ACPL-C87AT [AVAGO]

Automotive High Precision DC Voltage Isolation Sensor;
ACPL-C87AT
型号: ACPL-C87AT
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Automotive High Precision DC Voltage Isolation Sensor

文件: 总14页 (文件大小:1429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-C87AT/ACPL-C87BT  
Automotive High Precision DC Voltage Isolation Sensor  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The ACPL-C87AT/C87BT isolation sensors utilize superior •ꢀ Unity Gain  
optical coupling technology, with sigma-delta (S-D)  
•ꢀ +/-0.5% (ACPL-C87BT) and +/-1% (ACPL-C87AT) Gain  
analog-to-digital converter, chopper stabilized amplifiers,  
and a fully differential circuit topology to provide  
unequaled isolation-mode noise rejection, low offset,  
high gain accuracy and stability.  
Tolerance @ 25° C  
•ꢀ -0.3 mV Input Offset Voltage  
•ꢀ 0.05% Non Linearity  
•ꢀ 25 ppm/°C Gain Drift vs. Temperature  
•ꢀ 100 kHz Bandwidth  
ACPL-C87AT ( 1% gain tolerance) and ACPL-C87BT  
( 0.5% gain tolerance) are designed for high precision  
DC voltage sensing in electronic motor drives, DC/DC  
and AC/DC converter and battery monitoring system. The  
ACPL-C87AT/C87BT features high input impedance and  
operate with full span of analog input voltage up to 2.46 V.  
The shutdown feature provides power saving and can be  
controlled from external source, such as microprocessor.  
•ꢀ 0 to 2 V Nominal Input Range  
•ꢀ Qualified to AEC-Q100 Grade 1 Test Guidelines  
•ꢀ Operating Temperature: -40° C to +125° C  
•ꢀ Shutdown Feature (Active High)  
•ꢀ 15 kV/ms Common-Mode Rejection at V = 1 kV  
CM  
The high common-mode transient immunity (15 kV/ms)  
of the ACPL-C87AT/C87BT maintains the precision and  
•ꢀ Working Voltage, V  
= 1414 V  
peak  
IORM  
stability needed to accurately monitor DC rail voltage in •ꢀ Compact, Surface Mount Stretched SO8 Package  
high noise motor control environments. This galvanic safe  
isolation solution is delivered in a compact, surface mount  
stretched SO-8 (SSO-8) package that meets worldwide  
regulatory safety standards.  
•ꢀ Worldwide Safety Approval:  
– UL 1577 (5000 V  
– CSA  
/ 1 min.)  
RMS  
2
– IEC/EN/DIN EN 60747-5-5  
Avago R Coupler isolation products provide the rein-  
forced insulation and reliability needed for critical auto-  
motive and high temperature industrial applications.  
Applications  
•ꢀ Automotive BMS Battery Pack Voltage Sensing  
•ꢀ Automotive DC/DC Converter Voltage Sensing  
•ꢀ Automotive Motor Inverter DC Bus Voltage Sensing  
•ꢀ Automotive AC/DC (Charger) DC Output Voltage Sensing  
•ꢀ Isolation Interface for Temperature Sensing  
Functional Diagram  
VDD1  
VDD2  
8
7
6
1
2
VIN  
VOUT+  
VOUT-  
0.1 µF  
0.1 µF  
SHDN  
3
4
•ꢀ General Purpose Voltage Sensing and Monitoring  
5
SHIELD  
GND1  
GND2  
Figure 1. Functional Diagram  
0.1 mF bypass capacitor must be connected between pin 1 and pin 4, and  
pin 5 and pin 8 as shown.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Functional Diagram (Cont.)  
VDD1  
VDD2  
VIN  
VOUT = VOUT+ − VOUT-  
0 − 2 V  
VOUT+  
VOUT-  
0 − 2 V  
VIN  
SHDN  
Isolation  
GND1  
GND2  
Figure 2. Functional Diagram 2  
5 V  
15 V  
V+  
MEV1S1505DC  
IN OUT  
5 V  
Gate  
Driver  
1 nF  
R1  
M
0.1 µF  
20 kΩ  
39 Ω  
Gate  
Driver  
0.1 µF  
R4 20 kΩ  
R5 20 kΩ  
VOUT  
R2  
10 nF  
V-  
1 nF  
20 kΩ  
ACPL-C87AT/BT  
Figure 3. Typical Voltage Sensing Circuit  
1
2
8
VDD1  
VIN  
VDD2  
VOUT+  
7
SHDN  
GND1  
VOUT-  
3
4
6
5
GND2  
Figure 4. Package Pinout  
Pin Description  
Pin No. Pin Name Description  
Pin No. Pin Name Description  
1
VDD1  
Input power supply  
When VDD1 = 0, then VOUT+ = 0 V, VOUT- = 2.6 V  
8
VDD2  
Output power supply  
2
3
VIN  
Voltage input, Full scale Range = 2.46 V  
7
6
VOUT+  
VOUT-  
Positive output voltage  
Negative output voltage  
SHDN  
Shutdown (Active High)  
When active, then VOUT+ = 0 V, VOUT- = 2.6 V  
4
GND1  
Input Side Ground  
5
GND2  
Output Side Ground  
2
Ordering Information  
Option  
Surface  
Mount  
Tape &  
Reel  
UL 5000 V  
1 Minute rating  
/
IEC/EN/DIN EN  
60747-5-5  
rms  
Part number  
(RoHS Compliant)  
-000E  
Package  
Quantity  
ACPL-C87AT  
ACPL-C87BT  
Stetched  
SO-8  
X
X
X
X
X
X
80 per tube  
1000 per reel  
-500E  
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example:  
ACPL-C87AT-500E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with RoHS compliant.  
Contact your Avago sales representative or authorized distributor for information.  
Package Outline Drawing (Stretched SO8)  
RECOMMENDED LAND PATTERN  
5.850 0.ꢀ5ꢁ  
(0.ꢀ30 0.0ꢂ0ꢃ  
PART NUMBER  
DATE CODE  
8
7
6
5
ꢂꢀ.650  
(0.ꢁ98ꢃ  
C87BT  
YWW  
EE  
6.807 0.ꢂꢀ7  
(0.ꢀ68 0.005ꢃ  
RoHS-COMPLIANCE  
INDICATOR  
ꢂ.905  
(0.075ꢃ  
3
EXTENDED DATECODE  
FOR LOT TRACKING  
0.6ꢁ  
(0.0ꢀ5ꢃ  
ꢂ.590 0.ꢂꢀ7  
(0.063 0.005ꢃ  
7°  
ꢁ5°  
0.ꢁ50  
(0.0ꢂ8ꢃ  
3.ꢂ80 0.ꢂꢀ7  
(0.ꢂꢀ5 0.005ꢃ  
0.750 0.ꢀ50  
0.ꢀ5ꢁ 0.ꢂ00  
(0.0ꢂ0 0.00ꢁꢃ  
0.ꢀ00 0.ꢂ00  
(0.008 0.00ꢁꢃ  
(0.0ꢀ95 0.0ꢂ0ꢃ  
0.38ꢂ 0.ꢂꢀ7  
(0.0ꢂ5 0.005ꢃ  
ꢂꢂ.50 0.ꢀ50  
(0.ꢁ53 0.0ꢂ0ꢃ  
ꢂ.ꢀ70  
(0.050ꢃ BSG  
Dimensions in millimeters and (inches).  
Note:  
Lead coplanarity = 0.1 mm (0.004 inches).  
Floating lead protrusion = 0.25mm (10mils) max.  
Figure 5. Package Outline Drawing  
3
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).  
Note: Non-halide flux should be used  
Regulatory Information  
The ACPL-C87AT and ACPL-C87BT are approved by the following organizations:  
UL  
CSA  
IEC/EN/DIN EN 60747-5-5  
UL 1577, component recognition  
Approved under CSA Component  
Acceptance Notice #5.  
IEC 60747-5-5  
EN 60747-5-5  
program up to V = 5kV  
ISO  
RMS  
DIN EN 60747-5-5  
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics  
Description  
Symbol  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
I – IV  
I – IV  
I - IV  
I - IV  
I - III  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000 Vrms  
Climatic Classification  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
VIORM  
VPR  
1414  
2651  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b  
VIORM X 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial discharge < 5 pC  
Input to Output Test Voltage, Method a  
VIORM X 1.6 = VPR, Type and Sample Test with tm = 10 sec, Partial discharge < 5 pC  
VPR  
2262  
8000  
Vpeak  
Vpeak  
Highest Allowable Overvoltage  
VIOTM  
(Transient Overvoltage tini = 60 sec)  
Safety-limiting values – maximum values allowed in the event of a failure,  
also see Figure 6.  
Case Temperature  
Input Current  
Ts  
175  
230  
600  
°C  
mA  
mW  
IS, INPUT  
PS,OUTPUT  
Output Power  
Insulation Resistance at TS, VIO = 500 V  
RS  
> 109  
W
700  
PS (mW)  
IS (mW)  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125 150 175 200  
TS – CASE TEMPERATURE – °C  
Figure 6. Dependence of safety limiting values on temperature  
4
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Minimum External Air Gap  
(External Clearance)  
L(101)  
8.0  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External  
Tracking (External Creepage)  
L(102)  
CTI  
8.0  
0.5  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between  
the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
> 175  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
(DIN BDE0109)  
Material Group (DIN VDE 0110)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
-55  
Max.  
Units  
°C  
Note  
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages  
TS  
150  
TA  
-40  
125  
°C  
VDD1, VDD2  
VIN  
-0.5  
-2.0  
-0.5  
-0.5  
6.0  
Volts  
Volts  
Volts  
Volts  
Input Voltage  
VDD1 + 0.5  
VDD1 + 0.5  
VDD2 + 0.5  
Shutdown Voltage  
Output Voltages  
VSD  
VOUT+, VOUT-  
Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
-40  
4.5  
3.0  
0
Max.  
125  
5.5  
Units  
°C  
Notes  
Ambient Operating Temperature  
Input Supply Voltage  
Output Supply Voltage  
Input Voltage  
VDD1  
VDD2  
VIN  
Volts  
Volts  
Volts  
Volts  
5.5  
2.0  
Shutdown Voltage  
VSD  
VDD1 – 0.5  
VDD1  
5
Electrical Specifications  
Unless otherwise noted, all typical values at T = 25 °C, V  
specifications are at recommended voltage supply conditions: 4.5V < V  
= V  
= 5 V, V = 0 to 2 V, V = 0 V; all Minimum/Maximum  
A
DD1  
DD2 IN SD  
< 5.5V, 4.5V < V  
< 5.5V  
DD2  
DD1  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Fig.  
Note  
POWER SUPPLIES  
Input Supply Current  
IDD1  
10.5  
20  
15  
mA  
VSD = 0 V  
VSD = 5 V  
18, 19  
Input Supply Current  
(Shutdown Mode)  
IDD1(SD)  
mA  
Output Supply Current  
IDD2  
G0  
6.5  
1
12  
mA  
V/V  
18, 20  
8
DC CHARACTERISTICS  
Gain  
0.995  
0.99  
1.005  
TA = 25 °C,  
VIN = 0 – 2 V,  
VDD1 = VDD2 = 5.0 V  
1
1
(ACPL-C87BT, +/- 0.5%)  
Gain  
G1  
1
1.01  
V/V  
TA = 25 °C,  
8, 11  
(ACPL-C87AT, +/- 1%)  
VIN = 0 – 2 V,  
VDD1 = VDD2 = 5.0 V  
Magnitude of Gain  
Change vs Temperature  
|dG/dTA|  
|dG/dVDD1  
|dG/dVDD2  
NL  
25  
ppm/°C TA = -40 °C to +125 °C  
11  
Magnitude of Gain  
Change vs VDD1  
|
|
0.05  
0.02  
0.05  
-0.3  
21  
%/V  
%/V  
%
TA = 25 °C  
TA = 25 °C  
12  
Magnitude of Gain  
Change vs VDD2  
12, 13  
15, 16  
Nonlinearity  
0.12  
10  
VIN = 0 to 2 V,  
TA = -40 °C to +125 °C  
Input Offset Voltage  
VOS  
-10  
mV  
VIN is shorted to GND1,  
TA = 25 °C  
7, 9,  
10  
Magnitude of Input  
Offset Change vs.  
Temperature  
|dVOS/dTA|  
mV/°C  
VIN is shorted to GND1,  
TA = -40 °C to +125 °C  
7, 9  
INPUTS AND OUTPUTS  
Full-Scale Differential  
Voltage Input Range  
FSR  
2.46  
V
Referenced to GND1  
VIN = 0 V  
Input Bias Current  
IIN  
-0.1  
-0.001  
1000  
0.1  
mA  
22  
22  
Equivalent Input  
Impedance  
RIN  
MW  
Output Common-Mode  
Voltage  
VOCM  
1.23  
V
VIN =0 V, VSD = 0 V  
VOUT+ Range  
VOUT - Range  
VOUT+  
VOUT-  
|IOSC  
VOCM+1.23  
VOCM-1.23  
30  
V
VIN = 2.5 V  
VIN = 2.5 V  
V
Output Short-Circuit  
Current  
|
mA  
VOUT+ or VOUT-,  
shorted to GND2 or VDD2  
Output Resistance  
ROUT  
36  
W
VIN = 0 V  
6
Electrical Specifications (continued)  
Unless otherwise noted, all typical values at T = 25 °C, V  
specifications are at recommended voltage supply conditions: 4.5V < V  
= V  
= 5 V, V = 0 to 2 V, V = 0 V; all Minimum/Maximum  
IN SD  
A
DD1  
DD2  
< 5.5V, 4.5V < V  
< 5.5V  
DD1  
DD2  
Parameter  
Symbol Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Fig.  
Note  
AC CHARACTERISTICS  
Small-Signal Bandwidth (-3 dB)  
VOUT Noise  
f–3 dB  
NOUT  
tPD10  
100  
1.3  
2.2  
kHz  
mVRMS VIN = 2 V; BW = 1 kHz  
23  
5
Input to Output Propagation  
Delay (10%-10%)  
3.5  
6.0  
7.0  
4.0  
ms  
ms  
ms  
ms  
VIN = 0 to 2 V Step  
VIN = 0 to 2 V Step  
VIN = 0 to 2 V Step  
Step Input  
21, 26  
Input to Output Propagation  
Delay (50%-50%)  
tPD50  
tPD90  
tR/F  
3.7  
5.3  
2.7  
21, 26  
21, 26  
Input to Output Propagation  
Delay (90%-90%)  
Output Rise / Fall Time  
(10%-90%)  
Shutdown Time  
tSD  
25  
ms  
ms  
dB  
25  
25  
Shutdown Recovery Time  
Power Supply Rejection  
tON  
PSR  
150  
-78  
1 Vp-p, 1 kHz sine wave  
ripple on VDD1  
,
differential output  
Common Mode Transient  
Immunity  
CMTI  
10  
15  
kV/ms  
VCM = 1 kV, TA = 25 °C  
24  
2
Package Characteristics  
Unless otherwise noted, all typical values are at T = 25 °C; all Minimum/Maximum specifications are at Recommended  
A
Operating Conditions.  
Parameter  
Symbol Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage *  
VISO  
5000  
VRMS  
RH < 50%, t = 1 min.,  
TA = 25 °C  
3, 4  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1014  
0.5  
W
VI-O = 500 VDC  
f =1 MHz  
3
3
pF  
*
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating.  
Notes:  
1. Gain is defined as the slope of the best-fit line of differential output voltage (V  
- V  
) versus input voltage over the nominal range, with offset  
OUT+ OUT-  
error adjusted. 0.5% Gain tolerance for ACPL-C87BT and 1% tolerance for ACPL-C87AT.  
2. Common mode transient immunity (CMTI) is tested by applying a fast rising/falling voltage pulse across GND1 (pin 4) and GND2 (pin 5). The output  
glitch observed is less than 0.2 V from the average output voltage for less than 1 ms.  
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.  
4. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage > 6000 V  
5. Noise is measured at the output of the differential to single ended post amplifier.  
for 1 second.  
RMS  
7
Typical Characteristic Plots and Test Conditions  
All ±3s plots are based on characterization test result at the point of product release. For guaranteed specification, refer  
to the respective Electrical Specifications section.  
VDD1  
VDD2  
VDD1  
VDD2  
8
8
1
2
1
2
0.1 µF  
0.1 µF  
V VOLTMETER  
0.1 µF  
7
6
5
7
6
5
VIN  
ACPL-C87AT/BT  
ACPL-C87AT/BT  
V VOLTMETER  
3
4
0.1 µF  
3
4
GND1  
GND2  
GND1  
GND2  
Figure 7. Input Offset Voltage Test Circuit  
Figure 8. Gain and Nonlinearity Test Circuit  
10  
8
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
vs Vdd1  
vs Vdd2  
+3 SIGMA  
MEAN  
-3 SIGMA  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-40 -20  
0
20  
40  
60  
80 100 120 140  
4.5  
4.75  
5
5.25  
5.5  
TA - TEMPERATURE - °C  
VDD - SUPPLY VOLTAGE - V  
Figure 9. Input Offset Voltage vs Temperature  
Figure 10. Input Offset vs Supply Voltage  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
vs Vdd1  
vs Vdd2  
MEAN  
0.992  
0.990  
0.988  
+3 SIGMA  
-
3 SIGMA  
-40 -20  
0
20  
40 60  
TA - TEMPERATURE - °C  
80 100 120 140  
4.5  
4.75  
5
5.25  
5.5  
VDD - SUPPLY VOLTAGE - V  
Figure 11. Gain vs Temperature  
Figure 12. Gain vs Supply Voltage  
8
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
0.988  
0.08  
0.07  
0.06  
0.05  
0.04  
VDD2 = 3.3 V  
VDD2 = 5 V  
vs Vdd1  
vs Vdd2  
VDD2 = 5.5 V  
-40 -20  
0
20 40 60 80 100 120 140  
TA - TEMPERATURE - °C  
4.5  
4.75  
5
5.25  
5.5  
VDD - SUPPLY VOLTAGE - V  
Figure 13. Gain vs Temperature at Different VDD2  
Figure 14. Nonlinearity vs Supply Voltage  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VDD2 = 3.3 V  
VDD2 = 5.0 V  
VDD2 = 5.5 V  
MEAN  
+3 SIGMA  
-3 SIGMA  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 15. Nonlinearity vs Temperature  
Figure 16. Nonlinearity vs Temperature at Different VDD2  
12  
2.5  
2
VOUT+  
VOUT-  
IDD1  
IDD2  
10  
8
1.5  
1
6
0.5  
0
4
0
1
2
3
4
5
6
0
0.5  
1
1.5  
2
2.5  
VIN - INPUT VOLTAGE - V  
VIN - INPUT VOLTAGE - V  
Figure 17. Output Voltage vs Input Voltage  
Figure 18. Typical Supply Current vs Input Voltage.  
9
9
8
7
6
5
4
14  
13  
12  
11  
10  
9
8
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
V
V
V
= 3.3 V  
= 5.0 V  
= 5.5 V  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
7
6
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 19. Typical Input Supply Current vs Temperature at Different VDD1  
Figure 20. Typical Output Supply Current vs Temperature at Different VDD2  
6
5
4
3
2
0.5  
0
-0.5  
-1  
T
T
T
50-10  
50-50  
50-90  
PD  
PD  
PD  
-1.5  
-2  
1
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
0
0.5  
1
1.5  
2
2.5  
TA - TEMPERATURE - °C  
VIN - INPUT VOLTAGE - V  
Figure 21. Typical Propagation Delay vs Temperature  
Figure 22. Input Current vs Input Voltage  
16  
0
-20  
-40  
-60  
-80  
V
= 2.0 V  
IN  
14  
12  
10  
8
-100  
-120  
-140  
-160  
-180  
-200  
6
4
2
0
1000  
10000  
100000  
Frequency (Hz)  
1000000  
0
20  
40  
60  
80  
100  
FILTER BANDWIDTH - kHz  
Figure 23. AC Noise vs Filter Bandwidth  
Figure 24. Phase vs Frequency  
10  
5 V  
5 V  
1 nF  
20 k  
39  
0.1 µF  
0.1 µF  
20 kΩ  
20 kΩ  
VOUT  
10 nF  
1 nF  
20 kΩ  
ACPL-C87AT/BT  
+
VCM  
Figure 25. Common Mode Transient Immunity Test Circuit  
5 V  
VSHDN  
0 V  
2 V  
VIN  
tSD  
tON  
0 V  
2.4 V  
VOUT+ – VOUT-  
0 V  
-2.4 V  
Figure 26. Shutdown Timing Diagram  
2 V  
VIN  
0 V  
2 V  
90%  
50%  
1 V  
VO+ – VO-  
10%  
0 V  
TPD10  
TPD50  
TPD90  
Figure 27. Propagation Delay Diagram  
11  
Application Information  
The circuit shown in the Figure 28 is a high voltage sensing  
application using ACPL-C87AT/BT (isolation amplifier)  
and ACPL-M49T (optocoupler). The high voltage input is  
sensed by the precision voltage divider resistors R1 and  
sensing resistor R2. The ratio of the voltage divider is de-  
termined by the allowable input range of the isolation  
amplifier (0 to 2 V). This small analog input goes through  
a 39 W and 10 nF anti aliasing filter (ACPL-C87AT/BT utilize  
SD modulation).  
Inside the isolation amplifier: the analog input signal is  
digitized and optically transmitted to the output side of  
the amplifier. The detector will then decode the signal  
and converted back to analog signal. The output differen-  
tial signals of ACPL-C87AT/BT go through an op-amp to  
convert the differential signals to a single ended output.  
SWITCH  
MODE  
POWER  
SUPPLY  
R12  
10 k  
V+  
Battery Cells  
C7 1 nF  
R13  
ACPL-M49T  
20 Ω  
R1  
R2  
R7 20 kΩ  
C4  
0.1 µF  
C2  
0.1 µF  
M
C
R4 20 kΩ  
U
V
OUT  
R3 39 Ω  
V-  
R5 20 kΩ  
C6  
1 nF  
R6 20 kΩ  
C1  
10 nF  
ACPL-C87AT/BT  
Vref  
0.1 µF  
Figure 28. Typical Application Circuit for Battery Voltage Sensing  
Bypass Capacitor  
0.1 mF bypass capacitor must be connected as near as  
possible between V  
(Figure 29).  
to GND1 and V  
to GND2  
DD1  
DD2  
C2  
0.1 µF  
C4  
0.1 µF  
Anti-aliasing Filter  
39 W resistor and 10 nF capacitor are recommended to be  
ACPL-C87AT/BT  
connected to the input (V ) as anti-aliasing filter because  
IN  
Fig 29. Bypass Capacitors C2, C4  
ACPL-C87AT/BT uses sigma data modulation (Figure 30).  
The value of the capacitor must be greater than 1 nF and  
bandwidth must be less than 410 kHz.  
R3  
39  
R4  
20 k  
C1  
10 nF  
R5  
20 kΩ  
ACPL-C87AT/BT  
ACPL-C87AT/BT  
Fig 31. Loading Resistors R4, R5  
Fig 30. Anti aliasing Filter C1 , R3  
12  
Designing the input resistor divider  
1. Choose the sensing current (Isense) for bus voltage. E.g., 1 mA  
2. Determine R2,  
Voltage input range  
2 V  
1 mA  
R =  
2
=
= 2 kΩ  
I
SENSE  
3. Determine R1 using voltage divider formula:  
R
2
(V+ – V-) •  
= Voltage input range, or  
R + R  
1
2
(V+ – V-) R  
Voltage input range  
2
R =  
1
– R  
2
where (V+ – V-) is the high voltage input , E.g.: 0 to 600 V,  
(600 V – 0 V) 2 kΩ  
R =  
1
– 2 k= 598 kΩ  
2 V  
To reduce the voltage stress of a sole resistor, R1 can be a series of several resistors.  
Post Amplifier Circuit  
Shutdown Function  
The output of ACPL-C87AT/BT is a differential output ACPL-C87AT/BT has a shutdown function to disable the  
(V and V pins). A post amplifier circuit is needed device and make the output (V - V ) low. A voltage  
OUT+  
OUT-  
OUT+ OUT-  
to convert the differential output to single ended output of 5V on SHDN pin will shutdown the device producing an  
with a reference ground. The post amplifier circuit can output (V - V ) of -2.6 V. To be able to control the  
OUT+  
OUT-  
also be configured to establish a desired gain if needed.  
It also functions as filter to high frequency chopper  
noise. The bandwidth can be adjusted by changing the  
feedback resistor and capacitor (R7 and C7). Adjusting this  
bandwidth to a minimum level helps minimize the output  
noise.  
SHDN function (example, from microprocessor), an opto-  
coupler (ACPL-M49T) is used.  
Total System Error  
Total system error is the sum of the resistor divider error,  
isolation amplifier error and post amplifier error. The  
resistor divider error is due to the accuracy of the resistors  
used. It is recommended to use high accuracy resistor of  
0.1%. Post Amplifier Error is due to the resistor matching  
and the voltage offset characteristic which can be found  
on the supplier datasheet.  
Post op-amp resistive loading (R4, R5) should be equal  
or greater than 20 kW (Figure 31). Resistor values lower  
than this can affect the overall system error due to output  
impedance of isolation amplifier.  
The application circuit in Figure 28 features two op-amps  
to improve the linearity at voltage near 0 V caused by the  
limited headroom of the amplifier. The second op-amp  
can set the reference voltage to above 0 V.  
Isolation Amplifier Error is shown in the table below:  
Isolation Amplifier Error Calculation  
3s distribution or specification *  
Typical ACPL-C87AT  
ACPL-C87BT  
Fig  
A Error due to offset voltage (25 °C)  
0.015% 0.5%  
0.5%  
Offset Voltage /Recommended specs  
input voltage range (2.0 V)  
B Error due to offset voltage drift  
(across temperature)  
0.1% 0.4%  
0.4%  
Offset Voltage /Recommended  
input voltage range (2.0 V)  
C Error due to gain tolerance (25 °C)  
0%  
1%  
0.5%  
specs  
specs  
D Error due to gain drift (across temperature)  
0.25% 0.8%  
0.8%  
E
Error due to Nonlinearity (across temperature) 0.05% 0.12%  
0.12%  
2.32%  
1.82%  
1.32%  
F
0.415% 2.82%  
Total uncalibrated error (A+B+C+D+E)  
Total offset calibrated error (F – A)  
G
H
0.4%  
0.4%  
2.32%  
1.32%  
Total gain and offset calibrated error (G – C)  
* 3s distribution is based on corner wafers.  
13  
PCB Layout Recommendations  
GND1 and GND2 must be totally isolated in the PCB  
layout (Figure 33). Distance of separation depends on  
the high voltage level of the equipment. The higher the  
voltage level the larger the distance of separation needed.  
Designers can refer to specific IEC standard of their  
equipment for the creepage/clearance requirements.  
Bypass capacitor C2 and C4 must be located close to  
ACPL-C87xT Pins 1 and Pin 8 respectively. Grounded  
pins of C4 and C5 can be connected by vias through the  
respective ground layers. If the design has multiple layers,  
a dedicated layer for ground is recommended for flexibility  
in component placement.  
R1 which is directly connected to the high voltage input  
must have sufficient clearance with the low voltage com-  
ponents. Clearance depends on the high voltage level of  
the input. Designers can refer to specific IEC standards of  
their equipment for the clearance requirements.  
Anti aliasing filters R3 and C1 also need to be connected as  
close as possible to Pin 2 of ACPL-C87AT/BT. See Figure 32  
for actual component placement of the anti-aliasing filter  
and bypass capacitors.  
R1 (Series Resistors)  
Isolation  
BYPASS CAPACITORS  
Clearance  
GND1  
GND2  
ANTI ALIASING FILTER  
ACPL-C87AT/BT  
Figure 32. Component Placement Recommendation  
Figure 33. Bottom Layer Layout Recommendation  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.  
AV02-3563EN - August 2, 2013  

相关型号:

ACPL-C87B

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-000E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-500E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
BOARDCOM

ACPL-C87X

用于电压传感的光耦隔离放大器
AVAGO

ACPL-CRDBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-H312

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8
BOARDCOM

ACPL-H312-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, PLASTIC, SOP-6
AVAGO

ACPL-H342

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Active Miller Clamp, Rail-to-Rail Output Voltage and UVLO in Stretched SO8
AVAGO

ACPL-H342-000E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-060E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO