CDB4383 [CIRRUS]

114 dB, 192 kHz 8-Channel D/A Converter; 114分贝192千赫8声道D / A转换器
CDB4383
型号: CDB4383
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

114 dB, 192 kHz 8-Channel D/A Converter
114分贝192千赫8声道D / A转换器

转换器
文件: 总40页 (文件大小:918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4383  
114 dB, 192 kHz 8-Channel D/A Converter  
Features  
Description  
The CS4383 is a complete 8-channel digital-to-analog  
system including digital interpolation, fifth-order delta-  
sigma digital-to-analog conversion, digital de-emphasis,  
volume control and analog filtering. The advantages of  
this architecture include: ideal differential linearity, no  
distortion mechanisms due to resistor matching errors,  
no linearity drift over time and temperature and a high  
tolerance to clock jitter.  
24-Bit Conversion  
Up to 192 kHz Sample Rates  
114 dB Dynamic Range  
-100 dB THD+N  
Supports PCM and DSD Data Formats  
Selectable Digital Filters  
Volume Control with Soft Ramp  
– 1 dB Step Size  
– Zero Crossing Click-Free Transitions  
Dedicated DSD inputs  
Low Clock Jitter Sensitivity  
The CS4383 accepts PCM data at sample rates from  
4 kHz to 192 kHz, DSD audio data, and operates over a  
wide power supply range. These features are ideal for  
multi-channel audio systems including DVD players,  
SACD players, A/V receivers, digital TV’s and VCR’s,  
mixing consoles, effects processors, set-top boxes, and  
automotive audio systems.  
µC or Stand-Alone Operation  
3 Mute Control pins for Left, Right, and  
Surrounds  
ORDERING INFORMATION  
CS4383-KQ -10 to 70 °C  
CS4383-BQ -40 to 85 °C  
CDB4383  
48-pin LQFP  
48-pin LQFP  
Evaluation Board  
I
S D A /C D IN (M 2) A D 0/C S (M 0)  
D S D _S C L K (M 3 )  
S C L/C C L K (M 1 )  
V L C  
M U T E C 1  
M U T E C 2  
M U T E C 3  
R S T  
C o ntro l P ort(S ta nd -A lo ne M o de S e le ct)  
E x t e r n a l  
M u t e C o n t r o l  
A O U T A 1+  
A O U T A 1-  
V o l u m  
e C o n t r o l  
I n t e r p o la t i o n F i lt e r  
∆ Σ  
A n a lo g F ilt e r  
D
A C  
M i x e r  
V L S  
S C L K  
L R C K  
A O U T B 1+  
A O U T B 1-  
I n t e r p o la t i o n F i lt e r  
I n t e r p o la t i o n F i lt e r  
V o l u m e C o n t r o l  
∆ Σ  
∆ Σ  
A n a lo g F i lt e r  
A n a lo g F ilt e r  
D
A C  
A C  
A O U T A 2+  
A O U T A 2-  
V o l u m  
e C o n t r o l  
D
S D  
S D  
S D  
I
N 1  
N 2  
N 3  
M i x e r  
I
A O U T B 2+  
A O U T B 2-  
I n t e r p o la t i o n F i lt e r  
I n t e r p o la t i o n F i lt e r  
V o l u m e C o n t r o l  
∆ Σ  
∆ Σ  
A n a lo g F i lt e r  
A n a lo g F ilt e r  
D
A C  
A C  
I
S D  
I
N 4  
A O U T A 3+  
A O U T A 3-  
V o l u m  
e C o n t r o l  
D
M i x e r  
A O U T B 3+  
A O U T B 3-  
I n t e r p o la t i o n F i lt e r  
I n t e r p o la t i o n F i lt e r  
V o l u m e C o n t r o l  
∆ Σ  
∆ Σ  
A n a lo g F i lt e r  
A n a lo g F ilt e r  
D
A C  
A C  
M
C L K  
A O U T A 4+  
A O U T A 4-  
V o l u m  
e C o n t r o l  
D
2
÷
M i x e r  
A O U T B 4+  
A O U T B 4-  
8
∆ Σ  
D
A C  
I n t e r p o la t i o n F i lt e r  
V o l u m e C o n t r o l  
A n a lo g F i lt e r  
D S D xx  
V Q  
F ILT +  
V A  
G N D  
V D  
G N D  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
Copyright Cirrus Logic, Inc. 2002  
(All Rights Reserved)  
MAR ‘02  
DS548PP2  
1
P.O. Box 17847, Austin, Texas 78760  
(512) 445 7222 FAX: (512) 445 7581  
http://www.cirrus.com  
CS4383  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ................................................................. 4  
2. REGISTER QUICK REFERENCE ................................................................................... 14  
3. REGISTER DESCRIPTION ............................................................................................. 15  
4. PIN DESCRIPTION .......................................................................................................... 24  
5. APPLICATIONS .............................................................................................................. 27  
5.1 Grounding and Power Supply Decoupling ........................................................... 27  
5.2 Oversampling Modes ........................................................................................... 27  
5.3 Recommended Power-up Sequence ................................................................... 27  
5.4 Analog Output and Filtering ................................................................................. 27  
5.5 Interpolation Filter ................................................................................................ 27  
5.6 Using DSD mode ................................................................................................. 28  
6. CONTROL PORT INTERFACE ....................................................................................... 28  
6.1 Enabling the Control Port ..................................................................................... 28  
6.2 Format Selection .................................................................................................. 28  
2
6.3 I C Format ............................................................................................................ 28  
2
6.3.1 Writing in I C Format .......................................................................28  
2
6.3.2 Reading in I C Format ....................................................................29  
6.4 SPI Format ........................................................................................................... 29  
6.4.1 Writing in SPI ..................................................................................29  
6.5 Memory Address Pointer (MAP)  
..................................................................... 30  
7. PARAMETER DEFINITIONS ........................................................................................... 38  
8. REFERENCES ................................................................................................................. 38  
9. PACKAGE DIMENSIONS ............................................................................................... 39  
LIST OF FIGURES  
Figure 1. Serial Mode Input Timing ................................................................................................. 8  
Figure 2. Direct Stream Digital - Serial Audio Input Timing............................................................. 9  
2
Figure 3. Control Port Timing - I C Format ................................................................................... 10  
Figure 4. Control Port Timing - SPI Format................................................................................... 11  
Figure 5. Typical Connection Diagram Control Port...................................................................... 12  
Contacting Cirrus Logic Support  
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:  
http://www.cirrus.com/corporate/contacts  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. "Advance" product informa-  
tion describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information  
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any  
kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied  
on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining  
to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as  
the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing  
this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property  
rights. Cirrus owns the copyrights of the information contained herein and gives consent for copies to be made of the information only for use within your organization  
with respect to Cirrus integrated circuits or other parts of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising  
or promotional purposes, or for creating any work for resale.  
An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material  
and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained  
from the competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law  
