ACPL-H312 [BOARDCOM]

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8;
ACPL-H312
型号: ACPL-H312
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8

栅 双极性晶体管
文件: 总19页 (文件大小:1111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-H312 and ACPL-K312  
2.5 Amp Output Current IGBT Gate Drive Optocoupler  
with Low ICC and UVLO in Stretched SO8  
Data Sheet  
Description  
Features  
The ACPL-H312/K312 contains a GaAsP LED. The LED is  
optically coupled to an integrated circuit with a power output  
stage. These optocouplers are ideally suited for driving power  
IGBTs and MOSFETs used in motor control inverter applications.  
The high operating voltage range of the output stage provides  
the drive voltages required by gate controlled devices. The  
voltage and current supplied by these optocouplers make  
them ideally suited for directly driving IGBTs with ratings up to  
1200V/100A. For IGBTs with higher ratings, the  
2.5 A maximum peak output current  
2.0 A minimum peak output current  
15 kV/μs minimum Common Mode Rejection (CMR) at  
V
= 1500 V  
CM  
0.5 V maximum low level output voltage (VOL)  
= 3 mA maximum supply current  
I
CC  
Under Voltage Lock-Out protection (UVLO) with hysteresis  
Package Clearance and Creepage at 8mm (ACPL-K312)  
Wide operating VCC range: 15 to 30 Volts  
500 ns maximum switching speeds  
Industrial temperature range: -40°C to 100°C  
Safety Approval  
ACPL-H312/K312 series can be used to drive a discrete power  
stage which drives the IGBT gate. The ACPL-H312 has an  
insulation voltage of V  
= 891 V  
(Option 060). The  
IORM  
peak  
ACPL-K312 has an issulation voltage of V  
(Option 060).  
= 1140 V  
peak  
IORM  
UL1577 recognized  
3750 Vrms for 1 minute for ACPL-H312  
5000 Vrms for 1 minute for ACPL-K312  
CSA Approved  
Application Note  
AN5336 – Gate Drive Optocoupler Basic Design  
IEC/EN/DIN EN 60747-5-5 Approved  
V
V
= 891 V  
for ACPL-H312  
peak  
IORM  
IORM  
= 1140 V  
for ACPL-K312  
peak  
Applications  
IGBT/MOSFET gate drive  
Inverter for industrial motor  
Inverter for electrical home appliances  
Switching power supplies (SPS)  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage  
and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military or  
aerospace applications or environments.  
Broadcom  
- 1 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Functional Diagram  
VCC  
1
8
ANODE  
VO  
2
3
4
7
6
5
VEE  
VEE  
CATHODE  
SHIELD  
NOTE A 1-μF bypass capacitor must be connected between pins V and V  
.
EE  
CC  
Truth Table  
VCC – VEE “POSITIVE GOING” VCC – VEE “NEGATIVE GOING”  
LED  
VO  
(that is, TURN-ON)  
(that is, TURN-OFF)  
OFF  
ON  
ON  
ON  
0–30V  
0–11V  
0–30V  
0–9.5V  
9.5–12V  
12–30V  
LOW  
LOW  
11–13.5V  
13.5–30V  
TRANSITION  
HIGH  
Broadcom  
- 2 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Ordering Information  
ACPL-H312/K312 is UL1577 recognized (3750 V for 1 minute for ACPL-H312 and 5000 V for 1 minute for ACPLK312).  
rms  
rms  
UL 5000 VRMS  
1 Minute Rating  
/
Option (RoHS  
Compliant)  
IEC/EN/DIN EN  
60747-5-5  
Part Number  
Package  
Surface Mount Tape and Reel  
Quantity  
ACPL-H312  
-000E  
-500E  
-060E  
-560E  
-000E  
-500E  
-060E  
-560E  
Stretched SO-8  
X
X
X
X
X
X
X
X
80 per tube  
1000 per reel  
80 per tube  
1000 per reel  
80 per tube  
1000 per reel  
80 per tube  
1000 per reel  
X
X
X
X
X
X
ACPL-K312  
Stretched SO-8  
X
X
X
X
X
X
To order, choose a part number from the part number column and combine with the desired option from the option column to  
form an order entry.  
