CDB4352 [CIRRUS]

Evaluation Board for CS4352; 评估板CS4352
CDB4352
型号: CDB4352
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Evaluation Board for CS4352
评估板CS4352

文件: 总21页 (文件大小:811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDB4352  
Evaluation Board for CS4352  
Features  
Description  
The CDB4352 evaluation board is an excellent means  
for quickly evaluating the CS4352 24-bit, high-perfor-  
mance stereo D/A converter. Evaluation requires an  
analog signal analyzer, a digital signal source, and a  
power supply. Analog line-level outputs are provided via  
RCA phono jacks.  
 Demonstrates Recommended Layout And  
Grounding Arrangements  
 CS8416 Receives S/PDIF, & EIAJ-340-  
Compatible Digital Audio  
The CS8416 digital audio receiver IC provides the sys-  
tem timing necessary to operate the Digital-to-Analog  
converter and will accept S/PDIF and EIAJ-340-com-  
patible audio data. The evaluation board may also be  
configured to accept external timing and data signals for  
 Headers for External PCM Audio  
operation in  
development.  
a
user application during system  
 Requires Only a Digital Signal Source and  
Power Supplies for a Complete Digital-to-  
Analog Converter System  
ORDERING INFORMATION  
CDB4352  
Evaluation Board  
Hardware Switches  
Clocks/Data  
Header  
Analog Output  
(Line Level)  
CS4352  
Mux  
S/PDIF Input  
(CS8416)  
Muting  
Reset  
Reset  
Copyright © Cirrus Logic, Inc. 2006  
SEPTEMBER '06  
DS684DB1  
(All Rights Reserved)  
http://www.cirrus.com  
CDB4352  
TABLE OF CONTENTS  
1. CDB4352 SYSTEM OVERVIEW ............................................................................................................ 4  
2. CS4352 DIGITAL-TO-ANALOG CONVERTER ..................................................................................... 4  
3. CS8416 DIGITAL AUDIO RECEIVER .................................................................................................... 4  
4. INPUT FOR CLOCKS AND DATA ......................................................................................................... 4  
5. POWER SUPPLY CIRCUITRY ............................................................................................................... 4  
6. GROUNDING AND POWER SUPPLY DECOUPLING .......................................................................... 5  
7. HARDWARE CONTROL ........................................................................................................................ 5  
8. ANALOG OUTPUT FILTERING ............................................................................................................. 5  
9. PERFORMANCE PLOTS ....................................................................................................................... 6  
10. DESIGN NOTE ................................................................................................................................... 11  
11. SCHEMATICS  
.......................................................................... 12  
12. REVISION HISTORY ......................................................................................................................... 21  
LIST OF FIGURES  
Figure 1. FFT (48 kHz, 0 dB) ...................................................................................................................... 6  
Figure 2. FFT (48 kHz, -60 dB) ................................................................................................................... 6  
Figure 3. FFT (48 kHz, No Input) ................................................................................................................ 6  
Figure 4. FFT (48 kHz Out-of-Band, No Input) ............................................................................................ 6  
Figure 5. 48 kHz, THD+N vs. Input Freq ..................................................................................................... 6  
Figure 6. 48 kHz, THD+N vs. Level ............................................................................................................ 6  
Figure 7. 48 kHz, Fade-to-Noise Linearity .................................................................................................. 7  
Figure 8. 48 kHz, Frequency Response ...................................................................................................... 7  
Figure 9. 48 kHz, Crosstalk ......................................................................................................................... 7  
