CDB4351 [CIRRUS]

192 kHz STEREO DAC WITH 2 Vrms LINE OUT; 192 kHz立体声DAC 2 Vrms的线路输出
CDB4351
型号: CDB4351
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

192 kHz STEREO DAC WITH 2 Vrms LINE OUT
192 kHz立体声DAC 2 Vrms的线路输出

文件: 总41页 (文件大小:1097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4351  
192 kHz Stereo DAC with 2 Vrms Line Out  
Features  
Description  
The CS4351 is a complete stereo digital-to-analog sys-  
tem including digital interpolation, fifth-order multi-bit  
delta-sigma digital-to-analog conversion, digital de-em-  
phasis, volume control, channel mixing, analog filtering,  
and on-chip 2 Vrms line level driver. The advantages of  
this architecture include: ideal differential linearity, no  
distortion mechanisms due to resistor matching errors,  
no linearity drift over time and temperature, high toler-  
ance to clock jitter, and a minimal set of external  
components.  
z Multi-bit Delta-Sigma Modulator  
z 24-Bit Conversion  
z Up to 192 kHz Sample Rates  
z 112 dB Dynamic Range  
z -100 dB THD+N  
z +3.3 V, +9 to 12 V, and VL Power Supplies  
z 2 Vrms Output into 5 kAC Load  
z Digital Volume Control with Soft Ramp  
– 119 dB Attenuation  
These features are ideal for cost-sensitive, 2-channel  
audio systems including DVD players, A/V receivers,  
set-top boxes, digital TVs and VCRs, mini-component  
systems, and mixing consoles.  
– 1/2 dB Step Size  
– Zero Crossing Click-Free Transitions  
z ATAPI Mixing  
z Low Clock Jitter Sensitivity  
®
z Popguard Technology for Control of Clicks  
and Pops  
ORDERING INFORMATION  
CS4351-CZ  
-10 to 70 °C 20-pin TSSOP  
CS4351-CZZ, Lead Free -10 to 70 °C 20-pin TSSOP  
CDB4351  
Evaluation Board  
I
9 V to 12 V  
1.8 V to 3.3V  
3.3 V  
Hardware or I2C/SPI  
Control Data  
Register/Hardware  
Configuration  
Reset  
Amp  
+
Filter  
Interpolation  
Filter with  
Volume Control  
Multibit  
∆Σ Modulator  
2 Vrms Line Level  
Left Channel Output  
DAC  
DAC  
PCM  
Serial  
Interface  
Serial Audio Input  
Interpolation  
Filter with  
Volume Control  
2 Vrms Line Level  
Right Channel  
Output  
Amp  
+
Filter  
Multibit  
∆Σ Modulator  
Auto Speed Mode  
Detect  
External  
Mute  
Control  
Left and Right  
Mute Controls  
Internal Voltage  
Reference  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
Copyright © Cirrus Logic, Inc. 2004  
Sep ‘04  
DS566PP2  
http://www.cirrus.com  
(All Rights Reserved)  
CS4351  
Table 1. Revision History  
Changes  
Initial Release  
Release  
A1  
Date  
July 2003  
2
A2  
August 2003  
Added I C/SPI switching characterics  
A3  
November 2003 removed “Confidential”, moved legal statement to last page  
PP1  
June 2004  
Updated Legal.  
Updated Analog Performance specifications (Typ is improved).  
Consolidated speed mode performance for analog performance.  
Updated Current Consumption specifications (Typ and Min/Max increased).  
Updated PSRR (improved Typ performance for 60 Hz).  
Reduced recommended VBIAS+ capacitor in Typical Connection Diagram (to  
improve startup settling times).  
Changed bit 0 (POPG) in register 07h to reserved (must always be 1).  
PP2  
Sep 2004  
Update w/ lead-free device ordering info.  
2
DS566PP2  
CS4351  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ................................................................................................................. 5  
2. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 6  
SPECIFIED OPERATING CONDITIONS................................................................................. 6  
ABSOLUTE MAXIMUM RATINGS........................................................................................... 6  
DAC ANALOG CHARACTERISTICS....................................................................................... 7  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .......................... 9  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ........................ 10  
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE .......................................... 11  
2
SWITCHING CHARACTERISTICS - CONTROL PORT - I C FORMAT................................ 12  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ............................... 13  
DIGITAL CHARACTERISTICS............................................................................................... 14  
POWER AND THERMAL CHARACTERISTICS .................................................................... 14  
3. TYPICAL CONNECTION DIAGRAM ..................................................................................... 15  
4. APPLICATIONS ..................................................................................................................... 16  
4.1 Sample Rate Range/Operational Mode Detect ............................................................... 16  
4.1.1 Auto-Detect Enabled ........................................................................................... 16  
4.1.2 Auto-Detect Disabled .......................................................................................... 16  
4.2 System Clocking .............................................................................................................. 17  
4.3 Digital Interface Format ................................................................................................... 18  
4.3.1 Stand-Alone Mode .............................................................................................. 18  
4.3.2 Control Port Mode .............................................................................................. 18  
4.4 De-Emphasis Control ...................................................................................................... 19  
4.4.1 Stand-Alone Mode .............................................................................................. 19  
4.4.2 Control Port Mode ............................................................................................... 19  
4.5 Recommended Power-up Sequence ............................................................................... 20  
4.5.1 Stand-Alone Mode .............................................................................................. 20  
4.5.2 Control Port Mode ............................................................................................... 20  
®
4.6 Popguard Transient Control .......................................................................................... 21  
4.6.1 Power-up ............................................................................................................. 21  
4.6.2 Power-down ........................................................................................................ 21  
4.6.3 Discharge Time ................................................................................................... 21  
4.7 Mute Control .................................................................................................................... 21  
4.8 Grounding and Power Supply Arrangements .................................................................. 22  
4.8.1 Capacitor Placement ........................................................................................... 22  
4.9 Control Port Interface ...................................................................................................... 23  
4.9.1 MAP Auto Increment ........................................................................................... 23  
2
4.9.2 I C Mode ............................................................................................................. 23  
2
4.9.2.1 I C Write ............................................................................................. 23  
2
4.9.2.2 I C Read ............................................................................................. 23  
4.9.3 SPI Mode ............................................................................................................ 24  
4.9.3.1 SPI Write ............................................................................................. 24  
4.10 Memory Address Pointer (MAP) ................................................................................ 26  
5. REGISTER QUICK REFERENCE .......................................................................................... 26  
6. REGISTER DESCRIPTION .................................................................................................... 27  
7. PARAMETER DEFINITIONS .................................................................................................. 34  
8. PACKAGE DIMENSIONS ..................................................................................................... 35  
9. APPENDIX ............................................................................................................................ 36  
DS566PP2  
3
CS4351  
LIST OF FIGURES  
Figure 1. Serial Input Timing ....................................................................................................... 11  
2
Figure 2. Control Port Timing - I C Format ................................................................................. 12  
Figure 3. Control Port Timing - SPI Format (Write) ..................................................................... 13  
Figure 4. Typical Connection Diagram ........................................................................................ 15  
Figure 5. Left Justified up to 24-Bit Data ..................................................................................... 18  
2
Figure 6. I S, up to 24-Bit Data ................................................................................................... 18  
Figure 7. Right Justified Data ...................................................................................................... 18  
Figure 8. De-Emphasis Curve ..................................................................................................... 19  
Figure 9. Control Port Timing, I2C Mode ..................................................................................... 24  
Figure 10. Control Port Timing, SPI mode .................................................................................... 25  
Figure 11. De-Emphasis Curve ..................................................................................................... 28  
Figure 12. ATAPI Block Diagram .................................................................................................. 29  
Figure 13. Single Speed (fast) Stopband Rejection ...................................................................... 36  
Figure 14. Single Speed (fast) Transition Band ............................................................................ 36  
Figure 15. Single Speed (fast) Transition Band (detail) ................................................................ 36  
Figure 16. Single Speed (fast) Passband Ripple .......................................................................... 36  
Figure 17. Single Speed (slow) Stopband Rejection ..................................................................... 36  
Figure 18. Single Speed (slow) Transition Band ........................................................................... 36  
Figure 19. Single Speed (slow) Transition Band (detail) ............................................................... 37  
Figure 20. Single Speed (slow) Passband Ripple ......................................................................... 37  
Figure 21. Double Speed (fast) Stopband Rejection ..................................................................... 37  
Figure 22. Double Speed (fast) Transition Band ........................................................................... 37  
Figure 23. Double Speed (fast) Transition Band (detail) ............................................................... 37  
Figure 24. Double Speed (fast) Passband Ripple ......................................................................... 37  
Figure 25. Double Speed (slow) Stopband Rejection ................................................................... 38  
Figure 26. Double Speed (slow) Transition Band .......................................................................... 38  
Figure 27. Double Speed (slow) Transition Band (detail) .............................................................. 38  
Figure 28. Double Speed (slow) Passband Ripple ........................................................................ 38  
Figure 29. Quad Speed (fast) Stopband Rejection ....................................................................... 38  
Figure 30. Quad Speed (fast) Transition Band .............................................................................. 38  
Figure 31. Quad Speed (fast) Transition Band (detail) .................................................................. 39  
Figure 32. Quad Speed (fast) Passband Ripple ............................................................................ 39  
Figure 33. Quad Speed (slow) Stopband Rejection ...................................................................... 39  
Figure 34. Quad Speed (slow) Transition Band ............................................................................ 39  
Figure 35. Quad Speed (slow) Transition Band (detail) ................................................................ 39  
Figure 36. Quad Speed (slow) Passband Ripple .......................................................................... 39  
4
DS566PP2  
CS4351  
LIST OF TABLES  
Table 1. Revision History ...............................................................................................................2  
Table 2. CS4351 Auto-Detect .......................................................................................................16  
Table 3. CS4351 Mode Select ......................................................................................................16  
Table 4. Single-Speed Mode Standard Frequencies ....................................................................17  
Table 5. Double-Speed Mode Standard Frequencies...................................................................17  
Table 6. Quad-Speed Mode Standard Frequencies .....................................................................17  
Table 7. Digital Interface Format - Stand-Alone Mode..................................................................18  
Table 8. Digital Interface Formats.................................................................................................27  
Table 9. ATAPI Decode ................................................................................................................29  
Table 10. Example Digital Volume Settings..................................................................................31  
DS566PP2  
5
CS4351  
1. PIN DESCRIPTION  
20  
19  
18  
1
SDIN  
SCLK  
LRCK  
MCLK  
VD  
VL  
2
AMUTEC  
AOUTA  
VA_H  
GND  
AOUTB  
BMUTEC  
VQ  
3
4
17  
16  
15  
14  
13  
12  
5
6
GND  
7
DIF1(SCL/CCLK)  
DIF0(SDA/CDIN)  
DEM(AD0/CS)  
RST  
8
9
VBIAS  
VA  
10  
11  
Pin Name  
SDIN  
#
1
2
3
Pin Description  
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.  
Serial Clock (Input) - Serial clock for the serial audio interface.  
SCLK  
LRCK  
Left / Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial  
audio data line.  
