SI53112-A00AGMR [SILICON]

PLL Based Clock Driver, 53112 Series, 24 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64;
SI53112-A00AGMR
型号: SI53112-A00AGMR
厂家: SILICON    SILICON
描述:

PLL Based Clock Driver, 53112 Series, 24 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64

驱动 逻辑集成电路
文件: 总35页 (文件大小:1447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53112  
DB1200ZL 12-OUTPUT PCI  
E
GEN 3 BUFFER  
Features  
Twelve 0.7 V low-power, push- PLL or bypass mode  
pull, HCSL-compatible  
PCIe Gen 3 outputs  
Spread spectrum tolerable  
1.05 to 3.3 V I/O supply voltage  
50 ps output-to-output skew  
50 ps cyc-cyc jitter (PLL mode)  
Individual OE HW pins for each  
output clock  
100 MHz /133 MHz PLL  
operation, supports PCIe and  
QPI  
Low phase jitter (Intel QPI, PCIe  
Gen 1/2/3/4 common clock  
compliant)  
PLL bandwidth SW SMBUS  
programming overrides the latch  
value from HW pin  
Gen 3 SRNS Compliant  
100 ps input-to-output delay  
Ordering Information:  
Extended Temperature:  
See page 30.  
9 selectable SMBUS addresses  
–40 to 85 °C  
SMBus address configurable to  
allow multiple buffers in a single  
control network 3.3 V supply  
voltage operation  
Package: 64-pin QFN  
Patents pending  
For higher output devices or  
variations of this device, contact  
Silicon Labs  
Applications  
Server  
Datacenter  
Storage  
Enterprise Switches and Routers  
Description  
The Si53112 is a low-power, 12-output, differential clock buffer that meets  
all of the performance requirements of the Intel DB1200ZL specification.  
®
The device is optimized for distributing reference clocks for Intel  
QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/Gen 3/Gen 4,  
SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI)  
applications. The VCO of the device is optimized to support 100 MHz and  
133 MHz operation. Each differential output has a dedicated hardware  
output enable pin for maximum flexibility and power savings. Measuring  
PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter  
Tool. Download it for free at www.silabs.com/pcie-learningcenter.  
Rev. 1.1 12/15  
Copyright © 2015 by Silicon Laboratories  
Si53112  
Si53112  
Functional Block Diagram  
OE_[11:0]  
12  
FB_OUT  
SSC Compatible  
PLL  
DIF_[11:0]  
CLK_IN  
CLK_IN  
100M_133  
HBW_BYPASS_LBW  
SA_0  
SA_1  
Control  
Logic  
PWRGD / PWRDN  
SDA  
SCL  
2
Rev. 1.1  
Si53112  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1. CLK_IN, CLK_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2. OE and Output Enables (Control Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3. 100M_133M—Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.4. SA_0, SA_1—Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.5. PWRGD/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6. HBW_BYPASS_LBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.7. Miscellaneous Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.8. Buffer Power-Up State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1. Input Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.2. Termination of Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1. Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.2. Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5. Power Filtering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1. Ferrite Bead Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6. Pin Descriptions: 64-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9. Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Rev. 1.1  
3
Si53112  
1. Electrical Specifications  
Table 1. DC Operating Characteristics  
VDD_A = 3.3 V±5%, VDD = 3.3 V±5%  
Parameter  
Symbol  
Test Condition  
3.3 V ±5%  
Min  
3.135  
0.9975  
2.0  
Max  
3.465  
3.465  
VDD+0.3  
0.8  
Unit  
V
3.3 V Core Supply Voltage  
VDD/VDD_A  
VDD_IO  
1
3.3 V I/O Supply Voltage  
1.05 V to 3.3 V ±5%  
VDD  
V
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
V
V
IH  
V
VSS-0.3  
–5  
V
IL  
2
Input Leakage Current  
I
0 < VIN < VDD  
VDD  
+5  
µA  
V
IL  
3
3.3 V Input High Voltage  
V
0.7  
VDD+0.3  
0.35  
0.8  
IH_FS  
3
3.3 V Input Low Voltage  
V
VSS–0.3  
0
V
IL_FS  
3.3 V Input Low Voltage  
3.3 V Input Med Voltage  
3.3 V Input High Voltage  
V
V
IL_Tri  
V
1.2  
1.8  
V
IM_Tri  
V
2.2  
VDD  
V
IH_Tri  
4
3.3 V Output High Voltage  
V
I
= –1 mA  
= 1 mA  
OL  
2.4  
V
OH  
OH  
4
3.3 V Output Low Voltage  
V
I
0.4  
V
OL  
5
Input Capacitance  
C
2.5  
4.5  
pF  
pF  
nH  
°C  
IN  
5
Output Capacitance  
C
2.5  
4.5  
OUT  
Pin Inductance  
Ambient Temperature  
Notes:  
L
7
PIN  
T
No Airflow  
–40  
85  
A
1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.  
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state  
current requirements.  
3. Internal voltage reference is to be used to guarantee VIH_FS and VIL_FS thresholds levels over full operating range.  
4. Signal edge is required to be monotonic when transitioning through this region.  
5. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including pin capacitance.  
Table 2. Current Consumption  
TA = –40 to 85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Test Condition  
133 MHz, VDD Rail  
Min  
Typ  
18  
17  
85  
0.4  
2
Max  
25  
20  
110  
1
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current  
IDD  
VDD  
IDD  
IDD  
133 MHz, VDDA + VDDR, PLL Mode  
133 MHz, CL = Full Load, VDD IO Rail  
Power Down, VDD Rail  
VDDA  
VDDIO  
VDDPD  
VDDAPD  
VDDIOPD  
Power Down Current IDD  
IDD  
IDD  
Power Down, VDDA Rail  
5
Power Down, VDD_IO Rail  
0.2  
0.5  
4
Rev. 1.1  
 
 
 
 
 
Si53112  
Table 3. Output Skew, PLL Bandwidth and Peaking  
TA = –40 to 85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Test Condition  
Min  
TYP  
Max  
Unit  
CLK_IN, DIF[x:0]  
Input-to-Output Delay in PLL Mode  
Nominal Value  
–100  
27  
100  
ps  
1,2,3,4  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
DIF[11:0]  
Input-to-Output Delay in Bypass Mode  
\Nominal Value  
2.5  
–100  
–250  
0
3.3  
39  
4.5  
100  
250  
50  
ns  
ps  
ps  
ps  
2,4,5  
Input-to-Output Delay Variation in PLL mode  
2,4,5  
Over voltage and temperature  
Input-to-Output Delay Variation in Bypass Mode  
3.7  
20  
2,4,5  
Over voltage and temperature  
Output-to-Output Skew across all 12 Outputs  
1,2,3,4,5  
(Common to Bypass and PLL Mode)  
6
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
(HBW_BYPASS_LBW = 0)  
0.4  
0.1  
0.7  
2
2.0  
2.5  
1.4  
4
dB  
dB  
6
(HBW_BYPASS_LBW = 1)  
7
(HBW_BYPASS_LBW = 0)  
MHz  
MHz  
7
PLL Bandwidth  
(HBW_BYPASS_LBW = 1)  
Notes:  
1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the  
corresponding input.  
2. Measured from differential cross-point to differential cross-point.  
3. This parameter is deterministic for a given device.  
4. Measured with scope averaging on to find mean value.  
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created  
by it.  
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL  
jitter peaking.  
7. Measured at 3 db down or half power point.  
Rev. 1.1  
5
 
 
 
 
 
Si53112  
Table 4. Phase Jitter  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
1,2,3  
Phase Jitter  
PLL Mode  
PCIe Gen 1, Common Clock  
29  
86  
ps  
PCIe Gen2 Low Band, Common Clock  
2.0  
1.9  
3.0  
3.1  
1.0  
0.71  
1.0  
0.5  
0.3  
0.2  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen2 High Band, Common Clock  
ps  
(RMS)  
1,3,4,5  
1.5 MHz < F < Nyquist  
PCIe Gen 3, Common Clock  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
0.45  
0.32  
0.45  
0.21  
0.13  
0.11  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 3 Separate Reference No Spread, SRNS  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
®
Intel QPI & Intel SMI  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel SMI  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Intel QPI & Intel SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
6
Rev. 1.1  
 
 
 
 
 
Si53112  
Table 4. Phase Jitter (Continued)  
1,2,3  
Additive Phase Jitter  
Bypass Mode  
PCIe Gen 1  
10  
ps  
PCIe Gen2 Low Band  
1.2  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen2 High Band  
1.5 MHz < F < Nyquist  
1.3  
0.25  
0.25  
0.12  
0.1  
ps  
(RMS)  
1,3,4,5  
PCIe Gen3  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6  
(8 Gb/s, 100 MHz, 12 UI)  
Intel QPI & Intel® SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
0.09  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.1  
7
Si53112  
Table 5. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Notes  
Min  
Typ  
Max  
2
Clock Stabilization Time  
Long Term Accuracy  
T
1.5  
1.8  
100  
ms  
ppm  
ns  
STAB  
3 4 5  
L
, ,  
ACC  
3 4 6  
Absolute Host CLK Period (100MHz)  
Absolute Host CLK Period (133MHz)  
Edge Rate  
T
9.94900  
7.44925  
1.0  
10.05100  
7.55075  
4.0  
, ,  
ABS  
3 4 6  
T
ns  
, ,  
ABS  
3 4 7  
Edge_rate  
Trise  
V/ns  
ps  
, ,  
3 8 9  
Rise Time Variation  
125  
, ,  
3 8 9  
Fall Time Variation  
Tfall  
125  
ps  
, ,  
3 8 10 11  
Rise/Fall Matching  
T
/
20  
%
, , ,  
RISE_MAT  
T
FALL_MAT  
3 8 12  
Voltage High (typ 0.7 V)  
Voltage Low (typ 0.7 V)  
Maximum Voltage  
V
660  
–150  
850  
150  
mV  
mV  
mV  
mV  
, ,  
HIGH  
3 8 13  
V
, ,  
LOW  
8
V
1150  
550  
MAX  
3 8 14 15  
Absolute Crossing Point Voltages  
Vox  
250  
, , , ,  
ABS  
REL  
16  
3 8 16 17  
Relative Crossing Point Voltages  
Vox  
, , ,  
3 8 18  
Total Variation of Vcross Over All  
Edges  
Total ∆  
Vox  
140  
55  
mV  
, ,  
3 4  
Duty Cycle  
DC  
45  
%
V
,
3 8 19  
Maximum Voltage (Overshoot)  
Maximum Voltage (Undershoot)  
V
V
+ 0.3  
– 0.3  
, ,  
ovs  
High  
3 8 20  
V
V
V
, ,  
uds  
Low  
8
Rev. 1.1  
Si53112  
Table 5. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1 (Continued)  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Min Typ Max  
0.2 N/A  
Unit  
Notes  
3 8  
Ringback Voltage  
Notes:  
V
V
,
rb  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the time  
that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , Rp = 49.9, 2 pF for 100 transmission line; Rs = 27 , Rp = 42.2, 2 pF for 85   
transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from  
–150 mV to +150 mV on the differential waveform . Scope is set to average because the scope sample clock is making  
most of the dynamic wiggles along the clock edge Only valid for Rising clock and Falling CLOCK. Signal must be  
monotonic through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of clock verses the  
falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following, 2*(Trise - Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figures 3-4 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
Rev. 1.1  
9
 
 
Si53112  
Table 6. Clock Periods Differential Clock Outputs with SSC Disabled  
SSC ON  
Measurement Window  
Units  
Center  
Freq, MHz  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
-C-C Jitter  
-SSC  
-ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
AbsPer  
Min  
Short  
Term AVG  
Min  
Term AVG Nominal Term AVG Term AVG  
Min  
Max  
Max  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000 10.00100  
10.05100  
7.55075  
ns  
ns  
7.50000  
7.50075  
Table 7. Clock Periods Differential Clock Outputs with SSC Enabled  
SSC ON  
Measurement Window  
Units  
Center  
Freq, MHz  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
-C-C Jitter  
-SSC  
-ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
AbsPer  
Min  
Short  
Term AVG  
Min  
Term AVG Nominal Term AVG Term AVG  
Min Max Max  
99.75  
9.94900  
7.44925  
9.99900  
7.49925  
10.02406 10.02506 10.02607 10.05126 10.10126  
ns  
ns  
133.33  
7.51805  
7.51880  
7.51955  
7.53845  
7.58845  
Table 8. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
4.6  
4.6  
4.6  
Unit  
1
3.3 V Core Supply Voltage  
VDD/VDD_A  
VDD_IO  
VIH  
V
V
1
3.3 V I/O Supply Voltage  
1,2  
3.3 V Input High Voltage  
V
1
3.3 V Input Low Voltage  
VIL  
0.5  
–65  
2000  
V
1
Storage Temperature  
t
150  
°C  
V
s
3
Input ESD protection  
ESD  
Notes:  
1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.  
2. Maximum VIH is not to exceed maximum VDD  
.
3. Human body model.  
10  
Rev. 1.1  
 
 
Si53112  
2. Functional Description  
2.1. CLK_IN, CLK_IN  
The differential input clock is expected to be sourced from a clock synthesizer, e.g. CK420BQ, CK509B, or CK410B+.  
2.2. OE and Output Enables (Control Registers)  
Each output can be individually enabled or disabled by SMBus control register bits. Additionally, each output of the  
DIF[11:0] has a dedicated OE pin. The OE pins are asynchronous, asserted-low signals. The Output Enable bits in  
the SMBus registers are active high and are set to enable by default. The disabled state for the DB1200ZL NMOS  
push-pull output is Low/Low. Please note that the logic level for assertion or deassertion is different in software  
than it is on hardware. This follows hardware default nomenclature for communication channels (e.g., output is  
enabled if the OE# pin is pulled low) and still maintains software programming logic (e.g., output is enabled if OE  
register is true). Table 9 is a truth table depicting enabling and disabling of outputs via hardware and software. Note  
that, for the output to be active, the control register bit must be a 1 and the OE pin must be a 0.  
Note: The assertion and deassertion of this signal is absolutely asynchronous.  
Table 9. Si53112 Output Management  
Inputs  
OE Hardware Pins and Control Register Bits  
Outputs  
PLL State  
PWRGD/  
PWRDN  
CLK_IN/  
CLK_IN  
SMBUS  
Enable Bit  
OE Pin  
DIF/DIF[11:0]  
FB_OUT/  
FB_OUT  
0
x
x
0
1
1
x
x
0
1
Low/Low  
Low/Low  
Running  
Low/Low  
Low/Low  
Running  
Running  
Running  
OFF  
ON  
ON  
ON  
1
Running  
2.2.1. OE Assertion (Transition from 1 to 0)  
All differential outputs that were disabled are to resume normal operation in a glitch-free manner. The latency from  
the assertion to active outputs is 4 to 12 DIF clock periods.  
2.2.2. OE De-Assertion (Transition from 0 to 1)  
The impact of deasserting OE is that each corresponding output will transition from normal operation to disabled in  
a glitch-free manner. A minimum of four valid clocks will be provided after the deassertion of OE. The maximum  
latency from the deassertion to disabled outputs is 12 DIF clock periods.  
2.3. 100M_133M—Frequency Selection  
The Si53112 is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz.  
100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs.  
Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53112 is operated in 1:1  
mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pull-down  
resistor is attached to this pin to select the input/output frequency. The functionality is summarized in Table 10.  
Table 10. Frequency Program Table  
100M_133M  
Optimized Frequency (CLK_IN = CLK_OUT)  
0
1
133.33 MHz  
100.00 MHz  
Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.  
Rev. 1.1  
11  
 
 
Si53112  
2.4. SA_0, SA_1—Address Selection  
SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the Si53112. The two tri-  
level input pins that can configure the device to nine different addresses.  
Table 11. SMBUS Address Table  
SA_1  
L
SA_0  
L
SMBUS Address  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
L
M
H
L
M
M
M
H
L
M
H
L
H
M
H
H
2.5. PWRGD/PWRDN  
PWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to  
indicating a power-down condition. PWRGD (assertion) is used by the Si53112 to sample initial configurations,  
such as frequency select condition and SA selections. After PWRGD has been asserted high for the first time, the  
pin becomes a PWRDN (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to  
invoke power-saving mode. PWRDN is a completely asynchronous active low input. When entering power-saving  
mode, PWRDN should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down  
in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior to turning off the VCO. When  
PWRDN is deasserted high, all clocks will start and stop without any abnormal behavior and will meet all ac and dc  
parameters.  
Note: The assertion and deassertion of PWRDN is absolutely asynchronous.  
Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended.  
Operation in this mode may result in glitches, excessive frequency shifting, etc.  
Table 12. PWRGD/PWRDN Functionality  
PWRGD/  
PWRDN  
DIF  
DIF  
0
1
Low  
Low  
Normal  
Normal  
12  
Rev. 1.1  
Si53112  
2.5.1. PWRDN Assertion  
When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held LOW/  
LOW on the next DIF high-to-low transition.  
PWRDWN  
DIF  
DIF  
Figure 1. PWRDN Assertion  
2.5.2. PWRGD Assertion  
The power-up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion  
of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs  
stopped in a LOW/LOW condition resulting from power down must be driven high in less than 300 µs of PWRDN  
deassertion to a voltage greater than 200 mV.  
Tstable  
<1.8 ms  
PWRDWN  
DIF  
DIF  
Tdrive_Pwrdn#  
<300 µs; > 200 mV  
Figure 2. PWRDG Assertion (Pwrdown—Deassertion)  
Rev. 1.1  
13  
Si53112  
2.6. HBW_BYPASS_LBW  
The HBW_BYPASS_LBW pin is a tri-level function input pin (refer to Table 13 for VIL_Tri, VIM_Tri, and VIH_Tri  
signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In  
PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive  
cycle-to-cycle jitter (50 ps + input jitter) on the differential outputs. In the case of PLL mode, the input clock is  
passed through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be  
selected by asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 13.  
Table 13. PLL Bandwidth and Readback Table  
HBW_BYPASS_LBW Pin  
Mode  
LBW  
Byte 0, Bit 7  
Byte 0, Bit 6  
L
M
H
0
0
1
0
1
1
BYPASS  
HBW  
The Si53112 has the ability to override the latch value of the PLL operating mode from hardware strap pin 5 via the  
use of Byte 0 and bits 2 and 1. Byte 0 bit 3 must be set to 1 to allow the user to change Bits 2 and 1, affecting the  
PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will have to be  
accomplished if the user changes these bits.  
2.7. Miscellaneous Requirements  
Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps)  
functionality is optional.  
Logic Levels: SMBus logic levels are based on a percentage of V  
for the controller and other devices on the  
DD  
bus. Assume all devices are based on a 3.3 V supply.  
Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock  
stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than  
this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all  
data transfers can be completed as specified without the use of clock/data stretching.  
General Call: It is assumed that the clock buffer will not have to respond to the “general call.”  
Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in  
Section 3 of the SMBus 2.0 specification.  
Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual  
data sheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board  
designer will use a single external pull-up resistor for each line and that these values are in the 5–6 krange.  
Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock  
driver plus one/two more SMBus devices on the platform for capacitive loading purposes.  
Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock  
buffer is specified as a standard mode device and is not required to support this feature. However, it is considered  
a good design practice to include the filters.  
PWRDN: If a clock buffer is placed in PWRDN mode, the SDATA and SCLK inputs must be Tri-stated and the  
device must retain all programming information. IDD current due to the SMBus circuitry must be characterized and  
in the data sheet.  
14  
Rev. 1.1  
 
Si53112  
2.8. Buffer Power-Up State Machine  
Table 14. Buffer Power-Up State Machine  
State  
Description  
3.3 V buffer power is off.  
0
1
After 3.3 V supply is detected to rise above 1.8–2.0 V, the  
buffer enters State 1 and initiates a 0.1–0.3 ms delay.  
2
3
Buffer waits for a valid clock on the CLK input and PWRDN  
de-assertion.  
Once the PLL is locked to the CLK_IN input clock, the buffer  
enters state 3 and enables outputs for normal operation.  
Notes:  
1. The total power-up latency from power-on to all outputs active must be less  
than 1.8 ms (assuming a valid clock is present on CLK_IN input).  
2. If power is valid and power-down is deasserted but no input clocks are  
present on the CLK_IN input, DIF clocks must remain disabled. Only after  
valid input clocks are detected, valid power, PWRDN deasserted with the  
PLL locked/stable are the DIF outputs enabled.  
No input clock  
S1  
S2  
Wait for input  
clock and  
powerdown  
deassertion  
Delay  
0.1 ms – 0.3 ms  
Powerdown Asserted  
S3  
S0  
Normal  
Operation  
Power Off  
Figure 3. Buffer Power-Up State Diagram  
Rev. 1.1  
15  
Si53112  
3. Test and Measurement Setup  
3.1. Input Edge  
Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53112  
is guaranteed to meet all performance specifications.  
Table 15. Input Edge Rate  
Frequency  
100 MHz  
133 MHz  
Min  
0.35  
0.35  
Max  
N/A  
N/A  
Unit  
V/ns  
V/ns  
3.1.1. Measurement Points for Differential  
Slew_fall  
Slew_rise  
+150 mV  
+150 mV  
-150 mV  
0.0 V  
V_swing  
0.0 V  
-150 mV  
Diff  
Figure 4. Measurement Points for Rise Time and Fall Time  
Vovs  
VHigh  
Vrb  
Vrb  
VLow  
Vuds  
Figure 5. Single-Ended Measurement Points for Vovs, Vuds, Vrb  
16  
Rev. 1.1  
Si53112  
TPeriod  
Low Duty Cycle %  
High Duty Cycle %  
Skew measurement  
point  
0.000 V  
Figure 6. Differential (CLOCK–CLOCK) Measurement Points (Tperiod, Duty Cycle, Jitter)  
3.2. Termination of Differential Outputs  
All differential outputs are to be tested into a 100 or 85 differential impedance transmission line. Source  
terminated clocks have some inherent limitations as to the maximum trace length and frequencies that can be  
supported. For CPU outputs, a maximum trace length of 10” and a maximum of 200 MHz are assumed. For SRC  
clocks, a maximum trace length of 16” and maximum frequency of 100 MHz is assumed. For frequencies beyond  
200 MHz, trace lengths must be restricted to avoid signal integrity problems.  
Table 16.  
Clock  
Board Trace Impedance  
Rs  
Rp  
N/A  
N/A  
Unit  
DIFF Clocks—50 configuration  
DIFF Clocks—43 configuration  
100  
85  
33+5%  
27+5%  
3.2.1. Termination of Differential NMOS Push-Pull Type Outputs  
Rs  
Clock  
T-Line  
10" Typical  
Receiver  
2 pF  
Source Terminated  
Rs  
2 pF  
Clock #  
T-Line  
10" Typical  
Figure 7. 0.7 V Configuration Test Load Board Termination for NMOS Push-Pull  
Rev. 1.1  
17  
Si53112  
4. Control Registers  
4.1. Byte Read/Write  
Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register  
number.  
4.1.1. Byte Read  
The standard byte read is as shown in Figure 8. It is an extension of the byte write. The write start condition is  
repeated; then, the slave device starts sending data, and the master acknowledges it until the last byte is sent. The  
master terminates the transfer with a NAK, then a stop condition. For byte operation, the 2 x 7th bit of the  
command byte must be set. For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte  
must be the byte transfer count.  
1
7
1 1  
8
1 1  
7
1 1  
8
1 1  
r
Rd  
Data Byte 0  
Wr  
A
A
N
P
T Slave  
Command  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
Not ack  
Command  
starT  
Condition  
Byte Read Protocol  
repeat starT  
Acknowledge  
stoP  
Condition  
Master to  
Slave to  
Figure 8. Byte Read Protocol  
4.1.2. Byte Write  
Figure 9 illustrates a simple, typical byte write. For byte operation, the 2 x 7th bit of the command byte must be set.  
For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.  
The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.  
1
7
1 1  
8
1
8
1 1  
Wr  
A
P
A
T Slave  
Command  
A Data Byte 0  
Register # to  
write  
2 x 7 bit = 1  
Command  
starT Condition  
stoP Condition  
Acknowledge  
Master to  
Slave to  
Byte Write Protocol  
Figure 9. Byte Write Protocol  
18  
Rev. 1.1  
 
 
Si53112  
4.2. Block Read/Write  
4.2.1. Block Read  
After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The  
slave acknowledges the register index in the command byte. The master sends a repeat start function. After the  
slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <33). The master  
acknowledges each byte except the last and sends a stop function.  
1
7
1 1  
8
1 1  
7
1 1  
r
Rd  
Wr  
A
A
T Slave  
Command Code  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
repeat starT  
Acknowledge  
Command  
starT  
Condition  
Master to  
Slave to  
8
1
8
1
8
1 1  
Data Byte  
Data Byte 0  
A
A Data Byte 1 N P  
Not acknowledge  
stoP Condition  
Block Read Protocol  
Figure 10. Block Read Protocol  
4.2.2. Block Write  
After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The  
lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will  
be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the  
master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this  
byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte  
received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.  
1
7
1 1  
8
1
A
Master to  
Slave to  
Wr  
Command  
A
T Slave Address  
Register # to  
write  
Command bit  
starT  
Acknowledge  
2 x 7 bit = 0  
Condition  
1
8
1
8
1 1  
8
A Data Byte 1 A P  
Byte Count = 2  
Data Byte 0  
A
stoP Condition  
Block Write Protocol  
Figure 11. Block Write Protocol  
Rev. 1.1  
19  
Si53112  
4.3. Control Registers  
Table 17. Byte 0: Frequency Select, Output Enable, PLL Mode Control Register  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
Bit  
0
100M_133M#  
Frequency Select  
133 MHz  
100 MHz  
R
Latched at  
power up  
DIF[11:0]  
1
2
3
PLL Mode 0  
PLL Mode 1  
See PLL Operating Mode  
Readback Table  
RW  
RW  
RW  
1
1
0
PLL Software Enable  
HW Latch  
SMBUS  
Control  
4
5
6
Reserved  
Reserved  
0
0
PLL Mode 0  
See PLL Operating Mode  
Readback Table  
R
R
Latched at  
power up  
7
PLL Mode 1  
See PLL Operating Mode  
Readback Table  
Latched at  
power up  
Note: Byte 0, bit_[3:1] are BW PLL SW enable for the DB1200ZL. Setting bit 3 to 1 allows the user to override the Latch value  
from pin 5 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback Table. Note that Bits 7 and 6  
will keep the value originally latched on pin 5. A warm reset of the system will have to be accomplished if the user  
changes these bits.  
20  
Rev. 1.1  
Si53112  
Table 18. Byte 1: Output Enable Control Register  
Bit  
0
Description  
If Bit = 0  
If Bit = 1  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Output(s)  
Affected  
Output Enable DIF 0  
Output Enable DIF 1  
Output Enable DIF 2  
Output Enable DIF 3  
Output Enable DIF 4  
Output Enable DIF 5  
Output Enable DIF 6  
Output Enable DIF 7  
Low/Low for  
Si53112  
1
1
1
1
1
1
1
1
DIF[0]  
DIF[1]  
DIF[2]  
DIF[3]  
DIF[4]  
DIF[5]  
DIF[6]  
DIF[7]  
1
Low/Low for  
Si53112  
2
Low/Low for  
Si53112  
3
Low/Low for  
Si53112  
4
Low/Low for  
Si53112  
5
Low/Low for  
Si53112  
6
Low/Low for  
Si53112  
7
Low/Low for  
Si53112  
Rev. 1.1  
21  
Si53112  
Table 19. Byte 2: Output Enable Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Enabled  
Enabled  
Enabled  
Enabled  
Type  
RW  
RW  
RW  
RW  
Default  
Output(s)  
Affected  
0
1
2
3
Output Enable DIF 8  
Output Enable DIF 9  
Output Enable DIF 10  
Output Enable DIF 11  
Low/Low for  
Si53112  
1
1
1
1
DIF[8]  
Low/Low for  
Si53112  
DIF[9]  
Low/Low for  
Si53112  
DIF[10]  
DIF[11]  
Low/Low for  
Si53112  
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
Table 20. Byte 3: Reserved Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
22  
Rev. 1.1  
Si53112  
Table 21. Byte 4: Reserved Control Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
5
6
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
Table 22. Byte 5: Vendor/Revision Identification Control Register  
Bit  
0
Description  
Vendor ID Bit 0  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Default  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
Vendor Specific  
0
0
0
1
0
0
0
0
1
Vendor ID Bit 1  
R
2
Vendor ID Bit 2  
R
3
Vendor ID Bit 3  
R
4
Revision Code Bit 0  
Revision Code Bit 1  
Revision Code Bit 2  
Revision Code Bit 3  
R
5
R
6
R
7
R
Table 23. Byte 6: Device ID Control Register  
Bit  
0
Description  
Device ID 0  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Default  
0
0
0
0
0
0
0
0
1
Device ID 1  
R
2
Device ID 2  
R
3
Device ID 3  
R
4
Device ID 4  
R
5
Device ID 5  
R
6
Device ID 6  
R
7
Device ID 7 (MSB)  
R
Rev. 1.1  
23  
Si53112  
Table 24. Byte 7: Byte Count Register  
Bit  
Description  
If Bit = 0  
If Bit = 1  
Type  
Default  
Output(s)  
Affected  
0
1
2
3
4
BC0 - Writing to this register con-  
figures how many bytes will be  
read back  
RW  
0
BC1 -Writing to this register con-  
figures how many bytes will be  
read back  
RW  
RW  
RW  
RW  
0
0
1
0
BC2 -Writing to this register con-  
figures how many bytes will be  
read back  
BC3 -Writing to this register con-  
figures how many bytes will be  
read back  
BC4 -Writing to this register con-  
figures how many bytes will be  
read back  
5
6
7
Reserved  
Reserved  
Reserved  
0
0
0
24  
Rev. 1.1  
Si53112  
5. Power Filtering Example  
5.1. Ferrite Bead Power Filtering  
Recommended ferrite bead filtering equivalent to the following: 600 impedance at 100 MHz, < 0.1 DCR max.,  
> 400 mA current rating.  
Figure 12. Schematic Example of Si53112 Power Filtering  
Rev. 1.1  
25  
Si53112  
6. Pin Descriptions: 64-Pin QFN  
VDDA 1  
GNDA 2  
NC 3  
48 GND  
47 DIF_7  
46 DIF_7  
45 OE_7 1  
44 OE_6 1  
43 DIF_6  
42 DIF_6  
41 GND  
100M_133M  
HBW_BYPASS_LBW  
PWRGD / PWRDN  
4
5
6
GND 7  
VDDR 8  
CLK_IN 9  
CLK_IN 10  
SA_0 11  
SDA 12  
SCL 13  
Si53112  
40 VDD  
39 DIF_5  
38 DIF_5  
37 OE_5 1  
36 OE_4 1  
35 DIF_4  
34 DIF_4  
33 GND  
SA_1 14  
NC 15  
NC 16  
Notes:  
1) Internal 100K pull-down  
26  
Rev. 1.1  
Si53112  
Table 25. Si53112 64-Pin QFN Descriptions  
Pin #  
Name  
VDDA  
Type  
Description  
3.3 V 3.3 V power supply for PLL.  
1
2
3
4
GND Ground for PLL.  
I/O No connect.  
GNDA  
NC  
I,SE 3.3 V tolerant inputs for input/output frequency selection. An external pull-  
100M_133M  
up or pull-down resistor is attached to this pin to select the input/output  
frequency.  
High = 100 MHz output  
Low = 133 MHz output  
I, SE Tri-Level input for selecting the PLL bandwidth or bypass mode.  
High = High BW mode  
5
HBW_BYPASS_LBW  
Med = Bypass mode  
Low = Low BW mode  
I
3.3 V LVTTL input to power up or power down the device.  
6
7
8
PWRGD/PWRDN  
GND  
GND Ground for outputs.  
VDD 3.3 V power supply for differential input receiver. This VDDR should be  
treated as an analog power rail and filtered appropriately.  
VDDR  
I, DIF 0.7 V Differential input.  
I, DIF 0.7 V Differential input.  
9
CLK_IN  
CLK_IN  
SA_0  
SDA  
10  
11  
12  
13  
14  
15  
I
3.3 V LVTTL input selecting the address. Tri-level input.  
I/O Open collector SMBus data.  
I/O SMBus slave clock input.  
SCL  
I
3.3 V LVTTL input selecting the address. Tri-level input.  
SA_1  
NC  
I/O No connect. There are active signals on pin 15 and 16, do not connect  
anything to these pins.  
I/O No connect. There are active signals on pin 15 and 16, do not connect  
anything to these pins.  
16  
NC  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
17  
18  
19  
DIF_0  
DIF_0  
OE_0  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
20  
OE_1  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
GND Ground for outputs.  
21  
22  
23  
DIF_1  
DIF_1  
GND  
Rev. 1.1  
27  
 
Si53112  
Table 25. Si53112 64-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
3.3 V 3.3 V power supply for outputs.  
24  
VDD  
VDD Power supply for differential outputs.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
25  
26  
27  
28  
VDD_IO  
DIF_2  
DIF_2  
OE_2  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
29  
OE_3  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD Power supply for differential outputs.  
GND Ground for outputs.  
30  
31  
32  
33  
34  
35  
36  
DIF_3  
DIF_3  
VDD_IO  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
DIF_4  
DIF_4  
OE_4  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
37  
OE_5  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
3.3 V 3.3 V power supply for outputs.  
38  
39  
40  
41  
42  
43  
44  
DIF_5  
DIF_5  
VDD  
GND Ground for outputs.  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
DIF_6  
DIF_6  
OE_6  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
45  
OE_7  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
GND Ground for outputs.  
46  
47  
48  
49  
50  
DIF_7  
DIF_7  
GND  
VDD Power supply for differential outputs.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD_IO  
DIF_8  
28  
Rev. 1.1  
Si53112  
Table 25. Si53112 64-Pin QFN Descriptions  
Pin #  
51  
Name  
DIF_8  
OE_8  
Type  
Description  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
52  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
53  
OE_9  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
VDD Power supply for differential outputs.  
3.3 V 3.3 V power supply for outputs.  
54  
55  
56  
57  
58  
59  
60  
61  
DIF_9  
DIF_9  
VDD_IO  
VDD  
GND Ground for outputs.  
GND  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
DIF_10  
DIF_10  
OE_10  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
I, SE 3.3 V LVTTL active low input for enabling differential outputs (default).  
Controls the corresponding output pair. Internal pull-down.  
62  
OE_11  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
O, DIF 0.7 V Differential clock outputs. Default is 1:1.  
63  
64  
DIF_11  
DIF_11  
Rev. 1.1  
29  
Si53112  
7. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53112-A00AGM  
Si53112-A00AGMR  
64-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
64-pin QFN—Tape and Reel  
30  
Rev. 1.1  
Si53112  
8. Package Outline  
Figure 13 illustrates the package details for the Si53112. Table 26 lists the values for the dimensions shown in the  
illustration.  
Figure 13. 64-Pin Quad Flat No Lead (QFN) Package  
Table 26. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC.  
6.10  
D2  
e
6.00  
6.20  
0.50 BSC.  
9.00 BSC.  
6.10  
E
E2  
L
6.00  
0.30  
6.20  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.1  
31  
 
 
Si53112  
9. Land Pattern  
Figure 14 illustrates the recommended land pattern details for the Si53112 in a 64-pin QFN package. Table 27 lists  
the values for the dimensions shown in the illustration.  
Figure 14. Land Pattern  
32  
Rev. 1.1  
 
Si53112  
Table 27. PCB Land Pattern Dimensions  
Dimension  
mm  
8.90  
8.90  
0.50  
0.30  
0.85  
6.20  
6.20  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 m minimum, all the way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch should be used for  
the center ground pad.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.1  
33  
Si53112  
DOCUMENT CHANGE LIST  
Revision 0.7 to Revision 1.0  
Updated Table 25, “Si53112 64-Pin QFN Descriptions,” on page 27.  
Updated pin type for pins 11 and 14.  
Revision 1.0 to Revision 1.1  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 4, “Phase Jitter,” on page 6.  
34  
Rev. 1.1  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI53115-A01AGM

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53115-A01AGMR

PLL Based Clock Driver, 53115 Series, 30 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220, QFN-64
SILICON

SI53119-A03A

PLL or bypass mode
SILICON

SI53119-A03AGM

PLL Based Clock Driver, 53119 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72
SILICON

Si53119-A03AGMR

PLL or bypass mode
SILICON
AUK

SI5312-H

Colorless transparency lens type
KODENSHI
AUK
AUK