ACPL-C87A-000E [AVAGO]

Precision Optically Isolated Voltage Sensor; 精密光学隔离电压传感器
ACPL-C87A-000E
型号: ACPL-C87A-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Precision Optically Isolated Voltage Sensor
精密光学隔离电压传感器

传感器
文件: 总14页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-C87B, ACPL-C87A, ACPL-C870  
Precision Optically Isolated Voltage Sensor  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The ACPL-C87B/C87A/C87± voltage sensors are optical  Advanced Sigma-Delta (-) Modulation Technology  
isolation amplifiers designed specifically for voltage  
sensing0 Its 2 V input range and high 1 Ginput impe-  
dance, makes it well suited for isolated voltage sensing  
 UnityGain1V/V,±±0.5ighGainAccuracy(ACPL-C87B)  
 1 GInput Impedence  
requirements in electronic power converters applications  ± to 2 V Nominal Input Range  
including motor drives and renewable energy systems0  
In a typical voltage sensing implementation, a resistive  
voltage divider is used to scale the DC-link voltage to suit  
 -3. ppm/°C Low Gain Drift  
 21V /°C Offset Voltage Drift  
the input range of the voltage sensor0 A differential output  ±015 Non-Linearity Max  
voltage that is proportional to the input voltage is created  
on the other side of the optical isolation barrier0  
 Active-ꢀigh Shutdown Pin  
 1±± kꢀz Wide Bandwidth  
For general applications, the ACPL-C87A (±15 gain  
 3 V to .0. V Wide Supply Range for Output Side  
tolerance) and the ACPL-C87± (±35 gain tolerance)  
 -4±° C to +1±.° C Operating Temperature Range  
 1. kV/s Common-Mode Transient Immunity  
 Compact, Auto-Insertable Stretched SO-8 Package  
 Safety and Regulatory Approvals (pending):  
are recommended0 For high precision requirements,  
the ACPL-C87B (±±0.5 gain tolerance) can be used0 The  
ACPL-C87B/C87A/C87± family operates from a single . V  
supply and provides excellent linearity0 An active-high  
shutdown pin is available which reduces the IDD1 current  
to only 1. A, making them suitable for battery-powered  
and other power-sensitive applications0  
– IEC/EN/DIN EN 6±747-.-.: 123± Vpeak working  
insulation voltage  
The high common-mode transient immunity (1. kV/s)  
of the ACPL-C87B/C87A/C87± provides the precision and  
stability needed to accurately monitor DC-link voltage in  
high noise environments0 Combined with superior optical  
coupling technology, the ACPL-C87B/C87A/C87± imple-  
ments sigma-delta (-) modulation, chopper stabilized  
amplifiers, and differential outputs to provide unequaled  
isolation-mode noise rejection, low offset, high gain  
accuracy and stability0 This performance is delivered in a  
compact, auto-insertable Stretched SO-8 (SSO-8) package  
that meets worldwide regulatory safety standards0  
– UL 1.77: .±±± Vrms/1 min double protection rating  
– CSA: Component Acceptance Notice #.  
Applications  
 Isolated Voltage Sensing in AC and Servo Motor Drives  
 Isolated DC-Bus Voltage Sensing in Solar Inverters,  
Wind Turbine Inverters  
 Isolated Sensor Interfaces  
 Signal Isolation in Data Acquisition Systems  
 General Purpose Voltage Isolation  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Functional Diagram  
Table 1. Pin Description  
8
7
VDD2  
VDD1  
VIN  
1
2
Pin No. Symbol Description  
VOUT+  
1
VDD1  
Supply voltage for input side  
(40. V to .0. V), relative to GND1  
6
5
VOUT–  
GND2  
SHDN  
GND1  
3
4
2
3
4
.
6
7
8
VIN  
Voltage input  
SꢀDN  
GND1  
GND2  
VOUT-  
Shutdown pin (Active ꢀigh)  
Input side ground  
Output side ground  
Negative output  
SHIELD  
Figure 1.  
NOTE: A ±01 F bypass capacitor must be connected between pins 1 and  
4 and between pins . and 80  
VOUT+ Positive output  
VDD2 Supply voltage for output side  
(3 V to .0. V), referenced to GND2  
Ordering Information  
ACPL-C87B/C87A/C87± is UL recognized with .±±± Vrms/1 minute rating per UL 1.77 (pending)0  
Table 2.  
Option  
Tape &  
Reel  
IEC/EN/DIN EN  
60747-5-5  
Part number  
(RoHS Compliant)  
-±±±E  
Package  
Surface Mount  
Quantity  
ACPL-C87B  
ACPL-C87A  
ACPL-C87±  
Stetched  
SO-8  
X
X
X
X
8± per tube  
1±±± per reel  
-.±±E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry0  
Example:  
ACPL-C87A-.±±E to order product of Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 6±747-.-.  
Safety Approval and RoꢀS compliance0  
Contact your Avago sales representative or authorized distributor for information0  
2
Package Outline Drawing  
Stretched SO-8 Package (SSO-8)  
RECOMMENDED LAND PATTERN  
5.850 0.254  
(0.230 0.010)  
PART NUMBER  
DATE CODE  
8
1
7
6
5
12.650  
(0.498)  
C87B  
YWW  
6.807 0.127  
(0.268 0.005)  
RoHS-COMPLIANCE  
INDICATOR  
1.905  
(0.075)  
2
3
4
0.64  
(0.025)  
1.590 0.127  
(0.063 0.005)  
7°  
45°  
0.450  
(0.018)  
3.180 0.127  
(0.125 0.005)  
0.750 0.250  
0.254 0.100  
(0.010 0.004)  
0.200 0.100  
(0.008 0.004)  
(0.0295 0.010)  
0.381 0.127  
(0.015 0.005)  
11.50 0.250  
(0.453 0.010)  
1.270  
(0.050) BSG  
Dimensions in millimeters and (inches)0  
Note:  
Lead coplanarity = ±01 mm (±0±±4 inches)0  
Floating lead protrusion = ±02.mm (1±mils) max0  
Figure 2. SSO-8 Package  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-±2± (latest revision)0 Non-ꢀalide Flux should be used0  
Regulatory Information  
The ACPL-C87B/C87A/C87± is pending approval by the following organizations:  
IEC/EN/DIN EN 60747-5-5  
Approval with Maximum Working Insulation Voltage V  
= 123± Vpeak0  
IORM  
UL  
Approval under UL 1.77, component recognition program up to V = .±±± Vrms/1 min0 File ..3610  
ISO  
CSA  
Approval under CSA Component Acceptance Notice #., File CA 88324  
3
Table 3. Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Minimum External Air Gap  
(External Clearance)  
L(1±1)  
80±  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External  
Tracking (External Creepage)  
L(1±2)  
CTI  
80±  
±0.  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance, conductor to conductor,  
usually the direct distance between the photoemitter  
and photodetector inside the optocoupler cavity  
Tracking Resistance  
(Comparative Tracking Index)  
> 17.  
IIIa  
V
DIN IEC 112/VDE ±3±3 Part 1  
Isolation Group  
Material Group (DIN VDE ±11±, 1/89, Table 1)  
[1]  
Table 4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics  
Description  
Symbol  
Value  
Units  
Installation classification per DIN VDE ±11±/1089, Table 1  
for rated mains voltage ≤ 1.± Vrms  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
for rated mains voltage ≤ 3±± Vrms  
for rated mains voltage ≤ 4.± V rms  
for rated mains voltage ≤ 6±± Vrms  
for rated mains voltage ≤ 1±±± Vrms  
Climatic Classification  
../1±./21  
2
Pollution Degree (DIN VDE ±11±/1089)  
Maximum Working Insulation Voltage (Pending Qualification)  
VIORM  
VPR  
123±  
23±6  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b  
VIORM x 1087. = VPR, 1±±5 Production Test with tm = 1 sec, Partial Discharge < . pC  
Input to Output Test Voltage, Method a  
VIORM x 106 = VPR, Type and Sample Test, tm = 1± sec, Partial Discharge < . pC  
VPR  
1968  
8±±±  
Vpeak  
Vpeak  
ꢀighest Allowable Overvoltage (Transient Overvoltage, tini = 6± sec)  
VIOTM  
Safety-limiting values (Maximum values allowed in the event of a failure)  
Case Temperature  
Input Current [2]  
Output Power [2]  
TS  
17.  
23±  
6±±  
°C  
mA  
mW  
IS,INPUT  
PS,OUTPUT  
Insulation Resistance at TS, VIO = .±± V  
Notes:  
RS  
≥ 1±9  
10 Insulation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits within the  
application0  
4
Table 5. Absolute Maximum Rating  
Parameter  
Symbol  
Min.  
-..  
-4±  
-±0.  
-2  
Max.  
Units  
°C  
°C  
V
Storage Temperature  
Ambient Operating Temperature  
Supply Voltage  
Steady-State Input Voltage [1, 3]  
Two-Second Transient Input Voltage [2]  
Logic Input  
TS  
+12.  
TA  
+1±.  
VDD1, VDD2  
VIN  
60±  
VDD1 + ±0.  
VDD1 + ±0.  
VDD1 + ±0.  
VDD2 + ±0.  
V
VIN  
-6  
V
VSD  
-±0.  
-±0.  
V
Output Voltages  
VOUT+, VOUT−  
V
Lead Solder Temperature  
Notes:  
26±° C for 1± sec0, 106 mm below seating plane  
10 DC voltage of up to -2 V on the inputs does not cause latch-up or damage to the device0  
20 Transient voltage of 2 seconds up to -6 V on the inputs does not cause latch-up or damage to the device0  
30 Absolute maximum DC current on the inputs = 1±± mA, no latch-up or device damage occurs0  
Table 6. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
Max.  
+1±.  
.0.  
Units  
°C  
V
Ambient Operating Temperature  
VDD1 Supply Voltage  
VDD2 Supply Voltage  
Input Voltage Range[1]  
Shutdown Enable Voltage  
Notes:  
-4±  
VDD1  
VDD2  
VIN  
40.  
30±  
.0.  
V
±
20±  
V
VSD  
VDD1 – ±0.  
VDD1  
V
10 2 V is the nominal input range0 Full scale input range (FSR) is 2046 V0  
.
Table 7. Electrical Specifications  
Unless otherwise noted, T = -4±° C to +1±.° C, V  
= 40. V to .0. V, V  
= 303 V to .0. V, V = ± – 2 V, and V = ± V0  
A
DD1  
DD2  
IN  
SD  
[1]  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Test Conditions/Notes  
Fig.  
DC CHARACTERISTICS  
Input Offset Voltage  
VOS  
-909  
-±03  
21  
909  
mV  
TA = 2.° C  
3, 4  
.
Magnitude of Input Offset  
Change vs0 Temperature  
|dVOS/dTA|  
V/°C  
TA = –4±° C to +1±.° C  
; Direct short across inputs0  
Gain (ACPL-C87B, ±±0.5)  
G±  
±099.  
±0994  
1
10±±.  
10±±4  
V/V  
V/V  
TA = 2.° C; VDD2 = . V;  
Note 20  
6, 7  
6, 7  
±0999  
TA = 2.° C; VDD2 = 303 V;  
Note 20  
Gain (ACPL-C87A, ±15)  
Gain (ACPL-C87±, ±35)  
G1  
±099  
±097  
1
10±1  
10±3  
V/V  
V/V  
TA = 2.° C; Note 20  
TA = 2.° C; Note 20  
6, 7  
6, 7  
8
G3  
1
Magnitude of Gain Change  
vs0 Temperature  
dG/dTA  
-3.  
ppm/°C TA = -4±° C to +1±.° C  
Nonlinearity  
NL  
±0±.  
±01  
5
VIN = ± to 2 V, TA = 2.° C  
TA = -4±° C to +1±.° C  
9, 1±  
11  
Magnitude of NL Change  
vs0 Temperature  
|dNL/dTA|  
±0±±±2  
5/°C  
INPUTS AND OUTPUTS  
Recommended Input Range  
VINR  
FSR  
2
V
V
Referenced to GND1  
Referenced to GND1  
Full-Scale Differential Voltage  
Input Range  
2046  
Shutdown Logic Low  
Input Voltage  
VIL  
±08  
.
TA = 2.° C  
TA = 2.° C  
VIN = ± V  
Shutdown Logic ꢀigh  
Input Voltage  
VIꢀ  
VDD – ±0.  
-±01  
Input Bias Current  
IIN  
-±0±±1.  
1
A  
Magnitude of IIN Change  
vs0 Temperature  
dIIN/dTA  
nA/°C  
Equivalent Input Impedance  
RIN  
1±±±  
1023  
M  
Output Common-Mode  
Voltage  
VOCM  
V
VOUT+ or VOUT–  
Output Voltage Range  
Output Short-Circuit Current  
Output Resistance  
VOUTR  
Vocm ±  
1023  
V
VSD = ± V0 Note 40  
13  
|IOSC  
|
3±  
mA  
VOUT+ or VOUT–,  
shorted to GND2 or VDD2  
ROUT  
36  
VOUT+ or VOUT–  
6
Table 7. Electrical Specifications (continued)  
Unless otherwise noted, T = -4±° C to +1±.° C, V  
= 40. V to .0. V, V  
= 303 V to .0. V, V = ± – 2 V, and V = ± V0  
A
DD1  
DD2  
IN  
SD  
[1]  
Parameter  
Symbol  
Min.  
Typ.  
Max. Unit  
Test Conditions/Notes  
Fig.  
AC CHARACTERISTICS  
Vout Noise  
Nout  
±0±13  
mVrms Vin = ± V;  
12  
Output low-pass filtered  
to 18± Kꢀz0 Note 30  
Small-Signal Bandwidth (-3 dB)  
f–3 dB  
tPD1±  
tPD.±  
tPD9±  
tR/F  
7±  
1±±  
202  
307  
.03  
207  
2.  
kꢀz  
s  
Guaranteed by design  
Step input0  
Input to Output  
.±5-1±5  
30±  
.0.  
60.  
40±  
4±  
18  
18  
18  
Propagation Delay  
.±5-.±5  
.±5-9±5  
s  
Step input0  
s  
Step input0  
Output Rise/Fall Time (1±5-9±5)  
Shutdown Delay  
s  
Step input (tPD9± - tPD1±  
)
tSD  
s  
Vin = 2 V  
17  
Enable Delay  
tON  
1.±  
1.  
2±±  
s  
Common Mode Transient Immunity  
Power Supply Rejection  
CMTI  
PSR  
1±  
kV/s  
dB  
VCM = 1 kV, TA = 2.° C  
1 Vpp 1 kꢀz sine wave  
-78  
ripple on VDD1  
,
differential output  
POWER SUPPLIES  
Input Side Supply Current  
IDD1  
1±0.  
1.  
1.  
mA  
A  
VSD = ± V  
VSD = . V  
IDD2  
60.  
601  
12  
11  
mA  
mA  
. V supply  
303 V supply  
Notes:  
10 All Typical values are under Typical Operating Conditions at T = 2.° C, V  
= . V, V = . V0  
DD2  
A
DD1  
20 Gain is defined as the slope of the best-fit line of differential output voltage (V  
error adjusted0  
– V  
) versus input voltage over the nominal range, with offset  
OUT-  
OUT+  
30 Noise is measured at the output of the differential to single ended post amplifier0  
40 When is V = . V or when shutdown is enabled, V  
is close to ±V and V  
is at close to 2046 V0 This is similar to when VDD1 is not supplied0  
SD  
out+  
out-  
Table 8. Package Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Note  
Input-Output Momentary  
Withstand Voltage  
VISO  
.±±±  
Vrms  
Rꢀ < .±5, t = 1 min0,  
TA = 2.° C  
1, 2  
Resistance (Input-Output)  
Capacitance (Input-Output)  
Notes:  
RI-O  
CI-O  
> 1±12  
±0.  
V
I-O = .±± VDC  
3
3
pF  
f = 1 Mꢀz  
10 In accordance with UL 1.77, each optocoupler is proof tested by applying an insulation test voltage ≥ 6±±± Vrms for 1 second (leakage detection  
current limit, I ≤ . mA)0 This test is performed before the 1±±5 production test for partial discharge (method b) shown in IEC/EN/DIN EN 6±747-  
I-O  
.-. Insulation Characteristic Table0  
20 The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating0 For the continuous voltage rating, refer to the IEC/EN/DIN EN 6±747-.-. insulation characteristics table and your equipment level  
safety specification0  
30 This is a two-terminal measurement: pins 1–4 are shorted together and pins .–8 are shorted together0  
7
Typical Performance Plots  
All ±3(sigma symbol) plots are based on characterization test result at the point of product release0 For guaranteed  
specification, refer to the respective Electrical Specifications section0  
5
4
3
2
1.5  
1
2
0.5  
0
1
0
-1  
-2  
-3  
-4  
-5  
-0.5  
-1  
-1.5  
-2  
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
Vdd1(V)  
Vdd2 (V)  
Figure 3. Input Offset vs Supply VDD1  
Figure 4. Input Offset vs Supply VDD2  
10  
8
6
4
2
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
M+3  
Mean  
M-3  
0
-2  
-4  
-6  
-8  
- 10  
0.997  
4.5  
5
Vdd1 (V)  
5.5  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
Temp (qC)  
Figure 5. Input Offset vs Temperature  
Figure 6. Gain vs Supply VDD1  
1.00300  
1.00200  
1.00100  
1.00000  
0.99900  
0.99800  
0.99700  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
3
3.5  
4
4.5  
5
5.5  
-55 -35 -15  
5
25 45 65 85 105 125  
Vdd2 (V)  
Temp (qC)  
Figure 7. Gain vs Supply VDD2  
Figure 8. Gain vs Temperature  
8
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
Vdd1 (V)  
Vdd2 (V)  
Figure 9. Non-Linearity vs Supply VDD1  
Figure 10. Non-Linearity vs Supply VDD2  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
17  
Vin = 0 V  
15  
Vin = 1 V  
13  
11  
9
Vin = 2 V  
7
5
3
1
-1  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
0
20  
40  
60  
80  
100 120 140 160  
Temp (qC)  
Freq Filter (khz)  
Figure 11. Non-Linearity vs Temperature  
Figure 12. AC noise vs Filter Freq vs Vin  
3
1
0
VOUT+  
VOUT–  
2.5  
2
-1  
-2  
-3  
-4  
-5  
-6  
1.5  
1
0.5  
0
1000  
10000  
Bandwidth (Hz)  
100000  
0
0.5  
1
1.5  
VIN  
2
2.5  
3
Figure 13 VIN vs VOUT+, VOUT-  
Figure 14. Frequency Response  
9
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
TPLH 50-10  
TPLH 50-50  
TPLH 50-90  
1000  
10000  
100000  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
Bandwidth (Hz)  
Temp (qC)  
Figure 15. Phase Response  
Figure 16. Propagation Delay vs Temperature  
5V  
VSD  
Vin  
0 V  
2 V  
tSD  
tON  
0 V  
+2 V  
VOutDiff  
0 V  
-2.46 V  
Figure 17. Shutdown And Wakeup Input To Output Timing Diagram. VOut Diff = VOut+ - VOut-  
2 V  
VIN  
0 V  
2 V  
VOut Diff  
0 V  
TPLH50-10  
TPLH50-50  
TPLH50-90  
Figure 18. Input to Output Propagation Delay Timing Diagram. VOut Diff = VOut+ - VOut-  
1±  
Definitions  
Gain  
Application Information  
Application Circuit  
Gain is defined as the slope of the best-fit line of differen- The typical application circuit is shown in Figure 190  
tial output voltage (V  
range, with offset error adjusted out0  
– V  
) over the nominal input  
The ACPL-C87X voltage sensor is often used in photo-  
voltaic (PV) panel voltage measurement and tracking in  
PV inverters, and DC bus voltage monitoring in motor  
drivers0 The high voltage across rails needs to be scaled  
down to fit the input range of the iso-amp by choosing R1  
and R2 values according to appropriate ratio0  
OUT+  
OUT-  
Nonlinearity  
Nonlinearity is defined as half of the peak-to-peak output  
deviation from the best-fit gain line, expressed as a per-  
centage of the full-scale differential output voltage0  
The ACPL-C87X senses the single-ended input signal  
and produces differential outputs across the galvanic  
isolation barrier0 The differential outputs (Vout+, Vout-)  
can be connected to an op-amp to convert to a single-  
Common Mode Transient Immunity, CMTI, also known  
as Common Mode Rejection  
CMTI is tested by applying an exponentially rising/falling ended signal or directly to two ADCs0 The op-amp used in  
voltage step on pin 4 (GND1) with respect to pin . (GND2)0 the external post-amplifier circuit should be of sufficiently  
The rise time of the test waveform is set to approximately high precision so that it does not contribute a significant  
.± ns0 The amplitude of the step is adjusted until the dif- amount of offset or offset drift relative to the contribu-  
ferential output (V  
– V  
) exhibits more than a 2±± tion from the isolation amplifier0 Generally, op-amps with  
OUT+  
OUT-  
mV deviation from the average output voltage for more bipolar input stages exhibit better offset performance  
than 1μs0 The ACPL-C87x will continue to function if more than op-amps with JFET or MOSFET input stages0  
than 1± kV/s common mode slopes are applied, as long  
In addition, the op-amp should also have enough  
as the breakdown voltage limitations are observed0  
bandwidth and slew rate so that it does not adversely  
affect the response speed of the overall circuit0 The post-  
amplifier circuit includes a pair of capacitors (C4 and C.)  
that form a single-pole low-pass filter; these capacitors  
allow the bandwidth of the post-amp to be adjusted in-  
dependently of the gain and are useful for reducing the  
output noise from the isolation amplifier0  
Power Supply Rejection, PSR  
PSRR is the ratio of differential amplitude of the ripple  
outputs over power supply ripple voltage, referred to the  
input, expressed in dB0  
The gain-setting resistors in the post-amp should have a  
tolerance of 15 or better to ensure adequate CMRR and  
adequate gain tolerance for the overall circuit0 Resistor  
networks can be used that have much better ratio toler-  
ances than can be achieved using discrete resistors0 A  
resistor network also reduces the total number of compo-  
nents for the circuit as well as the required board space0  
C5  
100 pF  
L1  
U1  
VDD1  
VDD1  
VDD2  
R6  
10K, 1%  
V+  
U2  
1
2
3
4
8
7
6
5
VDD2  
R1  
R3  
VIN  
VOUT+  
10K,1%  
Vout  
C3  
100 nF  
R4  
10K,1%  
ACPL-C87X  
SHDN  
GND1  
VOUT-  
R2  
10K  
C1  
C2  
OPA237  
100 pF 100 nF  
GND2  
V-  
GND1  
GND2  
R5  
10K, 1%  
C4  
100 pF  
L2  
GND2  
Figure 19. Typical application circuit.  
11  
Measurement Accuracy and Power Dissipation of the Resistive Divider  
The input stage of the typical application circuit in Figure consumes about 12 mW, assuming V is set at 2 V0 If the R2  
IN  
19 can be simplified as the diagram shown in Figure 2±0 is reduced to 1± kto reduce error to ±0±±15, the power  
R2 and R , input resistance of the ACPL-C87X, create a consumption will increase to about 12± mW0 In energy  
IN  
current divider that results in an additional measurement efficiency critical applications such as PV inverters and  
error component that will add on to the tot on top of the battery-powered applications, this trade-off between  
device gain error0 With the assumption that R1 and R  
measurement accuracy and power dissipation in the  
resistive string provides flexibility in design priority0  
IN  
have a much higher value than R2, the resulting error can  
be estimated to be R2/R 0  
IN  
Isolated Temperature Sensing using Thermistor  
With R of 1 GW for the ACPL-C87X, this additional mea-  
IN  
IGBTs are an integral part of a motor or servo drive system  
and because of the high power that they usually handle,  
it is essential that they have proper thermal management  
and are sufficiently cooled0 Long term overload conditions  
could raise the IGBT module temperature permanently or  
failure of the thermal management system could subject  
the module to package overstress and lead to catastrophic  
failures0 One common way to monitor the temperature  
of the module is through using a NTC type thermistor  
mounted onto the IGBT module0 Some IGBT module man-  
ufacturers also have IGBTs that comes with the thermistor  
integrated inside the module0 In some cases, it is necessary  
to isolate this thermistor to provide added isolation and  
insulation due to the high power nature of the IGBTs0 The  
ACPL-C87x voltage sensor can be used to easily meet  
such a requirement, while providing good accuracy and  
non-linearity0 Figure0 21 shows an example of such an  
implementation0 The ACPL-C87x is used to isolate the  
thermistor voltage which is later fed by the post amp  
stage to an ADC onboard the microcontroller (MCU) to  
determine the module temperature0 The thermistor needs  
to be biased in way that its voltage output will optimize  
the 2 V input range of the ACPL-C87x across the intended  
temperature measurement range0  
surement error is negligible with R2 up to 1 M, where the  
error is approximately ±0150 Though small, it can be further  
reduced by reducing the R2 to 1±± k(error of ±0±15  
approximately), or 1± k(error of ±0±±15 approximately)0  
ꢀowever with lower R2, a drawback of higher power dis-  
sipation in the resistive divider string needs to be consid-  
ered, especially in higher voltage sensing applications0 For  
example, with 6±± V DC across L1 and L2 and R2 of 1±± k  
for ±0±15 measurement error, the resistive divider string  
R1  
RIN  
+
R2  
GND  
ACPL-C87x  
Figure 20. Simplified Input Stage.  
HV+  
U
V
W
Vdd  
+
GND  
ADC  
Post  
Amp  
HV-  
ACPL-C87x  
NTC Thermistor  
IGBT Module  
MCU  
Figure 21. Thermistor sensing in IGBT Module  
12  
Power Supplies and Bypassing  
As shown in Figure 22, 1±± nF bypass capacitors (C2, C3)  
should be located as close as possible to the pins of the  
isolation amplifier0 The bypass capacitors are required  
because of the high-speed digital nature of the signals  
inside the isolation amplifier0 A 1±± pF bypass capacitor  
(Cin) is also recommended at the input pins due to the  
switched-capacitor nature of the input circuit0 The input  
bypass capacitor Cin also forms part of the anti-aliasing  
filter, which is recommended to prevent high-frequency  
noise from aliasing down to lower frequencies and inter-  
fering with the input signal0 When R1 is far greater than R2,  
the low-pass anti-aliasing filter corner frequency can be  
calculated by 1/(2R2Cin)0 The input filter also performs  
an important reliability function – it reduces transient  
spikes from ESD events flowing through the high voltage  
rails0  
A power supply of . V is required to power the ACPL-C87x  
input side VDD10 In many motor drive DC bus voltage  
sensing applications, this .V supply is most often obtained  
from the same supply used to power the power transistor  
gate drive circuit using an inexpensive 78L±. three-ter-  
minal regulator0 To help attenuate high frequency power  
supply noise or ripple, a resistor or inductor can be used  
in series with the input of the regulator to form a low-pass  
filter with the regulator’s input bypass capacitor0  
In some other applications a dedicated supply might be  
required to supply the VDD10 These applications include  
photovoltaic (PV) inverter voltage tracking and measure-  
ment, temperature sensor signal isolation0 In these cases  
it is possible to add an additional winding on an existing  
transformer0 Otherwise, some sort of simple isolated  
supply can be used, such as a line powered transformer or  
a high-frequency DC-DC converter module0  
HV+  
R1  
Floating  
PositiveSupply  
OUT  
IN  
78L05  
5V  
C2  
0.1μF  
C1  
0.1μF  
VDD2  
VDD1  
VIN  
VOUT+  
GateDrive  
Circuit  
C3  
ACPL-C87A  
0.1μF  
Cin  
0.1nF  
R2  
VOUT-  
SHDN  
GND1  
GND2  
HV-  
Figure 22. Recommended Power Supply and Bypassing  
13  
PC Board Layout  
The design of the printed circuit board (PCB) should  
follow good layout practices, such as keeping bypass  
capacitors close to the supply pins, keeping output signals  
away from input signals, the use of ground and power  
planes, etc0 In addition, the layout of the PCB can also  
affect the isolation transient immunity (CMTI) of the ACPL-  
C87x, primarily due to stray capacitive coupling between  
the input and the output circuits0 To obtain optimal CMTI  
performance, the layout of the PC board should minimize  
any stray coupling by maintaining the maximum possible  
distance between the input and output sides of the circuit  
and ensuring that any ground or power plane on the PC  
board does not pass directly below or extend much wider  
than the body of the ACPL-C87A0 The placement of the  
input capacitor which forms part of the anti-aliasing filter  
together with the resistor network should also be placed  
as close as possible to the Vin pin0  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-3563EN - July 24, 2012  

相关型号:

ACPL-C87A-500E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87AT

Automotive High Precision DC Voltage Isolation Sensor
AVAGO

ACPL-C87AT

Automotive High Precision DC Voltage Isolation Sensor
BOARDCOM

ACPL-C87B

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-000E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-500E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
BOARDCOM

ACPL-C87X

用于电压传感的光耦隔离放大器
AVAGO

ACPL-CRDBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-H312

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8
BOARDCOM

ACPL-H312-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, PLASTIC, SOP-6
AVAGO