SI5311-BM [ETC]

PRECISION HIGH SPEED CLOCK MULTIPLIER/REGENERATOR IC; 精密高速时钟乘法器/再生器IC
SI5311-BM
型号: SI5311-BM
厂家: ETC    ETC
描述:

PRECISION HIGH SPEED CLOCK MULTIPLIER/REGENERATOR IC
精密高速时钟乘法器/再生器IC

时钟
文件: 总24页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5311  
PRELIMINARY DATA SHEET  
PRECISION HIGH SPEED CLOCK MULTIPLIER/REGENERATOR IC  
Features  
Complete precision high speed clock multiplier and regenerator device:  
! Performs Clock Multiplication to  
One of Four Frequency Ranges:  
150–167 MHz, 600–668 MHz,  
1.2–1.33 GHz, or 2.4–2.67 GHz  
! Regenerates a “Clean”, Jitter-  
Attenuated Version of Input  
Clock  
! DSPLL™ Technology Provides  
! Jitter Generation as low as  
Superior Jitter Performance  
! Small Footprint: 4 mm x 4 mm  
! Low Power: 310 mW typical  
0.5 psRMS for 622 MHz Output  
! Accepts Input Clock from  
9.4–668 MHz  
Ordering Information:  
See page 22.  
Applications  
Pin Assignments  
Si5311  
! SONET/SDH Systems  
! Terabit Routers  
! Digital Cross Connects  
! Optical Transceiver Modules  
! Gigabit Ethernet Systems  
! Hybrid VCO Modules  
Description  
20 19 18 17  
16  
REXT  
VDD  
PWRDN/CAL  
VDD  
1
2
3
4
5
15  
14  
The Si5311 is a fully integrated high-speed clock multiplier and clock  
regenerator IC. The clock multiplier generates an output clock that is an  
integer multiple of the input clock. When the clock multiplier is operating in  
either the 150–167 MHz range or the 600–668 MHz range, the clock  
regenerator operates simultaneously. The clock regenerator creates a  
“clean” version of the input clock by using the clock synthesis phase-  
locked loop (PLL) to remove unwanted jitter and square up the input  
clock’s rising and falling edges. The Si5311 uses Silicon Laboratories  
patented DSPLLarchitecture to achieve superior jitter performance while  
eliminating the analog loop filter found in traditional PLL designs.  
GND  
GND  
13 CLKOUT+  
Pad  
12  
11  
REFCLK+  
REFCLK–  
CLKOUT–  
VDD  
6
7
8
9
10  
Top View  
The Si5311 represents a new standard in low jitter, small size, low power,  
and ease-of-use for high speed clock devices. It operates from a single  
2.5 V supply over the industrial temperature range (–40°C to 85°C).  
Functional Block Diagram  
2
CLKO UT+  
Regeneration  
BUF  
BUF  
CLKO UT–  
Calibration  
PW RDN/CAL  
DSPLLTM  
Phase-Locked  
Loop  
2
CLKIN+  
CLKIN–  
2
M ULTO UT+  
M ULTO UT–  
BUF  
LO L  
Bias Gen  
2
2
REXT  
REFCLK+  
REFCLK–  
M ULTSEL1–0  
Preliminary Rev. 0.6 6/01  
Copyright © 2001 by Silicon Laboratories  
Si5311-DS06  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5311  
2
Preliminary Rev. 0.6  
Si5311  
TABLE OF CONTENTS  
Section  
Page  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DSPLL™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1x Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DSPLL Lock Detection (Loss-of-Lock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Descriptions: Si5311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Preliminary Rev. 0.6  
3
Si5311  
Detailed Block Diagram  
CLKOUT+  
CLKOUT–  
Regen  
c
CLKIN+  
MULTOUT+  
MULTOUT–  
Phase  
Detector  
CLK  
A/D  
VCO  
DSP  
c
Divider  
CLKIN–  
n
REFCLK+  
REFCLK–  
Lock  
Detector  
LOL  
2
/
MULTSEL 1- 0  
REXT  
PWRDN/CAL  
Calibration  
Bias  
Generation  
Figure 1. Detailed Block Diagram  
4
Preliminary Rev. 0.6  
Si5311  
Electrical Specifications  
Table 1. Recommended Operating Conditions  
Min1  
–40  
Max1  
85  
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Ambient Temperature  
Si5311 Supply Voltage2  
Notes:  
TA  
25  
°C  
V
VDD  
2.375  
2.5  
2.625  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.  
2. The Si5311 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of Figure 5 on page 13.  
V
SIGNAL +  
Differential  
I/Os  
VIS  
VICM, VOCM  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
t
VID,VOD  
Differential  
Voltage Swing  
Figure 2. Differential Voltage Measurement (CLKIN, REFCLK, CLKOUT, MULTOUT)  
CLKIN  
1/fMULT  
MULTOUT  
tCI-M  
tM-CO  
CLKOUT  
Figure 3. CLKIN to CLKOUT, MULTOUT Phase Relationship  
CLKIN,  
80%  
20%  
REFCLK,  
CLKOUT,  
MULTOUT  
tF  
tR  
Figure 4. Clock Input and Output Rise/Fall Times  
Preliminary Rev. 0.6  
5
Si5311  
Table 2. DC Characteristics, V = 2.5 V  
DD  
(VDD = 2.5 V ± 5%, TA = –40°C to 85°C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Supply Current  
IDD  
MULTSEL[1:0] = 00  
MULTSEL[1:0] = 01  
MULTSEL[1:0] = 10  
MULTSEL[1:0] = 11  
108  
113  
117  
124  
118  
123  
127  
134  
mA  
Power Dissipation  
MULTSEL[1:0] = 00  
MULTSEL[1:0] = 01  
MULTSEL[1:0] = 10  
MULTSEL[1:0] = 11  
PD  
270  
283  
293  
310  
310  
323  
333  
352  
mW  
"
Common Mode Input Voltage  
VICM  
VIS  
See Figure 2  
See Figure 2  
See Figure 2  
Line-to-Line  
.80 VDD  
V
(CLKIN, REFCLK)  
Input Voltage Range*  
750  
1500  
mV  
(CLKIN+, CLKIN–, REFCLK+, REFCLK–)  
Differential Input Voltage Swing*  
VID  
200  
mV  
(CLKIN, REFCLK)  
(pk-pk)  
Input Impedance (CLKIN, REFCLK)  
Differential Output Voltage Swing  
(CLKOUT)  
RIN  
VOD  
84  
TBD  
100  
940  
116  
TBD  
100 Load  
Line-to-Line  
mV  
(pk-pk)  
Differential Output Voltage Swing  
(MULTOUT)  
Output Common Mode Voltage  
(CLKOUT, MULTOUT)  
VOD  
100 Load  
TBD  
900  
TBD  
mV  
(pk-pk)  
Line-to-Line  
VOCM  
100 Load  
Line-to-Line  
VDD – 0.7  
V
Output Impedance (CLKOUT, MULTOUT)  
Output Short to GND (CLKOUT, MULTOUT)  
Output Short to VDD (CLKOUT, MULTOUT)  
Input Voltage Low (LVTTL Inputs)  
ROUT  
ISC(–)  
ISC(+)  
VIL  
Single-ended  
84  
TBD  
100  
25  
–15  
116  
TBD  
mA  
mA  
V
.8  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
Input Impedance (LVTTL Inputs)  
VIH  
IIL  
IIH  
VOL  
VOH  
RIN  
2.0  
V
25  
25  
TBD  
TBD  
0.4  
TBD  
µA  
µA  
V
V
kΩ  
µA  
IO = 2 mA  
IO = 2 mA  
2.0  
100  
TBD  
PWRDN/CAL Internal Pulldown Current  
IPWRDN  
V
PWRDN 0.8 V  
25  
*Note: The CLKIN and REFCLK inputs may be driven differentially or single-endedly. When driving single-endedly, the voltage  
swing of the signal applied to the active input must exceed the specified minimum Differential Input Voltage Swing (VID  
min) and the unused input must be ac-coupled to ground. When driving differentially, the difference between the  
positive and negative input signals must exceed VID min. (Each individual input signal needs to swing only half of this  
range.) In either case, the voltage applied to any individual pin (CLKIN+, CLKIN–, REFCLK+, or REFCLK–) must not  
exceed the specified maximum Input Voltage Range (VIS max).  
6
Preliminary Rev. 0.6  
Si5311  
Table 3. AC Characteristics  
(VDD = 2.5 V ± 5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
9.375  
TBD  
9.375  
40  
Typ  
50  
Max  
Unit  
MHz  
%
MHz  
%
CLKIN Frequency Range*  
CLKIN Duty Cycle  
REFCLK Range*  
REFCLK Duty Cycle  
668  
TBD  
167  
60  
CDUTY  
CTOL  
REFCLK Frequency  
Tolerance  
–100  
100  
ppm  
MULTOUT Clock Rate  
MULTSEL[1:0] = 00  
MULTSEL[1:0] = 01  
MULTSEL[1:0] = 10  
MULTSEL[1:0] = 11  
fMULT  
2400  
1200  
600  
2672  
1336  
668  
MHz  
150  
167  
Output Rise Time  
tR  
tF  
Figure 4  
Figure 4  
Figure 4  
Figure 4  
Figure 3  
100  
100  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
ps  
ps  
(CLKOUT, MULTOUT)  
Output Fall Time  
(CLKOUT, MULTOUT)  
Input Rise Time  
tR  
(CLKIN, REFCLK)  
Input Fall Time  
tF  
(CLKIN, REFCLK)  
CLKIN to MULTOUT Delay  
MULTSEL[1:0] = 00  
MULTSEL[1:0] = 01  
MULTSEL[1:0] = 10  
MULTSEL[1:0] = 11  
tCI-M  
TBD  
TBD  
TBD  
TBD  
0
TBD  
TBD  
TBD  
TBD  
ps  
ps  
ps  
ns  
120  
150  
3.4  
MULTOUT to CLKOUT Delay  
MULTSEL[1:0] = 00  
MULTSEL[1:0] = 01  
MULTSEL[1:0] = 10  
MULTSEL[1:0] = 11  
tM-CO  
Figure 3  
TBD  
TBD  
TBD  
TBD  
1/fMULT + 160  
960  
ps  
ps  
Input Return Loss  
100 kHz–2.5 GHz  
2.5 GHz–4.0 GHz  
18.7  
TBD  
dB  
*Note: See Table 11.  
Preliminary Rev. 0.6  
7
Si5311  
Table 4. AC Characteristics (PLL Performance Characteristics)  
(VDD = 2.5 V ± 5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Tolerance  
JTOL(PP)  
See Table 5  
See Table 6  
See Table 7  
See Table 8  
(MULTSEL[1:0] = 00,  
MULTOUT = 2400 to 2672 MHz)  
Jitter Tolerance  
JTOL(PP)  
JTOL(PP)  
JTOL(PP)  
(MULTSEL[1:0] = 01,  
MULTOUT = 1200 to 1336 MHz)  
Jitter Tolerance  
(MULTSEL[1:0] = 10,  
MULTOUT = 600 to 668 MHz)  
Jitter Tolerance  
(MULTSEL[1:0] = 11,  
MULTOUT = 150 to 167 MHz)  
Jitter Generation (MULTOUT)  
JGEN(rms) Clock Input (MHz) =  
600.000 to 668.000  
TBD  
TBD  
psRMS  
(MULTSEL[1:0] = 00,  
MULTOUT = 2400 to 2672 MHz)*  
Jitter Generation (MULTOUT)  
JGEN(rms Clock Input (MHz) =  
300.000 to 334.000  
TBD  
TBD  
1.9  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
psRMS  
kHz  
(MULTSEL[1:0] = 01,  
MULTOUT = 1200 to 1336 MHz)*  
Clock Input (MHz) =  
600.000 to 668.000  
Jitter Generation (MULTOUT, CLKOUT) JGEN(rms) Clock Input (MHz) =  
(MULTSEL[1:0] = 10,  
37.500 to 41.750  
MULTOUT = 600 to 668 MHz)*  
Clock Input (MHz) =  
1.2  
75.000 to 83.500  
Clock Input (MHz) =  
150.000 to 167.000  
0.9  
Clock Input (MHz) =  
0.5  
300.000 to 334.000  
Clock Input (MHz) =  
600.000 to 668.000  
0.5  
Jitter Generation (MULTOUT, CLKOUT) JGEN(rms) Clock Input (MHz) =  
5.8  
(MULTSEL[1:0] = 11,  
9.375 to 10.438  
MULTOUT = 150 to 167 MHz)*  
Clock Input (MHz) =  
3.2  
18.750 to 20.875  
Clock Input (MHz) =  
37.500 to 41.750  
2.2  
Clock Input (MHz) =  
1.4  
75.000 to 83.500  
Clock Input (MHz) =  
150.000 to 167.000  
1.3  
Jitter Transfer Bandwidth  
(MULTSEL[1:0] = 00,  
JBW  
Clock Input (MHz) =  
1360  
600.000 to 668.000  
MULTOUT = 2400 to 2672 MHz)*  
*Note: See PLL Performance section of this document for test descriptions.  
8
Preliminary Rev. 0.6  
Si5311  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD = 2.5 V ± 5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Transfer Bandwidth  
JBW  
Clock Input (MHz) =  
680  
TBD  
kHz  
300.000 to 334.000  
(MULTSEL[1:0] = 01,  
MULTOUT = 1200 to 1336 MHz)*  
Clock Input (MHz) =  
600.000 to 668.000  
1360  
85  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
Jitter Transfer Bandwidth  
(MULTSEL[1:0] = 10,  
JBW  
Clock Input (MHz) =  
37.500 to 41.750  
MULTOUT = 600 to 668 MHz)*  
Clock Input (MHz) =  
75.000 to 83.500  
170  
340  
680  
1360  
21  
Clock Input (MHz) =  
150.000 to 167.000  
Clock Input (MHz) =  
300.000 to 334.000  
Clock Input (MHz) =  
600.000 to 668.000  
Jitter Transfer Bandwidth  
(MULTSEL[1:0] = 11,  
JBW  
Clock Input (MHz) =  
9.375 to 10.438  
MULTOUT = 150 to 167 MHz)*  
Clock Input (MHz) =  
43  
18.750 to 20.875  
Clock Input (MHz) =  
37.500 to 41.750  
85  
Clock Input (MHz) =  
170  
340  
0.03  
75.000 to 83.500  
Clock Input (MHz) =  
150.000 to 167.000  
Jitter Transfer Peaking  
JP  
JP  
Clock Input (MHz) =  
600.000 to 668.000  
(MULTSEL[1:0] = 00,  
MULTOUT = 2400 to 2672 MHz)*  
Jitter Transfer Peaking  
Clock Input (MHz) =  
300.000 to 334.000  
0.03  
0.02  
0.12  
0.06  
0.03  
0.02  
0.01  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(MULTSEL[1:0] = 01,  
MULTOUT = 1200 to 1336 MHz)*  
Clock Input (MHz) =  
600.000 to 668.000  
Jitter Transfer Peaking  
(MULTSEL[1:0] = 10,  
JP  
Clock Input (MHz) =  
37.500 to 41.750  
MULTOUT = 600 to 668 MHz)*  
Clock Input (MHz) =  
75.000 to 83.500  
Clock Input (MHz) =  
150.000 to 167.000  
Clock Input (MHz) =  
300.000 to 334.000  
Clock Input (MHz) =  
600.000 to 668.000  
*Note: See PLL Performance section of this document for test descriptions.  
Preliminary Rev. 0.6  
9
Si5311  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD = 2.5 V ± 5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Transfer Peaking  
JP  
Clock Input (MHz) =  
0.12  
TBD  
dB  
9.375 to 10.438  
(MULTSEL[1:0] = 11,  
MULTOUT = 150 to 167 MHz)*  
Clock Input (MHz) =  
18.750 to 20.875  
0.06  
0.03  
0.02  
0.01  
1.5  
TBD  
TBD  
TBD  
TBD  
1.7  
dB  
dB  
Clock Input (MHz) =  
37.500 to 41.750  
Clock Input (MHz) =  
75.000 to 83.500  
dB  
Clock Input (MHz) =  
dB  
150.000 to 167.000  
Acquisition Time  
TAQ  
After falling edge of  
PWRDN/CAL  
1.45  
40  
ms  
µs  
From the return of valid  
60  
150  
CLKIN  
Frequency Difference at which PLL goes  
out of Lock (REFCLK compared to the  
divided down VCO clock)  
LOL  
TBD  
600  
TBD  
ppm  
Frequency Difference at which PLL goes  
into Lock (REFCLK compared to the  
divided down VCO clock)  
LOCK  
TBD  
300  
TBD  
ppm  
*Note: See PLL Performance section of this document for test descriptions.  
10  
Preliminary Rev. 0.6  
Si5311  
Table 5. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL[1:0] = 00,  
MULTOUT = 2400 to 2672 MHz)  
Frequency (Hz)  
600-668 MHz  
Clock Input  
< TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
> TBD  
*Note: Measured using sinusoidal jitter at stated  
Test Condition frequency.  
Table 6. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL[1:0] = 01,  
MULTOUT = 1200 to 1336 MHz)  
Frequency (Hz)  
300-334 MHz  
Clock Input  
600-668 MHz  
Clock Input  
< TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
> TBD  
*Note: Measured using sinusoidal jitter at stated Test  
Condition frequency.  
Table 7. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL[1:0] = 10,  
MULTOUT = 600 to 668 MHz)  
Frequency  
(Hz)  
37.5–  
75–83.5 MHz 150-167 MHz 300–334 MHz 600-668 MHz  
41.75 MHz  
Clock Input  
Clock Input  
Clock Input  
Clock Input  
Clock Input  
< 300  
25K  
25.0  
2.33  
0.67  
0.50  
25.0  
4.67  
0.83  
0.58  
25.0  
9.33  
1.17  
0.67  
25.0  
16.7  
2.17  
0.67  
TBD  
TBD  
TBD  
TBD  
250K  
> 1M  
*Note: Measured using sinusoidal jitter at stated Test Condition frequency.  
Preliminary Rev. 0.6  
11  
Si5311  
Table 8. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL[1:0] = 11,  
MULTOUT = 150 to 167 MHz)  
Frequency (Hz)  
9.375–  
18.75–  
37.5–41.75 MHz  
Clock Input  
75–83.5 MHz  
Clock Input  
150-167 MHz  
Clock Input  
10.438 MHz  
Clock Input  
20.875 MHz  
Clock Input  
< 300  
6.5K  
65K  
TBD  
TBD  
TBD  
TBD  
TBD  
66.7  
18.0  
3.33  
2.67  
2.00  
66.7  
36.7  
4.67  
2.67  
2.33  
100  
66.7  
8.00  
3.33  
2.67  
TBD  
TBD  
TBD  
TBD  
TBD  
325K  
> 1M  
*Note: Measured using sinusoidal jitter at stated Test Condition frequency.  
Table 9. Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Value  
Unit  
V
DC Supply Voltage  
–0.5 to 2.8  
–0.3 to 3.6  
–0.3 to (VDD+ 0.3)  
±50  
LVTTL Input Voltage  
VDIG  
V
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
Lead Temperature (soldering 10 seconds)  
VDIF  
V
mA  
°C  
°C  
°C  
TJCT  
TSTG  
–55 to 150  
–55 to 150  
300  
ESD HBM Tolerance (100 pf, 1.5 k)  
CLKIN+, CLKIN–, REFCLK+, REFCLK–,  
All other pins  
1
1.5  
kV  
kV  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 10. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕJA  
Still Air  
38  
°C/W  
12  
Preliminary Rev. 0.6  
Si5311  
LVTTL  
Loss-of-Lock  
Indicator  
Control Inputs  
2
CLKIN+  
CLKOUT+  
CLKOUT–  
Regenerated  
Clock  
Clock Input  
CLKIN–  
Si5311  
System  
Reference  
Clock  
REFCLK+  
REFCLK–  
MULTOUT+  
MULTOUT–  
Multiplied  
Clock  
0.1 µF  
10 k  
(1%)  
VDD  
2200 pF  
20 pF  
Figure 5. Si5311 Typical Application Circuit  
Preliminary Rev. 0.6  
13  
Si5311  
Functional Description  
The Si5311 is an integrated high speed clock multiplier output is not characterized for the MULTOUT ranges of  
and clock regenerator device based on Silicon 1.2–1.33 GHz or 2.4–2.67 GHz.  
Laboratories DSPLL™ technology. The DSPLL phase  
locks to the clock input signal (CLKIN) and generates a  
phase-locked output clock (MULTOUT) at a multiple of  
the input clock frequency. The MULTOUT output is  
configured to operate in the 150–167 MHz, the 600–  
668 MHz, the 1.2–1.33 GHz, or the 2.4–2.67 GHz  
frequency range using the MULTSEL0 and MULTSEL1  
control inputs.  
A reference clock input signal (REFCLK) is used by the  
DSPLL as a reference for determination of the PLL lock  
status. For convenience, REFCLK can be provided at  
any one of five frequencies, each a multiple of the  
CLKIN frequency. The REFCLK rate is automatically  
detected, so no control inputs are needed for  
configuration. The REFCLK input can be synchronous  
or asynchronous with respect to the CLKIN input. The  
When the device is configured for a MULTOUT output operating ranges for the CLKIN, CLKOUT, MULTOUT,  
frequency range of 150–167 MHz or 600–668 MHz, the and REFCLK signals are indicated in Table 11. Values  
DSPLL is also employed to regenerate an output clock for typical applications are given in Table 12.  
(CLKOUT) that is a jitter-attenuated version of the input  
clock with clean rising and falling edges. The CLKOUT  
Table 11. CLKIN, CLKOUT, MULTOUT, REFCLK Operating Ranges  
REFCLK = 2n x CLKIN  
±100 ppm  
MULTSEL [1:0]  
CLKIN  
Range (MHz)  
CLKOUT  
MULTOUT  
(see Note 2)  
00  
600.00–668.00  
n = –6, –5, –4, –3, or –2 See Note 1(a)  
4xCLKIN  
(MULTOUT = 2.4–2.7 GHz)  
01  
300.00–334.00  
600.00–668.00  
37.500–41.750  
75.000–83.500  
150.000–167.000  
n = –5, –4, –3, –2, or –1 See Note 1(a)  
n = –6, –5, –4, –3, or –2 See Note 1(a)  
4xCLKIN  
2xCLKIN  
16xCLKIN  
8xCLKIN  
4xCLKIN  
2xCLKIN  
1xCLKIN  
16xCLKIN  
8xCLKIN  
4xCLKIN  
2xCLKIN  
1xCLKIN  
(MULTOUT = 1.2–1.33 GHz)  
n = –2, –1, 0, 1, or 2  
n = –3, –2, –1, 0, or 1  
n = –4, –3, –2, –1, or 0  
1xCLKIN  
1xCLKIN  
1xCLKIN  
1xCLKIN  
10  
(MULTOUT = 600–668 MHz)  
300.000–334.000 n = –5, –4, –3, –2, or –1  
600.000–668.000 n = –6, –5, –4, –3, or –2 See Note 1(b)  
9.375–10.438  
18.750–20.875  
37.500–41.750  
75.000–83.500  
150.000–167.000  
n = 0, 1, 2, 3, or 4  
n = –1, 0, 1, 2, or 3  
n = –2, –1, 0, 1, or 2  
n = –3, –2, –1, 0, or 1  
1xCLKIN  
1xCLKIN  
1xCLKIN  
1xCLKIN  
11  
(MULTOUT = 150–167 MHz)  
n = –4, –3, –2, –1, or 0 See Note 1(b)  
Note:  
1. The CLKOUT output is not valid for (a) MULTSEL[1:0] = 00 or MULTOUT[1:0] = 01  
(b) MULTOUT:CLKIN ratios of 1:1 (MULTOUT = 1 x CLKIN.)  
2. The REFCLK input can be set to any one of the five CLKIN multiples indicated. The REFCLK input can be  
asynchronous to the CLKIN input, but must be within ±100 ppm of the stated CLKIN multiple.  
14  
Preliminary Rev. 0.6  
Si5311  
Table 12. Clock Values for Typical Applications  
CLKIN (MHz)  
REFCLK Input (MHz) MULTSEL  
CLKOUT  
MULTOUT output  
(MHz)  
[1:0]  
(MHz)  
9.72  
19.44  
38.88  
38.88  
77.76  
77.76  
155.52  
SONET/SDH  
9.72  
19.44  
38.88  
9.72  
19.44  
38.88  
11  
11  
10  
11  
10  
11  
10  
11  
01  
10  
00  
01  
10  
11  
11  
10  
11  
10  
11  
10  
11  
01  
10  
00  
01  
10  
11  
11  
10  
11  
10  
11  
10  
11  
01  
10  
00  
01  
10  
155.52  
155.52  
622.08  
155.52  
622.08  
155.52  
622.08  
155.52  
1244.16  
622.08  
2488.32  
1244.16  
622.08  
156.25  
156.25  
625  
77.76  
155.52  
311.04  
622.08  
77.76  
155.52  
9.72, 19.44, 38.88,  
77.76, or 155.52  
311.04  
9.77  
19.53  
39.06  
39.06  
78.125  
78.125  
156.25  
312.5  
10.41  
20.83  
41.66  
41.66  
83.31  
83.31  
166.63  
9.72, 19.44, 38.88,  
77.76, or 155.52  
9.77  
19.53  
39.06  
9.77  
19.53  
39.06  
Gigabit Ethernet  
156.25  
625  
156.25  
625  
78.125  
156.25  
312.5  
625  
78.125  
156.25  
156.25  
1250  
9.77, 19.53, 39.06,  
78.125, or 156.25  
625  
9.77, 19.53, 39.06,  
2500  
78.125, or 156.25  
1250  
625  
SONET/SDH FEC  
(15/14)  
10.41  
20.83  
41.66  
10.41  
20.83  
41.66  
166.63  
166.63  
666.51  
166.63  
666.51  
166.63  
666.51  
166.63  
1333.03  
666.51  
2666.06  
1333.03  
666.51  
83.31  
166.63  
333.26  
666.51  
83.31  
166.63  
10.41, 20.83, 41.66,  
83.31, or 166.63  
333.26  
10.41, 20.83, 41.66,  
83.31, or 166.63  
Preliminary Rev. 0.6  
15  
Si5311  
DSPLL™  
a jitter-attenuated version of the CLKIN input, resulting  
in a “clean” CLKOUT output with sharp rising and falling  
edges. The CLKOUT output is a resampled version of  
the CLKIN input with all CLKOUT transitions occurring  
synchronously with the rising edges of the MULTOUT  
output. The rising edges of CLKOUT are insensitive to  
the location of the falling edges of the CLKIN input.  
Thus the period of CLKOUT, measured rising edge to  
rising edge, is not affected by the CLKIN duty cycle or  
by jitter on the falling edge of CLKIN.  
The falling edges of CLKOUT may be affected by the  
location of the CLKIN falling edges as follows: If the  
duty cycle error of CLKIN is significant relative to the  
period of MULTOUT, then  
1. The CLKOUT duty cycle may deviate from 50% (the falling  
edge of CLKOUT will be time quantized to the nearest  
rising edge of MULTOUT.)  
2. Jitter on the falling edges of CLKIN may result in a  
CLKOUT duty cycle that alternates between two discrete  
values.  
The PLL structure (shown in Figure 1 on page 4) utilizes  
Silicon Laboratories' DSPLL technology to produce  
superior jitter performance while eliminating the need  
for external loop filter components found in traditional  
PLL implementations. This is achieved by using a digital  
signal processing (DSP) algorithm to replace the loop  
filter commonly found in analog PLL designs. This  
algorithm processes the phase detector error term and  
generates a digital control value to adjust the frequency  
of the voltage controlled oscillator (VCO). The  
technology produces clocks with less jitter than is  
generated using traditional methods. In addition,  
because external loop filter components are not  
required, sensitive noise entry points are eliminated,  
thus making the DSPLL less susceptible to board-level  
noise sources.  
Clock Multiplier  
The DSPLL phase locks to the clock input signal  
(CLKIN) and generates an output clock (MULTOUT) at  
a multiple of the input clock frequency. The MULTOUT  
output is configured to operate in the 150–167 MHz, the  
600–668 MHz, the 1.2–1.33 GHz, or the 2.4–2.67 GHz  
frequency range using the MULTSEL0 and MULTSEL1  
control inputs as indicated in Table 11. Values for typical  
applications are given in Table 12.  
Note: When the Si5310 is configured as a 1:1 multiplier, the  
CLKOUT output is not valid.  
Reference Clock  
The reference clock input (REFCLK) is used to center  
the DSPLL and also to act as a reference for  
determination of the PLL lock status. REFCLK is a  
multiple of the CLKIN frequency, and can be provided in  
any one of five frequency ranges (9.375–10.438 MHz,  
The amount of jitter present in the MULTOUT output is a  
function of the DSPLL jitter transfer function and jitter  
generation characteristic. Details are provided in the  
PLL Performance section of this document. (See  
Figures 6, 7, 8, and 9.) The amount of jitter that the  
DSPLL can tolerate on the CLKIN input is specified in  
Tables 5, 6, 7, and 8.  
The DSPLL implementation in the Si5311 is insensitive  
to the duty cycle of the CLKIN input. The MULTOUT  
output will continue to exhibit a very good duty cycle  
characteristic even when the CLKIN input duty cycle is  
degraded.  
18.78–20.875 MHz,  
37.500–41.750 MHz,  
75.00–  
83.50 MHz, or 150–167.00 MHz). The REFCLK rate is  
automatically detected by the Si5311, so no control  
inputs are needed for REFCLK frequency selection. The  
REFCLK input may be synchronous or asynchronous  
with respect to the CLKIN input. The frequency  
relationship between REFCLK and CLKIN is indicated  
in Table 11. In many applications, it may be desirable to  
tie REFCLK and CLKIN together and drive them from  
the same clock source. The Si5311 is insensitive to the  
phase relationship between CLKIN and REFCLK, so  
these differential inputs may be driven in phase or 180°  
out of phase if this simplifies board layout. Values for  
typical applications are given in Table 12.  
1x Multiplication  
The Si5311 Clock Multiplier function may also be  
utilized as a 1x multiplier in order to provide jitter  
attenuation and duty cycle correction without  
multiplication of the input clock frequency.  
DSPLL Lock Detection (Loss-of-Lock)  
The Si5311 provides lock-detect circuitry that indicates  
whether the DSPLL has frequency locked with the  
incoming CLKIN signal. The circuit compares the  
frequency of a divided down version of the multiplier  
output with the frequency of the supplied reference  
clock. If the divided multiplier output frequency deviates  
from that of the reference clock by the amount specified  
in Table 4 on page 8, the PLL is declared out of lock,  
and the loss-of-lock (LOL) pin is asserted.  
Note: When the Si5311 is configured as a 1:1 multiplier, the  
CLKOUT output is not valid.  
Clock Regeneration  
When the MULTOUT output is configured to operate in  
either the 150–167 MHz or the 600–667 MHz range, the  
Si5311 clock regeneration (CLKOUT output) is also  
provided. In this case, the DSPLL is used to regenerate  
While out of lock, the DSPLL will try to reacquire lock  
16  
Preliminary Rev. 0.6  
Si5311  
with the input clock. During reacquisition, the multiplier the multiplier ratio desired, the larger the jitter  
output (MULTOUT) will drift over  
a
range of generation. Table 4 gives the jitter generation values for  
approximately 1% relative to the supplied reference specified MULTSEL0/1 settings and input clock rates.  
clock. The LOL output will remain asserted until the  
divided multiplier output frequency differs from the  
PLL Jitter Transfer Functions (MULTSEL[1:0]=00) (dB)  
REFCLK frequency by less than the amount specified in  
0
CLKIN=622MHz  
Table 4.  
−1  
Note: LOL is not asserted during PWRDN/CAL.  
−2  
PLL Performance  
−3  
The Si5311 DSPLL circuitry is designed to provide low  
−4  
jitter generation, high jitter tolerance, and a well-  
controlled jitter transfer function with low peaking. Each  
−5  
of these key performance parameters is described more  
−6  
fully in the following sections.  
−7  
Jitter Tolerance  
−8  
Jitter tolerance for the Si5311 is defined as the  
maximum peak-to-peak sinusoidal jitter that can be  
−9  
103  
104  
105  
106  
added to the incoming clock before the PLL exceeds its  
allowable operating range and loses lock. The tolerance  
is a function of the jitter frequency, the incoming clock  
rate, and the MULTSEL0/1 settings.  
Figure 6. PLL Jitter Transfer Functions,  
MULTSEL[1:0] = 00  
(MULTOUT = 2400–2672 MHz)  
The jitter tolerance for specified jitter frequencies and  
input clock rates is given in Tables 5, 6, 7, and 8.  
Jitter Transfer  
PLL Jitter Transfer Functions (MULTSEL[1:0]=01) (dB)  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter for a specified jitter frequency. The  
jitter transfer characteristic determines the amount of  
input clock jitter that will be passed on to the Si5311  
CLKOUT and MULTOUT outputs. The DSPLL  
technology used in the Si5311 provides a tightly  
controlled jitter transfer curve because many of the PLL  
gain parameters are determined by digital signal  
processing algorithms which do not vary over supply  
voltage, process, and temperature. In a system  
application, a well-controlled transfer curve minimizes  
the output clock jitter variation from board to board,  
providing more consistent system level jitter  
performance.  
0
CLKIN=622MHz  
1  
2  
3  
4  
CLKIN=311MHz  
5  
6  
7  
8  
9  
103  
104  
105  
106  
The jitter transfer characteristic is a function of the  
MULTSEL0/1 settings and the input clock rate. Higher  
input clock rates produce higher bandwidth transfer  
functions with lower jitter peaking. Table 4 gives the  
3 dB bandwidth and peaking values for specified input  
clock rates and MULTSEL0/1 settings. Figures 6, 7, 8,  
and 9 show a family of jitter transfer curves for different  
input clock rates.  
Figure 7. PLL Jitter Transfer Functions,  
MULTSEL[1:0] = 01  
(MULTOUT = 1200–1336 MHz)  
Jitter Generation  
Jitter generation is defined as the amount of jitter  
produced at the output of the device with a jitter free  
input clock. Generated jitter arises from sources within  
the VCO and other PLL components. Jitter generation is  
a function of MULTSEL0/1 settings and input clock  
frequency. For clock multiplier applications, the higher  
Preliminary Rev. 0.6  
17  
Si5311  
and will begin to lock to the incoming clock.  
PLL Jitter Transfer Functions (MULTSEL[1:0]=10) (dB)  
PLL Self-Calibration  
0
1  
2  
3  
4  
5  
6  
7  
8  
CLKIN=622MHz  
Si5311 device provides an internal self-calibration  
function that optimizes the loop gain parameters within  
the internal DSPLL. Self-calibration is initiated by a  
high-to-low transition of the PWRDN/CAL signal while a  
valid reference clock is supplied to the REFCLK input.  
CLKIN=39MHz  
For optimal jitter performance, the supply voltage  
should be stable at 2.5 V ±10% when calibration is  
initiated. The PWRDN/CAL signal should be held high  
for at least 1 µS after the supply has stabilized before  
transitioning low to initiate self-calibration. See Silicon  
Laboratories application note AN42 for suggested  
methods of generating the PWRDN/CAL signal for  
initiation of self-calibration.  
9  
103  
104  
105  
106  
Figure 8. PLL Jitter Transfer Functions,  
MULTSEL[1:0] = 10  
Device Grounding  
The Si5311 uses the GND pad on the bottom of the 20-  
pin micro leaded package (MLP) for device ground. This  
pad should be connected directly to the analog supply  
ground. See Figures 12 and 13 for the ground (GND)  
pad location.  
(MULTOUT = 600–668 MHz)  
PLL Jitter Transfer Functions (MULTSEL[1:0]=11) (dB)  
0
CLKIN=155MHz  
1  
Bias Generation Circuitry  
2  
3  
The Si5311 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption compared with traditional  
implementations that use an internal resistor. The bias  
generation circuitry requires a 10 k(1%) resistor  
connected between REXT and GND.  
4  
CLKIN=9.7MHz  
5  
6  
7  
8  
9  
Differential Input Circuitry  
The Si5311 provides differential inputs for both the input  
clock (CLKIN) and the reference clock (REFCLK)  
inputs. An example termination for these inputs is  
shown in Figure 10. In applications where direct dc  
coupling is possible, the 0.1 µF capacitors may be  
omitted. The CLKIN and REFCLK input amplifiers  
require input signals with minimum differential peak-to-  
peak voltages as specified in Table 2 on page 6.  
103  
104  
105  
106  
Figure 9. PLL Jitter Transfer Functions,  
MULTSEL[1:0] = 11  
(MULTOUT = 150–167 MHz)  
Device Power-Down  
The Si5311 PWRDN/CAL input can be used to hold the  
device in a power-down state when not in use. When  
the PWRDN/CAL input is asserted (set high), the  
CLKOUT and MULTOUT output drivers are disabled  
and the positive and negative terminals of the CLKOUT  
and MULTOUT outputs are each tied to VDD through  
100 on-chip resistors. This feature is useful in  
reducing power consumption in applications that  
employ redundant clock sources. When PWRDN/CAL is  
released (set to low) the digital logic is reset to a known  
initial condition and the DSPLL circuitry is recalibrated  
Differential Output Circuitry  
The Si5311 utilizes a current mode logic (CML)  
architecture to output both the regenerated clock  
(CLKOUT) and the multiplied clock (MULTOUT). An  
example of output termination with ac coupling is shown  
in Figure 11. For applications in which direct dc coupling  
is possible, the 0.1 µF capacitors may be omitted. The  
differential peak-to-peak voltage swing of the CML is  
listed in Table 2 on page 6.  
18  
Preliminary Rev. 0.6  
Si5311  
Clock source  
Si5311  
VDD  
2.5 kΩ  
CLKIN +,  
RFCLK +  
0.1 µ F  
0.1 µ F  
Zo = 50 Ω  
Zo = 50 Ω  
10 kΩ  
2.5 kΩ  
102Ω  
CLKIN –,  
RFCLK –  
10 kΩ  
GND  
Figure 10. Input Termination for CLKIN and REFCLK (AC Coupled)  
Si5311  
VDD  
VDD  
50 Ω  
100 Ω  
CLKOUT+,  
MULTOUT+  
0.1 µ F  
0.1 µ F  
Zo = 50 Ω  
Zo = 50 Ω  
CLKOUT–,  
MULTOUT–  
100 Ω  
VDD  
50 Ω  
VDD  
Figure 11. Output Termination for CLKOUT and MULTOUT (AC Coupled)  
Preliminary Rev. 0.6  
19  
Si5311  
Pin Descriptions: Si5311  
20 19 18 17  
16  
10  
PWRDN  
VDD  
REXT  
VDD  
1
2
3
4
5
15  
14  
13  
GND  
CLKOUT+  
GND  
Pad  
12 CLKOUT–  
11  
REFCLK+  
REFCLK–  
VDD  
6
7
8
9
Top View  
Figure 12. Si5311 Pin Configuration  
Table 13. Si5311 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
External Bias Resistor.  
1
REXT  
This resistor is used by onboard circuitry to estab-  
lish bias currents within the device. This pin must  
be connected to GND through a 10 kΩ (1%) resis-  
tor.  
Supply Voltage.  
2, 7, 11, 14  
VDD  
GND  
2.5 V  
GND  
Nominally 2.5 V.  
Supply Ground.  
3, 8, 18, and  
GND Pad  
Nominally 0.0 V. The GND pad found on the bottom  
of the 20-pin micro leaded package (see Figure 13)  
must be connected directly to supply ground.  
Differential Reference Clock.  
4, 5  
REFCLK+,  
REFCLK–  
I
See Table 2  
The reference clock sets the initial operating fre-  
quency used by the onboard PLL for clock regener-  
ation and multiplication. Additionally, the reference  
clock is used as a reference in generation of the  
LOL output and to bound the frequency drift of  
MULTOUT when CLKIN is not present.  
Loss of Lock.  
6
LOL  
O
I
LVTTL  
This output is driven high when a divided version of  
the clock multiplier output deviates from the refer-  
ence clock frequency by the amount specified in  
Table 4 on page 8.  
Differential Clock Input.  
9, 10  
CLKIN+,  
CLKIN–  
See Table 2  
Differential input clock from which MULTOUT is  
derived.  
20  
Preliminary Rev. 0.6  
Si5311  
Table 13. Si5311 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Differential Clock Output.  
12, 13  
CLKOUT–,  
CLKOUT+  
O
CML  
The clock output signal is a regenerated version of  
the input clock signal present on CLKIN. It is phase  
aligned with MULTOUT and is updated on the rising  
edge of MULTOUT.  
Notes:The CLKOUT output is not valid for MULTSEL[1:0]  
= 00 or MULTSEL[1:0] = 01. The CLKOUT output  
is also not valid for MULTOUT:CLKIN ratios of 1:1  
(MULTOUT = 1x CLKIN).  
Connection of an improperly terminated  
transmission line to the CLKOUT output can  
cause reflections that may adversely affect the  
performance of the MULTOUT output. If the  
CLKOUT output is not used, these pins should be  
either tied to VDD (recommended), left  
unconnected, or connected to a properly  
terminated transmission line.  
15  
PWRDN/CAL  
I
LVTTL  
Power Down.  
To shut down the high-speed outputs and reduce  
power consumption, hold this pin high. For normal  
operation, hold this pin low.  
Calibration.  
To initiate an internal self-calibration, force a high-  
to-low transition on this pin. (See "PLL Self-Calibra-  
tion‚" on page 18.)  
Note: This input has a weak internal pulldown.  
Differential Multiplier Output.  
16, 17  
MULTOUT–,  
MULTOUT+  
O
CML  
The multiplier output is generated from the signal  
present on CLKIN. In the absence of CLKIN, the  
REFCLK is used to bound the frequency of MUL-  
TOUT according to Table 4 on page 8.  
Note: Connection of an improperly terminated  
transmission line to the MULTOUT output can  
cause reflections that may adversely affect the  
CLKOUT output. If the MULTOUT output is not  
used, these pins should be either tied to VDD  
(recommended), left unconnected, or connected  
to a properly terminated transmission line.  
Multiplier Rate Select.  
19  
20  
MULTSEL1,  
MULTSEL0  
I
LVTTL  
These pins configure the onboard PLL-based clock  
multiplier for clock generation at one of four user  
selectable clock rates.  
Note: These inputs have weak internal pulldowns.  
No Connect.  
This pin should be tied to ground.  
NC  
Preliminary Rev. 0.6  
21  
Si5311  
Ordering Guide  
Table 14. Ordering Guide  
Part Number  
Si5311-BM  
Package  
Temperature  
–40°C to 85°C  
20-pin MLP  
22  
Preliminary Rev. 0.6  
Si5311  
Package Outline  
Figure 13 illustrates the package details for the Si5311. Table 15 lists the values for the dimensions shown in the  
illustration.  
2X  
TOP VIEW  
0.25  
C
A
BOTTOM VIEW  
4
A
D
10  
D/2  
0.05  
C
4X  
P
M
D1  
b
0.10  
C
A
B
A
R
A1  
D2  
D1/2  
A2  
D2/2  
2X  
A3  
8.  
N
0.25  
C
B
N
4X  
P
5
6
E1/2  
E/2  
1
2
3
1
2
3
0.50 DIA.  
(Ne-1)Xe  
REF.  
4X  
Q
E1  
E
B
E2  
E2/2  
L
0.20  
C
B
0
2X  
e
C
0.20  
C
A
SEATING  
PLANE  
(Nd-1)Xe  
REF.  
2X  
11  
A1  
b
4
NOTES:  
1.  
2.  
C
C
DIE THICKNESS ALLOW ABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM)  
DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. - 1994.  
C
C
L
L
SECTION "C-C"  
SCALE: NONE  
N IS THE NUMBER OF TERMINALS.  
Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &  
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.  
3.  
e
e
4.  
5.  
DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED  
BETW EEN 0.20 AND 0.25mm FROM TERMINAL TIP.  
TERMINAL TIP  
THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE  
PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.  
FOR ODD TERMINAL/SIDE  
FOR EVEN TERMINAL/SIDE  
6.  
7.  
8.  
9.  
EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.  
ALL DIMENSIONS ARE IN MILLIMETERS.  
THE SHAPE SHOW N ON FOUR CORNERS ARE NOT ACTUAL I/O.  
PACKAGE W ARPAGE MAX 0.05mm.  
10. APPLIED FOR EXPOSED PAD AND TERMINALS.  
EXCLUDE EMBEDDING PART OF EXPOSED  
PAD FROM MEASURING.  
11. APPLIED ONLY FOR TERMINALS.  
Figure 13. 20-pin Micro Leaded Package (MLP)  
Table 15. Package Diagram Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.00  
Nom  
0.85  
Max  
1.00  
0.05  
0.80  
Min  
Nom  
3.75 BSC  
2.10  
20  
Max  
A
A1  
A2  
A3  
b
E1  
E2  
N
0.01  
1.95  
2.25  
0.65  
0.20 REF  
4.00 BSC  
3.75 BSC  
2.10  
0.50 BSC  
4.00 BSC  
Nd  
Ne  
L
5
0.18  
0.30  
5
D
0.50  
0.24  
0.30  
0.13  
0.60  
0.42  
0.40  
0.17  
0.75  
0.60  
0.65  
0.23  
12°  
D1  
D2  
e
P
1.95  
2.25  
Q
R
E
θ
Preliminary Rev. 0.6  
23  
Si5311  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
24  
Preliminary Rev. 0.6  

相关型号:

AUK

SI5311-H

Colorless transparency lens type
KODENSHI
AUK

SI53112-A00AGM

PLL Based Clock Driver, 53112 Series, 24 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53112-A00AGMR

PLL Based Clock Driver, 53112 Series, 24 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53115-A01AGM

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53115-A01AGMR

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53119-A03A

PLL or bypass mode
SILICON

SI53119-A03AGM

PLL Based Clock Driver, 53119 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72
SILICON

Si53119-A03AGMR

PLL or bypass mode
SILICON
AUK