Figure 10. 48 kHz, Impulse Response ........................................................................................................ 7  
Figure 11. FFT (96 kHz, 0 dB) .................................................................................................................... 7  
Figure 12. FFT (96 kHz, -60 dB) ................................................................................................................. 7  
Figure 13. FFT (96 kHz, No Input) .............................................................................................................. 8  
Figure 14. FFT (96 kHz Out-of-Band, No Input) .......................................................................................... 8  
Figure 15. 96 kHz, THD+N vs. Input Freq ................................................................................................... 8  
Figure 16. 96 kHz, THD+N vs. Level .......................................................................................................... 8  
Figure 17. 96 kHz, Fade-to-Noise Linearity ................................................................................................ 8  
Figure 18. 96 kHz, Frequency Response .................................................................................................... 8  
Figure 19. 96 kHz, Crosstalk ....................................................................................................................... 9  
Figure 20. 96 kHz, Impulse Response ........................................................................................................ 9  
Figure 21. FFT (192 kHz, 0 dB) .................................................................................................................. 9  
Figure 22. FFT (192 kHz, -60 dB) ............................................................................................................... 9  
Figure 23. FFT (192 kHz, No Input) ............................................................................................................ 9  
Figure 24. FFT (192 kHz Out-of-Band, No Input) ........................................................................................ 9  
Figure 25. 192 kHz, THD+N vs. Input Freq ............................................................................................... 10  
Figure 26. 192 kHz, THD+N vs. Level ...................................................................................................... 10  
Figure 27. 192 kHz, Fade-to-Noise Linearity ............................................................................................ 10  
Figure 28. 192 kHz, Frequency Response ................................................................................................ 10  
Figure 29. 192 kHz, Crosstalk ................................................................................................................... 10  
Figure 30. 192 kHz, Impulse Response .................................................................................................... 10  
Figure 31. System Block Diagram and Signal Flow .................................................................................. 12  
Figure 32. CS4352 .................................................................................................................................... 13  
Figure 33. Analog Outputs ........................................................................................................................ 14  
Figure 34. PCM Input Headers ................................................................................................................. 15  
Figure 35. CS8416 S/PDIF Input .............................................................................................................. 16  
Figure 36. Power ....................................................................................................................................... 17  
Figure 37. Silkscreen Top ......................................................................................................................... 18  
2
DS684DB1  
CDB4352  
Figure 38. Top Side ................................................................................................................................... 19  
Figure 39. Bottom Side ............................................................................................................................. 20  
LIST OF TABLES  
Table 1. System Connections .................................................................................................................... 5  
Table 2. CDB4352 Jumper Settings .......................................................................................................... 11  
DS684DB1  
3
CDB4352  
1. CDB4352 SYSTEM OVERVIEW  
The CDB4352 evaluation board is an excellent means of quickly evaluating the CS4352. The CS8416 digital audio  
interface receiver provides an easy interface to digital audio signal sources including the majority of digital audio test  
equipment. The evaluation board also allows the user to supply external PCM clocks and data through a header for  
system development.  
The CDB4352 schematic has been partitioned into five schematics, as shown in Figures 32 through 36. Each par-  
titioned schematic is represented in the system diagram shown in Figure 31. Notice that the system diagram also  
includes the interconnections between the partitioned schematics.  
2. CS4352 DIGITAL-to-ANALOG CONVERTER  
A description of the CS4352 is included in the CS4352 datasheet.  
3. CS8416 DIGITAL AUDIO RECEIVER  
The system receives and decodes the standard S/PDIF data format using a CS8416 Digital Audio Receiver,  
Figure 35. The outputs of the CS8416 include a serial bit clock, serial data, left-right clock, and a 128/256 Fs master  
clock. The CS8416 data format is fixed to I²S. The operation of the CS8416 and a discussion of the digital audio  
interface is included in the CS8416 datasheet.  
The evaluation board has been designed such that the input can be either optical or coaxial, see Figure 35. How-  
ever, both inputs cannot be driven simultaneously.  
Position 2 of S1 sets the output MCLK to LRCK ratio of the CS8416. This switch should be set to 256 (LO) for input  
Fs<=48 kHz and can be either 256 (LO) or 128 (HI) for Fs>48 kHz  
4. INPUT FOR CLOCKS AND DATA  
The evaluation board has been designed to allow interfacing to external systems via the header J13. Header J13  
allows the evaluation board to accept externally generated PCM clocks and data. The schematic for the clock/data  
input is shown in Figure 34. Switch position 1 of S1 selects the source as either CS8416 or header J13.  
Please see the CS4352 datasheet for more information.  
5. POWER SUPPLY CIRCUITRY  
Power is supplied to the evaluation board by three binding posts (GND, VL, and VA_H), see Figure 36. The VL sup-  
ply can be jumpered to a +3.3 V regulator or provided externally through the VL binding post. VD and VA is normally  
supplied by the 3.3 V regulator but can be disconnected using J4 and J6 and then have external voltage applied to  
the VD and VA test points. The +5 V supply (which powers the regulators for this board) is normally supplied by a  
5 V regulator but can be supplied externally by removing J7 and applying 5 V to TP8.  
Power consumption of the CS4352 can be measured through the voltage drop at J8, J9, J10, and J11 when the  
shunts are removed.  
WARNING: Refer to the CS4352 datasheet for maximum allowable voltages levels. Operation outside of this range  
can cause permanent damage to the device.  
4
DS684DB1  
CDB4352  
6. GROUNDING AND POWER SUPPLY DECOUPLING  
As with any high-performance converter, the CS4352 requires careful attention to power supply and grounding ar-  
rangements to optimize performance. Figure 32 details the connections to the CS4352 and Figures 37, 38, and 39  
show the component placement and top and bottom layout. The decoupling capacitors are located as close to the  
CS4352 as possible. Extensive use of ground plane fill in the evaluation board yields large reductions in radiated  
noise.  
7. HARDWARE CONTROL  
The CDB4352 is controlled through settings on switch S1. This allows for configuration of the board without a PC.  
A switch is provided for CS8416 MCLK speed, clock and data source for the board, and the hardware mode config-  
uration of the CS4352.  
8. ANALOG OUTPUT FILTERING  
The analog output on the CDB4352 has been designed according to the CS4352 datasheet. This output circuit in-  
cludes an AC coupling cap, the BJT mute circuit, and a single-pole R and C.  
CONNECTOR  
INPUT/OUTPUT  
SIGNAL PRESENT  
VL  
Input  
+ 1.5 V to +3.3 V power for the CS4352 serial interface  
+9 V to +12 V positive supply for the CS4352 high-voltage analog and  
the CDB4352 regulators  
VA_H  
Input  
GND  
Input  
Input  
Ground connection from power supply  
SPDIF INPUT - J16  
SPDIF INPUT - OPT1  
PCM INPUT - J13  
AOUTA and AOUTB  