MCLK  
VD  
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.  
Digital Power (Input) - Positive power supply for the digital section.  
Ground (Input) - Ground reference.  
4
5
GND  
6
16  
Reset (Input) - Powers down device and resets all internal resisters to their default settings when  
enabled.  
RST  
10  
VA  
11 Low Voltage Analog Power (Input) - Positive power supply for the analog section.  
Positive Voltage Reference (Output) - Positive reference voltage for the internal DAC.  
VBIAS  
VQ  
12  
13 Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.  
17 High Voltage Analog Power (Input) - Positive power supply for the analog section.  
VA_H  
VL  
Serial Audio Interface Power (Input) - Positive power for the serial audio interface  
Mute Control (Output) - Control signal for optional mute circuit.  
20  
BMUTEC  
AMUTEC  
14  
19  
AOUTB  
AOUTA  
Analog Outputs (Output) - The full scale analog line output level is specified in the Analog Characteris-  
tics table.  
15  
18  
Control Port  
Definitions  
SCL/CCLK  
SDA/CDIN  
Serial Control Port Clock (Input) - Serial clock for the control port interface.  
Serial Control Data (Input/Output) - Input/Output for I2C data. Input for SPI data.  
7
8
Address Bit 0 / Chip Select (Input) - Chip address bit in I2C Mode. Control Port enable in SPI mode.  
AD0/CS  
9
Stand-Alone  
Definitions  
DIF0  
DIF1  
Digital Interface Format (Input) - Defines the required relationship between the Left Right Clock, Serial  
Clock, and Serial Audio Data.  
8
7
DEM  
9
De-emphasis (Input) - Selects the standard 15 µs/50 µs digital de-emphasis filter response for 44.1 kHz  
sample rates  
6
DS566PP2  
CS4351  
2. CHARACTERISTICS AND SPECIFICATIONS  
(Min/Max performance characteristics and specifications are guaranteed over the Specified Operating Conditions.  
Typical specifications are derived from performance measurements at T = 25 °C, VA_H = 12 V, VA = 3.3 V,  
A
VD = 3.3 V.)  
SPECIFIED OPERATING CONDITIONS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
High Voltage Analog power  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
V
8.55  
3.13  
3.13  
1.7  
12  
3.3  
3.3  
3.3  
12.6  
3.47  
3.47  
3.47  
V
V
V
V
A_H  
Low Voltage Analog power  
Digital power  
V
A
V
D
Interface power  
V
L
Specified Temperature Range  
TA  
-10  
-
70  
°C  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
High Voltage Analog power  
Low Voltage Analog power  
Digital power  
V
V
V
V
-0.3  
-0.3  
-0.3  
-0.3  
14  
V
V
V
V
A_H  
3.63  
3.63  
3.63  
A
D
Interface power  
L
Input Current, Any Pin Except Supplies  
Digital Input Voltage  
I
-
±10  
mA  
V
in  
Digital Interface  
V
-0.3  
-55  
-65  
V + 0.4  
IN-L  
L
Ambient Operating Temperature (power applied)  
Storage Temperature  
T
125  
150  
°C  
°C  
A
T
stg  
Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaran-  
teed at these extremes.  
DS566PP2  
7
CS4351  
DAC ANALOG CHARACTERISTICS (Test conditions (unless otherwise specified): input test sig-  
nal is a 997 Hz sine wave at 0 dBFS; measurement bandwidth 10 Hz to 20 kHz)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
All Speed Modes  
Fs = 48, 96, and 192 kHz  
Dynamic Range (Note 2) 24-bit unweighted  
A-Weighted  
99  
102  
-
-
109  
112  
95  
-
-
-
-
dB  
dB  
dB  
dB  
16-bit unweighted  
A-Weighted  
98  
Total Harmonic Distortion + Noise  
24-bit  
(Note 2) THD+N  
-
-
-
-
-
-
-
0 dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-60 dB  
-100  
-89  
-49  
-92  
-75  
-35  
-90  
-79  
-39  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
16-bit  
All Speed Modes  
Idle Channel Noise / Signal-to-noise ratio  
Interchannel Isolation (1 kHz)  
-
-
109  
100  
-
-
dB  
dB  
Notes: 1. One-half LSB of triangular PDF dither is added to data.  
ANALOG CHARACTERISTICS (Continued)  
Parameters  
Analog Output - All Modes  
Full Scale Output Voltage  
Common Mode Voltage  
Max DC Current draw from an AOUT pin  
Max Current draw from VQ  
Interchannel Gain Mismatch  
Gain Drift  
Symbol  
Min  
Typ  
Max  
Units  
1.9  
2.0  
4
2.1  
Vrms  
Vdc  
µA  
µA  
dB  
V
-
-
-
Q
I
10  
1
-
OUTmax  
I
-
-
Qmax  
-
0.1  
100  
50  
-
-
-
-
ppm/°C  
Output Impedance  
Z
-
-
-
OUT  
AC-Load Resistance  
R
5
-
kΩ  
pF  
L
Load Capacitance  
C
-
100  
L
8
DS566PP2  
CS4351  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (The  
filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate  
by multiplying the given characteristic by Fs.)  
Fast Roll-Off  
Parameter  
Min  
Typ  
Max  
Unit  
Combined Digital and On-chip Analog Filter Response - Single Speed Mode - 48 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.454  
.499  
+0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
s
s
dB  
dB  
dB  
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
De-emphasis Error (Note 5)  
(Relative to 1 kHz)  
-0.01  
0.547  
102  
(Note 4)  
-
-
-
-
-
-
-
-
-
9.4/Fs  
-
-
-
-
-
±0.56/Fs  
0
±0.23  
±0.14  
±0.09  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
Combined Digital and On-chip Analog Filter Response - Double Speed Mode - 96 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.430  
.499  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.583  
80  
-
-
(Note 4)  
-
-
4.6/Fs  
-
±0.03/Fs  
0
-
-
s
s
-
Combined Digital and On-chip Analog Filter Response - Quad Speed Mode - 192 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.105  
.490  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.635  
90  
-
-
(Note 4)  
-
-
4.7/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
DS566PP2  
9
CS4351  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (cont.)  
Slow Roll-Off (Note 2)  
Parameter  
Single Speed Mode - 48 kHz  
Min  
Typ  
Max  
Unit  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
0.417  
0.499  
+0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
s
s
dB  
dB  
dB  
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
De-emphasis Error (Note 5)  
(Relative to 1 kHz)  
-0.01  
.583  
64  
-
-
-
-
-
-
(Note 4)  
-
-
-
6.5/Fs  
-
-
-
-
-
±0.14/Fs  
0
±0.23  
±0.14  
±0.09  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
Double Speed Mode - 96 kHz  
Passband (Note 3)  
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.296  
.499  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
Quad Speed Mode - 192 kHz  
Passband (Note 3)  
-0.01  
.792  
70  
-
-
(Note 4)  
-
-
3.9/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
to -0.01 dB corner  
to -3 dB corner  
0
0
-
-
-
-
.104  
.481  
0.01  
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response 10 Hz to 20 kHz  
StopBand  
StopBand Attenuation  
Group Delay  
Intra-channel Phase Deviation  
Inter-channel Phase Deviation  
-0.01  
.868  
75  
(Note 4)  
-
-
-
4.2/Fs  
-
±0.01/Fs  
0
-
-
s
s
-
Notes: 2. Slow Roll-off interpolation filter is only available in Control Port mode.  
3. Response is clock dependent and will scale with Fs.  
4. For Single Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Double Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Quad Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.  
5. De-emphasis is available only in Single Speed Mode; Only 44.1 kHz De-emphasis is available in Stand-  
Alone Mode.  
6. Amplitude vs. Frequency plots of this data are available in “Appendix” on page 37.  
10  
DS566PP2  
CS4351  
SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE  
Parameters  
Symbol  
Min  
1.024  
45  
Max  
51.2  
55  
Units  
MHz  
%
MCLK Frequency  
MCLK Duty Cycle  
Input Sample Rate (Manual selection)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
50  
100  
200  
kHz  
kHz  
kHz  
Input Sample Rate (Auto selection)  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Fs  
Fs  
Fs  
4
84  
170  
50  
100  
200  
kHz  
kHz  
kHz  
LRCK Duty Cycle  
40  
20  
20  
60  
-
%
ns  
ns  
-
SCLK Pulse Width Low  
SCLK Pulse Width High  
SCLK Period  
t
sclkl  
t
-
sclkh  
sclkw  
1
Single Speed Mode  
Double Speed Mode  
Quad Speed Mode  
t
t
t
-
---------------------  
(128)Fs  
1
-
-
-
-
------------------  
sclkw  
sclkw  
(64)Fs  
2
-----------------  
MCLK  
20  
SCLK rising to LRCK edge delay  
SCLK rising to LRCK edge setup time  
SDIN valid to SCLK rising setup time  
SCLK rising to SDIN hold time  
t
-
-
-
-
ns  
ns  
ns  
ns  
slrd  
t
20  
20  
20  
slrs  
t
sdlrs  
t
sdh  
LRCK  
t
t
sclkh  
slrs  
t
slrd  
t
sclkl  
SCLK  
t
t
sdh  
sdlrs  
SDATA  
Figure 1. Serial Input Timing  
DS566PP2  
11  
CS4351  
SWITCHING CHARACTERISTICS - CONTROL PORT - I2C FORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VL, C = 20 pF)  
L
Parameter  
Symbol  
Min  
Max  
Unit  
SCL Clock Frequency  
f
-
100  
kHz  
scl  
RST Rising Edge to Start  
t
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
ns  
irs  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
t
-
buf  
t
-
hdst  
t
-
low  
Clock High Time  
t
-
high  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
t
-
sust  
(Note 7)  
t
-
hdd  
t
250  
-
-
1
sud  
t , t  
rc rc  
Fall Time SCL and SDA  
t , t  
-
300  
-
fc fc  
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
t
4.7  
300  
susp  
t
1000  
ack  
Notes: 7. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
R S T  
t
irs  
R e p e a te d  
Stop  
S ta rt  
Stop  
S ta rt  
t
t
rd  
fd  
S D A  
S C L  
t
t
t
t
t
buf  
t
high  
hdst  
fc  
susp  
hdst  
lo w  
t
t
t
t
t
t
sust  
sud  
ack  
rc  
hdd  
2
Figure 2. Control Port Timing - I C Format  
12  
DS566PP2  
CS4351  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VL, C = 20 pF)  
L
Parameter  
Symbol  
Min  
Max  
Unit  
CCLK Clock Frequency  
f
-
6
MHz  
sclk  
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
CCLK Low Time  
t
500  
500  
1.0  
20  
66  
66  
40  
15  
-
-
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
srs  
(Note 8)  
t
-
spi  
t
-
csh  
t
-
css  
t
-
scl  
sch  
dsu  
CCLK High Time  
t
-
-
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
t
(Note 9)  
(Note 10)  
(Note 10)  
t
-
dh  
t
100  
100  
r2  
t
-
f2  
Notes: 8. t only needed before first falling edge of CS after RST rising edge. t = 0 at all other times.  
spi  
spi  
9. Data must be held for sufficient time to bridge the transition time of CCLK.  
10. For F < 1 MHz.  
SCK  
RST  
t
t
srs  
spi  
CS  
t
t
t
css  
scl  
sch  
t
csh  
CCLK  
t
t
r2  
f2  
C DIN  
t
t
dsu  
dh  
Figure 3. Control Port Timing - SPI Format (Write)  
DS566PP2  
13  
CS4351  
DIGITAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
V
V
V
2.0  
1.7  
0.65•V  
-
-
-
-
-
-
V
V
V
High-Level Input Voltage  
VL = 3.3 V  
VL = 2.5 V  
VL = 1.8 V  
IH  
IH  
IH  
L
V
V
V
-
-
-
-
-
-
0.8  
0.7  
0.35•V  
V
V
V
Low-Level Input Voltage  
VL = 3.3 V  
VL = 2.5 V  
VL = 1.8 V  
IL  
IL  
IL  
L
Input Leakage Current  
I
-
-
-
-
-
-
±10  
µA  
pF  
mA  
V
in  
Input Capacitance  
8
2
-
-
-
-
Maximum MUTEC Drive Current  
MUTEC High-Level Output Voltage  
MUTEC Low-Level Output Voltage  
V
VA_H  
0
OH  
V
V
OL  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 11)  
normal operation, V  
= 12 V  
= 9 V  
I
I
-
-
-
-
-
-
15  
14  
20  
19  
8
mA  
mA  
mA  
mA  
µA  
A_H  
A_H  
A_H  
V
A_H  
V = 3.3 V  
I
6
A
A
V = 3.3 V  
I
21  
26  
400  
-
D
D
Interface current (Note 12) V = 3.3 V  
I
100  
200  
L
L
power-down state, all supplies (Note 13)  
I
µA  
pd  
Power Dissipation (all supplies)  
VA_H = 12 V  
(Note 11)  
normal operation  
power-down (Note 13)  
normal operation  
-
-
-
-
270  
1
216  
1
354  
mW  
mW  
mW  
mW  
-
285  
-
VA_H = 9 V  
power-down (Note 13)  
Power Supply Rejection Ratio (Note 14)  
(1 kHz) PSRR  
(60 Hz)  
-
-
60  
60  
-
-
dB  
dB  
Notes: 11. Current consumption increases with increasing FS and increasing MCLK. Typ and Max values are  
based on highest FS and highest MCLK. Variance between speed modes is small.  
12. I measured with no external loading on pin 8 (SDA).  
L
13. Power down mode is defined as RES pin = Low with all clock and data lines held static.  
14. Valid with the recommended capacitor values on VQ and V  
diagram in Section 3.  
as shown in the typical connection  
BIAS  
14  
DS566PP2  
CS4351  
3. TYPICAL CONNECTION DIAGRAM  
5.1∗  
+3.3 V  
+3.3 V *  
*Optional  
+
+
10 µF  
0.1 µF  
0.1 µF  
12  
10 µF  
*Remove this supply if  
optional resistor is present.  
The decoupling caps should  
remain.  
5
11  
VA  
3.3 µF  
+
VD  
VBIAS+  
4
MCLK  
3
2
1
17  
Digital  
Audio  
Source  
LRCK  
VA_H  
+9 V to +12 V  
0.1 µF  
+
SCLK  
SDIN  
10 µF  
Optional Mute Circuit  
19  
18  
AMUTEC  
AOUTA  
20  
+1.8 V to VD  
VL  
576 k  
412 k  
560 Ω  
0.1 µF  
AOUTA  
+
2.2 nF*  
CS4351  
3.3 µF  
10 k  
Optional Mute Circuit  
14  
BMUTEC  
AOUTB  
576 k  
412 k  
10  
7
RST  
560 Ω  
15  
µ C/  
Mode  
DIF1(SCL/CCLK)  
DIF0(SDA/CDIN)  
DEM(AD0/CS)  
AOUTA  
+
2.2 nF*  
8
9
3.3 µF  
Configuration  
10k  
*Shown value is  
for fc=130kHz  
13  
VQ  
3.3 µF  
+
GND  
6
GND  
15  
Figure 4. Typical Connection Diagram  
DS566PP2  
15  
CS4351  
4. APPLICATIONS  
4.1 Sample Rate Range/Operational Mode Detect  
The device operates in one of three operational modes. The allowed sample rate range in each mode will  
depend on whether the Auto-Detect Defeat bit is enabled/disabled.  
4.1.1 Auto-Detect Enabled  
The Auto-Detect feature is enabled by default. In this state, the CS4351 will auto-detect the correct  
mode when the input sample rate (F ), defined by the LRCK frequency, falls within one of the rang-  
s
es illustrated in Table 2. Sample rates outside the specified range for each mode are not supported.  
Input Sample Rate (F )  
MODE  
S
4 kHz - 50 kHz  
84 kHz - 100 kHz  
170 kHz - 200 kHz  
Single Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Table 2. CS4351 Auto-Detect  
4.1.2 Auto-Detect Disabled  
The Auto-Detect feature can be defeated only by the format bits in the control port register 02h. In  
this state, the CS4351 will not auto-detect the correct mode based on the input sample rate (F ). The  
s
operational mode must then be set manually according to one of the ranges illustrated in Table 3.  
Please refer to section 6.2.3 for implementation details. Sample rates outside the specified range  
for each mode are not supported. In stand-alone mode it is not possible to disable auto-detect of  
sample rates.  
FM1  
FM0  
Input Sample Rate (F )  
MODE  
S
0
0
1
1
0
1
0
1
Auto speed mode detect  
4 kHz - 50 kHz  
50 kHz - 100 kHz  
100 kHz - 200 kHz  
Auto  
Single Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Table 3. CS4351 Mode Select  
16  
DS566PP2  
CS4351  
4.2 System Clocking  
The device requires external generation of the master (MCLK), left/right (LRCK) and serial (SCLK)  
clocks. The left/right clock, defined also as the input sample rate (F ), must be synchronously derived from  
s
the MCLK according to specified ratios. The specified ratios of MCLK to LRCK, along with several stan-  
dard audio sample rates and the required MCLK frequency, are illustrated in Tables 4-6.  
Refer to section 4.3 for the required SCLK timing associated with the selected Digital Interface Format,  
and SWITCHING SPECIFICATIONS - SERIAL AUDIO INTERFACE, page 11 for the maximum allowed  
clock frequencies.  
Sample Rate  
(kHz)  
MCLK (MHz)  
256x  
384x  
512x  
768x  
1024x  
32.7680  
45.1584  
49.1520  
1152x  
36.8640  
32  
44.1  
48  
8.1920  
11.2896  
12.2880  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Table 4. Single-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
128x  
192x  
256x  
384x  
512x  
64  
88.2  
96  
8.1920  
11.2896  
12.2880  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
32.7680  
45.1584  
49.1520  
Table 5. Double-Speed Mode Standard Frequencies  
Sample Rate  
(kHz)  
MCLK (MHz)  
64x  
96x  
128x  
192x  
256x  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Table 6. Quad-Speed Mode Standard Frequencies  
= Denotes clock modes which are NOT auto detected  
DS566PP2  
17  
CS4351  
4.3 Digital Interface Format  
The device will accept audio samples in 1 of 4 digital interface formats in Stand-Alone mode, as illustrated  
in Table 7, and 1 of 6 formats in Control Port mode, as illustrated in Table 8.  
4.3.1 Stand-Alone Mode  
The desired format is selected via the DIF1 and DIF0 pins. For an illustration of the required rela-  
tionship between the LRCK, SCLK and SDIN, see Figures 5-7. For all formats, SDIN is valid on  
the rising edge of SCLK. Also, SCLK must have at least 32 cycles per LRCK period in format 2,  
and 48 cycles per LRCK period in format 3.  
DIF0 DIF1  
DESCRIPTION  
I S, up to 24-bit Data  
Left Justified, up to 24-bit Data  
Right Justified, 24-bit Data  
Right Justified, 16-bit Data  
FORMAT  
FIGURE  
2
0
0
1
1
0
1
0
1
0
1
2
3
6
5
7
7
Table 7. Digital Interface Format - Stand-Alone Mode  
4.3.2  
Control Port Mode  
The desired format is selected via the DIF2, DIF1 and DIF0 bits in the Mode Control 2 register (see  
section 6.2.1) . For an illustration of the required relationship between LRCK, SCLK and SDIN,  
see Figures 5-7. For all formats, SDIN is valid on the rising edge of SCLK. Also, SCLK must have  
at least 32 cycles per LRCK period in format 2, 48 cycles in format 3, 40 cycles in format 4, and  
36 cycles in format 5.  
Left Channel  
Right Channel  
LRCK  
SCLK  
LSB  
LSB  
MSB  
-1 -2 -3 -4  
MSB  
SDIN  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
Figure 5. Left Justified up to 24-Bit Data  
Left Channel  
Right Channel  
+5 +4 +3 +2 +1  
Right Channel  
LRCK  
SCLK  
LSB  
LSB  
+5 +4 +3 +2 +1  
MSB  
-1 -2 -3 -4  
MSB  
SDIN  
-1 -2 -3 -4 -5  
2
Figure 6. I S, up to 24-Bit Data  
LRCK  
SCLK  
Left Channel  
MSB  
LSB  
MSB  
+1 +2 +3 +4 +5  
-7 -6 -5 -4 -3 -2 -1  
MSB  
LSB  
SDIN  
+1 +2 +3 +4  
+5  
-7 -6 -5 -4 -3 -2 -1  
Figure 7. Right Justified Data  
18  
DS566PP2  
CS4351  
4.4 De-Emphasis Control  
The device includes on-chip digital de-emphasis. Figure 8 shows the de-emphasis curve for F equal to  
s
44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sam-  
ple rate, Fs.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 8. De-Emphasis Curve  
Notes: De-emphasis is only available in Single-Speed Mode.  
4.4.1 Stand-Alone Mode  
When pulled to VL the DEM pin activates the 44.1 kHz de-emphasis filter. When pulled to GND  
the DEM pin turns off the de-emphasis filter.  
4.4.2 Control Port Mode  
The Mode Control bits selects either the 32, 44.1, or 48 kHz de-emphasis filter. Please see section  
6.2.2 for the desired de-emphasis control.  
DS566PP2  
19  
CS4351  
4.5 Recommended Power-up Sequence  
4.5.1 Stand-Alone Mode  
1. Hold RST low until the power supplies and configuration pins are stable, and the master and  
left/right clocks are locked to the appropriate frequencies, as discussed in section 4.2. In this state,  
the control port is reset to its default settings, VQ will remain low, and VBIAS will be connected  
to VA.  
2. Bring RST high. The device will remain in a low power state with VQ low and will initiate the  
Stand-Alone power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode  
(1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).  
4.5.2 Control Port Mode  
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to  
the appropriate frequencies, as discussed in section 4.2. In this state, the control port is reset to its  
default settings, VQ will remain low, and VBIAS will be connected to VA.  
2. Bring RST high. The device will remain in a low power state with VQ low.  
3. Perform a control port write to the CP_EN bit prior to the completion of approximately 512  
LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK  
cycles in Quad-Speed Mode). The desired register settings can be loaded while keeping the PDN  
bit set to 1.  
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs  
when the POPG bit is set to 0. If the POPG bit is set to 1, see Section 4.6 for a complete description  
of power-up timing.  
20  
DS566PP2  
CS4351  
®
4.6 Popguard Transient Control  
The CS4351 uses a novel technique to minimize the effects of output transients during power-up and pow-  
er-down. This technology, when used with external DC-blocking capacitors in series with the audio out-  
puts, minimizes the audio transients commonly produced by single-ended single-supply converters. It is  
activated inside the DAC when the RST pin is toggled and requires no other external control, aside from  
choosing the appropriate DC-blocking capacitors.  
4.6.1 Power-up  
When the device is initially powered-up, the audio outputs, AOUTA and AOUTB, are clamped to  
GND. Following a delay of approximately 1000 sample periods, each output begins to ramp toward  
the quiescent voltage. Approximately 10,000 LRCK cycles later, the outputs reach V and audio  
Q
output begins. This gradual voltage ramping allows time for the external DC-blocking capacitors  
to charge to the quiescent voltage, minimizing audible power-up transients.  
4.6.2 Power-down  
To prevent audible transients at power-down, the device must first enter its power-down state.  
When this occurs, audio output ceases and the internal output buffers are disconnected from AOU-  
TA and AOUTB. In their place, a soft-start current sink is substituted which allows the DC-block-  
ing capacitors to slowly discharge. Once this charge is dissipated, the power to the device may be  
turned off and the system is ready for the next power-on.  
4.6.3 Discharge Time  
To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully dis-  
charge before turning on the power or exiting the power-down state. If full discharge does not oc-  
cur, a transient will occur when the audio outputs are initially clamped to GND. The time that the  
device must remain in the power-down state is related to the value of the DC-blocking capacitance  
and the output load. For example, with a 3.3 µF capacitor, the minimum power-down time will be  
approximately 0.4 seconds.  
4.7 Mute Control  
The Mute Control pins go active during power-up initialization, reset, muting (see section 6.4.3), or if the  
MCLK to LRCK ratio is incorrect. These pins are intended to be used as control for external mute circuits  
to prevent the clicks and pops that can occur in any single-ended single supply system.  
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute  
minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system de-  
signer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute cir-  
cuit. Please see “Typical Connection Diagram” on page 15 for a suggested mute circuit for single supply  
systems. This FET circuit must be placed in series after the RC filter, otherwise noise may occur during  
muting conditions. Further ESD protection will need to be taken into consideration for the FET used. If  
dual supplies are available, the BJT mute circuit from Figure 12 in the CS4398 datasheet (active Low) may  
be used.  
DS566PP2  
21  
CS4351  
4.8 Grounding and Power Supply Arrangements  
As with any high resolution converter, the CS4351 requires careful attention to power supply and ground-  
ing arrangements if its potential performance is to be realized. Figure 4 shows the recommended power  
arrangements, with VA_H, VA, VD, and VL connected to clean supplies. If the ground planes are split  
between digital ground and analog ground, the GND pins of the CS4351 should be connected to the analog  
ground plane.  
All signals, especially clocks, should be kept away from the VBIAS and VQ pins in order to avoid unwant-  
ed coupling into the DAC.  
4.8.1 Capacitor Placement  
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceram-  
ic capacitor being the closest. To further minimize impedance, these capacitors should be located  
on the same layer as the DAC. If desired, all supply pins may be connected to the same supply, but  
a decoupling capacitor should still be placed on each supply pin.  
Notes: All decoupling capacitors should be referenced to analog ground.  
The CDB4351 evaluation board demonstrates the optimum layout and power supply arrangements.  
22  
DS566PP2  
CS4351  
4.9 Control Port Interface  
The control port is used to load all the internal register settings (see section 6). The operation of the control  
port may be completely asynchronous with the audio sample rate. However, to avoid potential interference  
problems, the control port pins should remain static if no operation is required.  
2
The control port operates in one of two modes: I C or SPI.  
4.9.1 MAP Auto Increment  
The device has MAP (memory address pointer) auto increment capability enabled by the INCR bit  
2
(also the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I C writes  
or reads and SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written,  
allowing block reads or writes of successive registers.  
2
4.9.2 I C Mode  
2
In the I C mode, data is clocked into and out of the bi-directional serial control data line, SDA, by  
the serial control port clock, SCL (see Figure 9 for the clock to data relationship). There is no CS  
pin. Pin AD0 enables the user to alter the chip address (100110[AD0][R/W]) and should be tied to  
VL or GND as required, before powering up the device. If the device ever detects a high to low  
transition on the AD0/CS pin after power-up, SPI mode will be selected.  
2
4.9.2.1 I C Write  
To write to the device, follow the procedure below while adhering to the control port Switching  
Specifications in section 7.  
2
1) Initiate a START condition to the I C bus followed by the address byte. The upper 6 bits  
must be 100110. The seventh bit must match the setting of the AD0 pin, and the eighth must be  
0. The eighth bit of the address byte is the R/W bit.  
2) Wait for an acknowledge (ACK) from the part, then write to the memory address pointer,  
MAP. This byte points to the register to be written.  
3) Wait for an acknowledge (ACK) from the part, then write the desired data to the register  
pointed to by the MAP.  
4) If the INCR bit (see section 4.9.1) is set to 1, repeat the previous step until all the desired  
registers are written, then initiate a STOP condition to the bus.  
2
5) If the INCR bit is set to 0 and further I C writes to other registers are desired, it is necessary  
to initiate a repeated START condition and follow the procedure detailed from step 1. If no fur-  
ther writes to other registers are desired, initiate a STOP condition to the bus.  
2
4.9.2.2 I C Read  
To read from the device, follow the procedure below while adhering to the control port Switch-  
ing Specifications.  
DS566PP2  
23  
CS4351  
2
1) Initiate a START condition to the I C bus followed by the address byte. The upper 6 bits  
must be 100110. The seventh bit must match the setting of the AD0 pin, and the eighth must be  
1. The eighth bit of the address byte is the R/W bit.  
2) After transmitting an acknowledge (ACK), the device will then transmit the contents of the  
register pointed to by the MAP. The MAP register will contain the address of the last register  
2
written to the MAP, or the default address (see section 4.10.2) if an I C read is the first opera-  
tion performed on the device.  
3) Once the device has transmitted the contents of the register pointed to by the MAP, issue an  
ACK.  
4) If the INCR bit is set to 1, the device will continue to transmit the contents of successive  
registers. Continue providing a clock and issue an ACK after each byte until all the desired reg-  
isters are read, then initiate a STOP condition to the bus.  
2
5) If the INCR bit is set to 0 and further I C reads from other registers are desired, it is necessary  
to initiate a repeated START condition and follow the procedure detailed from steps 1 and 2  
2
2
from the I C Write instructions followed by step 1 of the I C Read section. If no further reads  
from other registers are desired, initiate a STOP condition to the bus.  
NOTE  
DATA  
1-8  
DATA  
1-8  
100110  
R/W  
ACK  
ACK  
ACK  
SDA  
SCL  
AD0  
Start  
Stop  
NOTE: If operation is a write, this byte contains the Memory Address Pointer, MAP. If  
operation is a read, this byte contains the data of the register pointed to by the MAP.  
2
Figure 9. Control Port Timing, I C Mode  
4.9.3 SPI Mode  
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock,  
CCLK (see Figure 10 for the clock to data relationship). There is no AD0 pin. Pin CS is the chip  
select signal and is used to control SPI writes to the control port. When the device detects a high to  
low transition on the AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs  
and data is clocked in on the rising edge of CCLK.  
4.9.3.1 SPI Write  
To write to the device, follow the procedure below while adhering to the control port Switching  
Specifications in Section 7.  
1) Bring CS low.  
2) The address byte on the CDIN pin must then be 10011000.  
3) Write to the memory address pointer, MAP. This byte points to the register to be written.  
24  
DS566PP2  
CS4351  
4) Write the desired data to the register pointed to by the MAP.  
5) If the INCR bit (see section 4.9.1) is set to 1, repeat the previous step until all the desired  
registers are written, then bring CS high.  
6) If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary  
to bring CS high, and follow the procedure detailed from step 1. If no further writes to other  
registers are desired, bring CS high.  
CS  
CCLK  
CHIP  
ADDRESS  
MAP  
DATA  
1001100  
LSB  
CDIN  
MSB  
R/W  
byte 1  
byte n  
MAP = Memory Address Pointer  
Figure 10. Control Port Timing, SPI mode  
DS566PP2  
25  
CS4351  
4.10 Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
Reserved  
0
3
MAP3  
0
2
MAP2  
0
1
MAP1  
0
0
MAP0  
0
4.10.1 INCR (AUTO MAP INCREMENT ENABLE)  
Default = ‘0’  
0 - Disabled  
1 - Enabled  
4.10.2 MAP (MEMORY ADDRESS POINTER)  
Default = ‘0000’  
26  
DS566PP2  
CS4351  
5. REGISTER QUICK REFERENCE  
Addr  
Function  
7
6
PART3  
1
5
PART2  
1
4
PART1  
1
3
PART0  
1
2
REV2  
-
1
REV1  
-
0
REV0  
-
1h Chip ID  
PART4  
1
Reserved  
0
default  
2h Mode Control  
default  
DIF2  
0
DIF0  
0
DEM1  
0
DEM0  
0
FM1  
0
FM0  
0
DIF1  
0
3h Volume, Mixing,  
and Inversion  
Control  
VOLB=A INVERTA INVERTB Reserved  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
0
0
0
0
1
0
0
1
default  
4h Mute Control  
AMUTE  
Reserved MUTEC  
A=B  
MUTE_A  
MUTE_B Reserved Reserved Reserved  
1
0
0
0
0
0
0
0
default  
5h Channel A Volume  
Control  
VOL7  
VOL6  
VOL5  
VOL4  
VOL3  
VOL2  
VOL1  
VOL0  
0
0
0
0
0
0
0
0
default  
6h Channel B Volume  
Control  
VOL7  
VOL6  
VOL5  
VOL4  
VOL3  
VOL2  
VOL1  
VOL0  
0
0
0
0
0
0
0
0
default  
7h Ramp and Filter  
Control  
SZC1  
SZC0  
RMP_UP RMP_DN  
Reserved FILT_SEL Reserved Reserved  
1
PDN  
1
0
CPEN  
0
1
1
0
0
0
1
default  
8h Misc. Control  
default  
FREEZE Reserved  
Reserved Reserved Reserved Reserved  
0
0
0
0
0
0
DS566PP2  
27  
CS4351  
6. REGISTER DESCRIPTION  
** All register access is R/W unless specified otherwise**  
6.1  
Chip ID - Register 01h  
7
6
5
PART2  
1
4
PART1  
1
3
PART0  
1
2
REV2  
-
1
REV1  
-
0
REV0  
-
PART4  
1
PART3  
1
Function:  
This register is Read-Only. Bits 7 through 3 are the part number ID which is 11111b and the remaining  
Bits (2 through 0) are for the chip revision (Rev. A = 000, Rev. B = 001, ...)  
6.2  
Mode Control 1 - Register 02h  
7
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
DEM1  
0
2
DEM0  
0
1
FM1  
0
0
FM0  
0
Reserved  
0
6.2.1 DIGITAL INTERFACE FORMAT (DIF2:0) BITS 6-4  
Function:  
These bits select the interface format for the serial audio input.  
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital  
Interface Format and the options are detailed in Figures 5-7.  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Format  
FIGURE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
6
7
7
7
7
Left Justified, up to 24-bit data  
I S, up to 24-bit data  
0 (Default)  
2
1
2
3
4
5
Right Justified, 16-bit data  
Right Justified, 24-bit data  
Right Justified, 20-bit data  
Right Justified, 18-bit data  
Reserved  
Reserved  
Table 8. Digital Interface Formats  
28  
DS566PP2  
CS4351  
6.2.2 DE-EMPHASIS CONTROL (DEM1:0) BITS 3-2.  
Gain  
dB  
Default = 0  
00 - No De-emphasis  
01 - 44.1 kHz De-emphasis  
10 - 48 kHz De-emphasis  
11 - 32 kHz De-emphasis  
T1=50 µs  
0dB  
T2 = 15 µs  
Frequency  
-10dB  
Function:  
Selects the appropriate digital filter to maintain the stan-  
dard 15 µs/50 µs digital de-emphasis filter response at  
32, 44.1 or 48 kHz sample rates. (see Figure 11)  
F1  
3.183 kHz  
F2  
10.61 kHz  
Figure 11. De-Emphasis Curve  
Note: De-emphasis is only available in Single Speed Mode  
6.2.3 FUNCTIONAL MODE (FM) BITS 1-0  
Default = 00  
00 - Auto speed mode detect  
01 - Single-Speed Mode (4 to 50 kHz sample rates)  
10 - Double-Speed Mode (50 to 100 kHz sample rates)  
11 - Quad-Speed Mode (100 to 200 kHz sample rates)  
Function:  
Selects the required range of input sample rates or DSD Mode.  
6.3  
Volume Mixing and Inversion Control - Register 03h  
B7  
VOLB=A  
0
B6  
INVERT A  
0
B5  
INVERT B  
0
B4  
Reserved  
0
B3  
ATAPI3  
1
B2  
ATAPI2  
0
B1  
ATAPI1  
0
B0  
ATAPI0  
1
6.3.1 CHANNEL A VOLUME = CHANNEL B VOLUME (VOLB=A) BIT 7  
Function:  
When set to 0 (default) the AOUTA and AOUTB volume levels are independently controlled by the A and  
the B Channel Volume Control Bytes.  
When set to 1 the volume on both AOUTA and AOUTB are determined by the A Channel Attenuation and  
Volume Control Bytes, and the B Channel Bytes are ignored.  
6.3.2 INVERT SIGNAL POLARITY (INVERT_A) BIT 6  
Function:  
When set to 1, this bit inverts the signal polarity of channel A.  
When set to 0 (default), this function is disabled.  
DS566PP2  
29  
CS4351  
6.3.3 INVERT SIGNAL POLARITY (INVERT_B) BIT 5  
Function:  
When set to 1, this bit inverts the signal polarity of channel B.  
When set to 0 (default), this function is disabled.  
6.3.4 ATAPI CHANNEL MIXING AND MUTING (ATAPI3:0) BITS 3-0  
Default = 1001 - AOUTA=aL, AOUTB=bR (Stereo)  
Function:  
The CS4351 implements the channel mixing functions of the ATAPI CD-ROM specification. Refer to Ta-  
ble 9 and Figure 12 for additional information.  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutA  
Σ
Σ
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutB  
Figure 12. ATAPI Block Diagram  
ATAPI3 ATAPI2 ATAPI1 ATAPI0  
AOUTA  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTB  
MUTE  
bR  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
bL  
b[(L+R)/2]  
Table 9. ATAPI Decode  
30  
DS566PP2  
CS4351  
6.4  
Mute Control - Register 04h  
7
6
Reserved  
0
5
4
MUTE_A  
0
3
MUTE_B  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
AMUTE  
1
MUTEC A=B  
0
6.4.1 AUTO-MUTE (AMUTE) BIT 7  
Function:  
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 8192  
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute.  
Detection and muting is done independently for each channel. The quiescent voltage on the output will  
be retained and the Mute Control pin will go active during the mute period.  
When set to 0 this function is disabled  
6.4.2 AMUTEC = BMUTEC (MUTEC A=B) BIT 5  
Function:  
When set to 0 (default) the AMUTEC and BMUTEC pins operate independently.  
When set to 1, the individual controls for AMUTEC and BMUTEC are internally connected through an  
AND gate prior to the output pins. Therefore, the external AMUTEC and BMUTEC pins will go active only  
when the requirements for both AMUTEC and BMUTEC are valid.  
6.4.3 A CHANNEL MUTE (MUTE_A) BIT 4  
B CHANNEL MUTE (MUTE_B) BIT 3  
Function:  
When set to 1, the Digital-to-Analog converter output will mute. The quiescent voltage on the output will  
be retained. The muting function is effected, similar to attenuation changes, by the Soft and Zero Cross  
bits in the Volume and Mixing Control register. The corresponding MUTEC pin will go active following any  
ramping due to the soft and zero cross function.  
When set to 0 (default) this function is disabled.  
DS566PP2  
31  
CS4351  
6.5  
Channel A Volume Control - Register 05h  
Channel B Volume Control - Register 06h  
7
VOL7  
0
6
VOL6  
0
5
VOL5  
0
4
VOL4  
0
3
VOL3  
0
2
VOL2  
0
1
VOL1  
0
0
VOL0  
0
6.5.1 DIGITAL VOLUME CONTROL (VOL7:0) BITS 7-0  
Default = 00h (0 dB)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments  
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 10. The volume changes are im-  
plemented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register.  
The actual attenuation is determined by taking the decimal value of the volume register and multiplying  
by 6.02/12.  
Binary Code  
00000000  
00000001  
00000110  
11111111  
Decimal Value  
Volume Setting  
0 dB  
0
1
6
-0.5 dB  
-3.0 dB  
-127.5 dB  
255  
Table 10. Example Digital Volume Settings  
6.6  
Ramp and Filter Control - Register 07h  
7
SZC1  
1
6
SZC0  
0
5
RMP_UP  
1
4
RMP_DN  
1
3
Reserved  
0
2
FILT_SEL  
0
1
Reserved  
0
0
Reserved  
1
6.6.1 SOFT RAMP AND ZERO CROSS CONTROL (SZC1:0) BITS 7-6  
Default = 10  
SZC1 SZC0  
Description  
Immediate Change  
Zero Cross  
0
0
1
1
0
1
0
1
Soft Ramp  
Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a time-  
out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal  
32  
DS566PP2  
CS4351  
does not encounter a zero crossing. The zero cross function is independently monitored and implemented  
for each channel.  
Soft Ramp PCM  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
Soft Ramp and Zero Cross  
Soft Ramp and Zero Cross Enable dictate that signal level changes, either by attenuation changes or mut-  
ing, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will  
occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample  
rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored  
and implemented for each channel.  
6.6.2 SOFT VOLUME RAMP-UP AFTER ERROR (RMP_UP) BIT 5  
Function:  
When set to 1 (default), an un-mute will be performed after executing a filter mode change, after a  
LRCK/MCLK ratio change or error, and after changing the Functional Mode. This un-mute is affected,  
similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.  
When set to 0, an immediate un-mute is performed in these instances.  
Note: for best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.  
6.6.3 SOFT RAMP-DOWN BEFORE FILTER MODE CHANGE (RMP_DN) BIT 4  
Function:  
When set to 1 (default), a mute will be performed prior to executing a filter mode change. This mute is  
affected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control  
register.  
When set to 0, an immediate mute is performed prior to executing a filter mode change.  
Note: for best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.  
6.6.4 INTERPOLATION FILTER SELECT (FILT_SEL) BIT 2  
Function:  
When set to 0 (default), the Interpolation Filter has a fast roll off.  
When set to 1, the Interpolation Filter has a slow roll off.  
The specifications for each filter can be found in the “Combined Interpolation & On-chip Analog Filter Re-  
sponse” on page 9, and response plots can be found in figures 15 to 36.  
DS566PP2  
33  
CS4351  
6.7  
Misc Control - Register 08h  
7
PDN  
1
6
CPEN  
0
5
FREEZE  
0
4
Reserved  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
6.7.1 POWER DOWN (PDN) BIT 7  
Function:  
When set to 1 (default) the entire device will enter a low-power state and the contents of the control reg-  
isters will be retained. The power-down bit defaults to ‘1’ on power-up and must be disabled before normal  
operation in Control Port mode can occur. This bit is ignored if CPEN is not set.  
6.7.2 CONTROL PORT ENABLE (CPEN) BIT 6  
Function:  
This bit is set to 0 by default, allowing the device to power-up in Stand-Alone Mode. Control Port Mode  
can be accessed by setting this bit to 1. This will allow operation of the device to be controlled by the reg-  
isters and the pin definitions will conform to Control Port Mode.  
6.7.3 FREEZE CONTROLS (FREEZE) BIT 5  
Function:  
When set to 1, this function allows modifications to be made to the registers without the changes taking  
effect until FREEZE is set back to 0. To make multiple changes in the Control Port registers take effect  
simultaneously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit.  
When set to 0 (default), register changes take effect immediately.  
34  
DS566PP2  
CS4351  
7. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth  
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement  
to full scale. This technique ensures that the distortion components are below the noise level and do not  
effect the measurement. This measurement technique has been accepted by the Audio Engineering So-  
ciety, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in  
decibels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full scale analog output for a full scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
Intra-channel Phase Deviation  
The deviation from linear phase within a given channel.  
Inter-channel Phase Deviation  
The difference in phase between channels.  
DS566PP2  
35  
CS4351  
8. PACKAGE DIMENSIONS  
20L TSSOP (4.4 mm BODY) PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
NOM  
--  
MAX  
0.043  
0.006  
0.037  
0.012  
0.259  
0.256  
0.177  
0.026  
0.028  
8°  
MIN  
--  
NOM  
--  
--  
0.90  
0.245  
6.50  
6.40  
4.40  
--  
MAX  
1.10  
0.15  
0.95  
0.30  
6.60  
6.50  
4.50  
0.65  
0.70  
8°  
--  
0.002  
0.03346  
0.00748  
0.252  
0.248  
0.169  
--  
0.004  
0.0354  
0.0096  
0.256  
0.2519  
0.1732  
--  
0.05  
0.85  
0.19  
6.40  
6.30  
4.30  
--  
2,3  
1
1
0.020  
0°  
0.024  
4°  
0.50  
0°  
0.60  
4°  
JEDEC #: MO-153  
Controlling Dimension is Millimeters.  
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold  
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per  
side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be  
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not  
reduce dimension “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
Parameters  
Package Thermal Resistance  
Symbol  
Min  
Typ  
Max  
Units  
20L TSSOP  
θ
-
72  
-
°C/Watt  
JA  
36  
DS566PP2  
CS4351  
9. APPENDIX  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
−120  
−120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 13. Single Speed (fast) Stopband Rejection  
Figure 14. Single Speed (fast) Transition Band  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.02  
0.015  
0.01  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 15. Single Speed (fast) Transition Band (detail)  
Figure 16. Single Speed (fast) Passband Ripple  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 17. Single Speed (slow) Stopband Rejection  
DS566PP2  
Figure 18. Single Speed (slow) Transition Band  
37  
CS4351  
0.02  
0.015  
0.01  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 19. Single Speed (slow) Transition Band (detail)  
Figure 20. Single Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 21. Double Speed (fast) Stopband Rejection  
Figure 22. Double Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 23. Double Speed (fast) Transition Band (detail)  
Figure 24. Double Speed (fast) Passband Ripple  
38  
DS566PP2  
CS4351  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 26. Double Speed (slow) Transition Band  
Figure 25. Double Speed (slow) Stopband Rejection  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 27. Double Speed (slow) Transition Band (detail)  
Figure 28. Double Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 29. Quad Speed (fast) Stopband Rejection  
DS566PP2  
Figure 30. Quad Speed (fast) Transition Band  
39  
CS4351  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 31. Quad Speed (fast) Transition Band (detail)  
Figure 32. Quad Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 33. Quad Speed (slow) Stopband Rejection  
Figure 34. Quad Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 35. Quad Speed (slow) Transition Band (detail)  
Figure 36. Quad Speed (slow) Passband Ripple  
40  
DS566PP2  
CS4351  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find one nearest you go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic,  
Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change  
without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied  
at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of  
third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask  
work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained here-  
in and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of  
Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for  
resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE  
PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED  
FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS  
OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE  
SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOM-  
ER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF  
THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER  
AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM  
ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may  
be trademarks or service marks of their respective owners.  
I2C is a registered trademark of Philips Semiconductor. Purchase of I2C Components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies  
conveys a license under the Philips I2C Patent Rights to use those components in a standard I2C system.  
DS566PP2  
41  

相关型号:

CDB4352

Evaluation Board for CS4352
CIRRUS

CDB4353

3.3 V Stereo Audio DAC with 2 VRMS Line Output
CIRRUS

CDB4354

5 V Stereo DAC with 2 VRMS Ground-centered Output
CIRRUS

CDB4360

24-Bit, 192 kHz 6 Channel D/A Converter
CIRRUS

CDB4361

Evaluation Board for CS4361
CIRRUS

CDB4362

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4362A

114 dB, 192 kHz 6-channel D/A Converter
CIRRUS

CDB4364

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4365

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CDB4382

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CDB4382A

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CDB4383

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS