ACPL-C87AT [BOARDCOM]

Automotive High Precision DC Voltage Isolation Sensor;
ACPL-C87AT
型号: ACPL-C87AT
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

Automotive High Precision DC Voltage Isolation Sensor

文件: 总16页 (文件大小:1743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
ACPL-C87AT/ACPL-C87BT  
Automotive High Precision DC Voltage Isolation  
Sensor  
Description  
Features  
®
The Broadcom ACPL-C87AT/C87BT isolation sensors  
Unity gain  
utilize superior optical coupling technology, with sigma-delta  
(-) analog-to-digital converter, chopper stabilized  
amplifiers, and a fully differential circuit topology to provide  
unequaled isolation-mode noise rejection, low offset, high  
gain accuracy and stability.  
± 0.5% (ACPL-C87BT) and ± 1% (ACPL-C87AT) gain  
tolerance @ 25°C  
–0.3 mV Input offset voltage  
0.05% non linearity  
25 ppm/°C gain drift vs. temperature  
100 kHz bandwidth  
ACPL-C87AT (±1% gain tolerance) and ACPL-C87BT  
(±0.5% gain tolerance) are designed for high precision DC  
voltage sensing in electronic motor drives, DC/DC and  
AC/DC converter and battery monitoring system. The  
ACPL-C87AT/C87BT features high input impedance and  
operate with full span of analog input voltage up to 2.46V.  
The shutdown feature provides power saving and can be  
controlled from external source, such as microprocessor.  
0 to 2V nominal input range  
Qualified to AEC-Q100 Grade 1 test guidelines  
Operating temperature: –40°C to +125°C  
Shutdown feature (active high)  
15 kV/µs common-mode rejection at V  
= 1 kV  
CM  
Working voltage, V  
= 1414 V  
peak  
IORM  
Compact, surface mount stretched SO8 package  
Worldwide safety approval:  
The high common-mode transient immunity (15 kV/µs) of  
the ACPL-C87AT/C87BT maintains the precision and  
stability needed to accurately monitor DC rail voltage in high  
noise motor control environments. This galvanic safe  
isolation solution is delivered in a compact, surface mount  
stretched SO-8 (SSO-8) package that meets worldwide  
regulatory safety standards.  
– UL 1577 (5000 V  
– CSA  
/1 minute)  
RMS  
– IEC/EN/DIN EN 60747-5-5  
Applications  
Automotive BMS battery pack voltage sensing  
Automotive DC/DC converter voltage sensing  
Automotive motor inverter DC bus voltage sensing  
2
®
Broadcom R Coupler isolation products provide the  
reinforced insulation and reliability needed for critical  
automotive and high temperature industrial applications.  
Automotive AC/DC (charger) DC output voltage  
sensing  
Isolation interface for temperature sensing  
General-purpose voltage sensing and monitoring  
CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage and/or  
degradation which may be induced by ESD.  
Broadcom  
AV02-3564EN  
July 24, 2018  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Functional Diagram  
Figure 1: Functional Diagram  
VDD1  
VDD2  
8
7
6
1
2
VIN  
VOUT+  
VOUT-  
0.1 PF  
0.1 PF  
SHDN  
3
4
5
SHIELD  
GND1  
GND2  
A 0.1-µF bypass capacitor must be connected between pin 1 and pin 4, and pin 5 and pin 8 as shown.  
Figure 2: Functional Diagram 2  
VDD1  
VDD2  
VIN  
VOUT = VOUT+ − VOUT-  
0 − 2 V  
VOUT+  
VOUT-  
0 − 2 V  
VIN  
SHDN  
Isolation  
GND1  
GND2  
Figure 3: Typical Voltage Sensing Circuit  
5 V  
15 V  
V+  
MEV1S1505DC  
IN OUT  
5 V  
Gate  
Driver  
1 nF  
R1  
M
0.1 PF  
20 k:  
39 :  
Gate  
Driver  
0.1 PF  
R4 20 k:  
R5 20 k:  
VOUT  
R2  
10 nF  
V-  
1 nF  
20 k:  
ACPL-C87AT/BT  
Broadcom  
AV02-3564EN  
2
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Figure 4: Package Pinout  
1
2
8
7
VDD1  
VIN  
VDD2  
VOUT+  
SHDN  
GND1  
VOUT-  
3
4
6
5
GND2  
Pin Description  
Pin Number Pin Name  
Description  
Pin Number Pin Name  
Description  
1
VDD1  
Input power supply  
8
VDD2  
Output power supply  
When VDD1 = 0, then VOUT+ = 0V, VOUT- = 2.6V  
Voltage input, full scale range = 2.46V  
2
3
VIN  
7
6
VOUT+  
VOUT-  
Positive output voltage  
Negative output voltage  
SHDN  
Shutdown (active high)  
When active, then VOUT+ = 0V, VOUT- = 2.6V  
4
GND1  
Input side ground  
5
GND2  
Output side ground  
Ordering Information  
Option  
(RoHS  
UL 5000 Vrms  
/
Surface  
Mount  
IEC/EN/DIN  
Part Number  
ACPL-C87AT  
ACPL-C87BT  
Compliant)  
Package  
Tape and Reel 1 Minute rating EN 60747-5-5  
Quantity  
-000E  
-500E  
Stretched  
SO-8  
X
X
X
X
X
X
80 per tube  
X
1000 per reel  
To order, choose a part number from the part number column and combine with the desired option from the option column  
to form an order entry.  
Example:  
ACPL-C87AT-500E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with RoHS compliant.  
Contact your Broadcom sales representative or authorized distributor for information.  
Broadcom  
AV02-3564EN  
3
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Package Outline Drawing (Stretched SO8)  
Figure 5: Package Outline Drawing  
RECOMMENDED LAND PATTERN  
5.850 0.254  
(0.230 0.010ꢀ  
PART NUMBER  
DATE CODE  
8
7
6
5
12.650  
(0.498ꢀ  
C87BT  
YWW  
EE  
6.807 0.127  
(0.268 0.005ꢀ  
RoHS-COMPLIANCE  
INDICATOR  
1.905  
(0.075ꢀ  
1
2
3
4
EXTENDED DATECODE  
FOR LOT TRACKING  
0.64  
(0.025ꢀ  
1.590 0.127  
(0.063 0.005ꢀ  
7°  
45°  
0.450  
(0.018ꢀ  
3.180 0.127  
(0.125 0.005ꢀ  
0.750 0.250  
0.254 0.100  
(0.010 0.004ꢀ  
0.200 0.100  
(0.008 0.004ꢀ  
(0.0295 0.010ꢀ  
0.381 0.127  
(0.015 0.005ꢀ  
11.50 0.250  
(0.453 0.010ꢀ  
1.270  
(0.050ꢀ BSG  
Dimensions in millimeters and (inches).  
Note:  
Lead coplanarity = 0.1 mm (0.004 inches).  
Floating lead protrusion = 0.25mm (10mils) max.  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).  
NOTE: Use non-halide flux.  
Regulatory Information  
The ACPL-C87AT and ACPL-C87BT are approved by the following organizations.  
UL  
CSA  
IEC/EN/DIN EN 60747-5-5  
IEC 60747-5-5  
UL1577, component recognition program up Approved under CSA Component  
to VISO = 5kVRMS  
Acceptance Notice #5.  
EN 60747-5-5  
DIN EN 60747-5-5  
Broadcom  
AV02-3564EN  
4
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics  
Description  
Symbol  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000 Vrms  
Climatic Classification  
I – IV  
I – IV  
I – IV  
I – IV  
I – III  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
VIORM  
VPR  
1414  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b  
2651  
2262  
8000  
VIORM × 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial discharge <  
5 pC  
Input to Output Test Voltage, Method a  
VPR  
Vpeak  
VIORM × 1.6 = VPR, Type and Sample Test with tm = 10 sec, Partial discharge <  
5 pC  
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)  
VIOTM  
Vpeak  
Safety-limiting values – maximum values allowed in the event of a failure, also see  
Figure 6.  
Case Temperature  
Input Current  
TS  
IS,INPUT  
PS,OUTPUT  
RS  
175  
230  
600  
°C  
mA  
mW  
Output Power  
> 109  
Insulation Resistance at TS, VIO = 500V  
Figure 6: Dependence of Safety-Limiting Values on Temperature  
700  
PS (mWꢀ  
IS (mWꢀ  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125 150 175 200  
TS – CASE TEMPERATURE – °C  
Broadcom  
AV02-3564EN  
5
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Value  
Units  
Conditions  
Minimum External Air Gap  
(External Clearance)  
L(101)  
8.0  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Minimum External Tracking  
(External Creepage)  
L(102)  
CTI  
8.0  
0.5  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Through insulation distance conductor to conductor,  
usually the straight line distance thickness between the  
emitter and detector.  
Tracking Resistance (Comparative  
Tracking Index)  
> 175  
IIIa  
Volts  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group (DIN BDE0109)  
Material Group (DIN VDE 0110)  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
Max.  
150  
Units  
°C  
Note  
–55  
–40  
Ambient Operating Temperature  
Supply Voltages  
TA  
125  
°C  
VDD1, VDD2  
VIN  
–0.5  
–2.0  
–0.5  
–0.5  
6.0  
Volts  
Volts  
Volts  
Volts  
Input Voltage  
VDD1 + 0.5  
VDD1 + 0.5  
VDD2 + 0.5  
Shutdown Voltage  
Output Voltages  
VSD  
V
OUT+, VOUT-  
Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature  
Input Supply Voltage  
Output Supply Voltage  
Input Voltage  
Symbol  
TA  
Min.  
Max.  
125  
5.5  
Units  
°C  
Notes  
-40  
VDD1  
VDD2  
VIN  
4.5  
Volts  
Volts  
Volts  
Volts  
3.0  
0
5.5  
2.0  
Shutdown Voltage  
VSD  
VDD1 – 0.5  
VDD1  
Broadcom  
AV02-3564EN  
6
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Electrical Specifications  
Unless otherwise noted, all typical values at T = 25°C, V  
= V  
= 5V, V = 0 to 2V, V = 0V; all Minimum/Maximum  
DD2 IN SD  
A
DD1  
specifications are at recommended voltage supply conditions: 4.5V ≤ V  
≤ 5.5V, 4.5V ≤ V  
≤ 5.5V.  
DD2  
DD1  
Parameter  
Power Supplies  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Figure Note  
Input Supply Current  
IDD1  
10.5  
20  
15  
mA VSD = 0V  
18, 19  
Input Supply Current  
(Shutdown Mode)  
IDD1(SD)  
µA  
VSD = 5V  
Output Supply Current  
IDD2  
6.5  
12  
mA  
18, 20  
DC Characteristics  
a
Gain (ACPL-C87BT, ± 0.5%)  
G0  
G1  
0.995  
0.99  
1
1
1.005  
1.01  
V/V TA = 25°C, VIN = 0 to 2 V,  
VDD1 = VDD2 = 5.0V  
8
a
Gain (ACPL-C87AT, ± 1%)  
V/V TA = 25°C, VIN = 0 to 2 V, 8, 11  
VDD1 = VDD2 = 5.0V  
Magnitude of Gain Change vs.  
Temperature  
|dG/dTA|  
25  
ppm/°C TA = -40°C to +125°C  
11  
Magnitude of Gain Change vs.  
VDD1  
|dG/dVDD1  
|
|
0.05  
%/V TA = 25°C  
12  
Magnitude of Gain Change vs.  
VDD2  
|dG/dVDD2  
NL  
0.02  
0.05  
%/V TA = 25 °C  
12, 13  
15, 16  
Nonlinearity  
0.12  
%
VIN = 0 to 2V,  
TA = –40°C to +125°C  
Input Offset Voltage  
VOS  
–10  
-0.3  
21  
10  
mV VIN is shorted to GND1,  
TA = 25°C  
7, 9, 10  
7, 9  
Magnitude of Input Offset Change |dVOS/dTA|  
vs. Temperature  
µV/°C VIN is shorted to GND1,  
TA = –40°C to +125°C  
Inputs and Outputs  
Full-Scale Differential Voltage Input  
Range  
FSR  
2.46  
V
Referenced to GND1  
VIN = 0V  
Input Bias Current  
IIN  
–0.1  
-0.001  
1000  
0.1  
µA  
MΩ  
V
22  
22  
Equivalent Input Impedance  
Output Common-Mode Voltage  
VOUT+ Range  
RIN  
VOCM  
VOUT+  
VOUT-  
1.23  
VIN = 0V, VSD = 0V  
VIN = 2.5V  
VOCM+1.23  
VOCM – 1.23  
30  
V
VOUT - Range  
V
VIN = 2.5V  
Output Short-Circuit Current  
|IOSC  
|
mA VOUT+ or VOUT-,  
shorted to GND2 or VDD2  
Output Resistance  
ROUT  
36  
VIN = 0V  
a. Gain is defined as the slope of the best-fit line of differential output voltage (VOUT+ – VOUT-) versus input voltage over the nominal range, with  
offset error adjusted. A 0.5% gain tolerance for ACPL-C87BT, and a 1% tolerance for ACPL-C87AT.  
Broadcom  
AV02-3564EN  
7
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Electrical Specifications (Continued)  
Unless otherwise noted, all typical values at T = 25°C, V  
= V  
= 5V, V = 0 to 2V, V = 0V; all Minimum/Maximum  
DD2 IN SD  
A
DD1  
specifications are at recommended voltage supply conditions: 4.5V ≤ V  
≤ 5.5V, 4.5V ≤ V  
≤ 5.5V.  
DD2  
DD1  
Parameter  
AC Characteristics  
Small-Signal Bandwidth (–3 dB)  
OUT Noise  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Figure Note  
f–3 dB  
NOUT  
tPD10  
100  
1.3  
2.2  
kHz  
a
V
mVRMS VIN = 2V; BW = 1 kHz  
23  
Input to Output Propagation Delay  
(10% to 10%)  
3.5  
µs  
µs  
µs  
µs  
VIN = 0 to 2V Step  
VIN = 0 to 2V Step  
VIN = 0 to 2V Step  
Step Input  
21, 26  
21, 26  
21, 26  
Input to Output Propagation Delay  
(50% to 50%)  
tPD50  
tPD90  
tR/F  
3.7  
5.3  
2.7  
6.0  
7.0  
4.0  
Input to Output Propagation Delay  
(90% to 90%)  
Output Rise/Fall Time  
(10% to 90%)  
Shutdown Time  
tSD  
tON  
25  
µs  
µs  
dB  
25  
25  
Shutdown Recovery Time  
Power Supply Rejection  
150  
–78  
PSR  
1 Vp-p, 1 kHz sine wave  
ripple on VDD1, differential  
output  
b
Common Mode Transient Immunity  
CMTI  
10  
15  
kV/µs VCM = 1 kV, TA = 25°C  
24  
a. Noise is measured at the output of the differential to single ended post amplifier.  
b. Common mode transient immunity (CMTI) is tested by applying a fast rising/falling voltage pulse across GND1 (pin 4) and GND2 (pin 5). The  
output glitch observed is less than 0.2V from the average output voltage for less than 1 µs.  
Package Characteristics  
Unless otherwise noted, all typical values are at T = 25°C; all Minimum/Maximum specifications are at Recommended  
A
Operating Conditions.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Figure Note  
b, c  
Input-Output Momentary Withstand  
Voltagea  
VISO  
5000  
VRMS RH < 50%, t = 1 minute,  
TA = 25°C  
b
b
1014  
0.5  
Input-Output Resistance  
RI-O  
CI-O  
VI-O = 500 VDC  
f =1 MHz  
Input-Output Capacitance  
pF  
a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating.  
b. Device considered a two terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 VRMS for 1 second.  
Broadcom  
AV02-3564EN  
8
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Typical Characteristic Plots and Test Conditions  
All ±3plots are based on characterization test result at the point of product release. For guaranteed specification, refer to  
the respective Electrical Specifications section.  
Figure 7: Input Offset Voltage Test Circuit  
Figure 8: Gain and Nonlinearity Test Circuit  
VDD1 VDD2  
VDD1 VDD2  
8
8
1
2
1
2
0.1 PF  
0.1 PF  
0.1 PF  
7
6
5
7
6
5
VIN  
ACPL-C87AT/BT  
ACPL-C87AT/BT  
V
VOLTMETER  
3
4
0.1 PF  
3
4
V
VOLTMETER  
GND1  
GND2  
GND1  
GND2  
Figure 9: Input Offset Voltage vs. Temperature  
Figure 10: Input Offset vs. Supply Voltage  
10  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
vs Vdd1  
vs Vdd2  
8
6
+3 SIGMA  
MEAN  
-3 SIGMA  
4
2
0
-2  
-4  
-6  
-8  
-10  
-40 -20  
0
20  
40  
60  
80 100 120 140  
4.5  
4.75  
5
5.25  
5.5  
TA - TEMPERATURE - °C  
VDD - SUPPLY VOLTAGE - V  
Figure 11: Gain vs. Temperature  
Figure 12: Gain vs. Supply Voltage  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
vs Vdd1  
vs Vdd2  
MEAN  
0.992  
0.990  
0.988  
+3 SIGMA  
-
3 SIGMA  
-40 -20  
0
20  
40 60  
TA - TEMPERATURE - °C  
80 100 120 140  
4.5  
4.75  
5
5.25  
5.5  
VDD - SUPPLY VOLTAGE - V  
Broadcom  
AV02-3564EN  
9
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Figure 13: Gain vs Temperature at Different VDD2  
Figure 14: Nonlinearity vs. Supply Voltage  
1.006  
0.08  
0.07  
0.06  
0.05  
0.04  
VDD2 = 3.3 V  
VDD2 = 5 V  
VDD2 = 5.5 V  
vs Vdd1  
vs Vdd2  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
0.988  
-40 -20  
0
20 40 60 80 100 120 140  
TA - TEMPERATURE - °C  
4.5  
4.75  
5
5.25  
5.5  
VDD - SUPPLY VOLTAGE - V  
Figure 15: Nonlinearity vs. Temperature  
Figure 16: Nonlinearity vs. Temperature at Different VDD2  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.12  
VDD2 = 3.3 V  
VDD2 = 5.0 V  
VDD2 = 5.5 V  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
MEAN  
+3 SIGMA  
-3 SIGMA  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 17: Output Voltage vs. Input Voltage  
Figure 18: Typical Supply Current vs. Input Voltage  
12  
2.5  
VOUT+  
VOUT-  
IDD1  
IDD2  
2
1.5  
1
10  
8
6
0.5  
0
4
0
1
2
3
4
5
6
0
0.5  
1
1.5  
2
2.5  
VIN - INPUT VOLTAGE - V  
VIN - INPUT VOLTAGE - V  
Broadcom  
AV02-3564EN  
10  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Figure 19: Typical Input Supply Current vs. Temperature at  
Different VDD1  
Figure 20: Typical Output Supply Current vs. Temperature at  
Different VDD2  
9
8
7
6
14  
13  
12  
11  
10  
9
8
V
V
V
= 4.5 V  
= 5.0 V  
= 5.5 V  
V
V
V
= 3.3 V  
= 5.0 V  
= 5.5 V  
DD1  
DD1  
DD1  
DD2  
DD2  
DD2  
5
4
7
6
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 21: Typical Propagation Delay vs. Temperature  
Figure 22: Input Current vs. Input Voltage  
6
5
4
3
2
0.5  
0
-0.5  
-1  
T
T
T
50-10  
50-50  
50-90  
PD  
PD  
PD  
-1.5  
-2  
1
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
0
0.5  
1
1.5  
2
2.5  
TA - TEMPERATURE - °C  
VIN - INPUT VOLTAGE - V  
Figure 23: AC Noise vs. Filter Bandwidth  
Figure 24: Phase vs. Frequency  
16  
0
-20  
-40  
-60  
-80  
V
= 2.0 V  
IN  
14  
12  
10  
8
-100  
-120  
-140  
-160  
-180  
-200  
6
4
2
0
1000  
10000  
100000  
Frequency (Hzꢀ  
1000000  
0
20  
40  
60  
80  
100  
FILTER BANDWIDTH - kHz  
Broadcom  
AV02-3564EN  
11  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Figure 25: Common Mode Transient Immunity Test Circuit  
5 V  
5 V  
1 nF  
20 k:  
39 :  
0.1 PF  
0.1 PF  
20 k:  
20 k:  
VOUT  
10 nF  
1 nF  
20 k:  
ACPL-C87AT/BT  
+
VCM  
Figure 26: Shutdown Timing Diagram  
5 V  
VSHDN  
0 V  
2 V  
VIN  
tSD  
tON  
0 V  
2.4 V  
VOUT+ – VOUT-  
0 V  
-2.4 V  
Figure 27: Propagation Delay Diagram  
2 V  
VIN  
0 V  
2 V  
90%  
50%  
1 V  
VO+ – VO-  
10%  
0 V  
TPD10  
TPD50  
TPD90  
Broadcom  
AV02-3564EN  
12  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Application Information  
The circuit shown in the Figure 28 is a high voltage sensing application using ACPL-C87AT/BT (isolation amplifier) and  
ACPL-M49T (optocoupler). The high voltage input is sensed by the precision voltage divider resistors R1 and sensing  
resistor R2. The ratio of the voltage divider is determined by the allowable input range of the isolation amplifier (0 to 2 V).  
This small analog input goes through a 39Ω and 10 nF anti aliasing filter (ACPL-C87AT/BT use -modulation).  
Inside the isolation amplifier: the analog input signal is digitized and optically transmitted to the output side of the amplifier.  
The detector will then decode the signal and converted back to analog signal. The output differential signals of  
ACPL-C87AT/BT go through an op-amp to convert the differential signals to a single ended output.  
Figure 28: Typical Application Circuit for Battery Voltage Sensing  
SWITCH  
MODE  
POWER  
SUPPLY  
R12  
R13  
10 k:  
V+  
Battery Cells  
C7 1 nF  
20 :  
ACPL-M49T  
R1  
R2  