and is to be exported or taken out of the PRC.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE  
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH  
APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.  
Purchase of I2C components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies conveys a license under the Phillips I2C Patent Rights to use  
those components in a standard I2C system.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
2
CS4383  
Figure 6. Typical Connection Diagram Stand-Alone ..................................................................... 13  
2
Figure 7. Control Port Timing, I C Format .................................................................................... 29  
Figure 8. Control Port Timing, SPI Format.................................................................................... 29  
Figure 9. Single Speed (fast) Stopband Rejection........................................................................ 31  
Figure 10. Single Speed (fast) Transition Band ............................................................................ 31  
Figure 11. Single Speed (fast) Transition Band (detail) ................................................................ 31  
Figure 12. Single Speed (fast) Passband Ripple .......................................................................... 31  
Figure 13. Single Speed (slow) Stopband Rejection..................................................................... 31  
Figure 14. Single Speed (slow) Transition Band........................................................................... 31  
Figure 15. Single Speed (slow) Transition Band (detail)............................................................... 32  
Figure 16. Single Speed (slow) Passband Ripple......................................................................... 32  
Figure 17. Double Speed (fast) Stopband Rejection..................................................................... 32  
Figure 18. Double Speed (fast) Transition Band........................................................................... 32  
Figure 19. Double Speed (fast) Transition Band (detail)............................................................... 32  
Figure 20. Double Speed (fast) Passband Ripple......................................................................... 32  
Figure 21. Double Speed (slow) Stopband Rejection ................................................................... 33  
Figure 22. Double Speed (slow) Transition Band ......................................................................... 33  
Figure 23. Double Speed (slow) Transition Band (detail) ............................................................. 33  
Figure 24. Double Speed (slow) Passband Ripple ....................................................................... 33  
Figure 25. Quad Speed (fast) Stopband Rejection ....................................................................... 33  
Figure 26. Quad Speed (fast) Transition Band ............................................................................. 33  
Figure 27. Quad Speed (fast) Transition Band (detail) ................................................................. 34  
Figure 28. Quad Speed (fast) Passband Ripple ........................................................................... 34  
Figure 29. Quad Speed (slow) Stopband Rejection...................................................................... 34  
Figure 30. Quad Speed (slow) Transition Band ............................................................................ 34  
Figure 31. Quad Speed (slow) Transition Band (detail) ................................................................ 34  
Figure 32. Quad Speed (slow) Passband Ripple .......................................................................... 34  
Figure 33. Format 0 - Left Justified up to 24-bit Data.................................................................... 35  
2
Figure 34. Format 1 - I S up to 24-bit Data................................................................................... 35  
Figure 35. Format 2 - Right Justified 16-bit Data .......................................................................... 35  
Figure 36. Format 3 - Right Justified 24-bit Data .......................................................................... 35  
Figure 37. Format 4 - Right Justified 20-bit Data .......................................................................... 36  
Figure 38. Format 5 - Right Justified 18-bit Data .......................................................................... 36  
Figure 39. De-Emphasis Curve..................................................................................................... 36  
Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, 3, or 4)................................... 36  
Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4) .................................................. 37  
Figure 42. Recommended Output Filter........................................................................................ 37  
LIST OF TABLES  
Table 1. Digital Interface Formats - PCM Mode............................................................................ 16  
Table 2. Digital Interface Formats - DSD Mode ............................................................................ 16  
Table 3. ATAPI Decode ................................................................................................................ 21  
Table 4. Example Digital Volume Settings.................................................................................... 22  
Table 5. Common Clock Frequencies........................................................................................... 26  
Table 6. Digital Interface Format, Stand-Alone Mode Options...................................................... 26  
Table 7. Mode Selection, Stand-Alone Mode Options .................................................................. 26  
Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options............................................... 26  
3
CS4383  
1. CHARACTERISTICS AND SPECIFICATIONS  
ANALOG CHARACTERISTICS (Full-Scale Output Sine Wave, 997 Hz; Measurement Bandwidth  
10 Hz to 20 kHz, unless otherwise specified; Test load R = 3 k, C = 100 pF, VA = 5 V, VD = 3.3V (see Figure 5)  
L
L
For Single speed Mode Fs = 48 kHz, SCLK = 3.072 MHz, MCLK = 12.288 MHz;  
For Double Speed Mode Fs = 96 kHz, SCLK = 6.144 MHz, MCLK = 12.288 MHz;  
For Quad Speed Mode Fs = 192 kHz, SCLK = 12.288 MHz, MCLK = 24.576 MHz;  
For Direct Stream Digital Mode Fs = 128 x 48 kHz, DSD_SCLK = 6.144 MHz, MCLK = 12.288 MHz).  
Parameters  
Symbol  
Min  
Typ  
Max  
Unit  
CS4383-KQ Dynamic Performance - All PCM modes and DSD (Note 1)  
Specified Temperature Range  
Dynamic Range (Note 2)  
TA  
-10  
-
70  
°C  
24-bit unweighted  
A-Weighted  
16-bit unweighted  
(Note 3) A-Weighted  
105  
108  
-
-
111  
114  
94  
-
-
-
-
dB  
dB  
dB  
dB  
97  
Total Harmonic Distortion + Noise  
(Note 2) THD+N  
0 dB  
24-bit  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-94  
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-
-
-
-
-
16-bit  
(Note 3)  
-60 dB  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation  
-
-
114  
90  
-
-
dB  
dB  
(1 kHz)  
CS4383-BQ Dynamic Performance - All PCM modes and DSD (Note 4)  
Specified Temperature Range  
Dynamic Range (Note 2)  
TA  
-40  
-
85  
°C  
24-bit unweighted  
A-Weighted  
16-bit unweighted  
(Note 3) A-Weighted  
102  
105  
-
-
111  
114  
94  
-
-
-
-
dB  
dB  
dB  
dB  
97  
Total Harmonic Distortion + Noise  
(Note 2) THD+N  
0 dB  
24-bit  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-91  
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-
-
-
-
-
16-bit  
(Note 3)  
-60 dB  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation  
-
-
114  
90  
-
-
dB  
dB  
(1 kHz)  
Notes: 1. CS4383-KQ parts are tested at 25 °C.  
2. One-half LSB of triangular PDF dither is added to data.  
3. Performance limited by 16-bit quantization noise.  
4. CS4383-BQ parts are tested at the extremes of the specified temperature range and Min/Max  
performance numbers are guaranteed across the specified temperature range, TA. Typical numbers are  
taken at 25 °C.  
4
CS4383  
ANALOG CHARACTERISTICS (Continued)  
Parameters  
Symbol  
Min  
88% V  
Typ  
92% V  
Max  
94% V  
Units  
Analog Output - All PCM modes and DSD  
Full Scale Differential Output Voltage (Note 5)  
Quiescent Voltage  
V
Vpp  
VDC  
µA  
FS  
A
A
A
V
-
-
50% V  
-
-
Q
A
Max Current from V  
I
1
Q
QMAX  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
100  
100  
-
-
dB  
ppm/°C  
-
Output Impedance  
AC-Load Resistance  
Load Capacitance  
(Note 5)  
Z
-
-
-
OUT  
R
C
3
-
kΩ  
L
L
-
100  
pF  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 6)  
normal operation, V = 5V  
I
I
I
-
-
-
-
-
-
60  
45  
30  
2
84  
200  
66  
70  
46  
-
-
-
mA  
mA  
mA  
µA  
µA  
µA  
A
A
D
D
V = 5V  
D
V = 3.3V  
D
I
LC  
Interface current, VLC=5V (Note 7, 8)  
VLS=5V  
I
LS  
I
pd  
power-down state (all supplies) (Note 9)  
Power Dissipation  
VA = 5 V, VD = 3.3 V  
(Note 6)  
normal operation  
-
-
-
-
400  
1
525  
1
485  
mW  
mW  
mW  
mW  
power-down (Note 9)  
normal operation  
power-down (Note 9)  
-
680  
-
VA = 5 V, VD = 5 V  
Package Thermal Resistance  
θ
θ
-
-
48  
15  
-
-
°C/Watt  
°C/Watt  
JA  
JC  
Power Supply Rejection Ratio (Note 10)  
(1 kHz) PSRR  
(60 Hz)  
-
-
60  
40  
-
-
dB  
dB  
Notes: 5.  
V
is tested under load R and includes attenuation due to Z  
FS L OUT  
6. Current consumption increases with increasing FS within a given speed mode and is signal dependant.  
Max values are based on highest FS and highest MCLK.  
7.  
I
measured with no external loading on the SDA pin.  
LC  
8. This specification is violated when the VLC supply is greater than VD and when pin 16 (M1/SDA) is tied  
or pulled low. Logic tied to pin 16 needs to be able to sink this current.  
9. Power down mode is defined as RST pin = Low with all clock and data lines held static.  
10. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 5 and 6.  
5
CS4383  
ANALOG FILTER RESPONSE  
Fast Roll-Off  
Typ  
Slow Roll-Off (Note 11)  
Parameter  
Min  
Max  
Min  
Typ  
Max  
Unit  
Combined Digital and On-chip Analog Filter Response - Single Speed Mode (Note 12)  
Passband (Note 13)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.454  
.499  
+0.01  
-
0
0
-
-
-
-
0.417  
0.499  
+0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
-0.01  
.547  
90  
-
-0.01  
.583  
64  
(Note 14)  
-
-
-
-
-
-
Group Delay  
12/Fs  
-
6.5/Fs  
Passband Group Delay Deviation 0 - 20 kHz  
-
-
-
-
-
-
-
-
±0.41/Fs  
±0.23  
±0.14  
±0.09  
-
-
-
-
±0.14/Fs  
±0.23  
±0.14  
±0.09  
s
De-emphasis Error (Note 15)  
(Relative to 1kHz)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
dB  
dB  
dB  
Combined Digital and On-chip Analog Filter Response - Double Speed Mode - 96kHz (Note 12)  
Passband (Note 13)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.430  
.499  
0.01  
-
-
-
0
0
-
-
-
-
.296  
.499  
0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Group Delay  
Passband Group Delay Deviation 0 - 20 kHz  
-0.01  
.583  
80  
-
-0.01  
.792  
70  
(Note 14)  
-
4.6/Fs  
-
-
3.9/Fs  
-
-
-
±0.03/Fs  
±0.01/Fs  
s
Combined Digital and On-chip Analog Filter Response - Quad Speed Mode - 192kHz (Note 12)  
Passband (Note 13)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.105  
.490  
0.01  
-
-
-
0
0
-
-
-
-
.104  
.481  
0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Group Delay  
Passband Group Delay Deviation 0 - 20 kHz  
-0.01  
.635  
90  
-
-0.01  
.868  
75  
(Note 14)  
-
4.7/Fs  
-
-
4.2/Fs  
-
-
-
±0.01/Fs  
±0.01/Fs  
s
Combined Digital and On-chip Analog Filter Response - DSD Mode (Note 12)  
Passband (Note 13)  
to -0.1 dB corner  
to -3 dB corner  
-
-
-
-
-
-
-
-
-
0
0
-.01  
-
-
-
20  
120  
0.1  
kHz  
kHz  
dB  
Frequency Response 10 Hz to 20 kHz  
Notes: 11. Slow Roll-Off interpolation filter is only available in control port mode.  
12. Filter response is not tested but is guaranteed by design.  
13. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 9 to 32) have  
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.  
14. Single and Double Speed Mode Measurement Bandwidth is from stopband to 3 Fs.  
Quad Speed Mode Measurement Bandwidth is from stopband to 1.34 Fs.  
15. De-emphasis is available only in Single Speed Mode; Only 44.1kHz De-emphasis is available in Stand-  
Alone Mode  
6
CS4383  
DIGITAL CHARACTERISTICS (For KQ T = -10 to +70 °C; For BQ T = -40 to +85 °C; VLC = VLS =  
A
A
1.8 V to 5.5 V)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
V
V
70% VLS  
70% VLC  
-
-
-
-
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
Serial Data Port  
Control Port  
IH  
IH  
V
V
-
-
-
-
20% VLS  
20% VLC  
V
V
Serial Data Port  
Control Port  
IL  
IL  
Input Leakage Current  
Input Capacitance  
(Note 8)  
I
-
-
-
-
-
-
8
±10  
µA  
pF  
mA  
V
in  
-
-
-
-
Maximum MUTEC Sink Current  
MUTEC High-Level Output Voltage  
MUTEC Low-Level Output Voltage  
3
V
VA  
0
OH  
V
V
OL  
ABSOLUTE MAXIMUM RATINGS (GND = 0V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
Analog power  
Digital internal power  
Serial data port interface power  
Control port interface power  
VA  
VD  
VLS  
VLC  
-0.3  
-0.3  
-0.3  
-0.3  
6.0  
6.0  
6.0  
6.0  
V
V
V
V
Input Current, Any Pin Except Supplies  
Digital Input Voltage Serial data port interface  
Control port interface  
I
-
±10  
mA  
in  
V
V
-0.3  
-0.3  
VLS+ 0.4  
VLC+ 0.4  
V
V
IND-S  
IND-C  
Ambient Operating Temperature (power applied)  
Storage Temperature  
T
-55  
-65  
125  
150  
°C  
°C  
A
T
stg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS (GND = 0V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Analog power  
Digital internal power  
Serial data port interface power  
Control port interface power  
VA  
VD  
VLS  
VLC  
4.5  
3.0  
1.8  
1.8  
5.0  
3.3  
5.0  
5.0  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
7
CS4383  
SWITCHING CHARACTERISTICS (For KQ T = -10 to +70 °C; For BQ T = -40 to +85 °C; VLS =  
A
A
1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLS, C = 30pF)  
L
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
MCLK Frequency  
(Note 16)  
Single Speed Mode  
Double Speed Mode  
Quad Speed Mode  
1.024  
6.400  
6.400  
40  
-
-
51.2  
51.2  
51.2  
60  
MHz  
MHz  
MHz  
%
-
MCLK Duty Cycle  
Input Sample Rate  
50  
Single Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
-
-
-
50  
100  
200  
kHz  
kHz  
kHz  
LRCK Duty Cycle  
45  
20  
20  
50  
-
55  
-
%
ns  
ns  
ns  
SCLK Pulse Width Low  
SCLK Pulse Width High  
SCLK Period  
t
sclkl  
t
t
-
-
sclkh  
-
-
2
sclkw  
sclkw  
-----------------  
MCLK  
(Note 17)  
t
-
-
ns  
4
-----------------  
MCLK  
SCLK rising to LRCK edge delay  
t
20  
20  
20  
20  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
slrd  
SCLK rising to LRCK edge setup time  
SDATA valid to SCLK rising setup time  
SCLK rising to SDATA hold time  
t
slrs  
t
sdlrs  
t
sdh  
Notes: 16. See Table 5 on page 26 for suggested MCLK frequencies  
17. This serial clock is available only in Control Port Mode when the MCLK Divide bit is enabled.  
.
LRCK  
t
t
sclkh  
slrs  
t
slrd  
t
sclkl  
SCLK  
t
t
sdh  
sdlrs  
SDATA  
Figure 1. Serial Mode Input Timing  
8
CS4383  
DSD - SWITCHING CHARACTERISTICS (For KQ T = -10 to +70 °C; For BQ T = -40 to +85 °C;  
A
A
Logic 0 = GND; VLS = 1.8 V to 5.5 V; Logic 1 = VLS Volts; C = 30 pF)  
L
Parameter  
Symbol  
Min  
4.096  
40  
Typ  
Max  
Unit  
MHz  
%
Master Clock Frequency  
MCLK Duty Cycle  
(Note 18)  
-
50  
-
38.4  
(All DSD modes)  
60  
-
DSD_SCLK Pulse Width Low  
DSD_SCLK Pulse Width High  
DSD_SCLK Frequency  
t
20  
ns  
sclkl  
t
20  
-
-
ns  
sclkh  
(64x Oversampled)  
(128x Oversampled)  
1.024  
2.048  
-
-
3.2  
6.4  
MHz  
MHz  
DSD_L / _R valid to DSD_SCLK rising setup time  
DSD_SCLK rising to DSD_L or DSD_R hold time  
t
20  
20  
-
-
-
-
ns  
ns  
sdlrs  
t
sdh  
Note: 18. Min is 4 times 64x DSD or 2 times 128x DSD, and Max is 12 times 64x DSD or 6 times 128x DSD. The  
proper MCLK to DSD_SCLK ratio must be set either by the DIF registers or the M0:2 pins  
t
sclkh  
t
sclkl  
DSD_SCLK  
t
t
sdlrs  
sdh  
DSD_L, DSD_R  
Figure 2. Direct Stream Digital - Serial Audio Input Timing  
9
CS4383  
SWITCHING CHARACTERISTICS - CONTROL PORT - I2C FORMAT (For KQ T  
A
= -10 to +70 °C; For BQ T = -40 to +85 °C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC,  
A
C = 30 pF)  
L
Parameter  
Symbol  
Min  
Max  
Unit  
SCL Clock Frequency  
f
-
100  
kHz  
scl  
RST Rising Edge to Start  
t
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
ns  
irs  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
t
-
buf  
t
-
hdst  
t
-
low  
Clock High Time  
t
-
high  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
t
-
sust  
(Note 17)  
(Note 18)  
t
-
hdd  
t
250  
-
-
sud  
t , t  
1
rc rc  
Fall Time SCL and SDA  
t , t  
-
300  
-
fc fc  
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
t
4.7  
-
susp  
t
(Note 21)  
ack  
Notes: 19. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
20. The acknowledge delay is based on MCLK and can limit the maximum transaction speed.  
15  
256 × Fs  
15  
128 × Fs  
15  
64 × Fs  
--------------------  
--------------------  
-----------------  
21.  
for Single-Speed Mode,  
for Double-Speed Mode,  
for Quad-Speed Mode.  
R S T  
t
irs  
R e p e a te d  
S ta rt  
Stop  
S t a rt  
Stop  
t
t
rd  
fd  
S D A  
S C L  
t
t
t
t
t
buf  
t
susp  
high  
hdst  
fc  
hdst  
t
t
t
t
t
t
sust  
sud  
ack  
rc  
lo w  
hdd  
2
Figure 3. Control Port Timing - I C Format  
10  
CS4383  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT  
(For KQ T = -10 to +70 °C; For BQ T = -40 to +85 °C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC,  
A
A
C = 30 pF)  
L
Parameter  
Symbol  
Min  
Max  
Unit  
CCLK Clock Frequency  
f
-
MHz  
MCLK  
-----------------  
sclk  
2
-
-
-
-
-
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
t
500  
500  
1.0  
20  
ns  
ns  
µs  
ns  
ns  
srs  
(Note 20)  
t
spi  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
CCLK Low Time  
t
t
csh  
css  
t
1
scl  
sch  
dsu  
-----------------  
MCLK  
CCLK High Time  
t
-
ns  
1
-----------------  
MCLK  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
t
40  
15  
-
-
ns  
ns  
ns  
ns  
(Note 21)  
(Note 22)  
(Note 22)  
t
-
dh  
t
100  
100  
r2  
t
-
f2  
Notes: 22. t only needed before first falling edge of CS after RST rising edge. t = 0 at all other times.  
spi  
spi  
23. Data must be held for sufficient time to bridge the transition time of CCLK.  
24. For F  
< 1 MHz.  
SCK  
RS T  
t
t
srs  
spi  
CS  
t
t
t
css  
scl  
sch  
t
csh  
C CLK  
t
t
r2  
f2  
C DIN  
t
t
dsu  
dh  
Figure 4. Control Port Timing - SPI Format  
11  
CS4383  
+3.3 V to +5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
32  
V A  
V D  
39  
40  
41  
A O U TA 1+  
A O U TA 1-  
M U TE C 1  
A nalog C onditioning  
and M uting  
6
M C LK  
38  
37  
A O U TB 1+  
A O U TB 1-  
7
LR C K  
S C LK  
S D IN 1  
S D IN 2  
A nalog C onditioning  
and M uting  
P C M  
D igital  
A udio  
9
22  
M U TE C 2  
8
S ource  
11  
12  
35  
36  
A O U TA 2+  
A O U TA 2-  
A nalog C onditioning  
and M uting  
S D IN 3  
S D IN 4  
13  
34  
33  
A O U TB 2+  
A O U TB 2-  
A nalog C onditioning  
and M uting  
43  
+1.8 V to +5 V  
V LS  
C S4383  
29  
30  
A O U TA 3+  
A O U TA 3-  
A nalog C onditioning  
and M uting  
0.1 µF  
28  
27  
A O U TB 3+  
A O U TB 3-  
A nalog C onditioning  
and M uting  
3
D S D A 1  
D S D B 1  
D S D A 2  
2
1
25  
26  
A O U TA 4+  
A O U TA 4-  
A nalog C onditioning  
and M uting  
48  
D S D  
A udio  
S ource  
D S D B 2  
47  
46  
D S D A 3  
D S D B 3  
24  
23  
A O U TB 4+  
A O U TB 4-  
A nalog C onditioning  
and M uting  
45  
44  
D S D A 4  
D S D B 4  
42  
D S D _S C LK  
19  
M U TE C 3  
18  
R S T  
14  
15  
M icro-  
C ontroller  
S C L/C C LK  
S D A /C D IN  
16  
A D O /C S  
N ote*  
20  
21  
FILT+  
V Q  
+
17  
0.1 µF  
+1.8 V to +5 V  
V LC  
F
47 µF  
0.1 µ  
F
1 µF  
0.1 µ  
+
G N D  
5
G N D  
31  
N ote: N ecessary for I2C  
control port operation  
Figure 5. Typical Connection Diagram Control Port  
12  
CS4383  
+3.3 V to +5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
32  
VA  
VD  
47 K  
NoteDSD  
VLS  
39  
40  
41  
AOUTA1+  
AOUTA1-  
Analog Conditioning  
and Muting  
MUTEC1  
6
MCLK  
38  
37  
AOUTB1+  
AOUTB1-  
7
LRCK  
SCLK  
SDIN1  
SDIN2  
Analog Conditioning  
and Muting  
PCM  
Digital  
Audio  
Source  
9
22  
MUTEC2  
8
11  
12  
35  
36  
AOUTA2+  
AOUTA2-  
Analog Conditioning  
and Muting  
SDIN3  
SDIN4  
13  
34  
33  
AOUTB2+  
AOUTB2-  
Analog Conditioning  
and Muting  
43  
+1.8 V to +5 V  
VLS  
CS4383  
29  
30  
AOUTA3+  
AOUTA3-  
Analog Conditioning  
and Muting  
0.1 µF  
28  
27  
AOUTB3+  
AOUTB3-  
3
Analog Conditioning  
and Muting  
DSDA1  
DSDB1  
DSDA2  
2
1
25  
26  
AOUTA4+  
AOUTA4-  
Analog Conditioning  
and Muting  
48  
DSD  
Audio  
Source  
DSDB2  
47  
46  
DSDA3  
DSDB3  
24  
23  
AOUTB4+  
AOUTB4-  
Analog Conditioning  
and Muting  
45  
44  
DSDA4  
DSDB4  
NoteDSD  
19  
MUTEC3  
47 K  
42  
M3(DSD_SCLK  
14  
15  
M2  
M1  
Stand-Alone  
Mode  
Configuration  
16  
18  
M0  
20  
21  
FILT+  
VQ  
RST  
NoteVLC  
+
F
47 µF  
0.1 µ  
F
1 µF  
0.1 µ  
+
17  
+1.8 V to +5 V  
VLC  
0.1 µF  
NoteDSD: For DSD operation:  
1) LRCK m ust be tied to VLS and  
rem ain static high.  
2) M3 PCM stand-alone configuration  
pin becom es DSD_SCLK  
NoteVLC: If series resistors are  
used they m ust be <1k Ohm . If  
possible tie VLC to the VD supply  
to reduce possible excess current  
consum ption from VLC.  
GND  
5
GND  
31  
Figure 6. Typical Connection Diagram Stand-Alone  
13  
CS4383  
2. REGISTER QUICK REFERENCE  
Addr  
Function  
7
6
5
4
3
2
1
0
01h Mode Control 1  
default  
CPEN  
FREEZE  
DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS  
PDN  
1
MCLKDIV  
0
0
DIF2  
0
0
DIF0  
0
0
0
0
0
DIF1  
0
02h Mode Control 2  
default  
Reserved  
Reserved Reserved Reserved Reserved  
0
SZC1  
1
0
0
0
0
03h Mode Control 3  
default  
SZC0  
0
SNGLVOL RMP_UP MUTEC+/-  
AMUTE  
Reserved Reserved  
0
0
0
1
DEM1  
0
0
DEM0  
0
0
RMP_DN  
0
04h Filter Control  
default  
Reserved Reserved Reserved FILT_SEL Reserved  
0
0
INV_A4  
0
0
INV_B3  
0
0
INV_A3  
0
0
INV_B2  
0
05h Invert Control  
default  
INV_B4  
0
INV_A2  
0
INV_B1  
0
INV_A1  
0
06h Mixing Control  
Pair 1 (AOUTx1)  
P1_A=B  
P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0  
P1FM1  
P1FM0  
0
0
1
0
0
1
0
0
default  
07h Vol. Control A1  
default  
A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0  
0
0
0
0
0
0
0
0
08h Vol. Control B1  
default  
B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0  
0
0
0
0
0
0
0
0
09h Mixing Control  
Pair 2 (AOUTx2)  
P2_A=B  
P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0  
P2FM1  
P2FM0  
0
0
1
0
0
1
0
0
default  
0Ah Vol. Control A2  
default  
A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0  
0
0
0
0
0
0
0
0
0Bh Vol. Control B2  
default  
B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0  
0
0
0
0
0
0
0
0
0Ch Mixing Control  
Pair 3 (AOUTx3)  
P3_A=B  
P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0  
P3FM1  
P3FM0  
0
0
1
0
0
1
0
0
default  
0Dh Vol. Control A3  
default  
A3_MUTE A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0  
0
0
0
0
0
0
0
0
0Eh Vol. Control B3  
default  
B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0  
0
0
0
0
0
0
0
0
0Fh Mixing Control  
Pair 4 (AOUTx4)  
P4_A=B  
P4ATAPI4 P4ATAPI3 P4ATAPI2 P4ATAPI1 P4ATAPI0  
P4FM1  
P4FM0  
0
0
1
0
0
1
0
0
default  
10h Vol. Control A4  
default  
A4_MUTE A4_VOL6 A4_VOL5 A4_VOL4 A4_VOL3 A4_VOL2 A4_VOL1 A4_VOL0  
0
0
0
0
0
0
0
0
11h Vol. Control B4  
default  
B4_MUTE B4_VOL6 B4_VOL5 B4_VOL4 B4_VOL3 B4_VOL2 B4_VOL1 B4_VOL0  
0
PART3  
1
0
PART2  
0
0
PART1  
1
0
PART0  
0
0
0
0
0
12h Chip Revision  
default  
Reserved Reserved Reserved Reserved  
-
-
-
-
14  
CS4383  
3. REGISTER DESCRIPTION  
2
Note: All registers are read/write in I C mode and write only in SPI, unless otherwise noted.  
3.1  
Mode Control 1 (address 01h)  
7
CPEN  
0
6
FREEZE  
0
5
MCLKDIV  
0
4
DAC4_DIS  
0
3
DAC3_DIS  
0
2
1
0
PDN  
1
DAC2_DIS  
0
DAC1_DIS  
0
3.1.1 CONTROL PORT ENABLE (CPEN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This bit defaults to 0, allowing the device to power-up in Stand-Alone mode. The Control port mode  
can be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by  
the registers and the pin definitions will conform to Control Port Mode. To accomplish a clean power-  
up, the user should write this bit within 10 ms following the release of Reset.  
3.1.2 FREEZE CONTROLS (FREEZE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This function allows modifications to be made to the registers without the changes taking effect until  
the FREEZE is disabled. To make multiple changes in the Control port registers take effect simulta-  
neously, enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.  
3.1.3 MASTER CLOCK DIVIDE ENABLE (MCLKDIV)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all  
other internal circuitry.  
3.1.4 DAC PAIR DISABLE (DACX_DIS)  
Default = 0  
0 - Enabled  
1 - Disabled  
Function:  
When enabled the respective DAC channel pair x (AOUTAx and AOUTBx) will remain in a reset state.  
It is advised that changes to these bits be made while the power down bit is enabled to eliminate the  
possibility of audible artifacts.  
15  
CS4383  
3.1.5 POWER DOWN (PDN)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The entire device will enter a low-power state when this function is enabled, and the contents of the  
control registers are retained in this mode. The power-down bit defaults to enabledon power-up and  
must be disabled before normal operation in Control Port mode can occur.  
3.2  
Mode Control 2 (address 02h)  
7
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
Reserved  
0
3.2.1 DIGITAL INTERFACE FORMAT (DIF)  
Default = 000 - Format 0 (Left Justified, up to 24-bit data)  
Function:  
These bits select the interface format for the serial audio input. The Functional Mode bits determine  
whether PCM or DSD mode is selected.  
PCM Mode: The required relationship between the Left/Right clock, serial clock and serial data is defined  
by the Digital Interface Format and the options are detailed in Figures 33-38.  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Format  
FIGURE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
33  
34  
35  
36  
37  
38  
Left Justified, up to 24-bit data  
I S, up to 24-bit data  
2
Right Justified, 16-bit data  
Right Justified, 24-bit data  
Right Justified, 20-bit data  
Right Justified, 18-bit data  
Reserved  
Reserved  
Table 1. Digital Interface Formats - PCM Mode  
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required  
Master clock to DSD data rate is defined by the Digital Interface Format pins.  
DIF2  
DIF1  
DIFO  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
Table 2. Digital Interface Formats - DSD Mode  
16  
CS4383  
3.3  
Mode Control 3 (address 03h)  
7
SZC1  
1
6
SZC0  
0
5
SNGLVOL  
0
4
RMP_UP  
0
3
MUTEC+/-  
0
2
AMUTE  
1
1
Reserved  
0
0
Reserved  
0
3.3.1 SOFT RAMP AND ZERO CROSS CONTROL (SZC)  
Default = 10  
00 - Immediate Change  
01 - Zero Cross  
10 - Soft Ramp  
11 - Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will  
occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur  
after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample  
rate) if the signal does not encounter a zero crossing. The zero cross function is independently mon-  
itored and implemented for each channel.  
Soft Ramp  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally  
ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock  
periods.  
Soft Ramp on Zero Crossing  
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes  
or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level  
change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms  
at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is  
independently monitored and implemented for each channel.  
17  
CS4383  
3.3.2 SINGLE VOLUME CONTROL (SNGLVOL)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The individual channel volume levels are independently controlled by their respective Volume Control  
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel  
Volume Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.  
3.3.3 SOFT VOLUME RAMP-UP AFTER ERROR (RMP_UP)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
An un-mute will be performed after executing a filter mode change, after a LRCK/MCLK ratio change  
or error, and after changing the Functional Mode. When this feature is enabled, this un-mute is ef-  
fected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 register.  
When disabled, an immediate un-mute is performed in these instances.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN  
bit.  
3.3.4 MUTEC POLARITY (MUTEC +/-)  
Default = 0  
0 - Active Low  
1 - Active High  
Function:  
The active polarity of the MUTEC pin(s) is determined by this register. When set to 0 (default) the  
MUTEC pins are low when active. When set to 1 the MUTEC pin(s) are high when active.  
Note: When the on board mute circuitry is designed for active high, the MUTEC outputs will be low  
(un-muted) for the period of time during reset and before this bit is enabled to 1.  
3.3.5 AUTO-MUTE (AMUTE)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio  
samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and  
muting is done independently for each channel. The quiescent voltage on the output will be retained  
and the Mute Control pin will go active during the mute period. The muting function is affected, similar  
to volume control changes, by the Soft and Zero Cross bits in the Mode Control 3 register.  
18  
CS4383  
3.4  
Filter Control (address 04h)  
7
6
Reserved  
0
5
Reserved  
0
4
FILT_SEL  
0
3
Reserved  
0
2
DEM1  
0
1
DEM0  
0
0
RMP_DN  
0
Reserved  
0
3.4.1 INTERPOLATION FILTER SELECT (FILT_SEL)  
Default = 0  
0 - Fast roll-off  
1 - Slow roll-off  
Function:  
This Function allows the user to select whether the interpolation filter has a fast or slow roll off. For  
filter characteristics please see Section 1.  
3.4.2 DE-EMPHASIS CONTROL (DEM)  
Default = 00  
00 - Disabled  
01 - 44.1 kHz  
10 - 48 kHz  
11 - 32 kHz  
Function:  
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter re-  
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 39)  
De-emphasis is only available in Single Speed Mode.  
3.4.3 SOFT RAMP-DOWN BEFORE FILTER MODE CHANGE (RMP_DN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
A mute will be performed prior to executing a filter mode change. When this feature is enabled, this  
mute is effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control  
3 register. When disabled, an immediate mute is performed prior to executing a filter mode change.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP  
bit.  
19  
CS4383  
3.5  
Invert control (address 05h)  
7
INV_B4  
0
6
INV_A4  
0
5
INV_B3  
0
4
INV_A3  
0
3
INV_B2  
0
2
INV_A2  
0
1
INV_B1  
0
0
INV_A1  
0
3.5.1 INVERT SIGNAL POLARITY (INV_XX)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
When enabled, these bits will invert the signal polarity of their respective channels.  
3.6  
Mixing Control Pair 1 (Channels A1 & B1)(address 06h)  
Mixing Control Pair 2 (Channels A2 & B2)(address 09h)  
Mixing Control Pair 3 (Channels A3 & B3)(address 0Ch)  
Mixing Control Pair 4 (Channels A4 & B4)(address 0Fh)  
7
Px_A=B  
0
6
PxATAPI4  
0
5
PxATAPI3  
1
4
PxATAPI2  
0
3
PxATAPI1  
0
2
PxATAPI0  
1
1
PxFM1  
0
0
PxFM0  
0
3.6.1 CHANNEL A VOLUME = CHANNEL B VOLUME (A=B)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel  
Volume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are  
determined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Chan-  
nel Bytes are ignored when this function is enabled.  
3.6.2 ATAPI CHANNEL MIXING AND MUTING (ATAPI)  
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)  
Function:  
The CS4383 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI  
functions are applied per A-B pair. Refer to Table 3 and Figure 41 for additional information  
20  
CS4383  
.
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0  
AOUTAx  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTBx  
MUTE  
bR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
[(bL+aR)/2]  
MUTE  
bR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
[(aL+bR)/2]  
[(aL+bR)/2]  
[(bL+aR)/2]  
[(aL+bR)/2]  
bL  
[(aL+bR)/2]  
Table 3. ATAPI Decode  
3.6.3 FUNCTIONAL MODE (FM)  
Default = 00  
00 - Single-Speed Mode (4 to 50 kHz sample rates)  
01 - Double-Speed Mode (50 to 100 kHz sample rates)  
10 - Quad-Speed Mode (100 to 200 kHz sample rates)  
11 - Direct Stream Digital Mode  
Function:  
Selects the required range of input sample rates or DSD Mode. When DSD mode is selected for any  
channel pair then all pairs will switch to DSD mode.  
21  
CS4383  
3.7  
Volume control (addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh, 10h, 11h)  
7
6
xx_VOL6  
0
5
xx_VOL5  
0
4
xx_VOL4  
0
3
xx_VOL3  
0
2
xx_VOL2  
0
1
xx_VOL1  
0
0
xx_VOL0  
0
xx_MUTE  
0
3.7.1 MUTE (MUTE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output  
will be retained. The muting function is effected, similar to attenuation changes, by the Soft and Zero  
Cross bits. The MUTEC pins will go active during the mute period according to the MUTEC register.  
3.7.2 VOLUME CONTROL (XX_VOL)  
Default = 0 (No attenuation)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments  
from 0 to -127 dB. Volume settings are decoded as shown in Table 4. The volume changes are imple-  
mented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent  
to enabling the MUTE bit.  
Binary Code  
0000000  
0010100  
0101000  
0111100  
Decimal Value  
Volume Setting  
0 dB  
0
20  
40  
60  
90  
-20 dB  
-40 dB  
-60 dB  
-90 dB  
1011010  
Table 4. Example Digital Volume Settings  
22  
CS4383  
3.8  
Chip Revision (address 12h)  
7
PART3  
1
6
PART2  
0
5
PART1  
1
4
PART0  
1
3
2
1
0
Reserved  
-
Reserved  
-
Reserved  
-
Reserved  
-
3.8.1 PART NUMBER ID (PART) [READ ONLY]  
1011 - CS4383  
Function:  
This read-only register can be used to identify the model number of the device.  
23  
CS4383  
4. PIN DESCRIPTION  
48 47 46 4 5 44 43 42 41 40 39 38 37  
36  
AOUTA2-  
DSDA2  
DSDB1  
1
2
35  
34  
33  
32  
AOUTA2+  
AOUTB2+  
AOUTB2-  
DSDA1  
VD  
3
4
5
GND  
VA  
31  
MCLK  
GND  
6
CS4383  
LRCK (DSD_EN)  
SDIN1  
7
AOUTA3-  
AOUTA3+  
AOUTB3+  
30  
29  
28  
27  
26  
25  
8
SCLK  
9
10  
11  
12  
TST  
AOUTB3-  
AOUTA4-  
AOUTA4+  
SDIN2  
SDIN3  
13 14 15 1 6 17 18 19 20 21 22 23 24  
Pin Name  
VD  
#
Pin Description  
4
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recommended Operat-  
ing Conditions for appropriate voltages.  
GND  
5
Ground (Input) - Ground reference. Should be connected to analog ground.  
31  
MCLK  
LRCK  
6
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 5 illustrates  
several standard audio sample rates and the required master clock frequency.  
7
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio  
data line. The frequency of the left/right clock must be at the audio sample rate, Fs.  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
8
11  
12  
13  
Serial Audio Data Input (Input) - Input for twos complement serial audio data.  
SCLK  
VLC  
RST  
FILT+  
VQ  
9
Serial Clock (Input) - Serial clock for the serial audio interface.  
17 Control Port Power (Input) - Determines the required signal level for the control port. Refer to the Rec-  
ommended Operating Conditions for appropriate voltages.  
18 Reset (Input) - The device enters a low power mode and all internal registers are reset to their default  
settings when low.  
20 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.  
Requires the capacitive decoupling to analog ground, as shown in the Typical Connection Diagram.  
21  
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be capacitively  
coupled to analog ground, as shown in the Typical Connection Diagram. The nominal voltage level is  
specified in the Analog Characteristics and Specifications section. VQ presents an appreciable source  
impedance and any current drawn from this pin will alter device performance. However, VQ can be  
used to bias the analog circuitry assuming there is no AC signal component and the DC current is less  
than the maximum specified in the Analog Characteristics and Specifications section.  
24  
CS4383  
Pin Name  
#
Pin Description  
MUTEC1  
MUTEC2  
MUTEC3  
41  
22  
19  
Mute Control (Output) - The Mute Control pins go low during power-up initialization, reset, muting,  
power-down or if the master clock to left/right clock frequency ratio is incorrect. These pins are intended  
to be used as a control for external mute circuits to prevent the clicks and pops that can occur in any sin-  
gle supply system. The use of external mute circuits are not mandatory but may be desired for designs  
requiring the absolute minimum in extraneous clicks and pops.  
AOUTA1 +,- 39, 40 Differential Analog Output (Output) - The full scale differential analog output level is specified in the  
AOUTB1 +,- 38, 37 Analog Characteristics specification table.  
AOUTA2 +,- 35, 36  
AOUTB2 +,- 34, 33  
AOUTA3 +,- 29, 30  
AOUTB3 +,- 28, 27  
AOUTA4 +,- 25, 26  
AOUTB4 +,- 24, 23  
VA  
32  
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended Oper-  
ating Conditions for appropriate voltages.  
VLS  
43 Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio inter-  
face. Refer to the Recommended Operating Conditions for appropriate voltages.  
Control Port Definitions  
SCL/CCLK  
14 Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external pull-up  
2
resistor to the logic interface voltage in I C mode as shown in the Typical Connection Diagram.  
2
SDA/CDIN  
15 Serial Control Data (Input/Output) - SDA is a data I/O line in I C mode and requires an external pull-up  
resistor to the logic interface voltage, as shown in the Typical Connection Diagram. CDIN is the input  
data line for the control port interface in SPI mode.  
2
AD0/CS  
16 Address Bit 0 (I2C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I C mode;  
CS is the chip select signal for SPI format.  
Stand-Alone Definitions  
M0  
M1  
M2  
M3  
16  
15  
14  
42  
Mode Selection (Input) - Determines the operational mode of the device as detailed in Tables 6 and 7.  
DSD Definitions  
DSD_SCLK  
42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital audio interface.  
DSD_EN  
7
DSD-Enable (Input) - When held at logic 1the device will enter DSD mode (Stand-Alone mode only).  
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.  
DSDA1  
DSDB1  
DSDA2  
DSDB2  
DSDA3  
DSDB3  
DSDA4  
DSDB4  
3
2
1
48  
47  
46  
45  
44  
TST  
10 Test - This pin needs to be tied to analog ground.  
25  
CS4383  
Control port  
only modes  
Mode  
(sample-rate range)  
Sample  
Rate  
MCLK (MHz)  
(kHz)  
MCLK Ratio  
256x  
8.1920  
11.2896  
12.2880  
128x  
384x  
512x  
768x  
1024x*  
32.7680  
45.1584  
49.1520  
512x*  
32  
44.1  
48  
12.2880  
16.9344  
18.4320  
192x  
16.3840  
22.5792  
24.5760  
256x  
24.5760  
33.8688  
36.8640  
384x  
Single Speed  
(4 to 50 kHz)  
MCLK Ratio  
64  
88.2  
96  
8.1920  
11.2896  
12.2880  
64x  
12.2880  
16.9344  
18.4320  
96x  
16.3840  
22.5792  
24.5760  
128x  
24.5760  
33.8688  
36.8640  
192x  
32.7680  
45.1584  
49.1520  
256x*  
Double Speed  
(50 to 100 kHz)  
MCLK Ratio  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Quad Speed  
(100 to 200 kHz)  
Table 5. Common Clock Frequencies  
*Note: These modes are only available in control port mode by setting the MCLKDIV bit = 1.  
M1  
M0  
DESCRIPTION  
FORMAT  
FIGURE  
(DIF1)  
(DIF0)  
Left Justified, up to 24-bit data  
0
0
0
1
0
1
33  
34  
2
I S, up to 24-bit data  
Right Justified, 16-bit Data  
Right Justified, 24-bit Data  
1
1
0
1
2
3
35  
36  
Table 6. Digital Interface Format, Stand-Alone Mode Options  
M3  
M2  
DESCRIPTION  
(DEM)  
Single-Speed without De-Emphasis (4 to 50 kHz sample rates)  
Single-Speed with 44.1kHz De-Emphasis; see Figure 39  
Double-Speed (50 to 100 kHz sample rates)  
0
0
1
1
0
1
0
1
Quad-Speed (100 to 200 kHz sample rates)  
Table 7. Mode Selection, Stand-Alone Mode Options  
DSD_Mode  
M2  
M1  
M0  
DESCRIPTION  
(LRCK1)  
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options  
26  
CS4383  
gle-Speed Mode (1024 LRCK cycles in Double-  
Speed Mode, and 2048 LRCK cycles in Quad-  
Speed Mode). Writing this bit will halt the Stand-  
Alone power-up sequence and initialize the control  
port to its default settings. The desired register set-  
tings can be loaded while keeping the PDN bit set  
to 1.  
5. APPLICATIONS  
5.1 Grounding and Power Supply  
Decoupling  
As with any high resolution converter, the CS4383  
requires careful attention to power supply and  
grounding arrangements to optimize performance.  
Figures 5 & 6 show the recommended power ar-  
rangement with VA, VD, VLS and VLC connected  
to clean supplies. Decoupling capacitors should be  
located as close to the device package as possible.  
If desired, all supply pins may be connected to the  
same supply, but a decoupling capacitor should still  
be placed on each supply pin (see Section 1 for rec-  
ommended voltages).  
3. If Control Port Mode is selected via the CPEN  
bit, set the PDN bit to 0 which will initiate the pow-  
er-up sequence.  
5.4  
Analog Output and Filtering  
The application note “Design Notes for a 2-Pole  
Filter with Differential Input” discusses the sec-  
ond-order Butterworth filter and differential to sin-  
gle-ended converter which was implemented on the  
CS4383 evaluation board, CDB4383, as seen in  
Figure 42. The CS4383 does not include phase or  
amplitude compensation for an external filter.  
Therefore, the DAC system phase and amplitude  
response will be dependent on the external analog  
circuitry.  
5.2  
Oversampling Modes  
The CS4383 operates in one of three oversampling  
modes based on the input sample rate. Mode selec-  
tion is determined by the M3 and M2 pins in Stand-  
Alone mode or the FM bits in Control Port mode.  
Single-Speed mode supports input sample rates up  
to 50 kHz and uses a 128x oversampling ratio.  
Double-Speed mode supports input sample rates up  
to 100 kHz and uses an oversampling ratio of 64x.  
Quad-Speed mode supports input sample rates up  
to 200 kHz and uses an oversampling ratio of 32x.  
5.5  
Interpolation Filter  
To accommodate the increasingly complex re-  
quirements of digital audio systems, the CS4383  
incorporates selectable interpolation filters for each  
mode of operation. A “fast” and a “slow” roll-off  
filter is available in each of Single, Double, and  
Quad Speed modes. These filters have been de-  
signed to accommodate a variety of musical tastes  
and styles. The FILT_SEL bit is used to select  
which filter is used (see the control port section for  
more details).  
5.3  
Recommended Power-up Sequence  
1. Hold RST low until the power supply, master,  
and left/right clocks are stable. In this state, the  
control port is reset to its default settings and VQ  
will remain low.  
2. Bring RST high. The device will remain in a low  
power state with VQ low and will initiate the  
Stand-Alone power-up sequence. The control port  
will be accessible at this time. If Control Port oper-  
ation is desired, write the CPEN bit prior to the  
completion of the Stand-Alone power-up se-  
quence, approximately 512 LRCK cycles in Sin-  
When in stand-alone mode, only the “fast” roll-off  
filter is available.  
Filter specifications can be found in Section 1, and  
filter response plots can be found in Figures 9 to 32.  
27  
CS4383  
control port is enabled, these pins are dedicated to  
control port functionality.  
5.6  
Using DSD mode  
In stand-alone mode, DSD operation is selected by  
holding DSD_EN(LRCK) high and applying the  
DSD data and clocks to the appropriate pins. The  
M2:0 pins set the expected DSD rate and MCLK  
ratio.  
To prevent audible artifacts the CPEN bit (see Sec-  
tion 3.1.1) should be set prior to the completion of  
the Stand-Alone power-up sequence, approximate-  
ly 1024 LRCK cycles. Writing this bit will halt the  
Stand-Alone power-up sequence and initialize the  
control port to its default settings. Note, the CP_EN  
bit can be set any time after RST goes high; how-  
ever, setting this bit after the Stand-Alone power-  
up sequence has completed can cause audible arti-  
facts.  
In control-port mode the FM bits set the device into  
DSD mode (DSD_EN pin is not required to be held  
high). The DIF register then controls the expected  
DSD rate and MCLK ratio.  
During DSD operation, the PCM related pins  
should either be tied low or remain active with  
clocks (except LRCK in Stand-Alone mode).  
When the DSD related pins are not being used they  
should either be tied static low, or remain active  
with clocks (except M3 in Stand-Alone mode).  
6.2  
Format Selection  
The control port has 2 formats: SPI and I2C, with  
the CS4383 operating as a slave device.  
If I2C operation is desired, AD0/CS should be tied  
to VLC or GND. If the CS4383 ever detects a high  
to low transition on AD0/CS after power-up and af-  
ter the control port is activated , SPI format will be  
selected.  
6. CONTROL PORT INTERFACE  
The control port is used to load all the internal set-  
tings. The operation of the control port may be  
completely asynchronous with the audio sample  
rate. However, to avoid potential interference prob-  
lems, the control port pins should remain static if  
no operation is required.  
6.3  
I2C Format  
In I2C Format, SDA is a bidirectional data line.  
Data is clocked into and out of the part by the clock,  
SCL, with a clock to data relationship as shown in  
Figure 7. The receiving device should send an ac-  
knowledge (ACK) after each byte received. There  
is no CS pin. Pin AD0 forms the partial chip ad-  
dress and should be tied to VLC or GND as re-  
quired. The upper 6 bits of the 7 bit address field  
must be 001100.  
The CS4383 has MAP auto increment capability,  
enabled by the INCR bit in the MAP register,  
which is the MSB. If INCR is 0, then the MAP will  
stay constant for successive writes. If INCR is set  
to 1, then MAP will auto increment after each byte  
is written from register 01h to 08h and then from  
09h and 11h, allowing block reads or writes of suc-  
cessive registers in two separate sections (the  
counter will not auto-increment to register 09h  
from register 08h).  
Note: MCLK is required during all I2C transac-  
tions. Please see reference 4 for further details.  
6.3.1 Writing in I2C Format  
6.1  
Enabling the Control Port  
To communicate with the CS4383, initiate a  
START condition of the bus. Next, send the chip  
address. The eighth bit of the address byte is the  
R/W bit (low for a write). The next byte is the  
Memory Address Pointer, MAP, which selects the  
register to be read or written. The MAP is then fol-  
On the CS4383 the control port pins are shared  
with stand-alone configuration pins. To enable the  
control port, the user must set the CPEN bit. This  
is done by performing a I2C or SPI write. Once the  
28  
CS4383  
lowed by the data to be written. To write multiple  
registers, continue providing a clock and data,  
waiting for the CS4383 to acknowledge between  
each byte. To end the transaction, send a STOP  
condition.  
address is 0011000. CS, CCLK and CDIN are all  
inputs and data is clocked in on the rising edge of  
CCLK.  
Note that the CS4383 is write-only when in SPI  
format.  
6.3.2 Reading in I2C Format  
6.4.1 Writing in SPI  
To communicate with the CS4383, initiate a  
START condition of the bus. Next, send the chip  
address. The eighth bit of the address byte is the  
R/W bit (high for a read). The contents of the reg-  
ister pointed to by the MAP will be output after the  
chip address. To read multiple registers, continue  
providing a clock and issue an ACK after each  
byte. To end the transaction, send a STOP condi-  
tion.  
Figure 8 shows the operation of the control port in  
SPI format. To write to a register, bring CS low.  
The first 7 bits on CDIN form the chip address and  
must be 0011000. The eighth bit is a read/write in-  
dicator (R/W), which must be low to write. The  
next 8 bits form the Memory Address Pointer  
(MAP), which is set to the address of the register  
that is to be updated. The next 8 bits are the data  
which will be placed into register designated by the  
MAP. To write multiple registers, keep CS low and  
continue providing clocks on CCLK. End the read  
transaction by setting CS high.  
6.4  
SPI Format  
In SPI format, CS is the CS4383 chip select signal,  
CCLK is the control port bit clock, CDIN is the in-  
put data line from the microcontroller and the chip  
N o te 1  
A D DR  
D ATA  
1-8  
D A TA  
1-8  
001100  
R /W  
A C K  
A C K  
AC K  
S D A  
S C L  
AD 0  
S ta rt  
S top  
N o te: If o peratio n is a w rite , th is byte co nta in s the M em o ry A dd ress P o inte r, M A P .  
2
Figure 7. Control Port Timing, I C Format  
C S  
C C L K  
C H IP  
A D D R E S S  
M A P  
D A TA  
0 0 1 1 0 00  
LS B  
C D IN  
M S B  
R /W  
b y te 1  
b yte n  
M A P = M e m o ry A d d re s s P o in te r  
Figure 8. Control Port Timing, SPI Format  
29  
CS4383  
6.5  
Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
MAP4  
0
3
MAP3  
0
2
MAP2  
0
1
MAP1  
0
0
MAP0  
0
6.5.1 INCR (AUTO MAP INCREMENT ENABLE)  
Default = 0’  
0 - Disabled  
1 - Enabled  
Note: When Auto Map Increment is enabled, the register must be written it two separate blocks: from  
register 01h to 08h and then from 09h and 11h. The counter will not auto-increment to register 09h from  
register 08h  
6.5.2 MAP4-0 (MEMORY ADDRESS POINTER)  
Default = 00000’  
30  
CS4383  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 9. Single Speed (fast) Stopband Rejection  
Figure 10. Single Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 11. Single Speed (fast) Transition Band (detail)  
Figure 12. Single Speed (fast) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 13. Single Speed (slow) Stopband Rejection  
Figure 14. Single Speed (slow) Transition Band  
31  
CS4383  
0.02  
0.015  
0.01  
0
1
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 15. Single Speed (slow) Transition Band (detail)  
Figure 16. Single Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 17. Double Speed (fast) Stopband Rejection  
Figure 18. Double Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 19. Double Speed (fast) Transition Band (detail)  
Figure 20. Double Speed (fast) Passband Ripple  
32  
CS4383  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 21. Double Speed (slow) Stopband Rejection  
Figure 22. Double Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 23. Double Speed (slow) Transition Band (detail)  
Figure 24. Double Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
100  
120  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 25. Quad Speed (fast) Stopband Rejection  
Figure 26. Quad Speed (fast) Transition Band  
33  
CS4383  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 27. Quad Speed (fast) Transition Band (detail)  
Figure 28. Quad Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 29. Quad Speed (slow) Stopband Rejection  
Figure 30. Quad Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
0.005  
0
2
3
4
5
6
0.005  
0.01  
0.015  
0.02  
7
8
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 31. Quad Speed (slow) Transition Band (detail)  
Figure 32. Quad Speed (slow) Passband Ripple  
34  
CS4383  
Left Channel  
Right Channel  
LRCK  
SCLK  
MSB  
LSB  
MSB  
LSB  
SDINx  
-1 -2 -3 -4 -5  
+5 +4 +3 +2 +1  
-2 -3 -4  
+5 +4 +3 +2 +1  
-1  
Figure 33. Format 0 - Left Justified up to 24-bit Data  
Left Channel  
Right Channel  
LRCK  
SCLK  
LSB  
MSB  
LSB  
SDINx  
MSB  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
2
Figure 34. Format 1 - I S up to 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
9
8
7
6
5
4
3
2
1
0
9
15 14 13 12 11 10  
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
32 clocks  
Figure 35. Format 2 - Right Justified 16-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
23 22 21 20 19 18  
32 clocks  
23 22 21 20 19 18  
Figure 36. Format 3 - Right Justified 24-bit Data  
35  
CS4383  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
19 18 17 16  
9
8
7
6
5
4
3
2
1
0
19 18 17 16  
9
15 14 13 12 11 10  
8
7
6
5
4
3 2 1 0  
15 14 13 12 11 10  
32 clocks  
Figure 37. Format 4 - Right Justified 20-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
17 16 15 14 13 12 11 10  
32 clocks  
9
8
7
6
5
4
3
2
1
0
17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Figure 38. Format 5 - Right Justified 18-bit Data  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 39. De-Emphasis Curve  
L
AOUTAx+  
AOUTAx-  
DAC  
DAC  
Channel  
Pair x  
Control  
SDINx  
AOUTBx+  
AOUTBx-  
R
Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, 3, or 4)  
36  
CS4383  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutAx  
Σ
Σ
SDINx  
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutBx  
Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)  
Figure 42. Recommended Output Filter  
37  
CS4383  
7. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10Hz to 20kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth  
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement  
to full scale. This technique ensures that the distortion components are below the noise level and do not  
effect the measurement. This measurement technique has been accepted by the Audio Engineering So-  
ciety, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in  
decibels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full scale analog output for a full scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
8. REFERENCES  
1. "How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters" by Steven Harris.  
Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992.  
2. CDB4383 Evaluation Board Datasheet  
3. Design Notes for a 2-Pole Filter with Differential Inputby Steven Green. Cirrus Logic Application Note  
AN48  
2
4. The I C-Bus Specification: Version 2.0Philips Semiconductors, December 1998.  
http://www.semiconductors.philips.com  
38  
CS4383  
9. PACKAGE DIMENSIONS  
48L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
NOM  
0.055  
0.004  
0.009  
0.354  
0.28  
0.354  
0.28  
0.020  
0.24  
MILLIMETERS  
NOM  
DIM  
A
A1  
B
D
D1  
E
E1  
e*  
L
MIN  
---  
MAX  
MIN  
---  
MAX  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
1.40  
0.10  
0.22  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
9.0 BSC  
7.0 BSC  
9.0 BSC  
7.0 BSC  
0.50 BSC  
0.60  
4°  
4°  
* Nominal pin pitch is 0.50 mm  
Controlling dimension is mm.  
JEDEC Designation: MS022  
39  

相关型号:

CDB4384

103 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CDB4385

114 dB, 192kHz 8-CHANNEL D/A CONVERTER
CIRRUS

CDB4385A

Demonstrates recommended layout and grounding arrangements
CIRRUS

CDB4390

24-Bit, Stereo D/A Converter for Digital Audio
CIRRUS

CDB4391

24-Bit, 192 kHz Stereo DAC with Volume Control
CIRRUS

CDB4391A

Evaluation Board for CS4391A
CIRRUS

CDB4392

24-Bit, 192 kHz Stereo DAC with Volume Control
CIRRUS

CDB4396

24-Bit, 192 kHz D/A Converter for Digital Audio
CIRRUS

CDB4397

24-Bit, Multi-Standard D/A Converter for Digital Audio
CIRRUS

CDB4398

120 dB, 192 kHz Multi-Bit DAC with Volume Control
CIRRUS

CDB43L21

Low Power, Stereo Digital to Analog Converter
CIRRUS

CDB43L22

Low Power, Stereo DAC w/Headphone & Speaker Amps
CIRRUS