SI53115-A01AGMR [SILICON]

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64;
SI53115-A01AGMR
型号: SI53115-A01AGMR
厂家: SILICON    SILICON
描述:

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64

驱动 逻辑集成电路
文件: 总33页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53115  
15-OUTPUT PCI  
E
G
EN  
3
BUFFER/ ZERO  
D
ELAY  
B
UFFER  
Features  
Fifteen 0.7 V low-power, push- Separate VDDIO for outputs  
pull HCSL PCIe Gen3 outputs  
PLL or bypass mode  
100 MHz /133 MHz PLL  
operation, supports PCIe and  
QPI  
Spread spectrum tolerable  
1.05 to 3.3 V I/O supply voltage  
50 ps output-to-output skew  
50 ps cyc-cyc jitter (PLL mode)  
PLL bandwidth SW SMBUS  
programming overrides the latch  
value from HW pin  
Low phase jitter (Intel QPI, PCIe  
Gen 1/2/3/4 common clock  
compliant)  
9 selectable SMBUS addresses  
SMBus address configurable to  
allow multiple buffers in a single  
control network 3.3 V supply  
voltage operation  
Gen 3 SRNS Compliant  
Ordering Information:  
100 ps input-to-output delay  
See page 30.  
Extended Temperature:  
–40 to 85 °C  
Pin Assignments  
64-pin QFN  
Applications  
VDD_IO  
VDDA  
GNDA  
100M_133M  
1
2
48  
47  
46  
45  
44  
43  
GND  
DIF_9  
Server  
Data center  
3
DIF_9  
DIF_8  
DIF_8  
HBW_BYPASS_LBW  
PWRGD / PWRDN  
GND  
4
5
Storage  
Enterprise switches and routers  
6
VDDR  
7
42 GND  
VDD  
CLK_IN  
8
41  
Si53115  
CLK_IN  
9
40  
39  
DIF_7  
DIF_7  
SA_0  
10  
11  
12  
13  
14  
15  
16  
Description  
SDA  
38 DIF_6  
37 DIF_6  
SCL  
SA_1  
VDD_IO  
36  
35 GND  
FBOUT_NC  
FBOUT_NC  
34  
33  
DIF_5  
DIF_5  
The Si53115 is a 15-output, low-power HCSL differential clock buffer that  
meets all of the performance requirements of the Intel DB1200ZL  
specification. The device is optimized for distributing reference clocks for  
GND  
®
Intel QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/Gen 3/  
Gen 4, SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI)  
applications. The VCO of the device is optimized to support 100 MHz and  
133 MHz operation. Each differential output can be enabled through I C  
Patents pending  
2
for maximum flexibility and power savings. Measuring PCIe clock jitter is  
quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it  
for free at www.silabs.com/pcie-learningcenter.  
Rev. 1.2 2/16  
Copyright © 2016 by Silicon Laboratories  
Si53115  
Si53115  
Functional Block Diagram  
FB_OUT  
SSC Compatible  
PLL  
DIF_[14:0]  
CLK_IN  
CLK_IN  
100M_133  
HBW_BYPASS_LBW  
SA_0  
SA_1  
Control  
Logic  
PWRGD / PWRDN  
SDA  
SCL  
2
Rev. 1.2  
Si53115  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1. CLK_IN, CLK_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.2. 100M_133M—Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.3. SA_0, SA_1—Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.4. CKPWRGD/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.5. HBW_BYPASS_LBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.6. Miscellaneous Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1. Input Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.2. Termination of Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1. Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.2. Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5. Pin Descriptions: 64-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6. Power Filtering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1. Ferrite Bead Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Rev. 1.2  
3
Si53115  
1. Electrical Specifications  
Table 1. DC Operating Characteristics  
VDD_A = 3.3 V±5%, VDD = 3.3 V±5%  
Parameter  
Symbol  
Test Condition  
3.3 V ±5%  
Min  
3.135  
0.9975  
2.0  
Max  
3.465  
3.465  
Unit  
V
3.3 V Core Supply Voltage  
VDD/VDD_A  
VDD_IO  
1
3.3 V I/O Supply Voltage  
1.05 V to 3.3 V ±5%  
VDD  
V
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
V
V
+0.3  
DD  
V
IH  
V
VSS–0.3  
–5  
0.8  
+5  
+0.3  
V
IL  
2
Input Leakage Current  
I
0 < VIN < V  
µA  
V
IL  
DD  
3
3.3 V Input High Voltage  
V
V
0.7  
V
IH_FS  
DD  
DD  
3
3.3 V Input Low Voltage  
V
VSS–0.3  
0
0.35  
0.8  
V
IL_FS  
3.3 V Input Low Voltage  
3.3 V Input Med Voltage  
3.3 V Input High Voltage  
V
V
IL_Tri  
V
1.2  
1.8  
V
IM_Tri  
V
2.2  
V
V
IH_Tri  
DD  
4
3.3 V Output High Voltage  
V
I
= –1 mA  
= 1 mA  
OL  
2.4  
V
OH  
OH  
4
3.3 V Output Low Voltage  
V
I
0.4  
4.5  
4.5  
7
V
OL  
5
Input Capacitance  
C
2.5  
pF  
pF  
nH  
°C  
IN  
5
Output Capacitance  
C
2.5  
OUT  
Pin Inductance  
Ambient Temperature  
Notes:  
L
PIN  
T
No Airflow  
–40  
85  
A
1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.  
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state  
current requirements.  
3. Internal voltage reference is to be used to guarantee VIH_FS and VIL_FS thresholds levels over full operating range.  
4. Signal edge is required to be monotonic when transitioning through this region.  
5. Ccomp capacitance based on pad metalization and silicon device capacitance. Not including pin capacitance.  
4
Rev. 1.2  
 
 
 
 
 
 
Si53115  
Table 2. SMBus Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
V
1
SMBus Input Low Voltage  
V
0.8  
ILSMB  
IHSMB  
1
SMBus Input High Voltage  
V
2.1  
V
V
DDSMB  
1
SMBus Output Low Voltage  
V
@ I  
0.4  
V
OLSMB  
DDSMB  
PULLUP  
PULLUP  
1
Nominal Bus Voltage  
V
@ V  
2.7  
4
5.5  
V
OL  
1
SMBus Sink Current  
I
3 V to 5 V +/-10%  
(Max V – 0.15) to (Min V + 0.15)  
mA  
ns  
ns  
kHz  
1
SCLK/SDAT Rise Time  
t
1000  
300  
RSMB  
IL  
IH  
1
SCLK/SDAT Fall Time  
t
(Min V + 0.15) to (Max V – 0.15)  
IH IL  
FSMB  
1, 2  
SMBus Operating Frequency  
f
Minimum Operating Frequency  
100  
MINSMB  
Notes:  
1. Guaranteed by design and characterization.  
2. The differential input clock must be running for the SMBus to be active.  
Table 3. Current Consumption  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Test Condition  
133 MHz, VDD Rail  
Min  
Typ  
25  
Max  
30  
25  
110  
1
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current  
IDD  
VDD  
VDDA  
IDD  
133 MHz, VDDA + VDDR, PLL Mode  
133 MHz, CL = Full Load, VDD IO Rail  
Power Down, VDD Rail  
20  
IDD  
100  
0.5  
4
VDDIO  
Power Down Current  
IDD  
VDDPD  
VDDAPD  
VDDIOPD  
IDD  
IDD  
Power Down, VDDA Rail  
7
Power Down, VDD_IO Rail  
0.4  
0.7  
Rev. 1.2  
5
 
 
Si53115  
Table 4. Clock Input Parameters  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input High Voltage  
V
Differential Inputs  
600  
700  
1150  
mV  
IHDIF  
(singled-ended measurement)  
Input Low Voltage  
V
Differential Inputs  
(singled-ended measurement)  
Vss-  
300  
0
300  
mV  
IHDIF  
Input Common Mode Voltage  
Input Amplitude—CLK_IN  
Input Slew Rate—CLK_IN  
Input Duty Cycle  
V
Common mode input voltage  
Peak to Peak Value  
300  
300  
0.4  
45  
1000  
1450  
8
mV  
mV  
V/ns  
%
com  
V
swing  
dv/dt  
Measured differentially  
Measurement from differential wave  
form  
50  
55  
Input Jitter—Cycle to Cycle  
Input Frequency  
J
Differential measurement  
125  
150  
110  
ps  
DFin  
F
V
= 3.3 V, bypass mode  
DD  
33  
90  
MHz  
MHz  
MHz  
kHz  
ibyp  
iPLL  
F
V
= 3.3 V, 100 MHz PLL Mode  
100  
DD  
FiPLL  
V
= 3.3 V, 133.33 MHz PLL Mode  
Triangle Wave modulation  
120  
30  
133.33 147  
31.5 33  
DD  
Input SS Modulation Rate  
fMODIN  
6
Rev. 1.2  
 
Si53115  
Table 5. Output Skew, PLL Bandwidth and Peaking  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
CLK_IN, DIF[x:0]  
Input-to-Output Delay in PLL Mode  
–100  
18  
100  
ps  
1,2,3,4  
Nominal Value  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
DIF[11:0]  
Input-to-Output Delay in Bypass Mode  
2.5  
–50  
–250  
0
3.6  
20  
4.5  
50  
ns  
ps  
ps  
ps  
2,4,5  
Nominal Value  
Input-to-Output Delay Variation in PLL mode  
2,4,5  
Over voltage and temperature  
Input-to-Output Delay Variation in Bypass Mode  
250  
50  
2,4,5  
Over voltage and temperature  
Output-to-Output Skew across all 15 Outputs  
20  
1,2,3,4,5  
(Common to Bypass and PLL Mode)  
6
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
PLL Bandwidth  
Notes:  
(HBW_BYPASS_LBW = 0)  
0.4  
0.1  
0.7  
2
2.0  
2.5  
1.4  
4
dB  
dB  
6
(HBW_BYPASS_LBW = 1)  
7
(HBW_BYPASS_LBW = 0)  
MHz  
MHz  
7
(HBW_BYPASS_LBW = 1)  
1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the  
corresponding input.  
2. Measured from differential cross-point to differential cross-point.  
3. This parameter is deterministic for a given device.  
4. Measured with scope averaging on to find mean value.  
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created  
by it.  
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL  
jitter peaking.  
7. Measured at 3 db down or half power point.  
Rev. 1.2  
7
 
 
 
 
 
 
 
Si53115  
Table 6. Phase Jitter  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
1,2,3  
Phase Jitter  
PLL Mode  
PCIe Gen 1, Common Clock  
29  
86  
ps  
1,2,3  
1,2,3  
PCIe Gen 2 Low Band, Common Clock  
1.0  
1.7  
3.0  
3.1  
1.0  
0.71  
1.0  
0.5  
0.3  
0.2  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen 2 High Band, Common Clock  
ps  
(RMS)  
1,3,4,5  
1.5 MHz < F < Nyquist  
1,2,3  
PCIe Gen 3, Common Clock  
0.45  
0.32  
0.45  
0.21  
0.13  
0.11  
ps  
(RMS)  
1,3,4,5  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
PCIe Gen 3 Separate Reference No Spread, SRNS  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
®
Intel QPI & Intel SMI  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel SMI  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Intel QPI & Intel SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
8
Rev. 1.2  
 
 
 
 
 
 
Si53115  
Table 6. Phase Jitter (Continued)  
1,2,3  
Additive Phase Jitter  
Bypass Mode  
PCIe Gen 1  
10  
ps  
PCIe Gen 2 Low Band  
1.0  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen 2 High Band  
1.5 MHz < F < Nyquist  
1.0  
0.3  
0.3  
0.12  
0.1  
0.1  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 3  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6  
(8 Gb/s, 100 MHz, 12 UI)  
Intel QPI & Intel® SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.2  
9
Si53115  
Table 7. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
1.5  
Max  
1.8  
2
Clock Stabilization Time  
T
ms  
ppm  
ns  
STAB  
3,4,5  
Long Term Accuracy  
L
100  
ACC  
3,4,6  
3,4,6  
Absolute Host CLK Period (100 MHz)  
Absolute Host CLK Period (133 MHz)  
T
9.94900  
7.44925  
1.0  
10.05100  
7.55075  
4.0  
ABS  
T
ns  
ABS  
3,4,7  
Slew Rate  
Edge_rate  
Trise  
3.0  
V/ns  
ps  
3,8,9  
Rise Time Variation  
125  
3,8,9  
Fall Time Variation  
Tfall  
125  
ps  
3,8,10,11  
T
/T  
Rise/Fall Matching  
7
20  
%
RISE_MAT FALL_MAT  
3,8,12  
Voltage High (typ 0.7 V)  
V
660  
–150  
750  
15  
850  
850  
mV  
mV  
mV  
mV  
mV  
mV  
%
HIGH  
3,8,13  
Voltage Low (typ 0.7 V)  
V
150  
LOW  
Maximum Voltage  
Minimum Voltage  
V
1150  
MAX  
V
–300  
300  
MIN  
3,8,14,15,16  
Absolute Crossing Point Voltages  
Vox  
450  
14  
550  
ABS  
3,8,18  
Total Variation of Vcross Over All Edges  
Total Vox  
140  
3,5  
Duty Cycle  
DC  
45  
55  
3,8,19  
Maximum Voltage (Overshoot)  
V
V
+ 0.3  
High  
V
ovs  
10  
Rev. 1.2  
Si53115  
Table 7. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1 (Continued)  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
Max  
– 0.3  
Low  
3,8,20  
Maximum Voltage (Undershoot)  
Ringback Voltage  
Notes:  
V
V
V
V
uds  
V
0.2  
N/A  
rb  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the  
time that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , 2 pF for 100 transmission line; Rs = 27 , 2 pF for 85 transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from  
–150 mV to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making  
most of the dynamic wiggles along the clock edge. Only valid for Rising clock and Falling CLOCK. Signal must be  
monotonic through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, and averaging on. The difference between the rising edge rate (average) of clock verses  
the falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following, 2*(Trise – Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge  
is crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figure 34 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
Rev. 1.2  
11  
 
Si53115  
Table 8. Clock Periods Differential Clock Outputs with SSC Disabled  
SSC OFF  
Center  
Freq, MHz  
Measurement Window  
Unit  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
–C-C  
Jitter  
–SSC  
Short  
–ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer Term AVG Term AVG Nominal Term AVG Term AVG  
AbsPer  
Max  
Min  
Min  
Min  
Max  
Max  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000 10.00100  
10.05100  
7.55075  
ns  
ns  
7.50000  
7.50075  
Table 9. Clock Periods Differential Clock Outputs with SSC Enabled  
SSC ON  
Center  
Freq, MHz  
Measurement Window  
Unit  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
–C-C  
Jitter  
–SSC  
Short  
–ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer Term AVG Term AVG Nominal Term AVG Term AVG  
AbsPer  
Max  
Min  
Min  
Min  
Max  
Max  
99.75  
9.94900  
7.44925  
9.99900  
7.49925  
10.02406 10.02506 10.02607 10.05126 10.10126  
ns  
ns  
133.33  
7.51805  
7.51880  
7.51955  
7.53845  
7.58845  
Table 10. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
4.6  
4.6  
4.6  
Unit  
1
3.3 V Core Supply Voltage  
VDD/VDD_A  
VDD_IO  
VIH  
V
V
1
3.3 V I/O Supply Voltage  
1,2  
3.3 V Input High Voltage  
V
1
3.3 V Input Low Voltage  
VIL  
0.5  
–65  
2000  
V
1
Storage Temperature  
t
150  
°C  
V
s
3
Input ESD protection  
ESD  
Notes:  
1. Consult manufacturer regarding extended operation in excess of normal DC operating parameters.  
2. Maximum VIH is not to exceed maximum VDD  
.
3. Human body model.  
12  
Rev. 1.2  
 
 
Si53115  
2. Functional Description  
2.1. CLK_IN, CLK_IN  
The differential input clock is expected to be sourced from a clock synthesizer or PCH.  
2.2. 100M_133M—Frequency Selection  
The Si53115 is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz.  
100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs.  
Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53115 is operated in 1:1  
mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pull-down  
resistor is attached to this pin to select the input/output frequency. The functionality is summarized in Table 11.  
Table 11. Frequency Program Table  
100M_133M  
Optimized Frequency (DIF_IN = DIF_x)  
133.33 MHz  
0
1
100.00 MHz  
Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.  
2.3. SA_0, SA_1—Address Selection  
SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the Si53115. These are the  
two tri-level input pins that can configure the device to nine different addresses.  
Table 12. SMBUS Address Table  
SA_1  
L
SA_0  
L
SMBUS Address  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
L
M
H
L
M
M
M
H
L
M
H
L
H
M
H
H
Rev. 1.2  
13  
 
Si53115  
2.4. CKPWRGD/PWRDN  
CKPWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to  
indicating a power down condition. CKPWRGD (assertion) is used by the Si53115 to sample initial configurations,  
such as frequency select conditions and SA selections. After CKPWRGD has been asserted high for the first time,  
the pin becomes a PWRDN (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device  
to invoke power-saving mode. PWRDN is a completely asynchronous active low input. When entering power-  
saving mode, PWRDN should be asserted low prior to shutting off the input clock or power to ensure all clocks shut  
down in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior to turning off the VCO.  
When PWRDN is deasserted high, all clocks will start and stop without any abnormal behavior and will meet all AC  
and DC parameters.  
Note: The assertion and deassertion of PWRDN is absolutely asynchronous.  
Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended.  
Operation in this mode may result in glitches, excessive frequency shifting, etc.  
Table 13. CKPWRGD/PWRDN Functionality  
CKPWRGD/  
PWRDN  
DIF_IN/  
DINF_IN#  
SMBus  
EN bit  
DIF-x/  
DIF_x#  
FBOUT_NC/  
FBOUT_NC#  
PLL State  
0
1
X
X
0
1
Low/Low  
Low/Low  
Running  
Low/Low  
Running  
Running  
OFF  
ON  
Running  
ON  
14  
Rev. 1.2  
Si53115  
2.4.1. PWRDN Assertion  
When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held LOW/  
LOW on the next DIF high-to-low transition.  
PWRDWN  
DIF  
DIF  
Figure 1. PWRDN Assertion  
2.4.2. CKPWRGD Assertion  
The power up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion  
of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs  
stopped in a LOW/LOW condition resulting from power down must be driven high in less than 300 µs of PWRDN  
deassertion to a voltage greater than 200 mV.  
Tstable  
<1.8 ms  
DIF  
DIF  
Tdrive_Pwrdn#  
<300 µs; > 200 mV  
Figure 2. PWRDG Assertion (Pwrdown—Deassertion)  
Rev. 1.2  
15  
Si53115  
2.5. HBW_BYPASS_LBW  
The HBW_BYPASS_LBW pin is a tri-level function input pin (refer to Table 1 for VIL_Tri, VIM_Tri, and VIH_Tri  
signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In  
PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive  
cycle-to-cycle jitter (50 ps + input jitter) on the differential outputs. In the PLL mode, the input clock is passed  
through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be selected by  
asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 14.  
Table 14. PLL Bandwidth and Readback Table  
HBW_BYPASS_LBW Pin  
Mode  
LBW  
Byte 0, Bit 7  
Byte 0, Bit 6  
L
M
H
0
0
1
0
1
1
BYPASS  
HBW  
The Si53115 has the ability to override the latch value of the PLL operating mode from hardware strap Pin 5 via the  
use of Byte 0 and Bits 2 and 1. Byte 0 Bit 3 must be set to 1 to allow the user to change Bits 2 and 1, affecting the  
PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will have to be  
accomplished if the user changes these bits.  
2.6. Miscellaneous Requirements  
Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps)  
functionality is optional.  
Logic Levels: SMBus logic levels are based on a percentage of V  
for the controller and other devices on the  
DD  
bus. Assume all devices are based on a 3.3 V supply.  
Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock  
stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than  
this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all  
data transfers can be completed as specified without the use of clock/data stretching.  
General Call: It is assumed that the clock buffer will not have to respond to the “general call.”  
Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in  
Section 3 of the SMBus 2.0 specification.  
Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual  
data sheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board  
designer will use a single external pull-up resistor for each line and that these values are in the 5–6 krange.  
Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock  
driver plus one/two more SMBus devices on the platform for capacitive loading purposes.  
Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock  
buffer is specified as a standard mode device and is not required to support this feature. However, it is considered  
a good design practice to include the filters.  
PWRDN: If a clock buffer is placed in PWRDN mode, the SDATA and SCLK inputs must be Tri-stated and the  
device must retain all programming information. I current due to the SMBus circuitry must be characterized and  
DD  
in the data sheet.  
16  
Rev. 1.2  
 
Si53115  
3. Test and Measurement Setup  
3.1. Input Edge  
Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53115  
is guaranteed to meet all performance specifications.  
Table 15. Input Edge Rate  
Frequency  
100 MHz  
133 MHz  
Min  
0.35  
0.35  
Max  
N/A  
N/A  
Unit  
V/ns  
V/ns  
3.1.1. Measurement Points for Differential  
Slew_fall  
Slew_rise  
+150 mV  
+150 mV  
-150 mV  
0.0 V  
V_swing  
0.0 V  
-150 mV  
Diff  
Figure 3. Measurement Points for Rise Time and Fall Time  
Vovs  
VHigh  
Vrb  
Vrb  
VLow  
Vuds  
Figure 4. Single-ended Measurement Points for Vovs, Vuds, Vrb  
Rev. 1.2  
17  
Si53115  
TPeriod  
Low Duty Cycle %  
High Duty Cycle %  
Skew measurement  
point  
0.000 V  
Figure 5. Differential (CLOCK–CLOCK) Measurement Points (Tperiod, Duty Cycle, Jitter)  
3.2. Termination of Differential Outputs  
All differential outputs are to be tested into a 100 or 85 differential impedance transmission line. Source  
terminated clocks have some inherent limitations as to the maximum trace length and frequencies that can be  
supported. For CPU outputs, a maximum trace length of 10” and a maximum of 200 MHz are assumed. For SRC  
clocks, a maximum trace length of 16” and maximum frequency of 100 MHz is assumed. For frequencies beyond  
200 MHz, trace lengths must be restricted to avoid signal integrity problems.  
Table 16. Differential Output Termination  
Clock  
Board Trace Impedance  
Rs  
Rp  
N/A  
N/A  
Unit  
DIFF Clocks—50 configuration  
DIFF Clocks—43 configuration  
100  
85  
33+5%  
27+5%  
3.2.1. Termination of Differential NMOS Push-Pull Type Outputs  
Rs  
Clock  
T-Line  
10" Typical  
Receiver  
2 pF  
Source Terminated  
Rs  
2 pF  
Clock #  
T-Line  
10" Typical  
Figure 6. 0.7 V Configuration Test Load Board Termination for NMOS Push-Pull  
18  
Rev. 1.2  
Si53115  
4. Control Registers  
4.1. Byte Read/Write  
Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register  
number.  
4.1.1. Byte Read  
The standard byte read is as shown in Figure 7. It is an extension of the byte write. The write start condition is  
repeated; then, the slave device starts sending data, and the master acknowledges it until the last byte is sent. The  
th  
master terminates the transfer with a NAK, then a stop condition. For byte operation, the 2 x 7 bit of the command  
th  
byte must be set. For block operations, the 2 x 7 bit must be reset. If the bit is not set, the next byte must be the  
byte transfer count.  
1
7
1 1  
8
1 1  
7
1 1  
8
1 1  
r
Rd  
Data Byte 0  
Wr  
A
A
N
P
T Slave  
Command  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
Not ack  
Command  
starT  
Condition  
Byte Read Protocol  
repeat starT  
Acknowledge  
stoP  
Condition  
Master to  
Slave to  
Figure 7. Byte Read Protocol  
4.1.2. Byte Write  
th  
Figure 8 illustrates a simple, typical byte write. For byte operation, the 2 x 7 bit of the command byte must be set.  
For block operations, the 2 x 7 bit must be reset. If the bit is not set, the next byte must be the byte transfer count.  
th  
The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.  
1
7
1 1  
8
1
8
1 1  
Wr  
A
P
A
T Slave  
Command  
A Data Byte 0  
Register # to  
write  
2 x 7 bit = 1  
Command  
starT Condition  
stoP Condition  
Acknowledge  
Master to  
Slave to  
Byte Write Protocol  
Figure 8. Byte Write Protocol  
Rev. 1.2  
19  
 
 
Si53115  
4.2. Block Read/Write  
4.2.1. Block Read  
After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The  
slave acknowledges the register index in the command byte. The master sends a repeat start function. After the  
slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <33). The master  
acknowledges each byte except the last and sends a stop function.  
1
7
1 1  
8
1 1  
7
1 1  
r
Rd  
Wr  
A
A
T Slave  
Command Code  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
repeat starT  
Acknowledge  
Command  
starT  
Condition  
Master to  
Slave to  
8
1
8
1
8
1 1  
Data Byte  
Data Byte 0  
A
A Data Byte 1 N P  
Not acknowledge  
stoP Condition  
Block Read Protocol  
Figure 9. Block Read Protocol  
4.2.2. Block Write  
After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The  
lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will  
be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the  
master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this  
byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte  
received. The transfer is terminated after the slave sends the ACK and the master sends a stop function.  
1
7
1 1  
8
1
A
Master to  
Slave to  
Wr  
Command  
A
T Slave Address  
Register # to  
write  
Command bit  
starT  
Acknowledge  
2 x 7 bit = 0  
Condition  
1
8
1
8
1 1  
8
A Data Byte 1 A P  
Byte Count = 2  
Data Byte 0  
A
stoP Condition  
Block Write Protocol  
Figure 10. Block Write Protocol  
20  
Rev. 1.2  
Si53115  
4.3. Control Registers  
Table 17. Byte 0: Frequency Select, Output Enable, PLL Mode Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
100M_133M#  
Frequency Select  
133 MHz  
100 MHz  
R
Latched at  
power up  
DIF[11:0]  
1
2
3
4
5
6
Reserved  
Reserved  
Low/Low  
Low/Low  
Reserved  
0
0
1
1
0
Output Enable DIF 13  
Output Enable DIF 14  
Enable  
Enable  
RW  
RW  
DIF_13  
DIF_14  
PLL Mode 0  
PLL Mode 1  
See PLL Operating Mode  
Readback Table  
R
R
Latched at  
power up  
7
See PLL Operating Mode  
Readback Table  
Latched at  
power up  
Table 18. Byte 1: Output Enable Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Reserved  
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Reserved  
Low/Low  
0
1
1
1
1
1
0
1
Output Enable DIF 0  
Output Enable DIF 1  
Output Enable DIF 2  
Output Enable DIF 3  
Output Enable DIF 4  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
RW  
RW  
DIF[0]  
DIF[1]  
DIF[2]  
DIF[3]  
DIF[4]  
Output Enable DIF 5  
Enabled  
RW  
DIF[5]  
Rev. 1.2  
21  
Si53115  
Table 19. Byte 2: Output Enable Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Output Enable DIF 6  
Output Enable DIF 7  
Output Enable DIF 8  
Output Enable DIF 9  
Low/Low  
Low/Low  
Low/Low  
Low/Low  
Reserved  
Low/Low  
Low/Low  
Low/Low  
Enabled  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
RW  
1
1
1
1
0
1
1
1
DIF[6]  
DIF[7]  
DIF[8]  
DIF[9]  
Output Enable DIF 10  
Output Enable DIF 11  
Output Enable DIF 12  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
DIF[10]  
DIF[11]  
DIF[12]  
Table 20. Byte 3: Reserved Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
22  
Rev. 1.2  
Si53115  
Table 21. Byte 4: Reserved Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
Table 22. Byte 5: Vendor/Revision Identification Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Vendor ID Bit 0  
Vendor ID Bit 1  
R
R
R
R
R
R
R
R
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
0
0
0
1
0
0
0
0
Vendor ID Bit 2  
Vendor ID Bit 3  
Revision Code Bit 0  
Revision Code Bit 1  
Revision Code Bit 2  
Revision Code Bit 3  
Table 23. Byte 6: Device ID Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Device ID 0  
Device ID 1  
R
R
R
R
R
R
R
R
0
1
1
1
0
1
1
1
Device ID 2  
Device ID 3  
Device ID 4  
Device ID 5  
Device ID 6  
Device ID 7 (MSB)  
Rev. 1.2  
23  
Si53115  
Table 24. Byte 7: Byte Count Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
BC0: Writing to this register  
configures how many bytes will  
be read back  
RW  
0
BC1: Writing to this register  
configures how many bytes will  
be read back  
RW  
RW  
RW  
RW  
0
0
1
0
BC2: Writing to this register  
configures how many bytes will  
be read back  
BC3: Writing to this register  
configures how many bytes will  
be read back  
BC4: Writing to this register  
configures how many bytes will  
be read back  
5
6
7
Reserved  
Reserved  
Reserved  
0
0
0
24  
Rev. 1.2  
Si53115  
5. Pin Descriptions: 64-Pin QFN  
VDD_IO  
VDDA 1  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
GND  
DIF_9  
GNDA  
100M_133M  
HBW_BYPASS_LBW  
PWRGD / PWRDN  
GND  
2
3
DIF_9  
DIF_8  
DIF_8  
4
5
6
VDDR  
GND  
VDD  
7
CLK_IN  
8
Si53115  
CLK_IN  
9
DIF_7  
DIF_7  
DIF_6  
DIF_6  
VDD_IO  
SA_0  
10  
11  
12  
13  
14  
15  
16  
SDA  
SCL  
SA_1  
FBOUT_NC  
FBOUT_NC  
35 GND  
34  
33  
DIF_5  
DIF_5  
GND  
Rev. 1.2  
25  
Si53115  
Table 25. Si53115 64-Pin QFN Descriptions  
Pin #  
Name  
VDDA  
GNDA  
Type  
Description  
3.3 V 3.3 V power supply for PLL.  
1
2
GND Ground for PLL.  
I,SE 3.3 V tolerant inputs for input/output frequency selection. An external pull-  
3
100M_133M  
up or pull-down resistor is attached to this pin to select the input/output  
frequency.  
High = 100 MHz output  
Low = 133 MHz output  
I, SE Tri-Level input for selecting the PLL bandwidth or bypass mode.  
High = High BW mode  
4
HBW_BYPASS_LBW  
Med = Bypass mode  
Low = Low BW mode  
I
3.3 V LVTTL input to power up or power down the device.  
5
6
7
PWRGD/PWRDN  
GND  
GND Ground for outputs.  
VDD 3.3 V power supply for differential input receiver. This VDDR should be  
treated as an analog power rail and filtered appropriately.  
VDDR  
I, DIF 0.7 V Differential input.  
8
CLK_IN  
CLK_IN  
SA_0  
I, DIF 0.7 V Differential input.  
9
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
I/O Open collector SMBus data.  
10  
11  
12  
13  
14  
SDA  
I/O SMBus slave clock input.  
SCL  
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
SA_1  
I/O Complementary differential feedback output. There are active signals on  
Pins 15 and 16, do not connect anything to this pin.  
FBOUT_NC  
I/O True differential feedback output. There are active signals on Pins 15 and  
16; do not connect anything to Pin 15.  
15  
FBOUT_NC  
GND Ground for outputs.  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
DIF_0  
DIF_0  
VDDIO  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
3.3 V 3.3 V power supply for differential outputs.  
GND Ground for outputs.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
DIF_1  
DIF_1  
DIF_2  
DIF_2  
26  
Rev. 1.2  
Si53115  
Table 25. Si53115 64-Pin QFN Descriptions (Continued)  
Pin #  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
Name  
GND  
Type  
Description  
GND Ground for outputs.  
3.3 V 3.3 V power supply.  
VDD  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD Power supply for differential outputs.  
GND Ground for outputs.  
DIF_3  
DIF_3  
DIF_4  
DIF_4  
VDD_IO  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
GND Ground for outputs.  
DIF_5  
DIF_5  
GND  
VDD Power supply for differential outputs.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
3.3 V 3.3 V power supply.  
VDD_IO  
DIF_6  
DIF_6  
DIF_7  
DIF_7  
VDD  
GND Ground for outputs.  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
GND Ground for outputs.  
DIF_8  
DIF_8  
DIF_9  
DIF_9  
GND  
VDD Power supply for differential outputs.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD Power supply for differential outputs.  
GND Ground for outputs.  
VDD_IO  
DIF_10  
DIF_10  
VDD_IO  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
DIF_11  
Rev. 1.2  
27  
Si53115  
Table 25. Si53115 64-Pin QFN Descriptions (Continued)  
Pin #  
54  
Name  
DIF_11  
DIF_12  
DIF_12  
GND  
Type  
Description  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
GND Ground for outputs.  
55  
56  
57  
3.3 V 3.3 V power supply for outputs.  
58  
VDD  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD Power supply for differential outputs.  
GND Ground for outputs.  
59  
DIF_13  
DIF_13  
DIF_14  
DIF_14  
60  
61  
62  
63  
64  
VDD_IO  
GND  
28  
Rev. 1.2  
Si53115  
6. Power Filtering Example  
6.1. Ferrite Bead Power Filtering  
Silicon Labs recommends using a ferrite bead with characteristics matching Murata BLM15EG221SN1.  
Figure 11. Recommended Si53115 Power Filtering  
Rev. 1.2  
29  
Si53115  
7. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53115-A01AGM  
Si53115-A01AGMR  
64-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
64-pin QFN—Tape and Reel  
30  
Rev. 1.2  
Si53115  
8. Package Outline  
Figure 12 illustrates the package details for the Si53115. Table 26 lists the values for the dimensions shown in the  
illustration.  
Figure 12. 64-Pin Quad Flat No Lead (QFN) Package  
Table 26. Package Dimensions1,2,3,4  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Dimension  
Min  
6.00  
0.30  
Nom  
6.10  
0.40  
0.10  
0.10  
0.08  
0.10  
0.05  
Max  
6.20  
0.50  
A
E2  
L
A1  
0.02  
b
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
D
9.00 BSC.  
6.10  
D2  
6.00  
6.20  
e
E
0.50 BSC.  
9.00 BSC.  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.2  
31  
 
 
 
 
Si53115  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 6, “Phase Jitter,” on page 8.  
Revision 1.1 to Revision 1.2  
February 22, 2016  
Corrected specs in Table 1, “DC Operating  
Characteristics,” on page 4.  
Updated operating characteristics in Table 3,  
Table 4, and Table 5.  
Updated package drawing (Figure 12) and package  
dimensions (Table 26).  
32  
Rev. 1.2  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI53119-A03A

PLL or bypass mode
SILICON

SI53119-A03AGM

PLL Based Clock Driver, 53119 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72
SILICON

Si53119-A03AGMR

PLL or bypass mode
SILICON
AUK

SI5312-H

Colorless transparency lens type
KODENSHI
AUK
AUK
AUK