Example 1:  
ACPL-H312-560E to order product of Stretched SO8 Surface Mount package in Tape and Reel packaging with IEC/EN/ DIN EN  
60747-5-5 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-H312-000E to order product of Stretched SO8 Surface Mount package in Tube Packaging and RoHS compliant.  
Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.  
Broadcom  
- 3 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Package Outline Drawings  
ACPL-H312 Outline Drawing – Stretched 508  
* 5.850 + 0.254  
Land Pattern Recommendation  
0.381 + 0.127  
0
1.270  
0.050  
0
0.230 + 0.010  
0.76 (0.03)  
1.27 (0.05)  
0.015 + 0.005  
2.16  
(0.085)  
7.620  
0.300  
10.7  
(0.421)  
6.807  
0.268  
0.450  
0.018  
3.180 0.127  
0.125 0.005  
1.590 0.127  
0.063 0.005  
7°  
7°  
45°  
7°  
0.200 0.100  
0.008 0.004  
0.254 0.050  
0.010 0.002  
7°  
5° NOM.  
9.7 0.25  
0.382 0.010  
1 0.250  
0.040 0.010  
Lead Coplanarity = 0.1mm [0.004 Inches]  
* Total package length (inclusive of mold flash)  
6.100 0.250 (0.240 0.010)  
Floating Lead protusions max. 0.25 [0.0]  
Dimensions in Millimeters [Inches]  
Broadcom  
- 4 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
ACPL-K312 Outline Drawing – Stretched SO8  
5.850 + 0.25  
Land Pattern Recommendation  
*
0
1.270BSG  
0.381 0.13  
+ 0.010  
ª0.230 – 0.000  
¬
¬ª0.050º  
0.76 (0.03)  
1.27 (0.05)  
º
¼
¬ª0.015 0.005º  
¼
¼
1
2
3
4
8
7
6
5
7.62  
¬ª0.300º  
1.905  
(0.075)  
¼
12.65  
(0.5)  
6.807 0.127  
¬ª0.268 0.005º  
¼
1.590 0.127  
0.450  
¬ª0.063 0.005º  
¼
¬ª0.018º  
3.180 0.127  
45°  
¼
7°  
7°  
¬ª0.125 0.005º  
¼
0.200 0.100  
0.254 0.050  
¬ª0.008 0.004º  
7°  
¬ª0.010 0.002º  
7°  
¼
¼
35° NOM.  
0.750 0.25  
¬ª0.0295 0.01º  
11.5 0.250  
¼
¬ª0.453 0.010º  
Lead Coplanarity = 0.1mm [0.004 Inches]  
* Total package length (inclusive of mold flash)  
6.100 0.250 (0.240 0.010)  
¼
Floating Lead protusions max. 0.25 [0.0]  
Dimensions in Millimeters [Inches]  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.  
Regulatory Information  
The ACPL-H342 / ACPL-K342 is approved by the following organizations:  
UL  
Approval under UL 1577, component recognition program up to V = 3750 V  
for the ACPL-H312 and V = 5000 V  
for  
RMS  
ISO  
RMS  
ISO  
the ACPL-K312), File 55361.  
CSA  
CSA Component Acceptance Notice #5, File CA 88324.  
IEC/EN/DIN EN 60747-5-5 (ACPL-H312/K142 Option 060 Only)  
Maximum Working Insulation Voltage V  
= 891 V  
(ACPL-H312) and V  
= 1140 V  
(ACPL-K312).  
IORM  
peak  
IORM  
peak  
Broadcom  
- 5 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (ACPL-H312/ACPL-K312 Option  
060, See Note)  
ACPL-H312  
Option 060  
ACPL-K312  
Option 060  
Description  
Symbol  
Units  
Installation classification per DIN VDE 0110/39, Table 1f  
or rated mains voltage ≤ 150 Vrms  
I – IV  
I – IV  
I – III  
I – III  
I – IV  
I – IV  
I – IV  
I – IV  
I – III  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000 Vrms  
Climatic Classification  
55/100/21  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
2
2
VIORM  
VPR  
891  
1140  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method ba  
VIORM × 1.875 = VPR, 100% Production Test with tm=1s, Partial discharge < 5 pC  
1670  
1426  
6000  
2137  
1824  
8000  
Input to Output Test Voltage, Method aa  
VIORM × 1.6 = VPR, Type and Sample Test, tm=10s, Partial discharge < 5 pC  
VPR  
Vpeak  
Highest Allowable Overvoltagea (Transient Overvoltage tini = 60s)  
VIOTM  
Vpeak  
Safety-limiting values – maximum values allowed in the event of a failure  
Case Temperature  
Input Current  
Output Power  
TS  
175  
230  
600  
175  
230  
600  
°C  
mA  
mW  
IS, INPUT  
PS, OUTPUT  
>109  
>109  
Insulation Resistance at TS, VIO = 500 V  
RS  
a.  
Refer to IEC/EN/DIN EN 60747-5-5 Optoisolator Safety Standard section of the Broadcom Regulatory Guide to Isolation Circuits, AV02-2041EN, for a detailed  
description of Method a and Method b partial discharge test profiles.  
NOTE These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the  
safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance  
with CECC 00802.  
Broadcom  
- 6 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Insulation and Safety Related Specifications  
Parameter  
Symbol ACPL-H342 ACPL-K342 Units  
Conditions  
Minimum External Air Gap  
(Clearance)  
L(101)  
7.0  
8.0  
mm Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(102)  
8.0  
8.0  
mm Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
mm Through insulation distance conductor to conductor,  
usually the straight line distance thickness between the  
emitter and detector.  
Tracking Resistance (Comparative  
Tracking Index)  
CTI  
> 175  
IIIa  
> 175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
NOTE All Broadcom data sheets report the creepage and clearance inherent to the optocoupler component itself. These  
dimensions are needed as a starting point for the equipment designer when determining the circuit insulation  
requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements  
must be met as specified for individual equipment standards. For creepage, the shortest distance path along the  
surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the  
recommended land pattern does not necessarily meet the minimum creepage of the device). There are  
recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve  
desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as  
pollution degree and insulation level.  
Broadcom  
- 7 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
–55  
–40  
Max.  
125  
105  
125  
25  
Units  
°C  
Note  
Operating Temperature  
TA  
°C  
Junction Temperature  
TJ  
°C  
a
Average Input Current  
IF(AVG)  
IF(TRAN)  
VR  
mA  
A
Peak Transient Input Current (<1-ms pulse width, 300 pps)  
Reverse Input Voltage  
1.0  
5
V
b
b
“HighPeak Output Current  
“LowPeak Output Current  
Supply Voltage  
IOH(PEAK)  
IOL(PEAK)  
(VCC – VEE  
2.5  
A
2.5  
A
)
0
35  
V
Input Current (Rise/Fall Time)  
Output Voltage  
tr(IN) /tf(IN)  
VO(PEAK)  
PO  
500  
VCC  
250  
295  
ns  
V
–0.5  
c
Output Power Dissipation  
Total Power Dissipation  
mW  
mW  
d
PT  
Lead Solder Temperature  
260°C for 10s, 1.6 mm below seating plane  
See Package Outline Drawings  
Solder Reflow Temperature Profile  
a.  
b. Maximum pulse width = 10 μs.  
c. Derate linearly above 78°C free-air temperature at a rate of 5.7 mW/°C.  
Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.  
d. Derate linearly above 78°C free-air temperature at a rate of 6.0 mW/°C. The maximum LED junction temperature should not exceed 125°C.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC – VEE  
IF(ON)  
Min.  
15  
Max.  
30  
Units  
V
Note  
Power Supply  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
7
16  
mA  
V
VF(OFF)  
TA  
–3.6  
–40  
0.8  
100  
°C  
Broadcom  
- 8 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Electrical Specifications (DC)  
Unless otherwise noted, all typical values are at T = –40°C to 100°C, I  
= 7 mA to 16 mA, V  
= –3.6V to 0.8V, V = 15V to  
F(OFF) CC  
A
F(ON)  
30V, V = Ground) unless otherwise specified. All typical values at T = 25°C and V – V = 30V, unless otherwise noted.  
EE  
A
CC  
EE  
Parameter  
Symbol  
Min.  
0.5  
Typ.  
Max.  
Units  
Test Conditions  
VO = VCC – 4V  
VO = VCC – 15V  
VO = VEE + 2.5V  
VO = VEE + 15V  
IO = –100 mA  
IO = 100 mA  
Figure  
Note  
a
High Level Peak Output Current  
IOH  
1.5  
A
A
A
A
V
V
2, 3, 17  
b
a
2
Low Level Peak Output Current  
IOL  
0.5  
2.0  
5, 6, 18  
b
2
c d  
High Level Output Voltage  
Low Level Output Voltage  
High Level Supply Current  
VOH  
VOL  
ICCH  
VCC – 4  
VCC – 3  
0.1  
1, 3, 19  
4, 6, 20  
7, 8  
,
0.5  
3.0  
1.8  
mA Output open,  
IF = 7 mA to 16 mA,  
Low Level Supply Current  
ICCL  
1.8  
3.0  
mA Output open,  
VF = –3.6V to +0.8V  
7, 8  
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
Input Forward Voltage  
IFLH  
VFHL  
0.8  
1.2  
2.3  
5
mA IO = 0 mA, VO > 5V  
9, 15, 21  
1.8  
V
V
IO = 0 mA, VO > 5V  
IF = 10 mA  
VF  
1.5  
16  
Temperature Coefficient of Input  
Forward Voltage  
VF/TA  
–1.6  
mV/°C IF = 10 mA  
Input Reverse Breakdown Voltage  
Input Capacitance  
BVR  
CIN  
5
60  
V
pF  
V
IR = 100 μA  
f = 1 MHz, VF = 0 V  
VO > 5V, IF = 10 mA  
VO > 5V, IF = 10 mA  
VO > 5V, IF = 10 mA  
UVLO Threshold  
VUVLO+  
VUVLO-  
UVLOHYS  
11.0  
9.5  
12.3  
11.0  
1.4  
13.5  
12.0  
22  
22  
V
UVLO Hysteresis  
V
a.  
Maximum pulse width = 50 μs.  
b. Maximum pulse width = 10 μs.  
c.  
In this test, VOH is measured with a DC load current. When driving capacitive loads, VOH will approach VCC as IOH approaches 0 amps.  
d. Maximum pulse width = 1 ms.  
Broadcom  
- 9 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Switching Specifications (AC)  
Over recommended operating conditions (T = –40°C to 100°C, I  
= 7 mA to 16 mA, V  
= –3.6V to 0.8V, V = 15V to 30V,  
F(OFF) CC  
A
F(ON)  
V
= Ground) unless otherwise specified. All typical values at T = 25°C and V – V = 30V, unless otherwise noted.  
EE  
A CC EE  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Figure  
Note  
a
Propagation Delay Time to High  
Output Level  
tPLH  
0.05  
0.28  
0.5  
μs  
Rg = 10 , Cg = 10 nF, f = 10 kHz ,  
Duty Cycle = 50%,  
12, 13,  
14, 23  
Propagation Delay Time to Low  
Output Level  
tPHL  
0.05  
0.26  
0.5  
μs  
Pulse Width Distortion  
PWD  
0.3  
μs  
μs  
b
c
Propagation Delay Difference  
Between Any Two Parts or  
Channels  
PDD  
(tPHL – tPLH  
–0.35  
0.35  
)
Rise Time  
Fall Time  
tR  
tF  
15  
0.05  
0.05  
30  
μs  
μs  
23  
d e  
Output High Level Common  
Mode Transient Immunity  
|CMH|  
kV/μs TA = 25 °C, IF = 10 mA, to 16 mA,  
CC = 30V, VCM = 1500 V  
24  
24  
,
V
d f  
Output Low Level Common  
Mode Transient Immunity  
|CML|  
15  
30  
kV/μs TA = 25 °C, VF = 0V, VCC = 30V,  
CM = 1500V  
,
V
a.  
b. Pulse Width Distortion (PWD) is defined as |tPHL – tPLH| for any given device.  
c. The diff erence between tPHL and tPLH between any two ACPL-H312/K312 parts under the same test condition.  
d. Pins 3 and 4 need to be connected to LED common.  
This load condition approximates the gate load of a 1200V/150A IGBT.  
e.  
Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain  
in the high state (that is, VO > 15.0V).  
f.  
Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain  
in a low state (that is, VO < 1.0V).  
Package Characteristics  
Over recommended temperature (T = –40°C to 100°C) unless otherwise specifi ed. All typicals at T = 25°C.  
A
A
Parameter  
Symbol  
Device  
Min.  
3750  
5000  
Typ.  
Max.  
Units  
Test Conditions  
Figure  
Note  
b c  
Input-Output Momentary Withstand  
Voltagea  
VISO  
ACPL-H312  
ACPL-K312  
VRMS RH < 50%, t = 1 min.,  
A = 25°C  
,
T
c d  
,
1012  
0.6  
c
Resistance (Input-Output)  
Capacitance (Input-Output)  
RI-O  
CI-O  
VI-O = 500 V  
Freq =1 MHz  
pF  
a.  
The input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.  
For the continuous voltage rating, refer to your equipment level safety specification or Broadcom Application Note 1074, Optocoupler Input-Output Endurance  
Voltage.  
b. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for 1 second leakage detection current limit,  
I-O ≤ 5 μA).  
Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.  
d. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 Vrms for 1 second (leakage detection current limit,  
I-O ≤ 5A).  
I
c.  
I
Broadcom  
- 10 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Figure 1 VOH vs. Temperature  
Figure 2 IOH vs. Temperature  
2.0  
0
IF = 7 to 16 mA  
IF = 7 to 16 mA  
VOUT = (V - 4 V)  
CC  
I
OUT = -100 mA  
VCC = 15 to 30 V  
1.8  
1.6  
1.4  
VCC = 15 to 30 V  
-1  
-2  
VEE = 0 V  
VEE = 0 V  
-3  
-4  
1.2  
1.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
TA – TEMPERATURE – °C  
TA – TEMPERATURE – °C  
Figure 3 VOH vs. IOH  
Figure 4 VOL vs. Temperature  
-1  
-2  
-3  
-4  
0.25  
VF (OFF) = -3.0 TO 0.8 V  
OUT = 100 mA  
CC = 15 TO 30 V  
VEE = 0 V  
100°C  
25°C  
-40°C  
I
V
0.20  
0.15  
0.10  
IF = 7 to 16 mA  
-5  
-6  
0.05  
0
V
V
CC = 15 to 30 V  
EE = 0 V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-40  
-20  
0
20  
40  
60  
80  
100  
IOH – OUTPUT HIGH CURRENT – A  
TA – TEMPERATURE – °C  
Figure 5 IOL vs. Temperature  
Figure 6 VOL vs. IOL  
4
4
V
F(OFF) = -3.0 to 0.8 V  
VF (OFF) = -3.0 TO 0.8 V  
VOUT = 2.5 V  
CC = 15 TO 30 V  
VEE = 0 V  
VCC = 15 to 30 V  
V
EE = 0 V  
V
3
2
1
0
3
2
1
0
100°C  
25°C  
-40°C  
2.0  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
1.5  
2.5  
TA – TEMPERATURE – °C  
IOL – OUTPUT LOW CURRENT – A  
Broadcom  
- 11 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Figure 7 ICC vs. Temperature  
Figure 8 ICC vs. VCC  
3.0  
3.0  
IccL  
IccH  
IccL  
IccH  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
1.0  
1.0  
15  
20  
cc  
25  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
V
- SUPPLY VOLTAGE-V  
TA-TEMPERATURE-ºC  
Figure 9 IFLH vs. Temperature  
Figure 10 Propagation Delay vs. VCC  
500  
5
V
= 30V,VEE =0V  
cc  
V
= 15 TO 30V  
cc  
5J ꢀꢁŸꢂꢃ&J ꢀꢁQ)  
VEE =0V  
4
3
2
1
0
'87<ꢃ&<&/( ꢄꢁꢅ  
400  
300  
200  
100  
OUTPUT=OPEN  
f=10kHz  
TpHL  
TpLH  
-40  
-20  
0
20  
40  
60  
80  
100  
15  
20  
25  
30  
PROPAGATION DELAY VS. V  
T -TEMPERATURE-°C  
cc  
A
Figure 11 Propagation Delay vs. IF  
Figure 12 Propagation Delay vs. Temperature  
500  
500  
IF=7mA  
V
= 30V,VEE =0V  
cc  
V
=30V,VEE=0V  
5J ꢀꢁŸꢂꢃ&J ꢀꢁQ)  
cc  
'87<ꢃ&<&/( ꢄꢁꢅ  
5J ꢀꢁŸꢂ&J ꢀꢁQ)  
400  
300  
200  
100  
400  
300  
200  
100  
f=10kHz  
DUTY CYCLE=50%  
f=10kHz  
TpHL  
TpLH  
TpHL  
TpLH  
-40  
-20  
0
20  
40  
60  
80  
100  
6
8
10  
12  
14  
16  
T -TEMPERATURE-°C  
PROPAGATION DELAY VS. I  
A
F
Broadcom  
- 12 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Figure 13 Propagation Delay vs. Rg  
Figure 14 Propagation Delay vs. Cg  
500  
500  
TpHL  
TpLH  
TpHL  
TpLH  
I =7mA  
F
IF=7mA  
V
= 30V,VEE=0V  
cc  
Vcc= 30V,VEE =0V  
C =10nF  
g
400  
300  
200  
100  
400  
Rg ꢀꢁŸ  
DUTY CYCLE=50%  
f=10kHz  
DUTY CYCLE=50%  
f=10kHz  
300  
200  
100  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
Cg- LOAD CAPACITANCE-nF  
Rgꢆ6(5,(6ꢃ/2$'ꢃ5(6,67$1&(ꢆŸ  
Figure 15 Transfer Characteristics  
Figure 16 Input Current vs. Forward Voltage  
1000  
16  
14  
12  
10  
8
TA = 25°C  
100  
10  
IF  
+
VF  
1.0  
6
0.1  
4
0.01  
2
0.001  
0
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
0
1
2
3
4
5
VF – FORWARD VOLTAGE – VOLTS  
I - FORWARD LED CURRENT-mA  
F
Broadcom  
- 13 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Figure 17 IOH Test Circuit  
Figure 18 IOL Test Circuit  
IF = 7 to  
16mA  
1
8
7
6
5
1
2
3
4
8
7
6
5
+
IOL  
4V  
_
2
3
4
0.1μF  
0.1μF  
+
+
_
_
IOH  
+
2.5V  
VCC = 15  
_
to 30V  
Figure 19 VOH Test Circuit  
Figure 20 VOL Test Circuit  
IF = 7 to  
16mA  
1
8
1
2
3
4
8
VOH  
100mA  
2
3
4
7
6
5
7
6
5
0.1μF  
0.1μF  
+
+
_
VOL  
_
VCC = 15  
VCC = 15  
to 30V  
to 30V  
100mA  
Figure 21 IFLH Test Circuit  
Figure 22 UVLO Test Circuit  
IF  
IF =10mA  
1
8
7
6
5
1
8
7
6
5
VO > 5V  
VO > 5V  
2
3
4
2
3
4
0.1μF  
0.1μF  
+
+
VCC  
_
_
VCC = 15  
to 30V  
Broadcom  
- 14 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Figure 23 TPLH, tPHL, tr, and tf Test Circuit and Waveforms  
IF = 7 to 16mA  
500Ÿ  
1
2
3
4
8
7
6
5
VO  
+
_
10kHz,  
50% Duty Cycle  
0.1μF  
+
_
10Ÿ  
VCC = 15 to 30V  
10nF  
Figure 24 CMR Test Circuit and Waveforms  
IF  
1
8
7
6
5
A
VO  
2
0.1μF  
+
+
B
VCC = 15 to 30V  
_
_
5V  
3
4
VCM = 1500V  
Broadcom  
- 15 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Typical Application Circuit  
Figure 25 and Figure 26 show two gate driver application circuits using ACPL-H312/K312. Application Note AN5336 describes  
general method on gate drive optocoupler design.  
Figure 25 Recommended LED Drive and Application Circuit  
270Ÿ  
1
2
3
4
8
7
6
5
+
VCC = 18V  
Q1  
_
+ HVDC  
+
0.1μF  
_
RG  
+
VCE  
-
5V  
3-PHASE  
AC  
RPULL-DOWN  
+
VCE  
-
Q2  
- HVDC  
Figure 26 ACPL-H312/K312 Typical Application Circuit with Negative IGBT Gate Drive  
270Ÿ  
1
2
3
4
8
7
6
5
+
_
VCC = 18V  
+
+ HVDC  
_
0.1μF  
5V  
RG  
+
VCE  
-
Q1  
Q2  
3-PHASE  
AC  
RPULL-DOWN  
+
VCE  
-
+
_
VEE = -5V  
- HVDC  
Broadcom  
- 16 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Description  
Thermal Model for ACPL-H312/K312  
Stretched-SO8 Package Optocoupler  
This thermal model assumes that an 8-pin single-channel  
plastic package optocoupler is soldered into a 7.62 cm ×  
7.62 cm printed circuit board (PCB). The temperature at the LED  
and Detector junctions of the optocoupler can be calculated  
using the equations below.  
Definitions:  
R
: Junction to Ambient Thermal Resistance of LED due to  
11  
heating of LED.  
T = (R × P + R × P ) + T  
(1)  
(2)  
1
11  
1
12  
2
A
A
R
: Junction to Ambient Thermal Resistance of LED due to  
12  
heating of Detector (Output IC).  
T = (R × P + R × P ) + T  
2 21 1 22 2  
R
: Junction to Ambient Thermal Resistance of Detector  
21  
(Output IC) due to heating of LED.  
R11  
311  
R12, R21  
111  
R22  
R
: Junction to Ambient Thermal Resistance of Detector  
JEDEC Specifications  
High K board  
22  
(Output IC) due to heating of Detector (Output IC).  
168  
P : Power dissipation of LED (W).  
1
NOTE Maximum junction temperature for above  
P : Power dissipation of Detector/Output IC (W).  
2
parts: 125°C.  
T : Junction temperature of LED (°C).  
1
T : Junction temperature of Detector (°C).  
2
T : Ambient temperature.  
A
T : Temperature diff erence between LED junction and  
1
ambient (°C).  
T : Temperature deference between Detector junction and  
2
ambient.  
Ambient Temperature: Junction to ambientthermal resistances  
were measured approximately 1.25 cm above optocoupler at  
~23°C in still air.  
Broadcom  
- 17 -  
ACPL-H312 and ACPL-K312  
Data Sheet  
Using the given thermal resistances and thermal model  
Quick Gate Drive Design Example Using  
ACPL-H312/K312  
The total power dissipation (PT) is equal to the sum of the LED  
input-side power (PI) and detector output-side power (PO)  
dissipation:  
formula in this data sheet, we can calculate the junction  
temperature for both LED and the output detector. Both  
junction temperatures should be within the absolute  
maximum rating. For this application example, we set the  
ambient temperature as 78°C and use the high conductivity  
thermal resistances.  
PT = PI + PO  
LED junction temperature,  
PI = I  
× V  
F,max  
F(ON) ,max  
T
= (R × P + R × P ) + T  
11 1 12 2 A  
where,  
1
= (311 × 28.8 + 111 × 124.2) + 78  
= 22.7 + 78 = 100.7°C  
I
= 16 mA (Recommended Operating Conditions)  
F(ON),max  
V
= 1.8V (Electrical Specifications (DC))  
F,max  
Output IC junction temperature,  
= (R × P + R × P ) + T  
A
PO = PO(BIAS) + PO(SWTICH) = I  
× (V  
– V ) + V × Q  
CC2 EE GE G  
CC2  
× f  
SWITCH  
T
2
21  
1
22  
2
where,  
= (111 × 28.8 + 168 × 124.2) + 78  
= 24 + 78 = 102°C  
PO(BIAS) = Steady-state power dissipation in the driver due to  
biasing the device.  
TIn this example, both temperature are within the maximum  
125°C. If the junction temperature is higher than the maximum  
junction temperature rating, the desired specification must be  
derated accordingly.  
PO(SWITCH) = Power dissipation in the driver due to charging  
and discharging of power device gate capacitances.  
I
= Supply Current to power internal circuity = 3.0 mA  
CC2  
(Electrical Specifications (DC))  
V = V + |V | = 18 – (–5V) = 23V (Application example)  
GE  
CC2  
EE  
Q = Total gate charge of the IGBT or MOSFET as described in  
G
the manufacturer specifi cation = 24 0nC (approximation of  
100A IGBT which can be obtained from IGBT data sheet)  
f
= switching frequency of application = 10 kHz  
SWITCH  
Similarly using the maximum supply current I  
= 3.0 mA.  
CC2  
PI  
= 16 mA × 1.8V = 28.8 mW  
= PO(BIAS) + PO(SWITCH)  
PO  
= 3.0 mA × (18 V – (–5 V)) + (18V + 5V) × 240nC × 10 kHz  
= 69 mW + 55.2 mW  
= 124.2 mW  
Broadcom  
- 18 -  
For product information and a complete list of distributors, please go to our web  
site: www.broadcom.com.  
Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago,  
and the A logo are among the trademarks of Broadcom and/or its affiliates in the  
United States, certain other countries and/or the EU.  
Copyright © 2011–2017 by Broadcom. All Rights Reserved.  
The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For  
more information, please visit www.broadcom.com.  
Broadcom reserves the right to make changes without further notice to any  
products or data herein to improve reliability, function, or design.  
Information furnished by Broadcom is believed to be accurate and reliable.  
However, Broadcom does not assume any liability arising out of the application  
or use of this information, nor the application or use of any product or circuit  
described herein, neither does it convey any license under its patent rights nor  
the rights of others.  
AV02-0821EN – May 5, 2017  

相关型号:

ACPL-H312-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, PLASTIC, SOP-6
AVAGO

ACPL-H342

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Active Miller Clamp, Rail-to-Rail Output Voltage and UVLO in Stretched SO8
AVAGO

ACPL-H342-000E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-060E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-500E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-560E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-J313

Very High CMR 2.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO

ACPL-J313-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8
AVAGO

ACPL-J313-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-J313-300E

暂无描述
AVAGO

ACPL-J313-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-K24L

Low Power, 5-MBd Digital CMOS Optocoupler
BOARDCOM