R7 20 k:  
C4  
0.1 PF  
C2  
0.1 PF  
M
C
R4 20 k:  
U
V
OUT  
R3 39 :  
V-  
R5 20 k:  
C6  
1 nF  
R6 20 k:  
C1  
10 nF  
ACPL-C87AT/BT  
Vref  
0.1 PF  
Bypass Capacitor  
A 0.1-µF bypass capacitor must be connected as near as possible between V  
to GND1 and V  
to GND2 (Figure 29).  
DD2  
DD1  
Figure 29: Bypass Capacitors C2, C4  
C2  
0.1 PF  
C4  
0.1 PF  
ACPL-C87AT/BT  
Broadcom  
AV02-3564EN  
13  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
To reduce the voltage stress of a sole resistor, R1 can be a  
series of several resistors.  
Anti-aliasing Filter  
A 39Ω resistor and a 10-nF capacitor are recommended to  
be connected to the input (V ) as anti-aliasing filter  
IN  
Post Amplifier Circuit  
because ACPL-C87AT/BT uses sigma data modulation  
(Figure 30). The value of the capacitor must be greater than  
1 nF and bandwidth must be less than 410 kHz.  
The output of ACPL-C87AT/BT is a differential output  
(V  
and V  
pins). A post amplifier circuit is needed to  
OUT-  
OUT+  
convert the differential output to single ended output with a  
reference ground. The post amplifier circuit can also be  
configured to establish a desired gain if needed. It also  
functions as filter to high frequency chopper noise. The  
bandwidth can be adjusted by changing the feedback  
resistor and capacitor (R7 and C7). Adjusting this bandwidth  
to a minimum level helps minimize the output noise.  
Figure 30: Anti-aliasing Filter C1, R3  
Post op-amp resistive loading (R4, R5) should be equal or  
greater than 20 kΩ (Figure 31). Resistor values lower than  
this can affect the overall system error due to output  
impedance of isolation amplifier.  
Figure 31: Loading Resistors R4, F5  
The application circuit in Figure 28 features two op-amps to  
improve the linearity at voltage near 0V caused by the  
limited headroom of the amplifier. The second op-amp can  
set the reference voltage to above 0V.  
R4  
20 k:  
R5  
20 k:  
Shutdown Function  
ACPL-C87AT/BT  
ACPL-C87AT/BT has a shutdown function to disable the  
device and make the output (V  
– V  
) low. A voltage  
OUT-  
OUT+  
Designing the Input Resistor Divider  
of 5V on SHDN pin will shutdown the device producing an  
output (V – V ) of –2.6V. To be able to control the  
OUT+  
OUT-  
1. Choose the sensing current (Isense) for bus voltage; for  
example, 1 mA.  
SHDN function (example, from microprocessor), an  
optocoupler (ACPL-M49T) is used.  
2. Determine R2,  
Total System Error  
Voltage input range  
ISENSE  
2 V  
1 mA  
R2 =  
=
= 2 k:  
Total system error is the sum of the resistor divider error,  
isolation amplifier error and post amplifier error. The resistor  
divider error is due to the accuracy of the resistors used. It  
is recommended to use high accuracy resistor of 0.1%. Post  
amplifier error is due to the resistor matching and the  
voltage offset characteristic which can be found on the  
supplier data sheet.  
3. Determine R1 using voltage divider formula:  
R2  
R1 + R2  
(V+ – V-) x  
= Voltage input range, or  
(V+ – V-) xꢀR2  
Voltage input range  
R1 =  
– R2  
Isolation Amplifier Error is shown in the following table.  
where (V+ – V-) is the high voltage input; for example,  
0 to 600V,  
(600 V – 0 V) xꢀ2 k:  
R1 =  
– 2 k:ꢀ= 598 k:  
2 V  
Broadcom  
AV02-3564EN  
14  
ACPL-C87AT/ACPL-C87BT Data Sheet  
Automotive High Precision DC Voltage Isolation Sensor  
Isolation Amplifier Error Calculation  
3Distribution or  
Specificationa  
Typical  
ACPL-C87AT ACPL-C87BT  
Figure  
A
B
Error due to offset voltage (25°C)  
0.015%  
0.5%  
0.5%  
Offset Voltage /Recommended specs  
input voltage range (2.0V)  
Error due to offset voltage drift (across  
temperature)  
0.1%  
0.4%  
0.4%  
Offset Voltage /Recommended  
input voltage range (2.0V)  
C
D
E
F
Error due to gain tolerance (25°C)  
0%  
1%  
1%  
specs  
specs  
Error due to gain drift (across temperature)  
Error due to Nonlinearity (across temperature)  
Total uncalibrated error (A+B+C+D+E)  
Total offset calibrated error (F – A)  
0.25%  
0.05%  
0.415%  
0.4%  
0.8%  
0.8%  
0.12%  
2.82%  
2.32%  
1.32%  
0.12%  
2.82%  
2.32%  
1.32%  
G
H
Total gain and offset calibrated error (G – C) 0.4%  
a. 3distribution is based on corner wafers.  
GND1 and GND2 must be totally isolated in the PCB layout  
(Figure 33). Distance of separation depends on the high  
voltage level of the equipment. The higher the voltage level,  
the larger the distance of separation needed. Designers can  
refer to specific IEC standard of their equipment for the  
creepage/clearance requirements.  
PCB Layout Recommendations  
Bypass capacitor C2 and C4 must be located close to  
ACPL-C87xT Pins 1 and Pin 8 respectively. Grounded pins  
of C4 and C5 can be connected by vias through the  
respective ground layers. If the design has multiple layers,  
a dedicated layer for ground is recommended for flexibility  
in component placement.  
R1, which is directly connected to the high voltage input,  
must have sufficient clearance with the low voltage  
components. Clearance depends on the high voltage level  
of the input. Designers can refer to specific IEC standards of  
their equipment for the clearance requirements.  
Anti aliasing filters R3 and C1 also need to be connected as  
close as possible to Pin 2 of ACPL-C87AT/BT. See  
Figure 32 for actual component placement of the  
anti-aliasing filter and bypass capacitors.  
Figure 33: Bottom Layer Layout Recommendation  
Figure 32: Component Placement Recommendation  
R1 (Series Resistorsꢀ  
Isolation  
BYPASS CAPACITORS  
Clearance  
GND1  
GND2  
ANTI ALIASING FILTER  
ACPL-C87AT/BT  
Broadcom  
AV02-3564EN  
15  
2
Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, the A logo, and R Coupler are among the  
trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.  
Copyright © 2013–2018 Broadcom. All Rights Reserved.  
The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.  
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,  
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does  
not assume any liability arising out of the application or use of this information, nor the application or use of any product or  
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.  

相关型号:

ACPL-C87B

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-000E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87B-500E

Precision Optically Isolated Voltage Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
AVAGO

ACPL-C87BT

Automotive High Precision DC Voltage Isolation Sensor
BOARDCOM

ACPL-C87X

用于电压传感的光耦隔离放大器
AVAGO

ACPL-CRDBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-H312

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low ICC and UVLO in Stretched SO8
BOARDCOM

ACPL-H312-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, PLASTIC, SOP-6
AVAGO

ACPL-H342

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Active Miller Clamp, Rail-to-Rail Output Voltage and UVLO in Stretched SO8
AVAGO

ACPL-H342-000E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

ACPL-H342-060E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO