ACPL-C87B [AVAGO]

Precision Optically Isolated Voltage Sensor; 精密光学隔离电压传感器
ACPL-C87B
型号: ACPL-C87B
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Precision Optically Isolated Voltage Sensor
精密光学隔离电压传感器

传感器
文件: 总22页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFCT-57V6NSZ  
Small Form Factor Pluggable (SFP) LC Optical Transceiver  
for 1.25GBd Ethernet at Extended Link Lengths (Up to 40km)  
Data Sheet  
Description  
Features  
Gigabit Ethernet transceiver  
RoHS Compliant  
The AFCT-57V6NSZ transceiver is a specially customised  
low-cost and hot-pluggable SFP MSA-compliant optical  
interconnect module for Gigabit Ethernet applications at  
transmission distances up to 40km [1, 2].  
IEEE 802.3z, 1000BASE-ZX  
Extended transmission distance up to 40 km  
Compliant with SFP Multi Source Agreement (MSA)  
Duplex-LC optical interface  
1550 nm DFB-LD  
The AFCT-57V6NSZ implements the serial portion of the  
physical layer, and supports the features shown below  
The AFCT-57V6NSZ features differential serial I/O inter-  
face lines that are AC-coupled signals. Avago’s design  
of the long wavelength SFP module uses a 1550 nm  
distributed feedback (DFB) laser diode (LD) and takes  
advantage of an integrated preamplifier/photo-detector.  
The AFCT-57V6NSZ also contains transmitter, receiver  
and control electronics.  
Serial ID  
Digital Diagnostic Monitoring interface  
Bail delatch for easy removal from cage  
Available in industrial temperature range  
(-40 to +85°C)  
Singlemode optical fiber, with LC connectors, is rec-  
ommended as the communication media. The AFCT-  
57V6NSZ has a digital diagnostic monitoring (DDM)  
function in accordance with SFF-8472 [3] which allows  
monitoring operating temperature, supply voltage, laser  
bias current, transmitter optical output power and opti-  
cal received power in real time via a serial-ID interface.  
Immune to ESD, RF fields, and Vcc noise  
Designed for very low RF emissions  
Class 1 laser safety  
AC-coupled differential serial I/O interface  
Single +3.3 Volt supply operation  
Low power dissipation  
On the following page, Table1 lists the general specifica-  
tions for the AFCT-57V6NSZ SFP.  
Applications  
Ethernet switches  
Figure 1 shows a simplified block diagram of the AFCT-  
57V6NSZ electronics.  
Multi-service switches and routers  
Broadband aggregation and wireless infrastructure  
Switched backplane applications  
High Speed Interface for server farms  
Metro access switch GbE connections  
Related Products  
AFBR-5715Z family:  
850 nm 1.25 GBd 3.3 V multimode SFP Gigabit Ether-  
net transceivers with DMI  
AFCT-5715Z:  
1.25 GBd Ethernet (1000Base-LX) SFP with DMI  
Digital Diagnostic  
Monitoring Interface  
(A2h)  
Module Definition  
(A0h)  
SCL  
SCL  
SDA  
SDA  
MOD_DEF[1]  
MOD_DEF[2]  
Optical  
Output  
TD +  
Modulation  
100 ohm  
Bias  
DFB-LD  
Circuit  
TD-  
DC Bias  
Circuit  
Monitor  
PD  
APC  
Circuit  
TX_DISABLE  
TX_FAULT  
Control Circuit  
Transmitter  
Optical  
Input  
RD +  
RD -  
TZ  
AMP  
Limiting  
Amp  
PIN-PD  
RX_LOS  
Level  
Detector  
Receiver  
VccR  
VccT  
Vcc Slow Start  
VeeR  
VeT  
Figure 1. AFCT-57V6NSZ Simplified Block Diagram  
Table 1. General AFCT-57V6NSZ Specifications  
Parameter  
1000BASE-ZX*  
unit  
Nominal Bit Rate  
1.25  
Gbps  
Link Loss Budget  
17  
dB  
dB  
-
Minimum Required Link Loss  
Bit Error Ratio(BER)  
0
<10-12  
9
Fiber Core Diameter  
mm  
Operating Range(max)  
40  
km  
Optical specifications are modified to realize 40 km transmission in singlemode fiber.  
2
Absolute Maximum Ratings  
Recommended Operating Conditions  
Operation of the AFCT-57V6NSZ beyond the Absolute  
Table 3 lists the conditions under which the AFCT-  
Maximum Ratings listed in Table 2 can degrade or dam- 57V6NSZ is tested and should be operated. It is possible  
age the product. With the exception of laser safety, it to reduce the reliability and lifetime of the device if these  
is not implied that the product will function above the  
Recommended Operating Conditions. It is possible to  
ratings are exceeded for extended periods. Functional  
operation should be restricted to these Recommended  
reduce the reliability and lifetime of the device if the Operating Conditions.  
Recommended Operating Conditions are exceeded (see  
Table 3).  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
Vcc  
RH  
Min  
-0.3  
5
Max  
4.0  
Unit  
V
Supply Voltage  
Relative Humidity *  
TX_DISABLE Input Voltage  
85  
%
VIN  
Ts  
-0.5  
-40  
Vcc+0.5  
+85  
V
Storage Temperature  
† No condensation  
°C  
Table 3. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Voltage  
Vcc  
3.135  
3.3  
3.465  
V
Ripple And Noise  
-
-
-
100  
mVp-p  
Operating Case Temperature  
AFCT-57V6NSZ  
AFCT-57V6ANSZ  
TC  
TC  
-5  
-40  
-
-
70  
85  
°C  
Measured with a sinusoidal signal from 100 Hz to 2 MHz at the input of the recommended power supply filter shown in Figure 13.  
Handling Precautions  
Optical Description  
Avago advises that precautions be taken to avoid elec- Table 4 describes the performance of the transmitter por-  
trostatic discharge (ESD) during handling, assembly, and tion of the AFCT-57V6NSZ over the operating conditions.  
testing of the AFCT-57V6NSZ. Degradation or damage Table 5 describes the performance of the receiver portion  
can occur if proper guidelines for handling ESD sensitive  
devices are not followed. This could result in an inoper-  
able device or unsafe operation as described above.  
of the AFCT-57V6NSZ over the operating conditions.  
The optical pulse characteristics of the transmitter are  
specified in the form of an eye pattern. When measured  
In particular, avoid getting particulate or solvent contami- in accordance with [2], the mask shown in Figure 2 evalu-  
nation onto the optical surfaces of the laser and photo-  
detector assemblies. It is also strongly recommended that  
the LC connector receptacle be covered when not in use.  
Excessive force when installing and extracting the AFCT-  
57V6NSZ should be avoided. Refer to the SFP Application  
Note [6] for additional handling information.  
ates rise time, fall time, overshoot and undershoot.  
3
Table 4. Transmitter Optical Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Spectral Center Wavelength  
lC  
1500  
1550  
1580  
nm  
Dl20  
-20dB Spectral Width  
-
-
0.5  
nm  
Side Mode Suppression Ratio  
Optical Output Power, Average*  
Extinction Ratio  
SMSR  
PO  
30  
-4  
9
-
-
-
-
-
-
dB  
dBm  
dB  
ps  
UI  
0
ER  
-
Rise/Fall Time**  
Tr/Tf  
TJ  
-
260  
0.28  
Total Jitter (TJ)  
-
Optical Waveform  
-
Compliant with IEEE 802.3z eye mask (Refer  
to Figure 2)  
-
Disable Optical Output Power  
-
-
-
-35  
dBm  
SMF 9/125  
†† 20 % - 80 % edge rate without filter  
Table 5. Receiver Optical Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Spectral Center Wavelength  
lC  
1270  
-
1600  
nm  
Receiver Saturation  
Minimum Receiver Sensitivity  
RX_LOS Assert Level  
RX_LOS De-assert Level  
RX_LOS Hysteresis  
Pmax  
Pmin  
LOSA  
LOSD  
LOSHYS  
RL  
0
-
.
dBm  
dBm  
dBm  
dBm  
dB  
.
-
-21  
-35  
.
-
.
-
-24.5  
0.5  
12  
2
-
.
.
Return Loss  
dB  
Receiver sensitivity is measured at the center of the eye for BER=1x10-12 using PRBS 2^7-1  
130  
100  
80  
50  
20  
0
-20  
0
22  
37.5  
62.5  
78  
100  
Normalized Time (% of Unit Interval)  
Figure 2. Transmitter Eye Mask  
4
Electrical Description  
[1]  
[2]  
is present. The levels of MOD_DEF and MOD_DEF are  
also indicated assuming that they are pulled up with a  
4.7k-10k ohm resistor to +3.3 V on host board. Table 8  
indicates the voltage levels required to be delivered by  
the host to the transmitter differential serial data input  
TD+/-. Table 9 indicates the voltage level output from the  
receiver differential serial data output RD+/-.  
The supply current of the AFCT-57V6NSZ is described in  
Table 6 below. The inrush current is defined as the ad-  
ditional inrush due to hot plugging.  
The characteristics for the control and status signals are  
shown in Table 7. Output status signals, TX_FAULT and  
RX_LOS, are all open-collector/drain, and the levels indi-  
cated assuming 4.7k-10k ohm pull-up resistor to Host_Vcc  
Table 6. Electrical Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Current  
ICC  
-
-
300  
mA  
Inrush Current*  
Linrush  
-
-
30  
mA  
greater than the steady state value  
Table 7. Control/Status Signal Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
TX_DISABLE Input Voltage - High  
VIH  
2.0  
VccT  
V
TX_DISABLE Input Voltage - Low  
TX_FAULT Output Voltage - High  
TX_FAULT Output Voltage - Low  
RX_LOS Output Voltage – High  
VIL  
0
0.8  
V
V
V
V
V
V
V
V
VOH  
VOL  
VOH  
VOL  
VOL  
VIH  
Host_Vcc-0.5  
Host_Vcc  
0
0.4  
Host_Vcc-0.5  
Host_Vcc  
RX_LOS Output Voltage – Low  
0
0.4  
0.4  
.
MOD_DEF[2] (SDA) Output Voltage – Low  
MOD_DEF[1] (SCL) Input Voltage – High  
MOD_DEF[1] (SCL) Input Voltage – Low  
.
VccT, (VccR) x 0.7  
-
VIL  
VccT(VccR) x 0.3  
Table 8. TD+/- Input Signal Requirements  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input Amplitude, Differential  
VI  
200  
.
2400  
mV p-p  
W
Input Impedance, Differential  
RI  
.
100  
.
Deterministic Jitter  
Total Jitter ††  
Mark Ratio  
DJ  
TJ  
.
.
.
.
.
0.10  
0.24  
.
UI  
UI  
%
.
50  
AC-coupled.  
†† TJ = RJ + DJ. At BER = 10-12  
Table 9. RD+/- Output Signal Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
mVp-p  
W
Output Amplitude, Differential*  
VO  
600  
-
1200  
Output Impedance, Differential  
RO  
-
100  
-
AC-coupled.  
5
Pin Description  
A brief description of all of the electrical connector pins follows. The connector has staged contacts, so that hot-plug-  
ging can be performed. See Table 10.  
Table 10. Pinout  
Pin No.  
Sequence  
Description  
Pin No  
Sequence  
Description  
1
1
VeeT  
11  
1
VeeR  
2
3
3
3
3
3
3
3
1
1
TX_FAULT  
TX_DISABLE  
MOD_DEF[2]  
MOD_DEF[1]  
MOD_DEF[0]  
RATE_SELECT  
RX_LOS  
12  
13  
14  
15  
16  
17  
18  
19  
20  
3
3
1
2
2
1
3
3
1
RD-  
3
RD+  
VeeR  
VccR  
VccT  
VeeT  
TD+  
TD-  
4
5
6
7
8
9
VeeR  
10  
VeeR  
VeeT  
Hot-Plugging Sequence  
The ground, VCC and other pins designated as the se-  
quence (1) pins engage first during hot-plugging. The  
sequence (2) pins connect second during hot-plugging  
followed by the sequence (3) pins. Conversely, when  
the module is unplugged from the host system, the se-  
quence (3) pins disengages before the sequence (2) pins  
disengages and then followed by the sequence (1) pins.  
Inserting or removing the AFCT-57V6NSZ will disrupt  
data transmission. This disruption occurs when the  
downstream receiver (e.g. deserializer phase-lock-loop)  
resynchronizes to a different bitstream signal. When this  
occurs, the downstream system will recognize the asso-  
ciated error (e.g. comma detect, loss-of-light, disparity,  
CRC, and frame errors).  
VeeT  
VeeT  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TX_FAULT  
TX_DISABLE  
MOD_DEF[2]  
TD-  
TD+  
VeeT  
VccT  
VccR  
VeeR  
RD+  
RD-  
3
4
5
MOD_DEF[1]  
6
MOD_DEF[0]  
RATE_SELECT  
7
RX_LOS  
VeeR  
8
9
VeeR  
VeeR  
10  
It is the responsibility of the system integrator to assure  
that no thermal, energy, or voltage hazard exists during  
the hot-plug-unplug sequence. It is also the responsibility  
of the system integrator and end-user to minimize static  
electricity and the probability of ESD events by careful  
design.  
Bottom of Board  
(as view through top of board)  
Top of Board  
Figure 3. SFP Transceiver Electrical Pad Layout  
6
Pin Definitions  
RATE_SELECT Not Connected.  
TD+/TD- Transmit Data In and Inverted Transmit Data In are  
differential input to the transmitter. They are internally AC-  
coupled into an equivalent load of RI differential, as shown  
in Figure 13.  
TX_FAULT Active high open collector/drain output which  
indicates a fault in the module.  
This can be (1) failure of the laser driver or (2) end-of-life  
of the laser. Under these conditions, the laser will be de-  
activated within the assert time. TX_FAULT also requires a  
4.7k-10k ohm pull-up resistor external to the module, i.e.  
in the host system Host_Vcc, as shown in Figure 13. The  
pull-up voltage is between 2.0 V and VccT(VccR) + 0.3 V.  
Conditions (1) and (2) are latched, and for diagnostic pur-  
poses only, may be reset by toggling TX_DISABLE high for  
at least t_reset. See Table 11 and Figure 8.  
TX_DISABLE Active high TTL input, with internal 10kW pull-  
up resistor to Vcc.  
Asserting the transmitter disable will deactivate the laser  
within the assert time. The truth table shown describes  
the state of the module, and Table 11 indicates the timing  
of TX_DISABLE.  
RD+/RD- Received Data Out and Inverted Received Data  
Out are differential serial output from the receiver. These  
are AC-coupled 100 ohm differential lines which should  
be terminated with a 100 ohm (differential) at the user  
SERDES, as shown in Figure 13. AC coupling is done inside  
the module and is thus not required on the host board.  
MOD_DEF[0:2] The AFCT-57V6NSZ has a serial ID func-  
tion which provides information about the transceiver’s  
capabilities, standard interfaces, manufacturer and other  
information, and has a digital diagnostic monitoring  
function, per SFF-8472 [3], which allows monitoring op-  
erating temperature, supply voltage, laser bias current,  
transmitter optical output power and optical received  
power in real time. These functions are provided via a two  
wire serial EEPROM interface.  
RX_LOS Active high open collector/drain output which  
indicates a loss-of-signal condition (LOS). When the aver-  
age optical power received by the module is below the  
Assert Level, RX_LOS is indicated according to the truth  
table below, and Table 11 indicates the timing of RX_LOS.  
RX_LOS requires a 4.7k-10k ohm pull-up resistor external  
to the module, i.e., in the host system Host_Vcc, as shown  
in Figure 13. The pull-up voltage is between 2.0 V and  
VccR(VccT) + 0.3 V.  
MOD_DEF[0] is connected to ground inside the module.  
MOD_DEF[1] is the serial clock signal input. MOD_DEF[2]  
is the data output/input.  
7
Timing Characteristics of Control and Status I/O  
The timing characteristics of the control and status line are listed in Table 11 and Figure 4 to 10.  
Table 11. Timing Characteristics of Control and Status I/O  
Parameter  
Symbol  
Min  
Max  
Unit  
Condition  
TX_DISABLE  
Assert Time  
t_off  
-
10  
µs  
Time from rising edge of TX_DISABLE to when the optical  
output falls below 10 % of nominal  
TX_DISABLE  
Negate Time  
t_on  
-
-
1
ms  
ms  
Time from falling edge of TX_DISABLE to when the modu-  
lated optical output rises above 90% of nominal  
Time to Initialize,  
including reset of  
TX_FAULT  
t_init  
300  
From power on or negation of TX_FAULT using TX_DIS-  
ABLE  
TX_FAULT  
Assert Time  
T_fault  
-
100  
-
µs  
Time from fault to TX_FAULT on  
Time TX_DISABLE must be held high to reset TX_FAULT  
Time from LOS state to RX_LOS Assert  
Time from non-LOS state to RX_LOS deassert  
-
TX_DISABLE to  
Reset  
T_reset  
t_losson  
t_lossoff  
F_clock  
10  
-
µs  
RX_LOS Assert  
Time  
100  
100  
100  
µs  
RX_LOS Negate  
Time  
-
µs  
Serial ID  
-
kHz  
Clock Rate  
8
Vcc > 2.97 V  
Vcc > 2.97 V  
TX_FAULT  
TX_FAULT  
TX_DISABLE  
TX_DISABLE  
Transmitted Signal  
Transmitted Signal  
t_init  
t_init  
Figure 4. Power on initialization of SFP transceiver, TX_DISABLE negated  
Figure 5. Power on initialization of SFP transceiver, TX_DISABLE asserted  
TX_FAULT  
Occurrence of transmitter  
safety fault  
TX_DISABLE  
Transmitted Signal  
TX_FAULT  
TX_DISABLE  
Transmitted Signal  
t_on  
t_off  
t_fault  
Figure 6. SFP TX_DISABLE timing during normal operation  
Figure 7. Detection of transmitter safety fault condition  
Occurrence of transmitter  
safety fault  
Occurrence of transmitter  
safety fault  
TX_FAULT  
TX_FAULT  
TX_DISABLE  
TX_DISABLE  
Transmitted Signal  
Transmitted Signal  
t_fault  
t_reset  
t_reset  
t_init  
*
t_init  
*
*
SFP will clear TX_FAULT in < t_init if the fault is transient  
*
SFP will clear TX_FAULT in < t_init if the fault is transient  
Figure 8. Successful recovery from transient safety fault condition  
Figure 9. Unsuccessful recovery from safety fault condition  
Occurrence of loss  
of signal (LOS)  
RX_LOS  
t_losson  
t_lossoff  
Figure 10. Timing of RX_LOS detection  
9
Serial Identification  
protocol defined for the ATMEL AT24C01A/02/04 family  
of components or equivalent components. The informa-  
tion obtained from the AFCT-57V6NSZ via the serial ID is  
shown in Table 12.  
The serial identification (ID) at 2 wire serial bus address  
1010000X (A0h) provides access to identification in-  
formation that describes the transceiver’s capabilities,  
standard interfaces, manufacturer, and other information.  
The serial interface uses the 2-wire serial CMOS E2PROM  
Table 12. Serial ID: Data Fields - 2-Wire Address A0h  
BASE ID FIELDS  
Name of field  
Data Address  
Field Size (Byte)  
Description of Field  
Context (Hex)  
0
1
Identifier  
SFP  
03h  
1
1
1
8
Ext. Identifier  
Connector  
Transceiver  
SFP  
04h  
07h  
00h  
00h  
00h  
02h  
00h  
00h  
00h  
00h  
01h  
0Ch  
00h  
28h  
FFh  
00h  
00h  
00h  
00h  
41  
2
LC  
3
—————  
—————  
—————  
1000BASE-LX  
—————  
—————  
—————  
—————  
8B/10B  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
1
Encoding  
1
BR, Nominal  
Reserved  
x 100 Mbits/sec  
—————  
40 x 1 km  
1
1
Length (9µm) - km  
Length (9µm)  
Length (50µm)  
Length (62.5µm)  
Length (Copper)  
Reserved  
1
Longer than 25.4 km  
Not Supported -  
Not Supported -  
Not Supported -  
—————  
A
1
1
1
1
16  
Vendor name  
V
56  
A
41  
G
47  
O
4F  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
20h  
20h  
20h  
20h  
20h  
20h  
20h  
20h  
20h  
20h  
20h  
10  
Table 12. Serial ID: Data Fields - 2-Wire Address A0h (Continued)  
BASE ID FIELDS  
Name of field  
Data Address  
Field Size (Byte)  
Description of Field  
Context (Hex)  
36  
1
Reserved  
—————  
00h  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Notes:  
3
Vendor OUI  
00-17-6A  
00h  
17h  
6Ah  
41  
16  
Vendor PN  
A
F
46  
C
43  
T
54  
-
2D  
5
35  
7
37  
V
56  
5
35  
N
4E  
S
53  
Z
5A  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
—————  
1550 nm  
20h  
20h  
20h  
20h  
Note 1  
Note 1  
Note 1  
Note 1  
06h  
0Eh  
00h  
Note 2  
4
2
Vendor Rev.  
Laser Wavelength  
1
1
Reserved  
CC BASE  
—————  
Check Code  
1. These addresses are reserved for Vendor Revision.  
2. Data Address 63 is the Check Sum for byte 0 to byte 62 (BASE ID FIELDS).  
11  
Table 12.- Serial ID: Data Fields - 2-Wire Address A0h (Continued)  
EXTENDED ID FIELDS  
Data Address  
64  
Field Size (Byte)  
Name of field  
Description of Field  
—————  
Context (Hex)  
00h  
2
Function  
65  
TX_DISABLE, TX_FAULT, RX_LOS  
Unspecified  
1Ah  
66  
1
BR, max.  
00h  
67  
1
BR, min.  
Unspecified  
00h  
68  
16  
Vendor S/N  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 3  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
8
Data Code  
Year  
(ASCII code)  
85  
86  
Digits of Month  
(ASCII code)  
87  
88  
Day of Month  
(ASCII code)  
89  
90  
Vendor Specific Lot Code  
(ASCII code)  
91  
92  
1
1
Diagnostic  
Monitoring Type  
-Digital Diagnositic Monitoring-Inter- 68h  
nally Calibrated-Average power  
93  
Enchanced  
Option  
-Alarm/Warning Flags Implemented- F0h  
Soft TX_FAULT and RX_LOS Monitor-  
ing  
94  
95  
1
1
SFF-8472  
Compliance  
Includes Functionality Described in  
Rev 9.3 SFF8472  
01h  
CC_EXT  
Check code for Extended ID Fields  
Note 5  
VENDOR SPECIFIC ID FIELDS  
96-255  
Notes:  
160  
00h  
3. These addresses are reserved for Vendor SN (serial number).  
4. These addresses are reserved for date code information  
5. Data Address 95 is the Check Sum for byte 64 to byte 94 (EXTENDED ID FIELDS).  
12  
Digital Diagnostic Monitoring  
tional link and cause for immediate action. Warning flags  
indicate conditions outside the normally guaranteed  
bounds but not necessarily causes of immediate link fail-  
ures. It is recommended that detection of an asserted flag  
bit should be verified by a second read of the flag at least  
100 msec later. The detail contents of the 2 wire address  
A2h are shown in Table 15 to 21.  
2 wire serial bus address 1010001X (A2h) is used to access  
measurement of transceiver temperature, internally mea-  
sured supply voltage, TX bias current, TX optical output  
power and RX optical input power which are shown in  
Table 13. Each diagnostic parameter has a corresponding  
high alarm, low alarm, high warning and low warning  
threshold which are shown in Table 14. Alarm flags indi-  
cate conditions likely to be associated with an inopera-  
Table 13. Diagnostic Parameters  
Range  
Min.  
Max.  
Diagnostic Parameter  
LSB  
Accuracy  
Address  
Note  
Transceiver  
Temperature(Temp)  
-15  
[ºC]  
+105  
[ºC]  
1/256  
[ºC]  
3
[ºC]  
96-97  
A 16 bit signed twos  
complement value  
Supply Voltage (Voltage)  
TX Bias Current (Bias)  
+2.97  
[V]  
+3.63  
[V]  
100  
[µV]  
3
[%]  
98-99  
A 16 bit unsigned integer  
A 16 bit unsigned integer  
A 16 bit unsigned integer  
A 16 bit unsigned integer  
0
[mA]  
+95  
[mA]  
2.0  
[µA]  
10  
[%]  
100-101  
102-103  
104-105  
TX Optical Output Power  
(TX Power)  
-6  
[dBm]  
+2  
[dBm]  
0.1  
[µW]  
3
[dB]  
RX Optical Input Power (RX -25  
+3  
0.1  
3
Power)  
[dBm]  
[dBm]  
[µW]  
[dB]  
Table 14. Alarm and Warning Thresholds  
Warning  
Alarm  
Low  
High  
+70  
+3.5  
80  
Low  
High  
+75  
+3.6  
90  
Parameter  
Unit  
Transceiver Temperature  
ºC  
-5  
-10  
+3  
3
Supply Voltage  
V
+3.1  
5
TX Bias Current  
mA  
TX Optical Output Power  
RX Optical Input Power  
dBm  
dBm  
-4  
0
-7  
+3  
-21  
0
-22  
+1  
13  
Table 15. Alarm and Warning Thresholds (2-Wire Address A2h)  
Address  
# Bytes  
Name  
Description  
00-01  
2
Temp High Alarm  
MSB at low address  
02-03  
04-05  
06-07  
08-09  
10-11  
12-13  
14-15  
16-17  
18-19  
20-21  
22-23  
24-25  
26-27  
28-29  
30-31  
32-33  
34-35  
36-37  
38-39  
40-55  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
16  
Temp Low Alarm  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
MSB at low address  
Reserved for future monitored quantities  
Temp High Warning  
Temp Low Warning  
Voltage High Alarm  
Voltage Low Alarm  
Voltage High Warning  
Voltage Low Warning  
Bias High Alarm  
Bias Low Alarm  
Bias High Warning  
Bias Low Warning  
TX Power High Alarm  
TX Power Low Alarm  
TX Power High Warning  
TX Power Low Warning  
RX Power High Alarm  
RX Power Low Alarm  
RX Power High Warning  
RX Power Low Warning  
Reserved  
14  
Table 16. Calibration constants for External Calibration Option (2-Wire Address A2h)  
Address  
# Bytes  
Name  
Description  
Content  
56-59  
4
Rx_PWR(4)  
Single precision floating point calibration data -Rx optical power. Bit 7  
of byte 56 is MSB. Bit 0 of byte 59 is LSB.  
0
60-63  
64-67  
68-71  
72-75  
76-77  
78-79  
80-81  
82-83  
4
4
4
4
2
2
2
2
Rx_PWR(3)  
Single precision floating point calibration data -Rx optical power. Bit 7  
of byte 60 is MSB. Bit 0 of byte 63 is LSB.  
0
0
1
0
1
0
1
0
Rx_PWR(2)  
Single precision floating point calibration data, Rx optical power. Bit 7  
of byte 64 is MSB, bit 0 of byte 67 is LSB.  
Rx_PWR(1)  
Single precision floating point calibration data, Rx optical power. Bit 7  
of byte 68 is MSB, bit 0 of byte 71 is LSB.  
Rx_PWR(0)  
Single precision floating point calibration data, Rx optical power. Bit 7  
of byte 72 is MSB, bit 0 of byte 75 is LSB.  
Tx_I(Slope)  
Tx_I(Offset)  
Tx_PWR(Slope)  
Tx_PWR(Offset)  
Fixed decimal (unsigned) calibration data, laser bias current. Bit 7 of  
byte 76 is MSB, bit 0 of byte 77 is LSB.  
Fixed decimal (signed two’s complement) calibration data, laser bias  
current. Bit 7 of byte 78 is MSB, bit 0 of byte 79 is LSB.  
Fixed decimal (unsigned) calibration data, transmitter coupled output  
power. Bit 7 of byte 80 is MSB, bit 0 of byte 81 is LSB.  
Fixed decimal (signed two’s complement) calibration data, transmitter  
coupled output power. Bit 7 of byte 82 is MSB, bit 0 of byte 83 is LSB.  
84-85  
86-87  
2
2
T(Slope)  
T(Offset)  
Fixed decimal (unsigned) calibration data, internal module tempera-  
ture. Bit 7 of byte 84 is MSB, bit 0 of byte 85 is LSB.  
1
0
Fixed decimal (signed two’s complement) calibration data, internal  
module temperature. Bit 7 of byte 86 is MSB, bit 0 of byte 87 is LSB.  
88-89  
90-91  
2
2
V(Slope)  
V(Offset)  
Fixed decimal (unsigned) calibration data, internal module supply  
voltage. Bit 7 of byte 88 is MSB, bit 0 of byte 89 is LSB.  
1
0
Fixed decimal (signed two’s complement) calibration data, internal  
module supply voltage. Bit 7 of byte 90 is MSB. Bit 0 of byte 91 is LSB.  
92-94  
95  
3
1
Reserved  
Reserved  
———  
———  
Checksum  
Byte 95 contains the low order 8 bits of the sumof bytes 0-94.  
15  
Table 17. A/D Values and Status Bits (2 Wire Address A2h)  
Byte  
Bit  
Name  
Description  
Converted analog values. Calibrated 16 bit data  
96  
All  
All  
All  
All  
All  
All  
All  
All  
All  
All  
All  
All  
All  
All  
Temperature MSB  
Temperature LSB  
Vcc MSB  
Internally measured module temperature.  
97  
98  
Internally measured supply voltage in transceiver.  
Internally measured TX Bias Current.  
Measured TX output power.  
99  
Vcc LSB  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
TX Bias MSB  
TX Bias LSB  
TX Power MSB  
TX Power LSB  
RX Power MSB  
RX Power LSB  
Reserved MSB  
Reserved LSB  
Reserved MSB  
Reserved LSB  
Measured RX input power.  
Reserved for 1st future definition of digitized analog input  
Reserved for 1st future definition of digitized analog input  
Reserved for 2nd future definition of digitized analog input  
Reserved for 2nd future definition of digitized analog input  
Optional Status/Control Bits  
110  
110  
110  
110  
7
6
5
4
TX Disable State  
Soft TX Disable  
Reserved  
Digital state of the TX_DISABLE Input Pin.  
Read/write bit that allows software disable of laser.  
RX Rate Select State  
Digital state of the SFP RX Rate Select Input Pin.Not supported.  
Read/write bit that allows software RX rate select.Not supported.  
110  
3
Soft RX Rate Select  
110  
110  
110  
2
1
0
TX Fault  
Digital state of the TX_FAULT Output Pin.  
Digital state of the RX_LOS Output Pin.  
LOS  
Data Ready Bar  
Indicates transceiver has achieved power up and dataBit remains  
high until data is ready to be read at whichdevice sets the bit low.  
111  
7-0  
Reserved  
Reserved.  
16  
Table 18. Alarm and Warning Flag Bits (2-Wire Address A2h)  
Byte  
Bit  
Name  
Description  
Reserved Optional Alarm and Warning Flag Bits  
112  
112  
112  
112  
112  
112  
112  
112  
113  
113  
113  
113  
113  
113  
113  
113  
114  
115  
116  
116  
116  
116  
116  
116  
116  
116  
117  
117  
117  
117  
117  
117  
117  
117  
118  
119  
7
Temp High Alarm  
Temp Low Alarm  
Vcc High Alarm  
Set and latch when internal temperature exceeds high alarm level †  
Set and latch when internal temperature is below low alarm level †  
Set and latch when internal supply voltage exceeds high alarm level †  
Set and latch when internal supply voltage is below low alarm level †  
Set and latch when TX Bias current exceeds high alarm level †  
Set and latch when TX Bias current is below low alarm level †  
Set and latch when TX output power exceeds high alarm level †  
Set and latch when TX output power is below low alarm level †  
Set and latch when Received Power exceeds high alarm level †  
Set and latch when Received Power is below low alarm level †  
6
5
4
Vcc Low Alarm  
3
TX Bias High Alarm  
TX Bias Low Alarm  
TX Power High Alarm  
TX Power Low Alarm  
RX Power High Alarm  
RX Power Low Alarm  
Reserved Alarm  
2
1
0
7
6
5
4
Reserved Alarm  
3
Reserved Alarm  
2
Reserved Alarm  
1
Reserved Alarm  
0
Reserved Alarm  
All  
All  
7
Reserved  
Reserved  
Temp High Warning  
Temp Low Warning  
Vcc High Warning  
Vcc Low Warning  
TX Bias High Warning  
TX Bias Low Warning  
TX Power High Warning  
TX Power Low Warning  
RX Power High Warning  
RX Power Low Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved Warning  
Reserved  
Set and latch when internal temperature exceeds high warning level †  
Set and latch when internal temperature is below low warning level †  
Set and latch when internal supply voltage exceeds high warning level †  
Set and latch when internal supply voltage is below low warning level †  
Set and latch when TX Bias current exceeds high warning level †  
Set and latch when TX Bias current is below low warning level †  
Set and latch when TX output power exceeds high warning level †  
Set and latch when TX output power is below low warning level †  
Set and latch when Received Power exceeds high warning level †  
Set and latch when Received Power is below low warning level †  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
All  
All  
Reserved  
† Latch state cleared on read, power cycle or the host toggles TX_DISABLE.  
17  
Table 19. Vendor Specific Memory Address and User EEPROM (2-Wire Address A2h)  
Byte  
# Byte  
Name  
Description  
120-127  
8
Vendor Specific  
00h.  
128-247  
248-255  
120  
8
User EEPROM  
—————  
User Writable EEPROM  
00h  
Table 20. Bit weights (°C) for Temperature Reporting Registers  
Most Significant Byte (Byte 96)  
Least Significant Byte (Byte 97)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SIGN  
64  
32  
16  
8
4
2
1
1/2  
1/4  
1/8  
1/16  
1/32  
1/64 1/128 1/256  
Table 21. Digital Temperature Format  
Temputer  
BINARY  
HEXADECIMAL  
DECIMAL  
+127.996  
+125.000  
+25.000  
+1.004  
FRACTION  
+127 255/256  
+125  
HIGH BYTE  
01111111  
01111101  
00011001  
00000001  
00000001  
00000000  
00000000  
00000000  
11111111  
11111111  
11100111  
11011000  
10000000  
10000000  
LOW BYTE  
11111111  
00000000  
00000000  
00000001  
00000000  
11111111  
00000001  
00000000  
11111111  
00000000  
00000000  
00000000  
00000001  
00000000  
HIGH BYTE  
LOW BYTE  
7F  
7D  
19  
01  
01  
00  
00  
00  
FF  
FF  
E7  
D8  
80  
80  
FF  
00  
00  
01  
00  
FF  
01  
00  
FF  
00  
00  
00  
01  
00  
+25  
+1 1/256  
+1  
+1.000  
+0.996  
+255/256  
+1/256  
0
+0.004  
0.000  
-0.004  
-1/256  
-1  
-1.000  
-25.000  
-40.000  
-127.996  
-128.000  
-25  
-40  
-127 255/256  
-128  
18  
2 wire addrress 1010001X (A2h)  
2 wire addrress 1010000X (A0h)  
0
0
95  
Alarm and Warning  
Thresholds (56 bytes)  
Serial ID Defined by  
SFP MSA (96 bytes)  
55  
95  
Cal Constants  
(40 bytes)  
Real Time Diagnostic  
Interface (24 bytes)  
Vendor Specific  
(32 bytes)  
119  
127  
Vendor Specific (8 bytes)  
127  
User Writable EEPROM  
(120 bytes)  
Reserved in SFP MSA  
(128 bytes)  
247  
255  
Vendor Specific (8 bytes)  
255  
Figure 11. Serial ID and Digital Diagnostic Memory Map  
Timing Characteristics of Serial ID/DDM  
The timing characteristics of the serial ID /DDM are listed in Table 22 and Figure 12.  
Table 22. Timing Characteristics of Serial ID / DDM  
Parameter  
Symbol  
Min  
Max  
Unit  
SCL Clock Rate  
f_clock  
.
100  
kHz  
BUS Free Time between STOP and  
START Condition  
tBUF  
4.7  
.
µs  
START Condition Hold Time  
START Condition Setup Time  
Low Period of SCL Clock  
High Period of SCL Clock  
Data Hold Time  
tHD:STA  
tSU:STA  
tLOW  
4.0  
4.7  
4.7  
4.0  
0
.
µs  
µs  
µs  
µs  
ns  
ns  
µs  
.
.
tHIGH  
tHD:DAT  
tSU:DAT  
tR  
.
.
Data Setup Time  
250  
.
.
Rise Time  
1.0  
19  
SDA  
SCL  
tBUF  
tHD:STA  
tF  
tR  
tLOW  
tHIGH  
tHD:STA  
tSU:STA  
tSU:DAT  
REPEATED  
START  
tSU:STO  
STOP  
START  
tHD:DAT  
SDA  
SCL  
D0  
ACK  
tWR  
WORDn  
STOP Condition  
START Condition  
Figure 12. Serial ID and DDM Timing  
Host Board  
SFP Module  
TD+  
Protocol Vcc  
LASER  
DRIVER  
100 ohm  
TD-  
4.7k-10k ohm  
TX_FAULT  
TX_DISABLE  
Recommended  
Power Supply Filter  
VeeT  
VccT  
1 uH  
10 uF  
1 uH  
+3.3 V  
0.1 uF  
VccR  
PROTOCOL  
IC  
0.1 uF 10 uF  
SERDes  
IC  
0.1 uF 10 uF  
VeeR  
RD+  
Note 1  
PREAMP  
&
100 ohm  
RD-  
POSTAMP  
RX_LOS  
RATE_SELECT  
4.7k-10k ohm  
4.7k-10k ohm  
+3.3 V  
4.7k-10k ohm  
MOD_DEF[0]  
MOD_DEF[1]  
SERIAL ID  
&
PLD/PAL  
MOD_DEF[2]  
DDM  
4.7k-10k ohm  
Note 1: Consult the SERDES manufacturer for the termination method.  
Figure 13. Recommended Power Supply Filter and Example of SFP Host Board Schematic  
20  
Connectors and Cables  
Laser Eye Safety  
The optical interface of the AFCT-57V6NSZ is a duplex LC The Avago Technologies AFCT-57V6NSZ module is a Class  
connector which is described in TIA/EIA FOCIS document 1 laser product under the requirements of IEC 60825-  
[5]. PC-polished ferrules are recommended in mating 1:1993+A1:1997+A2:2001 and U. S. 21 CFR 1040.10 and  
cables for the AFCT-57V6NSZ.  
1040.11 except for deviations pursuant to Laser Notice  
No. 50, dated July 26, 2001, when used as specified by  
Avago. Class 1 products are considered to be safe.  
The electrical connection is provided by a card edge  
connector which mates with a corresponding socket [1].  
In addition the transceiver fits a cage assembly [1] which  
also functions as an EMI shield. Contact an Avago sales  
office for cable, electrical connector, cage and accessory  
ordering information.  
Caution -Use of controls or adjustment or performance  
of procedures other than those specified herein may  
result in hazardous radiation exposure. Any modifica-  
tion, adjustment, or use of the AFCT-57V6NSZ module  
not specified by Avago may void the certification of the  
product and constitute an act of new manufacturing of  
a laser product under 21 CFR Subchapter J, and as such  
will require recertification by the new manufacturer. This  
includes operation beyond the Absolute Maximum Rat-  
ings listed in Table 2.  
Physical Description  
Figure 14 shows the mechanical outline of the Avago  
AFCT-57V6NSZ SFP. For a complete description of the  
footprint standards, refer to the MSA specification [1].  
AFCT-5745xxxZ  
AVAGO  
####nmLASER PROD  
COUNTRY OF ORIGIN YYWW  
S/N:########  
21CFR(J) CLASS1  
14±0.1  
[0.551±0.004  
1,48  
55,5±0.20  
13,2±0.1  
[0.058]  
[2.158±0.008]  
[0.516±0.04]  
6,25±0.05  
[0.246±0.002]  
12.7±0.1  
[0.500±0.004]  
8.45±0.1  
[0.333±0.004]  
15.5  
[0.610]  
TX  
RX  
AREA FOR DUST CAP  
+0,1-0  
14,46  
[0.569]  
13,7±0.1  
[0.539±0.004]  
Notes:  
1. Bail delatch is colored BLUE for  
SONET/Single-Mode Identification.  
Figure 14. AFCT-57V6NSZ Mechanical Outline Drawing  
21  
3,5±0.3  
[0.14±0.01]  
1,7±0.9  
[0.07±0.4]  
41,73±0.5  
[1.64±0.02]  
PCB  
BEZEL  
15 MAX  
[0.59]  
AREA  
FOR  
DUST CAP  
10 REF  
[0.39]  
TO PCB  
15,25±0.1  
[0.60±0.004  
11.6 REF  
[0.46]  
CAGE ASSEMBLY  
10,4±0.1  
0.41±0.004  
9,8 MAX  
[0.39]  
0,35 REF  
[0.01]  
BELOW PCB  
16.25±0.1  
[0.64±0.004]  
MIN PITCH  
MSA SPECIFIED BEZEL  
Notes:  
1. Bail delatch is colored BLUE for  
SONET/Single-Mode Identification.  
DIMENSION ARE IN MILLIMETERS [INCHES]  
Figure 15. Mounting drawing  
Regulatory Information  
References  
[1] Small Form-factor Pluggable (SFP) Transceiver Multi  
Source Agreement, September 14, 2000  
This product is under testing with respect to American  
and European product safety and electromagnetic com-  
patibility regulations. For further information regarding  
regulatory certification, refer to the SFP Regulatory Speci-  
fication [7] and SFP Application Note [6], or contact the  
Avago sales office.  
[2] IEEE 802.3z Media Access Control (MAC) Parameters,  
Physical Layer, Repeater and Management Parameters  
for 1000Mb/s Operation.  
[3] SFF-8472, Digital Diagnostic Monitoring Interface  
for Optical Transceivers, Draft Revision 9.3, August 1,  
2002  
[4] A. Widmer & P. Franaszek,A DC-balanced, partitioned-  
block, 8B/10B transmission code “IBM Journal of  
Research & Development, Vol. 27, No. 5, Pg. 440-451,  
(Sept. 1983).  
[5] TIA/EIA-604-10, “FOCIS 10, Fiber Optic Connector In-  
termateability Standard, 1999  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0655EN  
AV02-0620EN - April 14, 2009  

相关型号:

ACPL-C87B-000E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-500E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
BOARDCOM

ACPL-C87X

用于电压传感的光耦隔离放大器
AVAGO

ACPL-CRDBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-H312

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8
BOARDCOM

ACPL-H312-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, PLASTIC, SOP-6
AVAGO

ACPL-H342

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Active Miller Clamp, Rail-to-Rail Output Voltage and UVLO in Stretched SO8
AVAGO

ACPL-H342-000E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-060E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-500E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO