17.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
213  
Timer Interface Module (TIM)  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 17-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 17-13. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 17-14. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 17-15. TIM Channel 1 Register Low (TCH1L)  
MC68HC908GP32 Data Sheet, Rev. 10  
214  
Freescale Semiconductor  
Chapter 18  
Development Support  
18.1 Introduction  
This section describes the break module, the monitor module (MON), and the monitor mode entry  
methods.  
18.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features of the break module include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
18.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 18-1 shows the structure of the break module.  
Figure 18-2 provides a summary of the I/O registers.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
215  
Development Support  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 18-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
SBSW  
Note(1)  
0
SIM Break Status Register  
(SBSR) Write:  
R
R
R
R
R
R
R
$FE00  
See page 218.  
Reset:  
Read:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
Reserved Write:  
Reset:  
Read:  
SIM Break Flag Control  
Register (SBFCR) Write:  
BCFE  
0
R
R
R
R
R
R
R
See page 219.  
Reset:  
Read:  
Break Address High  
Register (BRKH) Write:  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
See page 218.  
Reset:  
Read:  
Break Address Low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 218.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 218.  
Reset:  
0
0
0
0
0
0
0
1. Writing a 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 18-2. Break I/O Register Summary  
MC68HC908GP32 Data Sheet, Rev. 10  
216  
Freescale Semiconductor  
Break Module (BRK)  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is  
executed before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode. When software does not  
change the break address and clears the BRKA bit in the first break interrupt routine, the next break  
interrupt will not be generated after exiting the interrupt routine even when the internal address bus  
matches the value written in the break address registers.  
18.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (SBFCR) enables software to clear status  
bits during the break state. See Figure 18-7. SIM Break Flag Control Register (SBFCR) and the Break  
Interrupts subsection for each module.  
18.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
18.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
is present on the RST pin.  
TST  
18.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (SBSR)  
Break flag control register (SBFCR)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
217  
Development Support  
18.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 18-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
18.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 18-4. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 18-5. Break Address Register Low (BRKL)  
MC68HC908GP32 Data Sheet, Rev. 10  
218  
Freescale Semiconductor  
Break Module (BRK)  
18.2.2.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait  
mode. This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 18-6. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
18.2.2.4 SIM Break Flag Control Register  
The SIM break control register (SBFCR) contains a bit that enables software to clear status bits while the  
MCU is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 18-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
18.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes. If enabled,  
the break module will remain enabled in wait and stop modes. However, since the internal address bus  
does not increment in these modes, a break interrupt will never be triggered.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
219  
Development Support  
18.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, V  
, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
TST  
requirements for in-circuit programming.  
Features of the monitor module include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate  
Execution of code in random-access memory (RAM) or Flash  
(1)  
Flash memory security feature  
Flash memory programming interface  
External 4.92 MHz or 9.83 MHz clock used to generate internal frequency of 2.4576 MHz  
Enhanced PLL option to allow use of 32.768 kHz crystal to generate internal bus frequency of  
2.4576 MHz  
Monitor mode entry without high voltage, V  
$FF)  
, if reset vector is blank ($FFFE and $FFFF contain  
TST  
Normal monitor mode entry if high voltage, V  
, is applied to IRQ  
TST  
18.3.1 Functional Description  
Figure 18-8 shows a simplified monitor mode entry flowchart.  
The monitor ROM receives and executes commands from a host computer. Figure 18-9, Figure 18-10,  
and Figure 18-11 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the Flash difficult for  
unauthorized users.  
MC68HC908GP32 Data Sheet, Rev. 10  
220  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = V  
?
TST  
CONDITIONS  
PTA0 = 1, PTA7 = 0  
RESET  
BLANK?  
PTA0 = 1, PTA7 = 0, ,  
PTC0 = 1, PTC1 = 0, AND  
PTC3 = 1?  
NO  
NO  
FROM Table 18-1  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
FACTORY  
USE ONLY  
SEND 8 BYTES  
SECURITY  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 18-8. Simplified Monitor Mode Entry Flowchart  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
221  
Development Support  
V
DD  
V
DDA  
RST  
V
DD  
0.1 µF  
0.1 µF  
N.C.  
OSC2  
OSC1  
V
DD  
9.8304 MHz CLOCK  
10 kΩ  
10 kΩ  
MAX232  
V
DD  
PTC0  
PTC3  
4
16  
15  
C1+  
+
+
1 µF  
0.1 µF  
5
4
C1–  
C2+  
10 kΩ  
10 kΩ  
1 kΩ  
V
TST  
PTC1  
PTA7  
2
6
V+  
V–  
IRQ  
V
DD  
+
1 µF  
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
V
74HC125  
6
DB9  
SS  
5
10  
9
2
7
8
V
SSA  
PTA0  
74HC125  
3
2
4
3
5
1
Figure 18-9. Standard Monitor Mode  
MC68HC908GP32 Data Sheet, Rev. 10  
222  
Freescale Semiconductor  
Monitor Module (MON)  
V
DD  
V
DDA  
RST  
V
DD  
0.1 µF  
0.1 µF  
MAX232  
V
DD  
N.C.  
9.8304 MHz CLOCK  
OSC2  
OSC1  
4
16  
15  
C1+  
+
+
1 µF  
0.1 µF  
5
4
PTC0  
PTC3  
PTC1  
N.C.  
N.C.  
N.C.  
C1–  
C2+  
V
TST  
2
6
N.C.  
IRQ  
V+  
V–  
V
DD  
+
1 µF  
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
6
10 kΩ  
DB9  
PTA7  
5
10  
9
2
7
8
PTA0  
74HC125  
3
4
3
5
2
V
SS  
V
SSA  
1
Figure 18-10. Forced Monitor Mode (High)  
V
DD  
V
DDA  
RST  
V
DD  
0.1 µF  
0.1 µF  
15 pF  
330 k  
OSC2  
MAX232  
V
DD  
10 MΩ  
4
16  
C1+  
15 pF  
PTC0  
PTC3  
PTC1  
PTA7  
N.C.  
N.C.  
+
OSC1  
1 µF  
0.1 µF  
32.768 kHz  
5
4
15  
C1–  
C2+  
IRQ  
V
TST  
10 kΩ  
2
V+  
V–  
+
V
N.C.  
DD  
+
1 µF  
6
5
10 kΩ  
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
V
SS  
74HC125  
3
2
4
V
3
5
SSA  
1
Figure 18-11. Forced Monitor Mode (Low)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
223  
Development Support  
Table 18-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
must be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
1. If $FFFE and $FFFF does not contain $FF (programmed state):  
The external clock is 4.9152 MHz with PTC3 low or 9.8304 MHz with PTC3 high  
IRQ = V  
TST  
2. If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = V (this can be implemented through the internal IRQ pullup)  
DD  
3. If $FFFE and $FFFF contain $FF (erased state):  
IRQ = V (PLL is selected using a 32.768 kHz crystal)  
SS  
Enter monitor mode with the pin configurations shown in Table 18-1 with a power-on-reset. The rising  
edge of reset latches monitor mode. Once monitor mode is latched, the levels on the port pins except  
PTA0 can change.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 18.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
MC68HC908GP32 Data Sheet, Rev. 10  
224  
Freescale Semiconductor  
Monitor Module (MON)  
Table 18-1. Monitor Mode Signal Requirements and Options  
Serial  
Communication  
Mode  
Selection  
Communication  
Speed  
Divider  
Reset  
Vector  
Mode  
IRQ RST  
PLL  
COP  
External  
Bus  
Baud  
PTA0  
PTA7 PTC0 PTC1 PTC3  
Clock Frequency Rate  
VDD  
or  
VTST  
4.9152  
VTST  
X
X
1
0
0
1
1
0
0
0
1
OFF Disabled  
OFF Disabled  
2.457 MHz 9600  
MHz  
Normal  
Monitor  
VDD  
or  
VTST  
9.8304  
VTST  
1
2.457 MHz 9600  
MHz  
$FFFF  
(blank)  
9.8304  
VDD VDD  
1
1
0
0
X
X
X
X
X
X
OFF Disabled  
ON Disabled  
2.457 MHz 9600  
MHz  
Forced  
Monitor  
$FFFF  
(blank)  
32.768  
VSS VDD  
2.457 MHz 9600  
kHz  
VDD VDD  
or  
VSS VTST  
Not  
or $FFFF  
User  
X
X
X
X
X
X
Enabled  
X
X
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
SSEL MOD0 MOD1 DIV4  
[10] [12] [14] [16]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256.  
3. External clock is a 4.9152 MHz or 9.8304 MHz canned oscillator on OSC1 or a 32.768 kHz crystal on OSC1 and OSC2.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
1
3
2
4
GND  
RST  
NC  
5
6
IRQ  
NC  
7
8
PTA0  
PTA7  
PTC0  
PTC1  
PTC3  
NC  
9
10  
12  
14  
16  
NC  
11  
13  
15  
OSC1  
VDD  
18.3.1.1 Normal Monitor Mode  
When V is applied to IRQ and PTC3 is low upon monitor mode entry, the bus frequency is a  
TST  
divide-by-two of the input clock. If PTC3 is high with V  
applied to IRQ upon monitor mode entry, the  
TST  
bus frequency will be a divide-by-four of the input clock. Holding the PTC3 pin low when entering monitor  
mode causes a bypass of a divide-by-two stage at the oscillator only if V  
is applied to IRQ. In this  
TST  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
225  
Development Support  
event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly  
generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus  
frequency.  
If monitor mode was entered with V  
either IRQ or RST.  
on IRQ, then the COP is disabled as long as V  
is applied to  
TST  
TST  
This condition states that as long as V  
is maintained on the IRQ pin after entering monitor mode, or if  
TST  
V
is applied to RST after the initial reset to get into monitor mode (when V  
was applied to IRQ),  
TST  
TST  
then the COP will be disabled. In the latter situation, after V  
is applied to the RST pin, V  
can be  
TST  
TST  
removed from the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor mode.  
18.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ (where applied voltage is either V or V ), then  
DD  
SS  
all port C pin requirements and conditions, including the PTC3 frequency divisor selection, are not in  
effect. This is to reduce circuit requirements when performing in-circuit programming.  
If IRQ = V on monitor mode entry, an external oscillator of 9.8304 MHz is required for a 9600 baud rate.  
DD  
If IRQ = V on monitor mode entry, the monitor firmware initializes a 9600 baud rate using a 32.768 kHz  
SS  
crystal.  
When forced monitor mode is entered, the COP is always disabled regardless of the state of IRQ or RST.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial POR reset. Once the part has been  
programmed, the traditional method of applying a voltage, V  
must be used to enter monitor mode.  
, to IRQ  
TST  
18.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST low will not exit  
monitor mode in this situation.  
Table 18-2 summarizes the differences between user mode and monitor mode.  
Table 18-2. Mode Differences  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
MC68HC908GP32 Data Sheet, Rev. 10  
226  
Freescale Semiconductor  
Monitor Module (MON)  
18.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 18-12. Monitor Data Format  
18.3.1.5 Break Signal  
A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives  
the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 18-13. Break Transaction  
18.3.1.6 Baud Rate  
The communication baud rate is controlled by the external clock and the state of the PTC3 pin (when IRQ  
is set to V ) upon entry into monitor mode. If monitor mode was entered with a blank reset vector and  
TST  
V
or V on IRQ, then the baud rate is independent of PTC3.  
DD  
SS  
Table 18-1 lists external frequencies required to achieve a standard baud rate of 9600 bps. The effective  
baud rate is the bus frequency divided by 256.  
18.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
227  
Development Support  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 18-14. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 18-15. Write Transaction  
A brief description of each monitor mode command is given in Table 18-3 through Table 18-8.  
Table 18-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908GP32 Data Sheet, Rev. 10  
228  
Freescale Semiconductor  
Monitor Module (MON)  
Table 18-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
HIGH  
HIGH  
LOW  
ECHO  
Table 18-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 18-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
229  
Development Support  
Table 18-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 18-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
RUN  
ECHO  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 18-16. Stack Pointer at Monitor Mode Entry  
MC68HC908GP32 Data Sheet, Rev. 10  
230  
Freescale Semiconductor  
Monitor Module (MON)  
18.3.2 Security  
A security feature discourages unauthorized reading of Flash locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all Flash locations and execute code from Flash. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 18-17.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a Flash location returns an invalid value and trying to execute code from Flash causes an illegal  
address reset. After receiving the eight security bytes from the host, the MCU transmits a break character,  
signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
V
DD  
4096 + 32 CGMXCLK CYCLES  
RST  
FROM HOST  
PA0  
5
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
4 = Wait 1 bit time before sending next byte  
5 = Wait until the monitor ROM runs  
Figure 18-17. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is  
set. If it is, then the correct security code has been entered and Flash can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the Flash module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
231  
Development Support  
MC68HC908GP32 Data Sheet, Rev. 10  
232  
Freescale Semiconductor  
Chapter 19  
Electrical Specifications  
19.1 Introduction  
This section contains electrical and timing specifications.  
19.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 19.5 5.0-V DC Electrical Characteristics for guaranteed operating  
conditions.  
Characteristic(1)  
Symbol  
Value  
Unit  
V
V
Supply voltage  
Input voltage  
–0.3 to + 6.0  
DD  
V
V
– 0.3 to V + 0.3  
DD  
V
In  
SS  
Maximum current per pin excluding V , V , and PTC0–PTC4  
DD SS  
I
15  
25  
mA  
mA  
mA  
mA  
°C  
IPTC0–PTC4  
Maximum current for pins PTC0–PTC4  
I
Maximum current into V  
DD  
150  
mvdd  
I
Maximum current out of V  
SS  
150  
mvss  
T
Storage temperature  
Note:  
–55 to +150  
stg  
1. Voltages referenced to VSS  
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the range  
In  
Out  
V
(V or V ) V . Reliability of operation is enhanced if unused  
SS  
In Out DD  
inputs are connected to an appropriate logic voltage level (for example,  
either V or V ).  
SS  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
233  
Electrical Specifications  
19.3 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
TA  
Operating temperature range  
–40 to +85  
°C  
3.0 10%  
5.0 10%  
VDD  
Operating voltage range  
V
19.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
40-pin PDIP  
42-pin SDIP  
60  
60  
95  
θJA  
°C/W  
44-pin QFP  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
PD × (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
Notes:  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and  
TJ can be determined for any value of TA.  
MC68HC908GP32 Data Sheet, Rev. 10  
234  
Freescale Semiconductor  
5.0-V DC Electrical Characteristics  
19.5 5.0-V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(I  
(I  
(I  
= –2.0 mA) all I/O pins  
V
Load  
Load  
Load  
OH  
VDD – 0.8  
VDD – 1.5  
VDD – 0.8  
50  
V
V
V
= –10.0 mA) all I/O pins  
= –10.0 mA) pins PTC0–PTC4 only  
V
OH  
V
OH  
I
I
I
mA  
Maximum combined I  
for port C, port E,  
OH1  
OH  
port PTD0–PTD3  
50  
mA  
mA  
Maximum combined I  
for port PTD4–PTD7,  
OH2  
OH  
port A, port B  
100  
Maximum total I for all port pins  
OHT  
OH  
Output low voltage  
(I  
(I  
(I  
= 1.6 mA) all I/O pins  
V
Load  
Load  
Load  
OL  
0.4  
1.5  
1.0  
50  
V
V
V
= 10 mA) all I/O pins  
V
OL  
V
= 15 mA) pins PTC0–PTC4 only  
OL  
I
mA  
Maximum combined I for port C, port E,  
OL1  
OL  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
50  
mA  
mA  
I
OL2  
OL  
port A, port B  
100  
I
Maximum total I for all port pins  
OLT  
OL  
Input high voltage  
All ports, IRQ, RST, OSC1  
V
0.7 × VDD  
VDD  
V
V
IH  
Input low voltage  
All ports, IRQ, RST, OSC1  
V
V
0.2 × VDD  
IL  
SS  
VDD supply current  
Run(3)  
Wait(4)  
15  
4
20  
8
mA  
mA  
Stop(5)  
25 °C  
25 °C with TBM enabled(6)  
IDD  
3
20  
300  
50  
500  
µA  
µA  
µA  
µA  
µA  
25 °C with LVI and TBM enabled(6)  
–40 °C to 85 °C with TBM enabled(6)  
–40 °C to 85 °C with LVI and TBM enabled(6)  
DC injection current(7) (8) (9) (10)  
Single pin limit  
V
in > VDD  
0
0
2
–0.2  
Vin < VSS  
IIC  
mA  
Total MCU limit, includes sum of all stressed pins  
0
0
25  
–5  
Vin > VDD  
Vin < VSS  
I/O ports Hi-Z leakage current(11)  
Input current  
I
10  
1
µA  
µA  
IL  
I
In  
Contined on next page  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
235  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
RPU  
20  
45  
65  
kΩ  
C
Out  
Capacitance  
Ports (as input or output)  
12  
8
pF  
C
In  
VTST  
VDD + 2.5  
3.90  
Monitor mode entry voltage  
9
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
4.25  
4.35  
4.50  
4.60  
4.20  
VHYS  
100  
mV  
(V  
+ V  
= V  
)
TRIPF  
HYS  
TRIPR  
POR rearm voltage(12)  
POR reset voltage(13)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(14)  
Notes:  
0.035  
V/ms  
1. VDD = 5.0 Vdc 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V from rail. No  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2 V from rail. No dc loads.  
Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
L
wait IDD. Measured with PLL and LVI enabled.  
5. Stop IDD is measured with OSC1 = V  
.
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. This parameter is characterized and not tested on each device.  
8. All functional non-supply pins are internally clamped to VSS and VDD  
.
9. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
10. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock  
is present, or if clock rate is very low (which would reduce overall power consumption).  
11. Pullups and pulldowns are disabled. Port B leakage is specified in 19.12 ADC Characteristics.  
12. Maximum is highest voltage that POR is guaranteed.  
13. Maximum is highest voltage that POR is possible.  
14. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
MC68HC908GP32 Data Sheet, Rev. 10  
236  
Freescale Semiconductor  
3.0-V DC Electrical Characteristics  
19.6 3.0-V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(I  
(I  
(I  
= –0.6 mA) all I/O pins  
V
Load  
Load  
Load  
OH  
VDD – 0.3  
VDD – 1.0  
VDD – 0.5  
30  
V
V
V
= –4.0 mA) all I/O pins  
= –4.0 mA) pins PTC0–PTC4 only  
V
OH  
V
OH  
I
I
I
mA  
Maximum combined I  
for port C, port E,  
OH1  
OH  
port PTD0–PTD3  
30  
60  
mA  
mA  
Maximum combined I  
for port PTD4–PTD7,  
OH2  
OH  
port A, port B  
Maximum total I for all port pins  
OHT  
OH  
Output low voltage  
(I  
(I  
(I  
= 0.5 mA) all I/O pins  
V
Load  
Load  
Load  
OL  
0.3  
1.0  
0.8  
30  
V
V
V
= 6.0 mA) all I/O pins  
V
OL  
V
= 10.0 mA) pins PTC0–PTC4 only  
OL  
I
mA  
Maximum combined I for port C, port E,  
OL1  
OL  
port PTD0–PTD3  
Maximum combined I for port PTD4–PTD7,  
30  
60  
mA  
mA  
I
OL2  
OL  
port A, port B  
I
Maximum total I for all port pins  
OLT  
OL  
Input high voltage  
All ports, IRQ, RST, OSC1  
V
0.7 × VDD  
VDD  
V
V
IH  
Input low voltage  
All ports, IRQ, RST, OSC1  
V
V
0.3 × VDD  
IL  
SS  
VDD supply current  
Run(3)  
Wait(4)  
4.5  
1.65  
8
4
mA  
mA  
Stop(5)  
25 °C  
25 °C with TBM enabled(6)  
IDD  
2
12  
200  
30  
300  
µA  
µA  
µA  
µA  
µA  
25 °C with LVI and TBM enabled(6)  
–40 °C to 85 °C with TBM enabled(6)  
–40 °C to 85 °C with LVI and TBM enabled(6)  
DC injection current(7) (8) (9) (10)  
Single pin limit  
V
in > VDD  
0
0
2
–0.2  
Vin < VSS  
IIC  
mA  
Total MCU limit, includes sum of all stressed pins  
0
0
25  
–5  
Vin > VDD  
Vin < VSS  
I/O ports Hi-Z leakage current(11)  
Input current  
I
10  
1
µA  
µA  
IL  
I
In  
Contined on next page  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
237  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
RPU  
20  
45  
65  
kΩ  
C
Out  
Capacitance  
Ports (as input or output)  
12  
8
pF  
C
In  
VTST  
VDD + 2.5  
2.45  
Monitor mode entry voltage  
9
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
2.60  
2.66  
2.70  
2.80  
2.55  
VHYS  
60  
mV  
(V  
+ V  
= V  
)
TRIPF  
HYS  
TRIPR  
POR rearm voltage(12)  
POR reset voltage(13)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(14)  
Notes:  
0.02  
V/ms  
1. VDD = 3.0 Vdc 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V from rail. No  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2 V from rail. No dc loads.  
Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
L
wait IDD. Measured with PLL and LVI enabled.  
5. Stop IDD is measured with OSC1 = V  
.
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. This parameter is characterized and not tested on each device.  
8. All functional non-supply pins are internally clamped to VSS and VDD  
.
9. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
10. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock  
is present, or if clock rate is very low (which would reduce overall power consumption).  
11. Pullups and pulldowns are disabled.  
12. Maximum is highest voltage that POR is guaranteed.  
13. Maximum is highest voltage that POR is possible.  
14. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
MC68HC908GP32 Data Sheet, Rev. 10  
238  
Freescale Semiconductor  
5.0-V Control Timing  
19.7 5.0-V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
External clock option(2)  
fOSC  
32  
dc  
100  
32.8  
kHz  
MHz  
f
OP (fBUS  
)
Internal operating frequency  
8.2  
MHz  
ns  
Internal clock period (1/fOP  
)
tCYC  
122  
100  
t
RST input pulse width low  
ns  
IRL  
IRQ interrupt pulse width low  
(edge-triggered)  
t
100  
ns  
ILIH  
(3)  
tILIL  
tCYC  
IRQ interrupt pulse period  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%  
3. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service  
routine plus tCYC  
.
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
239  
Electrical Specifications  
19.8 3.0-V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
External clock option(2)  
fOSC  
32  
dc  
100  
16.4  
kHz  
MHz  
f
OP (fBUS  
)
Internal operating frequency  
4.1  
MHz  
ns  
Internal clock period (1/fOP  
)
tCYC  
244  
200  
t
RST input pulse width low  
ns  
IRL  
IRQ interrupt pulse width low  
(edge-triggered)  
t
200  
ns  
ILIH  
(3)  
tILIL  
tCYC  
IRQ interrupt pulse period  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%  
3. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service  
routine plus tCYC  
.
t
RL  
RST  
t
ILIL  
t
ILIH  
IRQ  
Figure 19-1. RST and IRQ Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
240  
Freescale Semiconductor  
Output High-Voltage Characteristics  
19.9 Output High-Voltage Characteristics  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
0
25  
85  
3
3.2  
3.4  
3.6  
(V)  
3.8  
4.0  
4.2  
V
OH  
V
V
> V –0.8 V @ I = –2.0 mA  
DD OH  
OH  
OH  
> V –1.5 V @ I = –10.0 mA  
DD  
OH  
Figure 19-2. Typical High-Side Driver Characteristics – Port PTA7–PTA0 (V = 4.5 Vdc)  
DD  
0
–5  
–40  
0
–10  
25  
85  
–15  
–20  
–25  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
V
> V –0.3 V @ I = –0.6 mA  
DD OH  
OH  
OH  
> V –1.0 V @ I = –4.0 mA  
DD  
OH  
Figure 19-3. Typical High-Side Driver Characteristics – Port PTA7–PTA0 (V = 2.7 Vdc)  
DD  
0
–5  
–10  
–40  
0
25  
85  
–15  
–20  
–25  
–30  
–35  
–40  
3
3.2  
3.4  
3.6  
(V)  
3.8  
4.0  
4.2  
V
OH  
V
> V –0.8 V @ I = –10.0 mA  
DD OH  
OH  
Figure 19-4. Typical High-Side Driver Characteristics – Port PTC4–PTC0 (V = 4.5 Vdc)  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
241  
Electrical Specifications  
0
–5  
–40  
0
25  
85  
–10  
–15  
–20  
–25  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
> V –0.5 V @ I = –4.0 mA  
OH  
DD  
OH  
Figure 19-5. Typical High-Side Driver Characteristics – Port PTC4–PTC0 (V = 2.7 Vdc)  
DD  
0
–10  
–20  
–40  
0
25  
85  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
3
3.2  
3.4  
3.6  
3.8  
(V)  
4.0  
4.2  
4.4  
4.6  
V
OH  
V
V
> V –0.8 V @ I = –2.0 mA  
OH  
OH  
DD  
OH  
> V –1.5 V @ I = –10.0 mA  
DD  
OH  
Figure 19-6. Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 5.5 Vdc)  
DD  
0
–5  
–40  
0
25  
85  
–10  
–15  
–20  
–25  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
V
> V –0.3 V @ I = –0.6 mA  
OH  
OH  
DD  
OH  
> V –1.0 V @ I = –4.0 mA  
DD  
OH  
Figure 19-7. Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc)  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
242  
Freescale Semiconductor  
Output Low-Voltage Characteristics  
19.10 Output Low-Voltage Characteristics  
35  
30  
25  
20  
15  
10  
5
–40  
0
25  
85  
0
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
V
OL  
V
V
< 0.4 V @ I = 1.6 mA  
OL  
OL  
OL  
< 1.5 V @ I = 10.0 mA  
OL  
Figure 19-8. Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (V = 5.5 Vdc)  
DD  
14  
12  
–40  
0
25  
10  
8
85  
6
4
2
0
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
V
< 0.3 V @ I = 0.5 mA  
OL  
OL  
OL  
< 1.0 V @ I = 6.0 mA  
OL  
Figure 19-9. Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (V = 2.7 Vdc)  
DD  
60  
50  
40  
30  
20  
10  
0
–40  
0
25  
85  
1.6  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
< 1.0 V @ I = 15 mA  
OL  
OL  
Figure 19-10. Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (V = 4.5 Vdc)  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
243  
Electrical Specifications  
30  
25  
20  
15  
10  
5
–40  
0
25  
85  
0
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
< 0.8 V @ I = 10 mA  
OL  
OL  
Figure 19-11. Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (V = 2.7 Vdc)  
DD  
35  
30  
–40  
0
25  
85  
25  
20  
15  
10  
5
0
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
V
OL  
V
V
< 0.4 V @ I = 1.6 mA  
OL  
OL  
OL  
< 1.5 V @ I = 10.0 mA  
OL  
Figure 19-12. Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 5.5 Vdc)  
DD  
14  
12  
10  
8
–40  
0
25  
85  
6
4
2
0
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
V
OL  
V
V
< 0.3 V @ I = 0.5 mA  
OL  
OL  
OL  
< 1.0 V @ I = 6.0 mA  
OL  
Figure 19-13. Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5,  
PTD7–PTD0, and PTE1–PTE0 (V = 2.7 Vdc)  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
244  
Freescale Semiconductor  
Typical Supply Currents  
19.11 Typical Supply Currents  
16  
14  
12  
10  
8
6
4
5.5 V  
3.6 V  
2
0
0
1
2
3
4
f
5
(MHz)  
6
7
8
9
BUS  
Figure 19-14. Typical Operating I , with All Modules Turned On (–40 °C to 85 °C)  
DD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.5 V  
3.6 V  
0
1
2
3
4
5
6
7
8
f
(MHz)  
BUS  
Figure 19-15. Typical Wait Mode I , with all Modules Disabled (–40 °C to 85 °C)  
DD  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
5.5 V  
3.6 V  
1.05  
1
0
1
2
3
4
f
5
(MHz)  
6
7
8
9
BUS  
Figure 19-16. Typical Stop Mode I , with all Modules Disabled (–40 °C to 85 °C)  
DD  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
245  
Electrical Specifications  
19.12 ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Comments  
V
DDAD should be tied to  
2.7  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
Supply voltage  
V
the same potential as VDD  
via separate traces.  
VADIN  
BAD  
VDDAD  
8
VADIN VREFH  
Input voltages  
Resolution  
0
8
V
Bits  
Absolute accuracy  
(VREFL = 0 V,  
AAD  
1
LSB  
Includes quantization  
VREFH = VDDAD = 5 V 10%)  
tAIC = 1/fADIC, tested only  
at 1 MHz  
fADIC  
RAD  
ADC internal clock  
0.5  
1.048  
MHz  
V
V
REFH = VDDAD  
VREFL  
VREFH  
Conversion range  
VREFL = VSSAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
tAIC cycles  
tAIC cycles  
tAIC cycles  
Power-up time  
16  
16  
5
Conversion time  
17  
Sample time(2)  
Zero input reading(3)  
VIN = VREFL  
VIN = VREFH  
Not tested  
00  
FE  
01  
Hex  
Hex  
pF  
Full-scale reading(3)  
Input capacitance  
FF  
(20) 8  
Input leakage(4)  
Port B  
1
µA  
Notes:  
1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, VDDAD = 5.0 Vdc 10%, VSSAD = 0 Vdc, VREFH = 5.0 Vdc 10%, VREFL = 0  
2. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
4. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908GP32 Data Sheet, Rev. 10  
246  
Freescale Semiconductor  
5.0-V SPI Characteristics  
19.13 5.0-V SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
f
OP/2  
fOP  
fOP/128  
dc  
MHz  
MHz  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tLead(S)  
tLag(S)  
tCYC  
tCYC  
tCYC  
tCYC  
1
2
1
128  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
4
5
6
7
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
tV(M)  
tV(S)  
10  
50  
50  
ns  
ns  
Data hold time, outputs, after enable edge  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
0
ns  
ns  
Notes:  
1. Numbers refer to dimensions in Figure 19-17 and Figure 19-18.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
247  
Electrical Specifications  
19.14 3.0-V SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
f
/2  
f
f
f
/128  
OP  
f
MHz  
MHz  
OP(M)  
OP  
dc  
OP  
OP(S)  
Cycle time  
Master  
Slave  
tCYC  
tCYC  
tCYC(M)  
tCYC(S)  
1
2
1
128  
t
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
1
1
ead(s)  
L
t
ag(s)  
L
Clock (SPSCK) high time  
Master  
Slave  
t
t
tCYC –35  
1/2 tCYC –35  
64 tCYC  
4
5
6
7
ns  
ns  
SCKH(M)  
SCKH(S)  
Clock (SPSCK) low time  
Master  
Slave  
t
t
tCYC –35  
1/2 tCYC –35  
64 tCYC  
ns  
ns  
SCKL(M)  
SCKL(S)  
Data setup time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
H(M)  
t
H(S)  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
t
ns  
ns  
0
0
8
9
50  
50  
A(CP0)  
t
A(CP1)  
Disable time, slave(4)  
t
50  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave(5)  
t
t
60  
60  
10  
ns  
ns  
V(M)  
V(S)  
Data hold time, outputs, after enable edge  
Master  
Slave  
t
t
11  
ns  
ns  
0
0
HO(M)  
HO(S)  
Notes:  
1. Numbers refer to dimensions in Figure 19-17 and Figure 19-18.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GP32 Data Sheet, Rev. 10  
248  
Freescale Semiconductor  
3.0-V SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 19-17. SPI Master Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
249  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 19-18. SPI Slave Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
250  
Freescale Semiconductor  
Timer Interface Module Characteristics  
19.15 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width  
Timer input capture period  
Symbol  
tTH, TL  
Min  
Max  
Unit  
t
tcyc  
2
Note(1)  
tcyc + 5  
tTLTL  
tcyc  
ns  
tTCL, tTCH  
Timer input clock pulse width  
1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
t
TLTL  
t
TH  
INPUT CAPTURE  
RISING EDGE  
t
TLTL  
t
TL  
INPUT CAPTURE  
FALLING EDGE  
t
TLTL  
t
t
TH  
TL  
INPUT CAPTURE  
BOTH EDGES  
t
TCH  
TCLK  
t
TCL  
Figure 19-19. Timer Input Timing  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
251  
Electrical Specifications  
19.16 Clock Generation Module Characteristics  
19.16.1 CGM Component Specifications  
Characteristic  
Crystal reference frequency  
Symbol  
Min  
30  
Typ  
Max  
100  
Unit  
kHz  
pF  
f
32.768  
XCLK  
Crystal load capacitance(1)  
Crystal fixed capacitance(2)  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C
L
12.5  
15  
C
1
pF  
C
2
15  
pF  
R
B
1
10  
22  
MΩ  
kΩ  
Series resistor(3)  
Notes:  
R
S
100  
330  
470  
1. Crystal manufacturer value.  
2. Capacitor on OSC1 pin. Does not include parasitic capacitance due to package, pin, and board.  
3. Capacitor on OSC2 pin. Does not include parasitic capacitance due to package, pin, and board.  
MC68HC908GP32 Data Sheet, Rev. 10  
252  
Freescale Semiconductor  
Memory Characteristics  
19.16.2 CGM Electrical Specifications  
Description  
Operating voltage  
Symbol  
Min  
2.7  
Typ  
Max  
5.5  
Unit  
V
VDD  
Operating temperature  
Reference frequency  
T
–40  
30  
25  
85  
°C  
fRDV  
32.768  
38.4  
100  
kHz  
kHz  
Hz  
fNOM  
fVRS  
Range nominal multiplier  
VCO center-of-range frequency(1)  
38.4 k  
40.0 M  
Medium-voltage VCO center-of-range frequency(2)  
VCO range linear range multiplier  
VCO power-of-two range multiplier  
VCO multiply factor  
f
38.4 k  
1
40.0 M  
255  
4
Hz  
VRS  
L
1
2E  
N
1
1
1
4095  
8
2P  
R
VCO prescale multiplier  
Reference divider factor  
1
1
15  
fVCLK  
VCO operating frequency  
38.4 k  
40.0 M  
8.2  
Hz  
MHz  
MHz  
ms  
Bus operating frequency(1)  
fBUS  
fBUS  
tLock  
tLock  
Bus frequency @ medium voltage(2)  
Manual acquisition time  
4.1  
50  
50  
Automatic lock time  
ms  
fRCLK  
×
PLL jitter(3)  
fJ  
0.025%  
× 2P N/4  
0
Hz  
External clock input frequency  
PLL disabled  
fOSC  
fOSC  
dc  
32.8 M  
1.5 M  
Hz  
Hz  
External clock input frequency  
PLL enabled  
30 k  
Notes:  
1. 5.0 V 10% VDD  
2. 3.0 V 10% VDD  
3. Deviation of average bus frequency over 2 ms. N = VCO multiplier.  
19.17 Memory Characteristics  
Characteristic  
Symbol  
VRDR  
Min  
Typ  
Max  
Unit  
V
RAM data retention voltage  
1.3  
1
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
fRead  
8 k  
8.4 M  
FLASH page erase time  
Limited endurance (<1 K cycles)  
Maximum endurance (>1 K cycles)  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
Contined on next page  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
253  
Electrical Specifications  
Characteristic  
Symbol  
tMErase  
tNVS  
Min  
4
Typ  
Max  
40  
4
Unit  
ms  
FLASH mass erase time  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
10  
5
µs  
tNVH  
µs  
tNVHL  
tPGS  
100  
5
µs  
µs  
FLASH program time  
tPROG  
30  
1
µs  
(2)  
FLASH return to read time  
tRCV  
µs  
(3)  
FLASH cumulative program hv period  
FLASH endurance(4)  
tHV  
10 k  
15  
ms  
100 k  
100  
Cycles  
Years  
FLASH data retention time(5)  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 64) tHV maximum.  
4. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical  
Endurance, please refer to Engineering Bulletin EB619.  
5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25 Cusing the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HC908GP32 Data Sheet, Rev. 10  
254  
Freescale Semiconductor  
Chapter 20  
Mechanical Specifications  
20.1 Introduction  
This section gives the dimensions for:  
40-pin plastic dual in-line package (case 711-03)  
42-pin shrink dual in-line package (case 858-01)  
44-pin plastic quad flat pack (case 824A-01)  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
255  
Chapter 21  
Ordering Information  
21.1 Introduction  
This section contains ordering numbers for the MC68HC908GP32.  
21.2 MC Order Numbers  
Table 21-1. MC Order Numbers  
Operating  
MC order number  
Package  
temperature range  
MC908GP32CPE  
MC908GP32CBE  
MC908GP32CFBE  
40-pin PDIP  
42-pin SDIP  
44-pin QFP  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
MC68HC908GP32 Data Sheet, Rev. 10  
Freescale Semiconductor  
263  
Ordering Information  
MC68HC908GP32 Data Sheet, Rev. 10  
264  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2001, 2006, 2007. All rights reserved.  
MC68HC908GP32  
Rev. 10, 1/2008  

相关型号:

MC68HC908GP32CFB

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32CP

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA

MC68HC908GP32CP

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32_08

M68HC08 Microcontrollers
FREESCALE

MC68HC908GR16

Microcontrollers
MOTOROLA

MC68HC908GR16

Microcontrollers
FREESCALE

MC68HC908GR16A

M68HC08 Microcontrollers
FREESCALE

MC68HC908GR16ACFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908GR16ACFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-48
NXP

MC68HC908GR16ACFAE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, LQFP-48
NXP

MC68HC908GR16ACFJ

M68HC08 Microcontrollers
FREESCALE