CDB4384 [CIRRUS]

103 dB, 192 kHz 8-Channel D/A Converter; 103分贝, 192 kHz的8通道D / A转换器
CDB4384
型号: CDB4384
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

103 dB, 192 kHz 8-Channel D/A Converter
103分贝, 192 kHz的8通道D / A转换器

转换器
文件: 总50页 (文件大小:1004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4384  
103 dB, 192 kHz 8-Channel D/A Converter  
Features  
Description  
! Advanced Multi-bit Delta Sigma Architecture  
! 24-bit Conversion  
The CS4384 is a complete 8-channel digital-to-analog  
system. This D/A system includes digital de-emphasis,  
half-dB step size volume control, ATAPI channel mix-  
ing, selectable fast and slow digital interpolation filters  
followed by an oversampled, multi-bit delta sigma mod-  
ulator which includes mismatch shaping technology that  
eliminates distortion due to capacitor mismatch. Follow-  
ing this stage is a multi-element switched capacitor  
stage and low-pass filter with single-ended analog  
outputs.  
! Automatic Detection of Sample Rates up to  
192 kHz  
! 103 dB Dynamic Range  
! -88 dB THD+N  
! Single-Ended Output Architecture  
! Direct Stream Digital Mode  
The CS4384 also has a proprietary DSD processor  
which allows for volume control and 50 kHz on-chip fil-  
tering without an intermediate decimation stage. It also  
offers an optional path for direct DSD conversion by di-  
rectly using the multi-element switched capacitor array.  
Non-Decimating Volume Control  
On-Chip 50 kHz Filter  
Matched PCM and DSD Analog Output  
Levels  
The CS4384 accepts PCM data at sample rates from  
4 kHz to 216 kHz, DSD audio data, and delivers excel-  
lent sound quality. These features are ideal for multi-  
channel audio systems including SACD players, A/V re-  
ceivers, digital TV’s, mixing consoles, effects  
processors, sound cards and automotive audio  
systems.  
! Compatible with Industry-Standard Time  
Division Multiplexed (TDM) Serial Interface  
! Selectable Digital Filters  
! Volume Control with 1/2-dB Step Size and Soft  
Ramp  
! Low Clock Jitter Sensitivity  
This product is available in 48-pin LQFP package and is  
available in both Automotive (-40° C - +85° C) and  
Commercial (-10° C - +70° C) temperature grades. For  
full Ordering Information see page 50.  
! +5 V Analog Supply, +2.5 V Digital Supply  
! Separate 1.8 to 5 V Logic Supplies for the  
Control & Serial Ports  
Control Port Supply = 1.8 V to 5 V  
Digital Supply = 2.5 V  
Analog Supply = 5 V  
Hardware Mode or  
I2C/SPI Software Mode  
Control Data  
Internal Voltage  
Reference  
Register/Hardware  
Configuration  
Reset  
Serial Audio Port  
Supply = 1.8 V to 5 V  
Eight Channels  
of Single-Ended  
Outputs  
Switch-Cap  
DAC and  
Analog Filters  
Volume  
Controls  
Digital  
Filters  
Multi-bit ∆Σ  
Modulators  
PCM Serial  
Audio Input  
8
8
TDM Serial  
Audio Input  
DSD Processor  
-Volume control  
-50 kHz filter  
External Mute  
Control  
Mute Signals  
2
DSD Audio  
Input  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Advance Product Information  
Copyright © Cirrus Logic, Inc. 2005  
AUGUST '05  
DS620A1  
(All Rights Reserved)  
http://www.cirrus.com  
CS4384  
TABLE OF CONTENTS  
1. PIN DESCRIPTION................................................................................................................................. 6  
2. CHARACTERISTICS AND SPECIFICATIONS...................................................................................... 8  
SPECIFIED OPERATING CONDITIONS .................................................................................................... 8  
ABSOLUTE MAXIMUM RATINGS............................................................................................................... 8  
DAC ANALOG CHARACTERISTICS........................................................................................................... 9  
DAC ANALOG CHARACTERISTICS - ALL MODES (CONTINUED)........................................................ 10  
POWER AND THERMAL CHARACTERISTICS........................................................................................ 10  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 11  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 12  
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE .................................................. 12  
DIGITAL CHARACTERISTICS .................................................................................................................. 13  
SWITCHING CHARACTERISTICS - PCM ................................................................................................ 14  
SWITCHING CHARACTERISTICS - DSD................................................................................................. 15  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT.................................................... 16  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT............................................... 17  
3. APPLICATIONS ................................................................................................................................... 20  
3.1 Master Clock.................................................................................................................................. 20  
3.2 Mode Select.................................................................................................................................. 21  
3.3 Digital Interface Formats ............................................................................................................... 22  
3.3.1 OLM #1 ................................................................................................................................ 23  
3.3.2 OLM #2 ................................................................................................................................ 23  
3.3.3 OLM #3 ................................................................................................................................ 24  
3.3.4 OLM #4 ................................................................................................................................ 24  
3.3.5 TDM ..................................................................................................................................... 25  
3.4 Oversampling Modes..................................................................................................................... 25  
3.5 Interpolation Filter.......................................................................................................................... 25  
3.6 De-Emphasis ................................................................................................................................. 26  
3.7 ATAPI Specification....................................................................................................................... 26  
3.8 Direct Stream Digital (DSD) Mode................................................................................................. 27  
3.9 Grounding and Power Supply Arrangements ................................................................................ 28  
3.9.1 Capacitor Placement............................................................................................................ 28  
3.10 Analog Output and Filtering......................................................................................................... 28  
3.11 The MUTEC Outputs................................................................................................................... 29  
3.12 Recommended Power-Up Sequence.......................................................................................... 29  
3.12.1 Hardware Mode.................................................................................................................. 29  
3.12.2 Software Mode................................................................................................................... 30  
3.13 Recommended Procedure for Switching Operational Modes...................................................... 30  
3.14 Control Port Interface .................................................................................................................. 30  
3.14.1 MAP Auto Increment.......................................................................................................... 30  
3.14.2 I²C Mode ............................................................................................................................ 30  
3.14.3 SPI™ Mode........................................................................................................................ 32  
3.15 Memory Address Pointer (MAP)................................................................................................. 32  
3.15.1 INCR (Auto Map Increment Enable) .................................................................................. 32  
3.15.2 MAP4-0 (Memory Address Pointer) ................................................................................... 32  
4. REGISTER QUICK REFERENCE ....................................................................................................... 33  
5. REGISTER DESCRIPTION .................................................................................................................. 34  
5.1 Chip Revision (address 01h) ......................................................................................................... 34  
5.1.1 Part Number ID (part) [Read Only]....................................................................................... 34  
5.2 Mode Control 1 (address 02h)....................................................................................................... 34  
5.2.1 Control Port Enable (CPEN) ................................................................................................ 34  
5.2.2 Freeze Controls (FREEZE).................................................................................................. 35  
5.2.3 PCM/DSD Selection (DSD/PCM)......................................................................................... 35  
2
DS620A1  
CS4384  
5.2.4 DAC Pair Disable (DACx_DIS) ............................................................................................ 35  
5.2.5 Power Down (PDN).............................................................................................................. 35  
5.3 PCM Control (address 03h)........................................................................................................... 35  
5.3.1 Digital Interface Format (DIF)............................................................................................... 35  
5.3.2 Functional Mode (FM).......................................................................................................... 36  
5.4 DSD Control (address 04h) ........................................................................................................... 36  
5.4.1 DSD Mode Digital Interface Format (DSD_DIF) .................................................................. 36  
5.4.2 Direct DSD Conversion (DIR_DSD)..................................................................................... 37  
5.4.3 Static DSD Detect (STATIC_DSD) ...................................................................................... 37  
5.4.4 Invalid DSD Detect (INVALID_DSD).................................................................................... 37  
5.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE).................................................... 37  
5.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ........................................................ 38  
5.5 Filter Control (address 05h)........................................................................................................... 38  
5.5.1 Interpolation Filter Select (FILT_SEL).................................................................................. 38  
5.6 Invert Control (address 06h).......................................................................................................... 38  
5.6.1 Invert Signal Polarity (INV_xx) ............................................................................................. 38  
5.7 Group Control (address 07h)......................................................................................................... 38  
5.7.1 Mutec Pin Control (MUTEC) ................................................................................................ 38  
5.7.2 Channel A Volume = Channel B Volume (Px_A=B)............................................................. 39  
5.7.3 Single Volume Control (SNGLVOL)..................................................................................... 39  
5.8 Ramp and Mute (address 08h)...................................................................................................... 39  
5.8.1 Soft Ramp and Zero Cross Control (SZC) ........................................................................... 39  
5.8.2 Soft Volume Ramp-Up After Error (RMP_UP) ..................................................................... 40  
5.8.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN)................................................... 40  
5.8.4 PCM Auto-Mute (PAMUTE) ................................................................................................. 40  
5.8.5 DSD Auto-Mute (DAMUTE) ................................................................................................. 40  
5.8.6 MUTE Polarity and DETECT (MUTEP1:0)........................................................................... 41  
5.9 Mute Control (address 09h)........................................................................................................... 41  
5.9.1 Mute (MUTE_xx).................................................................................................................. 41  
5.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h).............................................................................. 41  
5.10.1 De-Emphasis Control (PX_DEM1:0).................................................................................. 41  
5.11 ATAPI Channel Mixing and Muting (ATAPI)................................................................................ 42  
5.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h) ........................................... 43  
5.12.1 Digital Volume Control (xx_VOL7:0) .................................................................................. 43  
5.13 PCM Clock Mode (address 16h).................................................................................................. 43  
5.13.1 Master Clock Divide by 2 Enable (MCLKDIV).................................................................... 43  
6. FILTER RESPONSE PLOTS ............................................................................................................... 44  
7. REFERENCES...................................................................................................................................... 48  
8. PARAMETER DEFINITIONS................................................................................................................ 48  
9. PACKAGE DIMENSIONS .................................................................................................................... 49  
10. ORDERING INFORMATION .............................................................................................................. 50  
11. REVISION HISTORY ......................................................................................................................... 50  
DS620A1  
3
CS4384  
LIST OF FIGURES  
Figure 1. Serial Audio Interface Timing...................................................................................................... 14  
Figure 2. TDM Serial Audio Interface Timing............................................................................................. 14  
Figure 3. Direct Stream Digital - Serial Audio Input Timing........................................................................ 15  
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode........................... 15  
Figure 5. Control Port Timing - I²C Format................................................................................................. 16  
Figure 6. Control Port Timing - SPI Format................................................................................................ 17  
Figure 7. Typical Connection Diagram, Software Mode............................................................................. 18  
Figure 8. Typical Connection Diagram, Hardware Mode ........................................................................... 19  
Figure 9. Format 0 - Left-Justified up to 24-bit Data .................................................................................. 22  
Figure 10. Format 1 - I²S up to 24-bit Data ................................................................................................ 22  
Figure 11. Format 2 - Right-Justified 16-bit Data....................................................................................... 22  
Figure 12. Format 3 - Right-Justified 24-bit Data....................................................................................... 22  
Figure 13. Format 4 - Right-Justified 20-bit Data....................................................................................... 22  
Figure 14. Format 5 - Right-Justified 18-bit Data....................................................................................... 23  
Figure 15. Format 8 - One Line Mode 1..................................................................................................... 23  
Figure 16. Format 9 - One Line Mode 2..................................................................................................... 23  
Figure 17. Format 10 - One Line Mode 3................................................................................................... 24  
Figure 18. Format 11 - One Line Mode 4................................................................................................... 24  
Figure 19. Format 12 - TDM Mode............................................................................................................. 25  
Figure 20. De-Emphasis Curve.................................................................................................................. 26  
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)............................................................... 26  
Figure 22. DSD Phase Modulation Mode Diagram.................................................................................... 27  
Figure 23. Full-Scale Output ...................................................................................................................... 28  
Figure 24. Recommended Output Filter..................................................................................................... 28  
Figure 25. Recommended Mute Circuitry .................................................................................................. 29  
Figure 26. Control Port Timing, I²C Mode .................................................................................................. 31  
Figure 27. Control Port Timing, SPI Mode ................................................................................................. 32  
Figure 28. Single-Speed (fast) Stopband Rejection................................................................................... 44  
Figure 29. Single-Speed (fast) Transition Band......................................................................................... 44  
Figure 30. Single-Speed (fast) Transition Band (detail)............................................................................. 44  
Figure 31. Single-Speed (fast) Passband Ripple....................................................................................... 44  
Figure 32. Single-Speed (slow) Stopband Rejection ................................................................................. 44  
Figure 33. Single-Speed (slow) Transition Band........................................................................................ 44  
Figure 34. Single-Speed (slow) Transition Band (detail)............................................................................ 45  
Figure 35. Single-Speed (slow) Passband Ripple...................................................................................... 45  
Figure 36. Double-Speed (fast) Stopband Rejection ................................................................................. 45  
Figure 37. Double-Speed (fast) Transition Band........................................................................................ 45  
Figure 38. Double-Speed (fast) Transition Band (detail)............................................................................ 45  
Figure 39. Double-Speed (fast) Passband Ripple...................................................................................... 45  
Figure 40. Double-Speed (slow) Stopband Rejection................................................................................ 46  
Figure 41. Double-Speed (slow) Transition Band ...................................................................................... 46  
Figure 42. Double-Speed (slow) Transition Band (detail) .......................................................................... 46  
Figure 43. Double-Speed (slow) Passband Ripple .................................................................................... 46  
Figure 44. Quad-Speed (fast) Stopband Rejection.................................................................................... 46  
Figure 45. Quad-Speed (fast) Transition Band .......................................................................................... 46  
Figure 46. Quad-Speed (fast) Transition Band (detail) .............................................................................. 47  
Figure 47. Quad-Speed (fast) Passband Ripple ........................................................................................ 47  
Figure 48. Quad-Speed (slow) Stopband Rejection................................................................................... 47  
Figure 49. Quad-Speed (slow) Transition Band......................................................................................... 47  
Figure 50. Quad-Speed (slow) Transition Band (detail)............................................................................. 47  
Figure 51. Quad-Speed (slow) Passband Ripple....................................................................................... 47  
4
DS620A1  
CS4384  
LIST OF TABLES  
Table 1. Single-Speed Mode Standard Frequencies ................................................................................ 20  
Table 2. Double-Speed Mode Standard Frequencies............................................................................... 20  
Table 3. Quad-Speed Mode Standard Frequencies ................................................................................. 20  
Table 4. PCM Digital Interface Format, Hardware Mode Options............................................................. 21  
Table 5. Mode Selection, Hardware Mode Options .................................................................................. 21  
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ............................................................... 21  
Table 7. Digital Interface Formats - PCM Mode........................................................................................ 36  
Table 8. Digital Interface Formats - DSD Mode ........................................................................................ 37  
Table 9. ATAPI Decode ............................................................................................................................ 42  
Table 10. Example Digital Volume Settings.............................................................................................. 43  
DS620A1  
5
CS4384  
1. PIN DESCRIPTION  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
TST_OUT  
DSD3  
DSD2  
DSD1  
VD  
1
2
35 AOUT3  
34 AOUT4  
33 TST_OUT  
3
4
GND  
5
32  
31  
30  
VA  
6
GND  
MCLK  
LRCK  
SDIN1  
SCLK  
M4(TST)  
CS4384  
7
TST_OUT  
8
29 AOUT5  
AOUT6  
27 TST_OUT  
9
28  
10  
SDIN2 11  
M3(TST)  
26  
25  
TST_OUT  
AOUT7  
2
1
13 14 15 16 17 18 19 20 21 22 23 24  
Pin Name  
VD  
#
Pin Description  
4
Digital Power (Input) - Positive power supply for the digital section.  
GND  
5
31  
Ground (Input) - Ground reference. Should be connected to analog ground.  
MCLK  
LRCK  
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 1 illustrates  
several standard audio sample rates and the required master clock frequency.  
6
7
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial  
audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
8
11  
13  
14  
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.  
SCLK  
VLC  
9
Serial Clock (Input) - Serial clock for the serial audio interface.  
18  
Control Port Power (Input) - Determines the required signal level for the control port.  
RST  
Reset (Input) - The device enters a low power mode and all internal registers are reset to their default  
settings when low.  
19  
FILT+  
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.  
Requires the capacitive decoupling to analog ground, as shown in the Typical Connection Diagram.  
20  
21  
VQ  
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.  
MUTEC1  
MUTEC234  
41  
22  
Mute Control (Output) - These pins are intended to be used as a control for external mute circuits to  
prevent the clicks and pops that can occur in any single supply system.  
AOUT1  
AOUT2  
AOUT3  
AOUT4  
AOUT5  
AOUT6  
AOUT7  
AOUT8  
39  
38  
35  
34  
29  
28  
25  
24  
Analog Output (Output) - The full scale analog output level is specified in the Analog Characteristics  
specification table.  
6
DS620A1  
CS4384  
Pin Name  
#
Pin Description  
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended  
Operating Conditions for appropriate voltages.  
VA  
32  
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio inter-  
face. Refer to the Recommended Operating Conditions for appropriate voltages.  
VLS  
43  
23, 26  
27, 30  
33, 36  
37, 40  
TST_OUT  
Test Output - These pins need to floating and not connected to any trace or plane.  
Software Mode Definitions  
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external pull-up  
resistor to the logic interface voltage in I²C mode as shown in the Typical Connection Diagram.  
SCL/CCLK  
15  
16  
17  
Serial Control Data (Input/Output) - SDA is a data I/O line in I²C mode and requires an external pull-up  
resistor to the logic interface voltage, as shown in the Typical Connection Diagram. CDIN is the input  
data line for the control port interface in SPI mode.  
SDA/CDIN  
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C mode;  
CS is the chip select signal for SPI format.  
AD0/CS  
TST  
10  
12  
Test - These pins need to be tied to analog ground.  
Stand-Alone Definitions  
M0  
M1  
M2  
M3  
M4  
17  
16  
15  
12  
10  
Mode Selection (Input) - Determines the operational mode of the device as detailed in Tables 4 and 5.  
DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital audio interface.  
DSD Definitions  
DSD_SCLK  
42  
DSD1  
DSD2  
DSD3  
DSD4  
DSD5  
DSD6  
DSD7  
DSD8  
3
2
1
48  
47  
46  
45  
44  
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.  
DS620A1  
7
CS4384  
2. CHARACTERISTICS AND SPECIFICATIONS  
All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical  
performance characteristics and specifications are derived from measurements taken at nominal supply voltage  
and T = 25°C.  
A
SPECIFIED OPERATING CONDITIONS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Analog power  
Digital internal power  
Serial data port interface power  
Control port interface power  
VA  
VD  
VLS  
VLC  
4.75  
2.37  
1.71  
1.71  
5.0  
2.5  
5.0  
5.0  
5.25  
2.63  
5.25  
5.25  
V
V
V
V
Specified Temperature Range  
-CQZ  
-DQZ  
TA  
-10  
-40  
-
-
+70  
+85  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
Analog power  
VA  
VD  
VLS  
VLC  
-0.3  
-0.3  
-0.3  
-0.3  
6.0  
3.2  
6.0  
6.0  
V
V
V
V
Digital internal power  
Serial data port interface power  
Control port interface power  
Input Current  
Any Pin Except Supplies  
Iin  
-
±10  
mA  
Digital Input Voltage  
Serial data port interface  
Control port interface  
VIND-S  
VIND-C  
-0.3  
-0.3  
VLS+ 0.4  
VLC+ 0.4  
V
V
Ambient Operating Temperature (power applied)  
Storage Temperature  
Top  
-55  
-65  
125  
150  
°C  
°C  
Tstg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
8
DS620A1  
CS4384  
DAC ANALOG CHARACTERISTICS  
Full-Scale Output Sine Wave, 997 Hz (Note 1); Fs = 48/96/192 kHz; Test load R = 3 k, C = 100 pF; Measure-  
L
L
ment Bandwidth 10 Hz to 20 kHz, unless otherwise specified.  
Parameters  
Symbol  
Min  
Typ  
Max  
Unit  
CS4384-CQZ Dynamic Performance - All PCM modes and DSD  
Specified Temperature Range  
Dynamic Range  
TA  
-10  
-
70  
°C  
24-bit A-weighted  
unweighted  
16-bit A-weighted  
(Note 2) unweighted  
97  
94  
-
103  
100  
97  
-
-
-
-
dB  
dB  
dB  
dB  
-
94  
Total Harmonic Distortion + Noise  
24-bit  
-0 dB THD+N  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-
-
-
-
-
-
-88  
-80  
-40  
-88  
-74  
-34  
-82  
-74  
-34  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
(Note 2) 16-bit  
-60 dB  
Idle Channel Noise / Signal-to-noise ratio  
CS4384-DQZ Dynamic Performance - All PCM modes and DSD  
-
100  
-
dB  
Specified Temperature Range  
Dynamic Range (Note 1)  
TA  
-40  
-
105  
°C  
24-bit A-weighted  
unweighted  
16-bit A-weighted  
(Note 2) unweighted  
94  
91  
-
103  
100  
97  
-
-
-
-
dB  
dB  
dB  
dB  
-
94  
Total Harmonic Distortion + Noise  
(Note 1) THD+N  
0 dB  
24-bit  
-
-
-
-
-
-
-88  
-80  
-40  
-88  
-74  
-34  
-79  
-71  
-31  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
(Note 2) 16-bit  
-60 dB  
Idle Channel Noise / Signal-to-noise ratio  
Notes:  
-
100  
-
dB  
1. One-half LSB of triangular PDF dither is added to data.  
2. Performance limited by 16-bit quantization noise.  
DS620A1  
9
CS4384  
DAC ANALOG CHARACTERISTICS - ALL MODES (CONTINUED)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Interchannel Isolation  
(1 kHz)  
-
110  
-
dB  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
-
-
dB  
100  
ppm/°C  
Analog Output  
Full Scale Differential-  
Output Voltage  
PCM, DSD processor  
Direct DSD mode  
VFS  
66%•VA  
47%•VA  
67%•VA  
48%•VA  
68%•VA  
49%•VA  
Vpp  
Vpp  
Output Impedance  
(Note 3) ZOUT  
-
-
-
-
-
-
130  
1.0  
-
-
-
-
-
-
mA  
kΩ  
Max DC Current draw from an AOUT pin  
Min AC-Load Resistance  
Max Load Capacitance  
IOUTmax  
RL  
3
CL  
100  
50% VA  
10  
pF  
Quiescent Voltage  
VQ  
VDC  
µA  
Max Current draw from VQ  
IQMAX  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 4)  
normal operation, VA= 5 V  
VD= 2.5 V  
(Note 5) Interface current, VLC=5 V  
VLS=5 V  
IA  
ID  
ILC  
ILS  
Ipd  
-
-
-
-
-
83  
18  
2
84  
200  
92  
24  
-
-
-
mA  
mA  
µA  
µA  
µA  
(Note 6) power-down state (all supplies)  
Power Dissipation (Note 4)  
VA = 5 V, VD = 2.5 V  
normal operation  
-
-
460  
1
540  
-
mW  
mW  
(Note 6) power-down  
Package Thermal Resistance  
θJA  
θJC  
-
-
48  
15  
-
-
°C/Watt  
°C/Watt  
Power Supply Rejection Ratio (Note 7)  
(1 kHz)  
(60 Hz)  
PSRR  
-
-
60  
40  
-
-
dB  
dB  
Notes:  
3.  
V
is tested under load R and includes attenuation due to Z  
FS L OUT  
4. Current consumption increases with increasing FS within a given speed mode and is signal dependant. Max  
values are based on highest FS and highest MCLK.  
5.  
I
measured with no external loading on the SDA pin.  
LC  
6. Power down mode is defined as RST pin = Low with all clock and data lines held static.  
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 7 and 8.  
10  
DS620A1  
CS4384  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sam-  
ple rate by multiplying the given characteristic by Fs.  
(See (Note 12))  
Fast Roll-Off  
Parameter  
Min  
Typ  
Max  
Unit  
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
.454  
.499  
+0.01  
-
-
-
±0.36  
±0.21  
±0.14  
Fs  
Fs  
dB  
Fs  
dB  
s
dB  
dB  
dB  
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
-0.01  
0.547  
102  
-
-
-
-
(Note 10)  
-
10.4/Fs  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
.430  
.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
-0.01  
.583  
80  
(Note 10)  
-
-
6.15/Fs  
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.105  
.490  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
-0.01  
.635  
90  
(Note 10)  
-
7.1/Fs  
Notes:  
8. Slow Roll-off interpolation filter is only available in software mode.  
9. Response is clock dependent and will scale with Fs.  
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.  
11. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in hardware  
mode.  
12. Amplitude vs. Frequency plots of this data are available in the “Filter Response Plots” on page 44.  
DS620A1  
11  
CS4384  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
(CONTINED)  
Slow Roll-Off (Note 8)  
Parameter  
Min  
Typ  
Max  
Unit  
Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
0.417  
0.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
-0.01  
.583  
64  
-
(Note 10)  
-
7.8/Fs  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
±0.36  
±0.21  
±0.14  
dB  
dB  
dB  
Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.296  
.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
-0.01  
.792  
70  
(Note 10)  
-
5.4/Fs  
Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.104  
.481  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
StopBand  
StopBand Attenuation  
Group Delay  
-0.01  
.868  
75  
(Note 10)  
-
6.6/Fs  
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE  
Parameter  
Min  
Typ  
Max  
Unit  
DSD Processor mode  
Passband (Note 9)  
Frequency Response  
Roll-off  
to -3 dB corner  
10 Hz to 20 kHz  
0
-
-
-
50  
+0.05  
-
kHz  
dB  
dB/Oct  
-0.05  
27  
Direct DSD mode  
Passband (Note 9)  
to -0.1 dB corner  
to -3 dB corner  
0
0
-0.1  
-
-
-
26.9  
176.4  
0
kHz  
kHz  
dB  
Frequency Response 10 Hz to 20 kHz  
12  
DS620A1  
CS4384  
DIGITAL CHARACTERISTICS  
Parameters  
Input Leakage Current  
Symbol  
Min  
-
-
Typ  
-
Max  
±10  
-
Units  
µA  
pF  
(Note 13)  
Iin  
Input Capacitance  
8
High-Level Input Voltage  
Serial I/O  
Control I/O  
VIH  
VIH  
70%  
70%  
-
-
-
-
VLS  
VLC  
Low-Level Input Voltage  
Serial I/O  
Control I/O  
VIL  
VIL  
-
-
-
-
30%  
30%  
VLS  
VLC  
High-Level Output Voltage (IOH = -1.2 mA)  
Low-Level Output Voltage (IOL = 1.2 mA)  
Control I/O  
Control I/O  
VOH  
VOL  
80%  
-
-
-
-
VLC  
VLC  
20%  
MUTEC auto detect input high voltage  
MUTEC auto detect input low voltage  
Maximum MUTEC Drive Current  
MUTEC High-Level Output Voltage  
MUTEC Low-Level Output Voltage  
VIH  
VIL  
70%  
-
-
-
VA  
VA  
mA  
V
-
-
-
-
30%  
Imax  
VOH  
VOL  
3
-
-
-
VA  
0
V
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-up  
DS620A1  
13  
CS4384  
SWITCHING CHARACTERISTICS - PCM  
(Inputs: Logic 0 = GND, Logic 1 = VLS, C = 30 pF)  
L
Parameters  
Symbol  
Min  
Max  
Units  
1
-
ms  
RST pin Low Pulse Width  
MCLK Frequency  
(Note 14)  
(Note 15)  
1.024  
45  
55.2  
55  
MHz  
%
MCLK Duty Cycle  
Input Sample Rate - LRCK (Manual selection)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
54  
108  
216  
kHz  
kHz  
kHz  
Input Sample Rate - LRCK (Auto detect)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
84  
170  
54  
108  
216  
kHz  
kHz  
kHz  
LRCK Duty Cycle  
(Note 16)  
45  
45  
8
55  
55  
-
%
%
SCLK Duty Cycle  
SCLK High Time  
tsckh  
tsckl  
tlcks  
tlckd  
tds  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Time  
8
-
LRCK Edge to SCLK Rising Edge  
SCLK Rising Edge to LRCK Falling Edge  
SDIN Setup Time Before SCLK Rising Edge  
SDIN Hold Time After SCLK Rising Edge  
5
-
5
-
3
-
tdh  
5
-
Notes:  
14. After powering up, RST should be held low until after the power supplies and clocks are settled.  
15. See Tables 1 - 3 for suggested MCLK frequencies.  
16. Not required for TDM mode.  
LRCK  
LRCK  
SCLK  
SDIN1  
tlcks  
tsckh  
tsckl  
t
t
lckd  
t
t
sckh  
t
lcks  
lcks  
sckl  
SCLK  
tds  
t
t
tdh  
MSB  
ds  
dh  
SDINx  
MSB  
MSB-1  
MSB-1  
Figure 1. Serial Audio Interface Timing  
Figure 2. TDM Serial Audio Interface Timing  
14  
DS620A1  
CS4384  
SWITCHING CHARACTERISTICS - DSD  
(Logic 0 = AGND = DGND; Logic 1 = VLS; C = 30 pF)  
L
Parameter  
MCLK Duty Cycle  
Symbol  
Min  
40  
Typ  
Max  
60  
-
Unit  
%
-
-
-
DSD_SCLK Pulse Width Low  
DSD_SCLK Pulse Width High  
tsclkl  
160  
160  
ns  
tsclkh  
-
ns  
DSD_SCLK Frequency  
(64x Oversampled)  
(128x Oversampled)  
1.024  
2.048  
-
-
3.2  
6.4  
MHz  
MHz  
DSD_A / _B valid to DSD_SCLK rising setup time  
DSD_SCLK rising to DSD_A or DSD_B hold time  
DSD clock to data transition (Phase Modulation mode)  
tsdlrs  
tsdh  
20  
20  
-
-
-
-
-
ns  
ns  
ns  
tdpm  
-20  
20  
t
sclkh  
t
sclkl  
DSD_SCLK  
DSDxx  
t
t
sdlrs  
sdh  
Figure 3. Direct Stream Digital - Serial Audio Input Timing  
t
t
dpm  
dpm  
DSD_SCLK  
(128Fs)  
DSD_SCLK  
(64Fs)  
DSDxx  
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode  
DS620A1  
15  
CS4384  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VLC, C = 30 pF)  
L
Parameter  
SCL Clock Frequency  
Symbol  
fscl  
Min  
-
Max  
Unit  
kHz  
ns  
100  
RST Rising Edge to Start  
tirs  
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
tbuf  
-
µs  
thdst  
tlow  
-
µs  
-
µs  
Clock High Time  
thigh  
tsust  
thdd  
-
µs  
Setup Time for Repeated Start Condition  
-
µs  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
(Note 17)  
-
µs  
tsud  
250  
-
-
1
ns  
trc, trc  
tfc, tfc  
tsusp  
tack  
µs  
Fall Time SCL and SDA  
-
300  
-
ns  
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
4.7  
300  
µs  
1000  
ns  
Notes:  
17. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
RST  
t
irs  
Repeated  
Start  
Stop  
Start  
Stop  
SDA  
SCL  
t
t
t
t
t
buf  
t
high  
hdst  
f
susp  
hdst  
t
t
t
t
t
sust  
sud  
r
low  
hdd  
Figure 5. Control Port Timing - I²C Format  
16  
DS620A1  
CS4384  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPIFORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VLC, C = 30 pF)  
L
Parameter  
CCLK Clock Frequency  
Symbol  
fsclk  
tsrs  
Min  
-
Max  
Unit  
MHz  
ns  
6
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
500  
500  
1.0  
20  
66  
66  
40  
15  
-
-
(Note 18)  
tspi  
-
ns  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
tcsh  
tcss  
tscl  
-
µs  
-
ns  
CCLK Low Time  
-
ns  
CCLK High Time  
tsch  
tdsu  
tdh  
-
-
ns  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
ns  
(Note 19)  
(Note 20)  
(Note 20)  
-
ns  
tr2  
100  
100  
ns  
tf2  
-
ns  
Notes:  
18. t only needed before first falling edge of CS after RST rising edge. t = 0 at all other times.  
spi  
spi  
19. Data must be held for sufficient time to bridge the transition time of CCLK.  
20. For F  
< 1 MHz.  
SCK  
RST  
t
t
srs  
CS  
t
t
t
spi css  
scl  
sch  
t
csh  
CCLK  
CDIN  
t
t
r2  
f2  
t
t
dsu  
dh  
Figure 6. Control Port Timing - SPI Format  
DS620A1  
17  
CS4384  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
32  
VA  
VD  
Analog Conditioning  
and Muting  
39  
38  
35  
34  
29  
28  
25  
24  
AOUT1  
AOUT2  
AOUT3  
AOUT4  
AOUT5  
AOUT6  
AOUT7  
AOUT8  
Analog Conditioning  
and Muting  
220 Ω  
6
7
9
MCLK  
LRCK  
SCLK  
PCM  
Digital  
Analog Conditioning  
and Muting  
8
11  
13  
14  
Audio  
Source  
SDIN1  
SDIN2  
Analog Conditioning  
and Muting  
SDIN3  
SDIN4  
470 Ω  
470 Ω  
Analog Conditioning  
and Muting  
43  
VLS  
+1.8 V to +5 V  
CS4384  
0.1 µF  
Analog Conditioning  
and Muting  
3
2
1
DSD1  
DSD2  
DSD3  
DSD4  
Analog Conditioning  
and Muting  
48  
47  
DSD  
Audio  
Source  
Analog Conditioning  
and Muting  
DSD5  
DSD6  
DSD7  
DSD8  
46  
45  
44  
42  
41  
22  
MUTEC1  
MUTEC234  
Mute  
Drive  
DSD_SCLK  
19  
RST  
15  
16  
17  
Micro-  
Controller  
SCL/CCLK  
SDA/CDIN  
20  
21  
FILT+  
+
ADO/CS  
VQ  
F
47 µF  
0.1 µ  
F
0.1 µ  
1 µF  
+
Note*  
18  
+1.8 V to +5 V  
VLC  
TST_OUT  
Pins: 23, 26, 27,  
30, 33, 36, 37, 40  
0.1 µF  
GND  
5
GND TST*  
31  
Note: Necessary for I2C  
control port operation  
*Pins:  
10, 12  
Figure 7. Typical Connection Diagram, Software Mode  
18  
DS620A1  
CS4384  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
VD  
32  
VA  
Analog Conditioning  
and Muting  
39  
38  
35  
34  
29  
28  
25  
24  
AOUT1  
AOUT2  
AOUT3  
AOUT4  
AOUT5  
AOUT6  
AOUT7  
AOUT8  
220 Ω  
6
7
Analog Conditioning  
and Muting  
MCLK  
LRCK  
SCLK  
PCM  
Digital  
Audio  
Source  
9
8
Analog Conditioning  
and Muting  
SDIN1  
SDIN2  
11  
13  
14  
SDIN3  
SDIN4  
Analog Conditioning  
and Muting  
470 Ω  
470 Ω  
43  
+1.8 V to +5 V  
VLS  
Analog Conditioning  
and Muting  
0.1 µF  
CS4384  
3
Analog Conditioning  
and Muting  
DSDA1  
DSDB1  
DSDA2  
2
1
Analog Conditioning  
and Muting  
48  
47  
DSD  
Audio  
Source  
DSDB2  
DSDA3  
DSDB3  
46  
Analog Conditioning  
and Muting  
45  
44  
DSDA4  
DSDB4  
42  
41  
22  
DSD_SCLK  
MUTEC1  
MUTEC234  
Mute  
Drive  
Optional  
47 K Ω  
10  
12  
M4  
M3  
M2  
M1  
15  
16  
Stand-Alone  
Mode  
Configuration  
20  
21  
FILT+  
17  
19  
M0  
+
VQ  
RST  
F
47 µF  
0.1 µ  
F
1 µF  
0.1 µ  
+
18  
+1.8 V to +5 V  
VLC  
0.1 µF  
TST_OUT  
Pins: 23, 26, 27,  
30, 33, 36, 37, 40  
GND  
5
GND  
31  
Figure 8. Typical Connection Diagram, Hardware Mode  
DS620A1  
19  
CS4384  
3. APPLICATIONS  
The CS4384 serially accepts twos complement formatted PCM data at standard audio sample rates including 48,  
44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via  
the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input  
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial  
audio interfaces see AN282 “The 2-Channel Serial Audio Interface: A Tutorial”.  
The CS4384 can be configured in hardware mode by the M0, M1, M2, M3 and M4 pins and in software mode  
through I²C or SPI.  
3.1  
Master Clock  
MCLK/LRCK must be an integer ratio as shown in Tables 1 - 3. The LRCK frequency is equal to Fs, the  
frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and  
speed mode is detected automatically during the initialization sequence by counting the number of MCLK  
transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are  
then set to generate the proper internal clocks. Tables 1 - 3 illustrate several standard audio sample rates  
and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but  
MCLK, LRCK and SCLK must be synchronous.  
Sample Rate  
(kHz)  
MCLK (MHz)  
256x  
8.1920  
11.2896  
12.2880  
384x  
512x  
768x  
1024x  
32.7680  
45.1584  
49.1520  
1152x  
36.8640  
32  
44.1  
48  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Table 1. Single-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
128x  
8.1920  
11.2896  
12.2880  
192x  
256x  
384x  
512x  
64  
88.2  
96  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
32.7680  
45.1584  
49.1520  
Table 2. Double-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
64x  
96x  
128x  
192x  
256x  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Table 3. Quad-Speed Mode Standard Frequencies  
= Denotes clock ratio and sample rate combinations which are NOT supported under auto  
speed-mode detection. Please see “Switching Characteristics - PCM” on page 14.  
20  
DS620A1  
CS4384  
3.2  
Mode Select  
In hardware mode operation is determined by the Mode Select pins. The state of these pins are continually  
scanned for any changes. These pins require connection to supply or ground as outlined in Figure 8. For  
M0, M1, M2 supply is VLC and for M3 and M4 supply is VLS. Tables 4 - 6 show the decode of these pins.  
In software mode, the operational mode and data format are set in the FM and DIF registers.  
M1  
(DIF1)  
M0  
(DIF0)  
DESCRIPTION  
Left Justified, up to 24-bit data  
FORMAT  
FIGURE  
0
0
0
1
0
1
9
2
10  
I S, up to 24-bit data  
Right Justified, 16-bit Data  
Right Justified, 24-bit Data  
1
1
0
1
2
3
11  
12  
Table 4. PCM Digital Interface Format, Hardware Mode Options  
M4  
M3  
M2  
M1  
M0  
DESCRIPTION  
(DEM)  
Single-Speed without De-Emphasis (4 kHz to 50 kHz sample rates)  
Single-Speed with 44.1 kHz De-Emphasis; see Figure 20  
Double-Speed (50 kHz to 100 kHz sample rates)  
Quad-Speed (100 kHz to 200 kHz sample rates)  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Table 4  
Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates)  
Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see Figure 20  
DSD Processor Mode  
Table 6  
Table 5. Mode Selection, Hardware Mode Options  
M2  
0
M1  
0
M0  
DESCRIPTION  
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
1
Table 6. Direct Stream Digital (DSD), Hardware Mode Options  
DS620A1  
21  
CS4384  
3.3  
Digital Interface Formats  
The serial port operates as a slave and supports the I²S, Left-Justified, Right-Justified, One-Line Mode  
(OLM) and TDM digital interface formats with varying bit depths from 16 to 32 as shown in Figures 9-19.  
Data is clocked into the DAC on the rising edge. OLM and TDM configurations are only supported in soft-  
ware mode.  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
Figure 9. Format 0 - Left-Justified up to 24-bit Data  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
+5 +4 +3 +2 +1  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
Figure 10. Format 1 - I²S up to 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
9 8 7 6 5 4 3 2 1 0  
9 8 7 6 5 4 3 2 1 0  
15 14 13 12 11 10  
15 14 13 12 11 10  
Figure 11. Format 2 - Right-Justified 16-bit Data  
32 clocks  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
7 6 5 4 3 2 1 0  
7 6 5 4 3 2 1 0  
0
23 22 21 20 19 18  
32 clocks  
23 22 21 20 19 18  
Figure 12. Format 3 - Right-Justified 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1 0  
19 18 17 16  
19 18 17 16  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1 0  
Figure 13. Format 4 - Right-Justified 20-bit Data  
32 clocks  
22  
DS620A1  
CS4384  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1 0  
17 16  
17 16  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1 0  
32 clocks  
Figure 14. Format 5 - Right-Justified 18-bit Data  
3.3.1  
OLM #1  
OLM #1 serial audio interface format operates in single, double, or quad-speed mode and will slave to  
SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1. The last two channels  
are input on SDIN4.  
64 clks  
64 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
LSB MSB  
LSB MSB  
DAC_A3  
20 clks  
LSB  
MSB  
LSB MSB  
LSB MSB  
LSB  
DAC_B3  
20 clks  
MSB  
SDIN1  
DAC_A2  
20 clks  
DAC_B1  
DAC_B2  
20 clks  
DAC_A1  
20 clks  
20 clks  
DAC_A4  
20 clks  
DAC_B4  
20 clks  
SDIN4  
Figure 15. Format 8 - One Line Mode 1  
3.3.2  
OLM #2  
OLM #2 serial audio interface format operates in single, double, or quad-speed mode and will slave to  
SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1. The last two channels  
are input on SDIN4.  
128 clks  
128 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
LSB MSB  
LSB MSB  
DAC_A3  
24 clks  
LSB  
MSB  
LSB MSB  
LSB MSB  
DAC_B3  
24 clks  
LSB  
MSB  
SDIN1  
DAC_A1  
DAC_A2  
24 clks  
DAC_B1  
DAC_B2  
24 clks  
24 clks  
24 clks  
DAC_A4  
24 clks  
DAC_B4  
24 clks  
SDIN4  
Figure 16. Format 9 - One Line Mode 2  
DS620A1  
23  
CS4384  
3.3.3  
OLM #3  
OLM #3 serial audio interface format operates in single, double, or quad-speed mode and will slave to  
SCLK at 256 Fs. Eight channels of MSB first 20-bit PCM data are input on SDIN1.  
128 clks  
128 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
LSB MSB  
LSB MSB  
DAC_A3  
20 clks  
LSB MSB  
DAC_A4  
20 clks  
LSB  
MSB  
DAC_B1  
20 clks  
LSB MSB  
LSB MSB  
DAC_B3  
20 clks  
LSB MSB  
DAC_B4  
20 clks  
LSB  
MSB  
SDIN1  
DAC_A1  
DAC_A2  
20 clks  
DAC_B2  
20 clks  
20 clks  
Figure 17. Format 10 - One Line Mode 3  
3.3.4  
OLM #4  
OLM #4 serial audio interface format operates in single, double, or quad-speed mode and will slave to  
SCLK at 256 Fs. Eight channels of MSB first 24-bit PCM data are input on SDIN1.  
128 clks  
128 clks  
LRCK  
Left Channel  
Right Channel  
SCLK  
MSB  
DAC_A1  
24 clks  
LSB MSB  
LSB MSB  
DAC_A3  
24 clks  
LSB MSB  
DAC_A4  
24 clks  
LSB  
MSB  
DAC_B1  
24 clks  
LSB MSB  
LSB MSB  
LSB MSB  
DAC_B4  
24 clks  
LSB  
MSB  
SDIN1  
DAC_A2  
24 clks  
DAC_B2  
24 clks  
DAC_B3  
24 clks  
Figure 18. Format 11 - One Line Mode 4  
24  
DS620A1  
CS4384  
3.3.5  
TDM  
The TDM serial audio interface format operates in single, double, or quad-speed mode and will slave to  
SCLK at 256 Fs. Data is received most significant bit first on the first SCLK after an LRCK transition and  
is valid on the rising edge of SCLK. LRCK identifies the start of a new frame and is equal to the sample  
rate, Fs. LRCK is sampled as valid on the rising SCLK edge preceding the most significant bit of the first  
data sample and must be held valid for one SCLK period. Each time slot is 32 bits wide, with the valid data  
sample left justified within the time slot with the remaining bits being zero padded.  
256 clks  
LRCK  
SCLK  
SDIN1  
LSB MSB  
LSB MSB  
LSB MSB  
DAC_A3  
32 clks  
LSB MSB  
DAC_A4  
32 clks  
LSB MSB  
DAC_B1  
32 clks  
LSB MSB  
DAC_B2  
32 clks  
LSB MSB  
DAC_B3  
32 clks  
LSB MSB  
DAC_B4  
32 clks  
LSB  
DAC_A1  
DAC_A2  
32 clks  
Data  
32 clks  
zero  
MSB  
LSB  
Figure 19. Format 12 - TDM Mode  
3.4  
Oversampling Modes  
The CS4384 operates in one of three oversampling modes based on the input sample rate. Mode selection  
is determined by the M4, M3 and M2 pins in hardware mode or the FM bits in software mode. Single-Speed  
mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed mode  
supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-speed mode sup-  
ports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.  
The auto-speed mode detect feature allows for the automatic selection of speed mode based off of the in-  
coming sample rate. This allows the CS4384 to accept a wide range of sample rates with no external inter-  
vention necessary. The auto-speed mode detect feature is available in both hardware and software mode.  
3.5  
Interpolation Filter  
To accommodate the increasingly complex requirements of digital audio systems, the CS4384 incorporates  
selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in  
each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a va-  
riety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Parameter  
Definitions” on page 48 for more details).  
When in hardware mode, only the “fast” roll-off filter is available.  
Filter specifications can be found in Section 2, and filter response plots can be found in Figures 28 to 51.  
DS620A1  
25  
CS4384  
3.6  
De-Emphasis  
The CS4384 includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accommo-  
date older audio recordings that utilize pre-emphasis equalization as a means of noise reduction. Figure 20  
shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale proportionally  
with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been se-  
lected.  
In software mode the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected  
via the de-emphasis control bits.  
In hardware mode only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sample  
rate is not 44.1 kHz and de-emphasis has been selected then the corner frequencies of the de-emphasis  
filter will be scaled by a factor of the actual Fs over 44,100.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 20. De-Emphasis Curve  
3.7  
ATAPI Specification  
The CS4384 implements the channel mixing functions of the ATAPI CD-ROM specification. The  
ATAPI functions are applied per A-B pair. Refer to Table 9 on page 42 and Figure 21 for additional informa-  
tion.  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutAx  
Σ
Σ
SDINx  
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutBx  
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)  
26  
DS620A1  
CS4384  
3.8  
Direct Stream Digital (DSD) Mode  
In software mode the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD mode. The DSD_DIF bits  
(Reg 04h) then control the expected DSD rate and MCLK ratio.  
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD to analog conversion. The first  
method uses a decimation free DSD processing technique which allows for features such as matched PCM level  
output, DSD volume control, and 50kHz on chip filter. The second method sends the DSD data directly to the on-  
chip switched-capacitor filter for conversion (without the above mentioned features).  
The DSD_PM_EN bit (Reg. 04h) selects Phase Modulation (data plus data inverted) as the style of data input. In  
this mode the DSD_PM_mode bit selects whether a 128Fs or 64x clock is used for phase modulated 64x data (see  
Figure 22). Use of phase modulation mode may not directly effect the performance of the CS4384, but may lower  
the sensitivity to board level routing of the DSD data signals.  
The CS4384 can detect errors in the DSD data which does not comply with the SACD specification. The  
STATIC_DSD and INVALID_DSD bits (Reg. 04h) allow the CS4384 to alter the incoming invalid DSD data.  
Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the MUTEC pins  
would be set according to the DAMUTE bit (Reg. 08h)).  
More information for any of these register bits can be found in the “Parameter Definitions” on page 48.  
The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation index)  
at full rated performance. Signals of +3 dB-SACD may be applied for brief periods of time however, performance at  
these levels is not guaranteed. If sustained +3 dB-SACD levels are required, the digital volume control should be  
set to -3.0 dB. This same volume control register affects PCM output levels. There is no need to change the vol-  
ume control setting between PCM and DSD in order to have the 0 dB output levels match (both 0 dBFS and 0 dB-  
SACD will output at -3 dB in this case).  
DSD Phase  
DSD Normal Mode  
Modulation Mode  
BCKA  
(128Fs)  
Not Used  
DSD_SCLK  
DSD_SCLK  
BCKA  
(64Fs)  
BCKD  
(64Fs)  
DSD_SCLK  
Not Used  
DSDAx,  
DSDBx  
D0  
D0  
D1  
D2  
D2  
D1  
DSDAx,  
DSDBx  
Not Used  
D1  
Figure 22. DSD Phase Modulation Mode Diagram  
DS620A1  
27  
CS4384  
3.9  
Grounding and Power Supply Arrangements  
As with any high resolution converter, the CS4384 requires careful attention to power supply and grounding  
arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the rec-  
ommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground  
planes are split between digital ground and analog ground, the GND pins of the CS4384 should be connect-  
ed to the analog ground plane.  
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted  
coupling into the DAC.  
3.9.1  
Capacitor Placement  
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca-  
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same  
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same  
supply, but a decoupling capacitor should still be placed on each supply pin.  
Note:  
All decoupling capacitors should be referenced to analog ground.  
The CDB4384 evaluation board demonstrates the optimum layout and power supply arrangements.  
3.10 Analog Output and Filtering  
The CS4384 does not include phase or amplitude compensation for an external filter. Therefore, the DAC  
system phase and amplitude response will be dependent on the external analog circuitry.  
Figure 23 shows how the full-scale analog output level specification is derived.  
Figure 24 shows how the recommended output filtering with location for optional mute circuit  
4.175 V  
2.5 V  
AOUT  
0.825 V  
Full-Scale Output Level= AOUT= 3.35 Vpp  
Figure 23. Full-Scale Output  
Figure 24. Recommended Output Filter  
28  
DS620A1  
CS4384  
3.11 The MUTEC Outputs  
The MUTEC1 and MUTEC234 pins have an auto-polarity detect feature. The MUTEC output pins are high imped-  
ance at the time of reset. The external mute circuitry needs to be self biased into an active state in order to be  
muted during reset. Upon release of reset, the CS4384 will detect the status of the MUTEC pins (high or low) and  
will then select that state as the polarity to drive when the mutes become active. The external-bias voltage level  
that the MUTEC pins see at the time of release of reset must meet the “MUTEC auto detect input high/low voltage”  
specs as outlined in the Digital Characteristics section.  
Figure 25 shows a single example of both an active high and an active low mute drive circuit. In these designs, the  
pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold when used with  
the MMUN2111 and MMUN2211 internal bias resistances of 10 k.  
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute minimum in  
extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle  
channel noise/signal-to-noise ratios which are only limited by the external mute circuit.  
Figure 25. Recommended Mute Circuitry  
3.12 Recommended Power-Up Sequence  
3.12.1 Hardware Mode  
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right  
clocks are locked to the appropriate frequencies, as discussed in Section 3.1. In this state, the  
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.  
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks  
are stable, and if possible the RST should be toggled low again once the system is stable.  
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the  
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024  
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).  
DS620A1  
29  
CS4384  
3.12.2 Software Mode  
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the  
appropriate frequencies, as discussed in Section 3.1. In this state, the registers are reset to the default  
settings, FILT+ will remain low, and VQ will be connected to VA/2.  
2. Bring RST high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in  
Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-  
Speed Mode).  
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the  
completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-  
Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be  
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1, then set the  
format and mode control bits to the desired settings.  
If more than the stated number of LRCK cycles passes before CPEN bit is written then the chip will  
enter Hardware mode and begin to operate with the M0-M4 as the mode settings. CPEN bit may be  
written at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit  
can not be set in time then the SDINx pins should remain static low (this way no audio data can be  
converted incorrectly by the hardware mode settings).  
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.  
3.13 Recommended Procedure for Switching Operational Modes  
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE  
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).  
The mute bits may then be released after clocks have settled and the proper modes have been set.  
It is required to have the device held in reset if the minimum high/low time specs of MCLK can not be met  
during clock source changes.  
3.14 Control Port Interface  
The control port is used to load all the internal register settings in order to operate in software mode (see  
the “Parameter Definitions” on page 48). The operation of the control port may be completely asynchronous  
with the audio sample rate. However, to avoid potential interference problems, the control port pins should  
remain static if no operation is required.  
The control port operates in one of two modes: I²C or SPI.  
3.14.1 MAP Auto Increment  
The device has MAP (memory address pointer) auto increment capability enabled by the INCR bit (also  
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and  
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or  
writes of successive registers.  
3.14.2 I²C Mode  
In the I²C mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial  
control port clock, SCL (see Figure 26 for the clock to data relationship). There is no CS pin. Pin AD0 en-  
ables the user to alter the chip address (001100[AD0][R/W]) and should be tied to VLC or GND as re-  
quired, before powering up the device. If the device ever detects a high to low transition on the AD0/CS  
pin after power-up, SPI mode will be selected.  
30  
DS620A1  
CS4384  
3.14.2.1 I²C Write  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section 2.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth  
bit of the address byte is the R/W bit.  
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This  
byte points to the register to be written.  
3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by  
the MAP.  
4. If the INCR bit (see Section 3.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other  
registers are desired, initiate a STOP condition to the bus.  
3.14.2.2 I²C Read  
To read from the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth  
bit of the address byte is the R/W bit.  
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register  
pointed to by the MAP. The MAP register will contain the address of the last register written to the  
MAP, or the default address (see Section 3.14.1) if an I²C read is the first operation performed on the  
device.  
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.  
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-  
tinue providing a clock and issue an ACK after each byte until all the desired registers are read, then  
initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write  
instructions followed by step 1 of the I²C Read section. If no further reads from other registers are de-  
sired, initiate a STOP condition to the bus.  
Note 1  
ADDR  
AD0  
DATA  
1-8  
DATA  
1-8  
001100  
R/W  
ACK  
ACK  
ACK  
SDA  
SCL  
Start  
Stop  
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.  
Figure 26. Control Port Timing, I²C Mode  
DS620A1  
31  
CS4384  
3.14.3 SPIMode  
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK  
(see Figure 27 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and  
is used to control SPI writes to the control port. When the device detects a high to low transition on the  
AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs and data is clocked in on the  
rising edge of CCLK.  
3.14.3.1 SPI Write  
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-  
tions in Section 2.  
1. Bring CS low.  
2. The address byte on the CDIN pin must then be 00110000.  
3. Write to the memory address pointer, MAP. This byte points to the register to be written.  
4. Write the desired data to the register pointed to by the MAP.  
5. If the INCR bit (see Section 3.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then bring CS high.  
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring  
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-  
sired, bring CS high.  
CS  
CCLK  
CHIP  
ADDRESS  
MAP  
DATA  
0011000  
LSB  
CDIN  
MSB  
R/W  
byte 1  
byte n  
MAP = Memory Address Pointer  
Figure 27. Control Port Timing, SPI Mode  
3.15 Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
MAP4  
0
3
MAP3  
0
2
MAP2  
0
1
MAP1  
0
0
MAP0  
0
3.15.1 INCR (Auto Map Increment Enable)  
Default = ‘0’  
0 - Disabled  
1 - Enabled  
3.15.2 MAP4-0 (Memory Address Pointer)  
Default = ‘00000’  
32  
DS620A1  
CS4384  
4. REGISTER QUICK REFERENCE  
Addr  
01h Chip Revision  
default  
02h Mode Control  
default  
03h PCM Control  
default  
04h DSD Control  
Function  
7
PART4  
0
6
PART3  
0
5
PART2  
0
4
PART1  
0
3
PART0  
0
2
REV  
x
1
REV  
x
0
REV  
x
CPEN  
0
FREEZE DSD/PCM DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS  
PDN  
1
0
DIF2  
0
0
DIF1  
0
0
DIF0  
0
0
0
0
FM1  
1
DIF3  
0
Reserved Reserved  
FM0  
1
0
0
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_D INVALID_D DSD_PM_ DSD_PM_  
SD  
SD  
MD  
EN  
default  
05h Filter Control  
default  
06h Invert Control  
default  
07h Group Control  
default  
0
0
0
0
1
0
0
0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL  
0
0
0
0
INV_A3  
0
0
0
0
INV_B1  
0
0
INV_A1  
0
INV_B4  
INV_A4  
INV_B3  
INV_B2  
INV_A2  
0
0
MUTEC  
0
0
Reserved  
0
0
P2_A=B  
0
0
P3_A=B  
0
Reserved  
P1_A=B  
0
P4_A=B SNGLVOL  
0
SZC1  
1
0
0
08h Ramp and Mute  
default  
SZC0  
0
RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0  
1
1
1
1
0
0
09h Mute Control  
default  
MUTE_B4 MUTE_A4 MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1  
0
0
0
0
0
0
0
0
0Ah Mixing Control  
Pair 1 (AOUTx1)  
Reserved P1_DEM1 P1_DEM0 P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0  
default  
0Bh Vol. Control A1  
default  
0
0
0
0
1
0
0
1
A1_VOL7 A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0  
0
0
0
0
0
0
0
0
0Ch Vol. Control B1  
default  
B1_VOL7 B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0  
0
0
0
0
0
0
0
0
0Dh Mixing Control  
Pair 2 (AOUTx1)  
Reserved P2_DEM1 P2_DEM0 P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0  
default  
0Eh Vol. Control A2  
default  
0
0
0
0
1
0
0
1
A2_VOL7 A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0  
0
0
0
0
0
0
0
0
0Fh Vol. Control B2  
default  
B2_VOL7 B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0  
0
0
0
0
0
0
0
0
10h Mixing Control  
Pair 3 (AOUTx1)  
Reserved P3_DEM1 P3_DEM0 P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0  
default  
11h Vol. Control A3  
default  
0
0
0
0
1
0
0
1
A3_VOL7 A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0  
0
0
0
0
0
0
0
0
12h Vol. Control B3  
default  
B3_VOL7 B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0  
0
0
0
0
0
0
0
0
13h Mixing Control  
Pair 4 (AOUTx1)  
Reserved P4_DEM1 P4_DEM0 P4ATAPI4 P4ATAPI3 P4ATAPI2 P4ATAPI1 P4ATAPI0  
default  
0
0
0
0
1
0
0
1
DS620A1  
33  
CS4384  
Addr  
14h Vol. Control A4  
default  
15h Vol. Control B4  
default  
16h PCM clock mode Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved  
default  
Function  
7
6
5
4
3
2
1
0
A4_VOL7 A4_VOL6 A4_VOL5 A4_VOL4 A4_VOL3 A4_VOL2 A4_VOL1 A4_VOL0  
0
0
0
0
0
0
0
0
B4_VOL7 B4_VOL6 B4_VOL5 B4_VOL4 B4_VOL3 B4_VOL2 B4_VOL1 B4_VOL0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5. REGISTER DESCRIPTION  
Note: All registers are read/write in I²C mode and write only in SPI, unless otherwise noted.  
5.1  
Chip Revision (address 01h)  
7
PART4  
0
6
PART3  
0
5
PART2  
0
4
PART1  
0
3
PART0  
0
2
REV2  
-
1
REV1  
-
0
REV0  
-
5.1.1  
Part Number ID (part) [Read Only]  
00000- CS4384  
Revision ID (REV) [Read Only]  
000 - Revision A0  
001 - Revision B0  
Function:  
This read-only register can be used to identify the model and revision number of the device.  
5.2  
Mode Control 1 (address 02h)  
7
6
FREEZE  
0
5
DSD/PCM  
0
4
DAC4_DIS  
0
3
DAC3_DIS  
0
2
DAC2_DIS  
0
1
DAC1_DIS  
0
0
PDN  
1
CPEN  
0
5.2.1  
Control Port Enable (CPEN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This bit defaults to 0, allowing the device to power-up in Stand-Alone mode. The Control port mode can  
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-  
isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user  
should write this bit within 10 ms following the release of Reset.  
34  
DS620A1  
CS4384  
5.2.2  
Freeze Controls (FREEZE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This function allows modifications to be made to the registers without the changes taking effect until the  
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,  
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.  
5.2.3  
PCM/DSD Selection (DSD/PCM)  
Default = 0  
0 - PCM  
1 - DSD  
Function:  
This function selects DSD or PCM Mode. The appropriate data and clocks should be present before  
changing modes, or else MUTE should be selected.  
5.2.4  
DAC Pair Disable (DACx_DIS)  
Default = 0  
0 - Enabled  
1 - Disabled  
Function:  
When enabled the respective DAC channel pairx (AOUTAx and AOUTBx) will remain in a reset state. It  
is advised that changes to these bits be made while the power down bit is enabled to eliminate the pos-  
sibility of audible artifacts.  
5.2.5  
Power Down (PDN)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The entire device will enter a low-power state when this function is enabled, and the contents of the control  
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be  
disabled before normal operation in Control Port mode can occur.  
5.3  
PCM Control (address 03h)  
7
DIF3  
0
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
Reserved  
0
2
Reserved  
0
1
FM1  
1
0
FM0  
1
5.3.1  
Digital Interface Format (DIF)  
Default = 0000 - Format 0 (Left Justified, up to 24-bit data)  
DS620A1  
35  
CS4384  
Function:  
These bits select the interface format for the serial audio input. The DSD/PCM bit determines whether  
PCM or DSD mode is selected.  
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital  
Interface Format and the options are detailed in Figures 9-21.  
DIF3  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Format  
FIGURE  
0
0
0
0
0
0
1
1
1
1
1
X
0
0
0
0
1
1
0
0
0
0
1
X
0
0
1
1
0
0
0
0
1
1
0
X
0
1
0
1
0
1
0
1
0
1
0
X
0
1
9
Left Justified, up to 24-bit data  
2
10  
11  
12  
13  
14  
15  
17  
18  
20  
21  
I S, up to 24-bit data  
2
Right Justified, 16-bit data  
3
Right Justified, 24-bit data  
4
Right Justified, 20-bit data  
5
Right Justified, 18-bit data  
8
One-line Mode 1, 24-bit Data +SDIN4  
One-line Mode 2, 20-bit Data +SDIN4  
One-line Mode 3, 24-bit 6-channel  
One-line Mode 4, 20-bit 6-channel  
TDM  
9
10  
11  
12  
All other combinations are Reserved  
Table 7. Digital Interface Formats - PCM Mode  
5.3.2  
Functional Mode (FM)  
Default = 11  
00 - Single-Speed Mode (4 to 50 kHz sample rates)  
01 - Double-Speed Mode (50 to 100 kHz sample rates)  
10 - Quad-Speed Mode (100 to 200 kHz sample rates)  
11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)  
Function:  
Selects the required range of input sample rates or Auto Speed Mode.  
5.4  
DSD Control (address 04h)  
7
6
DSD_DIF1  
0
5
DSD_DIF0  
0
4
DIR_DSD  
0
3
2
1
0
DSD_DIF2  
0
STATIC_DSD INVALID_DSD DSD_PM_MD DSD_PM_EN  
1
1
0
0
5.4.1  
DSD Mode Digital Interface Format (DSD_DIF)  
Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate)  
Function:  
The relationship between the oversampling ratio of the DSD audio data and the required Master clock to  
DSD data rate is defined by the Digital Interface Format pins.  
36  
DS620A1  
CS4384  
The DSD/PCM bit determines whether PCM or DSD mode is selected.  
DIF2  
DIF1  
DIFO  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate.  
128x oversampled DSD data with a 3x MCLK to DSD data rate.  
128x oversampled DSD data with a 4x MCLK to DSD data rate.  
128x oversampled DSD data with a 6x MCLK to DSD data rate.  
Table 8. Digital Interface Formats - DSD Mode  
5.4.2  
Direct DSD Conversion (DIR_DSD)  
Function:  
When set to 0 (default), DSD input data is sent to the DSD processor for filtering and volume control func-  
tions.  
When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conversion.  
In this mode the full scale DSD and PCM levels will not be matched (see Section 2), the dynamic range  
performance may be reduced, the volume control is inactive, and the 50 kHz low pass filter is not available  
(see Section 2 for filter specifications).  
5.4.3  
5.4.4  
5.4.5  
Static DSD Detect (STATIC_DSD)  
Function:  
When set to 1 (default), the DSD processor checks for 28 consecutive zeroes or ones and, if detected,  
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE  
register.  
When set to 0, this function is disabled.  
Invalid DSD Detect (INVALID_DSD)  
Function:  
When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if de-  
tected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMUTE  
register.  
When set to 0 (default), this function is disabled.  
DSD Phase Modulation Mode Select (DSD_PM_MODE)  
Function:  
When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for phase modulation  
mode. (See Figure 20 on page 26.)  
When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for phase modulation mode.  
DS620A1  
37  
CS4384  
5.4.6  
DSD Phase Modulation Mode Enable (DSD_PM_EN)  
Function:  
When set to 1, DSD phase modulation input mode is enabled and the DSD_PM_MODE bit should be set  
accordingly.  
When set to 0 (default), this function is disabled (DSD normal mode).  
5.5  
Filter Control (address 05h)  
7
6
Reserved  
0
5
Reserved  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
FILT_SEL  
0
Reserved  
0
5.5.1  
Interpolation Filter Select (FILT_SEL)  
Function:  
When set to 0 (default), the Interpolation Filter has a fast roll off.  
When set to 1, the Interpolation Filter has a slow roll off.  
The specifications for each filter can be found in the Analog characteristics table, and response plots can  
be found in Figures 26 to 49.  
5.6  
Invert Control (address 06h)  
7
6
INV_A4  
0
5
INV_B3  
0
4
INV_A3  
0
3
INV_B2  
0
2
INV_A2  
0
1
INV_B1  
0
0
INV_A1  
0
INV_B4  
0
5.6.1  
Invert Signal Polarity (INV_xx)  
Function:  
When set to 1, this bit inverts the signal polarity of channel xx.  
When set to 0 (default), this function is disabled.  
5.7  
Group Control (address 07h)  
7
6
MUTEC  
0
5
Reserved  
0
4
P1_A=B  
0
3
P2_A=B  
0
2
P3_A=B  
0
1
P4_A=B  
0
0
SNGLVOL  
0
Reserved  
0
5.7.1  
Mutec Pin Control (MUTEC)  
Default = 0  
0 - Two Mute control signals  
1 - Single mute control signal on MUTEC1  
Function:  
Selects how the internal mute signals are routed to the MUTEC1 and MUTEC234 pins. When set to ‘0’,  
a logical AND of DAC pair 1 mute control signals are output on MUTEC1 and a logical AND of the mute  
control signals of DAC pairs 2, 3, and 4 are output on MUTEC234. When set to ‘1’, a logical AND of all  
DAC pair mute control signals is output on the MUTEC1 pin, MUTEC234 will remain static. For more in-  
formation on the use of the mute control function see the MUTEC1 and MUTEC234 pins in Section 3.11.  
38  
DS620A1  
CS4384  
5.7.2  
Channel A Volume = Channel B Volume (Px_A=B)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-  
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-  
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes  
are ignored when this function is enabled.  
5.7.3  
Single Volume Control (SNGLVOL)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The individual channel volume levels are independently controlled by their respective Volume Control  
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume  
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.  
5.8  
Ramp and Mute (address 08h)  
7
6
SZC0  
0
5
RMP_UP  
1
4
RMP_DN  
1
3
PAMUTE  
1
2
DAMUTE  
1
1
MUTE_P1  
0
0
MUTE_P0  
0
SZC1  
1
5.8.1  
Soft Ramp and Zero Cross Control (SZC)  
Default = 10  
00 - Immediate Change  
01 - Zero Cross  
10 - Soft Ramp  
11 - Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim-  
eout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal  
does not encounter a zero crossing. The zero cross function is independently monitored and implemented  
for each channel.  
Soft Ramp  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
DS620A1  
39  
CS4384  
Soft Ramp on Zero Crossing  
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or  
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change  
will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz  
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently  
monitored and implemented for each channel.  
5.8.2  
Soft Volume Ramp-Up After Error (RMP_UP)  
Function:  
An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing  
the Functional Mode.  
When set to 1 (default), this un-mute is effected, similar to attenuation changes, by the Soft and Zero  
Cross bits in the Volume and Mixing Control register.  
When set to 0, an immediate un-mute is performed in these instances.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.  
5.8.3  
Soft Ramp-Down Before Filter Mode Change (RMP_DN)  
Function:  
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to  
change its filter values. This bit selects how the data is effected prior to and after the change of the filter  
values.  
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute  
will be performed after executing the filter mode change. This mute and un-mute are effected, similar to  
attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.  
When set to 0, an immediate mute is performed prior to executing a filter mode change.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.  
5.8.4  
PCM Auto-Mute (PAMUTE)  
Function:  
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 8192  
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De-  
tection and muting is done independently for each channel. The quiescent voltage on the output will be  
retained and the Mute Control pin will go active during the mute period.  
When set to 0 this function is disabled.  
5.8.5  
DSD Auto-Mute (DAMUTE)  
Function:  
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 256 re-  
peated 8-bit DSD mute patterns (as defined in the SACD specification).  
A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and  
muting is done independently for each channel. The quiescent voltage on the output will be retained and  
the Mute Control pin will go active during the mute period.  
40  
DS620A1  
CS4384  
5.8.6  
MUTE Polarity and DETECT (MUTEP1:0)  
Default = 00  
00 - Auto polarity detect, selected from MUTEC1 pin  
01 - Reserved  
10 - Active low mute polarity  
11 - Active high mute polarity  
Function:  
Auto mute polarity detect (00)  
See Section 3.11 on page 29 for the description.  
Active low mute polarity (10)  
When RST is low the outputs are high impedance and will need to be biased active. Once reset has been  
released and after this bit is set, the MUTEC output pins will be active low polarity.  
Active high mute polarity (11)  
At reset time the outputs are high impedance and will need to be biased active. Once reset has been re-  
leased and after this bit is set, the MUTEC output pins will be active high polarity.  
5.9  
Mute Control (address 09h)  
7
6
MUTE_A4  
0
5
MUTE_B3  
0
4
MUTE_A3  
0
3
MUTE_B2  
0
2
MUTE_A2  
0
1
MUTE_B1  
0
0
MUTE_A1  
0
MUTE_B4  
0
5.9.1  
Mute (MUTE_xx)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will  
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross  
bits. The MUTE pins will go active during the mute period according to the MUTEC bit.  
5.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h)  
7
Reserved  
0
6
Px_DEM1  
0
5
Px_DEM0  
0
4
PxATAPI4  
0
3
PxATAPI3  
1
2
PxATAPI2  
0
1
PxATAPI1  
0
0
PxATAPI0  
1
5.10.1 De-Emphasis Control (PX_DEM1:0)  
Default = 00  
00 - Disabled  
01 - 44.1 kHz  
10 - 48 kHz  
11 - 32 kHz  
Function:  
DS620A1  
41  
CS4384  
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter re-  
sponse at 32, 44.1 or 48 kHz sample rates. (Figure 20 on page 26)  
De-emphasis is only available in Single-Speed Mode.  
5.11 ATAPI Channel Mixing and Muting (ATAPI)  
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)  
Function:  
The CS4384 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI  
functions are applied per A-B pair. Refer to Table 9 and Figure 21 for additional information.  
ATAPI4  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
AOUTAx  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTBx  
MUTE  
bR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
[(bL+aR)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
[(aL+bR)/2]  
MUTE  
bR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
[(aL+bR)/2]  
[(aL+bR)/2]  
[(bL+aR)/2]  
[(aL+bR)/2]  
bL  
[(aL+bR)/2]  
Table 9. ATAPI Decode  
42  
DS620A1  
CS4384  
5.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h)  
7
xx_VOL7  
0
6
xx_VOL6  
0
5
xx_VOL5  
0
4
xx_VOL4  
0
3
xx_VOL3  
0
2
xx_VOL2  
0
1
xx_VOL1  
0
0
xx_VOL0  
0
These eight registers provide individual volume and mute control for each of the eight channels.  
The values for “xx” in the bit fields above are as follows:  
Register address 0Bh - xx = A1  
Register address 0Ch - xx = B1  
Register address 0Eh - xx = A2  
Register address 0Fh - xx = B2  
Register address 11h - xx = A3  
Register address 12h - xx = B3  
Register address 14h - xx = A4  
Register address 15h - xx = B4  
5.12.1 Digital Volume Control (xx_VOL7:0)  
Default = 00h (0 dB)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments  
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 10. The volume changes are imple-  
mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that  
the values in the volume setting column in Table 10 are approximate. The actual attenuation is determined  
by taking the decimal value of the volume register and multiplying by 6.02/12.  
Binary Code  
00000000  
00000001  
00000110  
11111111  
Decimal Value  
Volume Setting  
0 dB  
0
1
-0.5 dB  
6
-3.0 dB  
255  
-127.5 dB  
Table 10. Example Digital Volume Settings  
5.13 PCM Clock Mode (address 16h)  
7
Reserved  
0
6
Reserved  
0
5
MCLKDIV  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
5.13.1 Master Clock Divide by 2 Enable (MCLKDIV)  
Function:  
When set to 1, the MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2  
prior to all other internal circuitry.  
When set to 0 (default), MCLK is unchanged.  
DS620A1  
43  
CS4384  
6. FILTER RESPONSE PLOTS  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 28. Single-Speed (fast) Stopband Rejection  
Figure 29. Single-Speed (fast) Transition Band  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.02  
0.015  
0.01  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 30. Single-Speed (fast) Transition Band (detail)  
Figure 31. Single-Speed (fast) Passband Ripple  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 32. Single-Speed (slow) Stopband Rejection  
Figure 33. Single-Speed (slow) Transition Band  
44  
DS620A1  
CS4384  
0.02  
0.015  
0.01  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 34. Single-Speed (slow) Transition Band (detail)  
Figure 35. Single-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 36. Double-Speed (fast) Stopband Rejection  
Figure 37. Double-Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 38. Double-Speed (fast) Transition Band (detail)  
Figure 39. Double-Speed (fast) Passband Ripple  
DS620A1  
45  
CS4384  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 40. Double-Speed (slow) Stopband Rejection  
Figure 41. Double-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 42. Double-Speed (slow) Transition Band (detail)  
Figure 43. Double-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 44. Quad-Speed (fast) Stopband Rejection  
Figure 45. Quad-Speed (fast) Transition Band  
46  
DS620A1  
CS4384  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 46. Quad-Speed (fast) Transition Band (detail)  
Figure 47. Quad-Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 48. Quad-Speed (slow) Stopband Rejection  
Figure 49. Quad-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
0.005  
0
2
3
4
5
6
0.005  
0.01  
0.015  
0.02  
7
8
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 50. Quad-Speed (slow) Transition Band (detail)  
Figure 51. Quad-Speed (slow) Passband Ripple  
DS620A1  
47  
CS4384  
7. REFERENCES  
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper  
presented at the 93rd Convention of the Audio Engineering Society, October 1992.  
2. CDB4364 Datasheet  
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48  
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.  
http://www.semiconductors.philips.com  
5. AN282 “The 2-Channel Serial Audio Interface: A Tutorial”  
8. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made  
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full  
scale. This technique ensures that the distortion components are below the noise level and do not affect the  
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-  
1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full scale analog output for a full scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
48  
DS620A1  
CS4384  
9. PACKAGE DIMENSIONS  
48L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
NOM  
MILLIMETERS  
NOM  
DIM  
MIN  
MAX  
MIN  
MAX  
A
A1  
B
D
D1  
E
E1  
e*  
L
---  
0.055  
0.004  
0.009  
0.354  
0.28  
0.354  
0.28  
0.020  
0.24  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
---  
1.40  
0.10  
0.22  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
9.0 BSC  
7.0 BSC  
9.0 BSC  
7.0 BSC  
0.50 BSC  
0.60  
4°  
4°  
* Nominal pin pitch is 0.50 mm  
Controlling dimension is mm.  
JEDEC Designation: MS022  
DS620A1  
49  
CS4384  
10.ORDERING INFORMATION  
Product  
CS4384  
CDB4384  
Description  
Package Pb-Free  
Grade  
Temp Range  
Container Order #  
Tray CS4384-CQZ  
Tape & Reel CS4384-CQZR  
Tray CS4384-DQZ  
Tape & Reel CS4384-DQZR  
CDB4384  
Commercial -10° to +70° C  
Automotive -40° to +85° C  
114 dB, 192 kHz 8-  
channel D/A Con-  
verter  
48-pin  
YES  
LQFP  
CS4384 Evaluation Board  
-
-
-
-
11.REVISION HISTORY  
Release  
Date  
Changes  
A1  
August 2005  
Initial Release  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Advance" product information describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus")  
believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS  
IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that  
information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,  
including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use  
of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of  
Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or  
other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the infor-  
mation only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such  
as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR  
USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY  
DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-  
STOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUD-  
ING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT  
IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL  
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND  
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION  
WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
SPI is a trademark of Motorola, Inc.  
50  
DS620A1  

相关型号:

CDB4385

114 dB, 192kHz 8-CHANNEL D/A CONVERTER
CIRRUS

CDB4385A

Demonstrates recommended layout and grounding arrangements
CIRRUS

CDB4390

24-Bit, Stereo D/A Converter for Digital Audio
CIRRUS

CDB4391

24-Bit, 192 kHz Stereo DAC with Volume Control
CIRRUS

CDB4391A

Evaluation Board for CS4391A
CIRRUS

CDB4392

24-Bit, 192 kHz Stereo DAC with Volume Control
CIRRUS

CDB4396

24-Bit, 192 kHz D/A Converter for Digital Audio
CIRRUS

CDB4397

24-Bit, Multi-Standard D/A Converter for Digital Audio
CIRRUS

CDB4398

120 dB, 192 kHz Multi-Bit DAC with Volume Control
CIRRUS

CDB43L21

Low Power, Stereo Digital to Analog Converter
CIRRUS

CDB43L22

Low Power, Stereo DAC w/Headphone & Speaker Amps
CIRRUS

CDB43L42

Low Voltage,Stereo DAC With Headphone Amp
CIRRUS