Digital audio interface input via coaxial cable  
Digital audio interface input via optical cable  
Input for master, serial, left/right clocks and serial data  
RCA line-level analog outputs  
Input  
Input  
Output  
Table 1. System Connections  
DS684DB1  
5
CDB4352  
9. PERFORMANCE PLOTS  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
d
B
r
d
B
r
-70  
-80  
-80  
A
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
20  
-140  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Hz  
Figure 1. FFT (48 kHz, 0 dB)  
Figure 2. FFT (48 kHz, -60 dB)  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
d
B
r
-60  
d
B
r
-70  
-70  
-80  
A
-80  
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
-140  
20  
20k  
40k  
60k  
Hz  
80k  
100k  
120k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 3. FFT (48 kHz, No Input)  
Figure 4. FFT (48 kHz Out-of-Band, No Input)  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
d
B
r
d
B
r
A
A
-100  
-110  
-120  
-110  
20  
-100  
-80  
-60  
-40  
-20  
+0  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
dBFS  
Hz  
Figure 5. 48 kHz, THD+N vs. Input Freq  
Figure 6. 48 kHz, THD+N vs. Level  
6
DS684DB1  
CDB4352  
+40  
+35  
+5  
+4  
+30  
+25  
+20  
+15  
+10  
+5  
+3  
+2  
+1  
+0  
-1  
d
B
r
d
B
r
+0  
-5  
A
A
-10  
-15  
-20  
-25  
-30  
-35  
-2  
-3  
-4  
-40  
-140  
-5  
20  
-120  
-100  
-80  
-60  
-40  
-20  
+0  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
dBFS  
Hz  
Figure 7. 48 kHz, Fade-to-Noise Linearity  
Figure 8. 48 kHz, Frequency Response  
+0  
3
-10  
2.5  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2
1.5  
1
500m  
0
d
B
V
-500m  
-1  
-100  
-1.5  
-2  
-110  
-120  
-130  
-2.5  
-3  
0
-140  
20  
500u  
1m  
1.5m  
sec  
2m  
2.5m  
3m  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 9. 48 kHz, Crosstalk  
Figure 10. 48 kHz, Impulse Response  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
d
-60  
d
B
r
B
r
-70  
-70  
-80  
A
-80  
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
20  
-140  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Hz  
Figure 11. FFT (96 kHz, 0 dB)  
Figure 12. FFT (96 kHz, -60 dB)  
DS684DB1  
7
CDB4352  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
d
B
r
-60  
d
B
r
-70  
-70  
-80  
A
-80  
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
-140  
20  
20k  
40k  
60k  
Hz  
80k  
100k  
120k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 13. FFT (96 kHz, No Input)  
Figure 14. FFT (96 kHz Out-of-Band, No Input)  
+0  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
d
B
r
d
B
r
A
A
-110  
20  
-110  
-120  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
-100  
-80  
-60  
-40  
-20  
+0  
Hz  
dBFS  
Figure 15. 96 kHz, THD+N vs. Input Freq  
Figure 16. 96 kHz, THD+N vs. Level  
+5  
+40  
+35  
+30  
+25  
+20  
+15  
+10  
+5  
+4  
+3  
+2  
+1  
+0  
-1  
d
B
r
d
B
r
+0  
-5  
A
A
-10  
-15  
-20  
-25  
-30  
-35  
-2  
-3  
-4  
-40  
-140  
-5  
20  
-120  
-100  
-80  
-60  
-40  
-20  
+0  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
dBFS  
Hz  
Figure 17. 96 kHz, Fade-to-Noise Linearity  
Figure 18. 96 kHz, Frequency Response  
DS684DB1  
8
CDB4352  
+0  
3
-10  
2.5  
-20  
-30  
2
1.5  
-40  
1
-50  
500m  
0
-60  
d
B
V
-70  
-80  
-500m  
-1  
-90  
-100  
-110  
-120  
-130  
-1.5  
-2  
-2.5  
-3  
0
-140  
20  
250u  
500u  
750u  
sec  
1m  
1.25m  
1.5m  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 19. 96 kHz, Crosstalk  
Figure 20. 96 kHz, Impulse Response  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
d
B
r
d
B
r
-70  
-70  
-80  
A
-80  
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
20  
-140  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Hz  
Figure 21. FFT (192 kHz, 0 dB)  
Figure 22. FFT (192 kHz, -60 dB)  
+0  
+0  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
d
B
r
-60  
d
B
r
-70  
-70  
-80  
A
-80  
A
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
-140  
20  
20k  
40k  
60k  
Hz  
80k  
100k  
120k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 23. FFT (192 kHz, No Input)  
DS684DB1  
Figure 24. FFT (192 kHz Out-of-Band, No Input)  
9
CDB4352  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
d
B
r
d
B
r
A
A
-110  
-120  
-110  
20  
-100  
-80  
-60  
-40  
-20  
+0  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
dBFS  
Hz  
Figure 25. 192 kHz, THD+N vs. Input Freq  
Figure 26. 192 kHz, THD+N vs. Level  
+5  
+4  
+3  
+40  
+35  
+30  
+25  
+20  
+15  
+10  
+5  
+2  
+1  
+0  
-1  
d
B
r
d
B
r
+0  
-5  
A
A
-10  
-15  
-20  
-25  
-30  
-35  
-2  
-3  
-4  
-40  
-140  
-5  
20  
-120  
-100  
-80  
-60  
-40  
-20  
+0  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
dBFS  
Hz  
Figure 27. 192 kHz, Fade-to-Noise Linearity  
Figure 28. 192 kHz, Frequency Response  
+0  
3
-10  
2.5  
-20  
-30  
2
1.5  
-40  
1
-50  
500m  
0
-60  
d
B
V
-70  
-80  
-500m  
-1  
-90  
-100  
-110  
-120  
-130  
-1.5  
-2  
-2.5  
-3  
0
-140  
20  
200u  
400u  
sec  
600u  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 29. 192 kHz, Crosstalk  
Figure 30. 192 kHz, Impulse Response  
DS684DB1  
10  
CDB4352  
JUMPER /  
SWITCH  
PURPOSE  
POSITION  
FUNCTION SELECTED  
Selects source of voltage for  
the +5V supplies  
+5 V  
*+5V_REG  
Voltage source is +5 V test point (TP8)  
Voltage source is +5 V regulator  
J7  
J4  
Selects source of voltage for  
the VD supplies  
VD  
*+3.3V REG  
Voltage source is VD test point (TP2)  
Voltage source is +3.3 V regulator  
Selects source of voltage for  
the VL supply  
VL  
Voltage source is VL binding post  
Voltage source is +3.3 V regulator  
J5  
*+3.3V REG  
Selects source of voltage for  
the VA supply  
VA  
Voltage source is VA test point (TP7)  
Voltage source is +3.3 V regulator  
J6  
*+3.3V REG  
When shunt is removed, the voltage can be measured  
across a fixed resistance to determine current.  
J8  
Current measure for VD  
Current measure for VL  
Current measure for VA  
Current measure for VA_H  
*shunted  
*shunted  
*shunted  
*shunted  
When shunt is removed, the voltage can be measured  
across a fixed resistance to determine current.  
J9  
When shunt is removed, the voltage can be measured  
across a fixed resistance to determine current.  
J10  
J11  
When shunt is removed, the voltage can be measured  
across a fixed resistance to determine current.  
Sets clock source, CS8416  
clock speed, and CS4352 set-  
tings  
position 1: 0 = external clock source, 1 = CS8416  
position 2: 0 = 8416 MCLK is 256xFs, 1 = 128xFs  
Position 3,4,5: see CS4352 datasheet  
*1 = open  
*2, 3, 4, 5 = closed  
S1  
S2  
Reset  
-
Enables reset for CS4352 and CS8416 when pressed  
J12  
J17  
*LED  
MUTE  
Bypasses muting to turn on LED  
Normal muting circuit  
Mute Disable  
Table 2. CDB4352 Jumper Settings  
*Default Factory Settings.  
10.DESIGN NOTE  
10.1 CDB4352 Revision A.0  
D2 has been removed and shorted and R2 has been removed.  
The serial audio decode table for S1 is incorrect. ‘01’ should be RJ-24 and ‘10’ should be LJ  
The polarity of the silkscreen for Z1, Z2, Z3, Z4, and Z5 is incorrect  
The CS4352 revision is A1  
10.2 CDB4352 Revision B.0  
No errors at this time  
DS684DB1  
11  
11.SCHEMATICS  
Hardware Switch  
Power  
Figure 34  
Figure 36  
Reset  
Circuit  
Channel A  
Outputs and Mute  
MCLK  
SCLK  
LRCK  
SDIN  
Figure 33  
CS4352  
Figure 32  
8416 Digital  
Audio Receiver  
Figure 35  
Channel B  
Outputs and Mute  
Figure 33  
PCM Inputs  
Figure 34  
Figure 31. System Block Diagram and Signal Flow  
Figure 32. CS4352  
Figure 33. Analog Outputs  
Figure 34. PCM Input Headers  
Figure 35. CS8416 S/PDIF Input  
Figure 36. Power  
Figure 37. Silkscreen Top  
Figure 38. Top Side  
Figure 39. Bottom Side  
CDB4352  
12.REVISION HISTORY  
Release  
Changes  
DB1  
DB2  
Initial Release  
Added Performance Plots  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-  
STOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED,  
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT  
THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL  
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND  
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION  
WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
DS684DB1  
21  

相关型号:

CDB4353

3.3 V Stereo Audio DAC with 2 VRMS Line Output
CIRRUS

CDB4354

5 V Stereo DAC with 2 VRMS Ground-centered Output
CIRRUS

CDB4360

24-Bit, 192 kHz 6 Channel D/A Converter
CIRRUS

CDB4361

Evaluation Board for CS4361
CIRRUS

CDB4362

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4362A

114 dB, 192 kHz 6-channel D/A Converter
CIRRUS

CDB4364

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4365

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4382

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CDB4382A

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CDB4383

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CDB4384

103 dB, 192 kHz 8-Channel D/A Converter
CIRRUS