AT73C239_07 [ATMEL]

Power Management and Analog Companions (PMAAC); 电源管理和模拟伴随(PMAAC )
AT73C239_07
型号: AT73C239_07
厂家: ATMEL    ATMEL
描述:

Power Management and Analog Companions (PMAAC)
电源管理和模拟伴随(PMAAC )

文件: 总31页 (文件大小:475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Main Supply 3.0V to 3.6V  
Independent 2.5V to 3.6V Auxiliary Supply for Backup Section  
Internal State Machine for Startup  
25 mA/1.8V-2.75V Linear Low Drop Out Regulator with High PSRR and Low Noise  
(LDO1)  
30 mA/1.5V-1.8V Linear Low Drop Out Regulator with High PSRR and Low Noise  
(LDO2)  
60 mA/1.23V-1.5V-1.8V Linear Low Drop Out Regulator with High PSRR (LDO3)  
2 mA/1.2V-1.5V-1.8V Linear Low Drop Out Regulator with Very Low Quiescent Current  
(LDO4)  
Power  
Management  
and Analog  
Companions  
(PMAAC)  
HPBG Economic High Performance Voltage Reference for LDO Supply to RF Sections  
LPBG Low Power Voltage Reference to LDO4 During Backup Battery Operation  
Internal Oscillator Generates Internal Master Clock  
Internal Reset Generator for Main Supply  
Additional External Reset Input  
Two Wire Interface (TWI) for Independent Activation and Output Voltage Programming  
for Each LDO  
Available in 3 x 3 x 0.9 mm 16-pin QFN Package  
Applications: GPS Modules, WLAN Devices, Wireless Modules  
AT73C239  
4-channel  
Power  
Management for  
Wireless  
1. Description  
The AT73C239 is a four-channel Power Supply Power Management Unit (PMU) avail-  
able in a QFN 3 x 3 mm package. It is a fully integrated, low cost, combined Power  
Management device for wireless modules, GPS and WLAN devices. It integrates four  
Linear Low Drop Out (LDO) Regulators, three of which provide high-accuracy RF per-  
formance and one (LDO4) with very low quiescent current that is supplied by an  
external backup battery. A Low Power Bandgap (LPBG) requiring no external capaci-  
tor for decoupling, is used as reference voltage for LDO4 and starts when VBAT is  
present. LDO4 regulates output voltage with extremely low quiescent current, maxi-  
mizing the lifetime of the backup battery. An Internal State Machine manages the  
startup of the other LDOs in the order of LDO3 then LDO1 then LDO2. An economic  
High Power Bandgap (HPBG) provides highly accurate, low noise voltage reference  
to LDOs 1, 2, 3. HPBG operates in switching mode thereby decreasing its current con-  
sumption and becomes inactive when not directly supplied by VIN current. When the  
RF LDOs are in idle mode, quiescent current is decreased to a minimum.  
Modules  
The AT73C239 features a Two-wire Interface (TWI) to increase the efficiency of the  
system by disabling LDOs when not needed.  
6201C–PMAAC–31-Jul-07  
2. Block Diagram  
Figure 2-1. AT73C239 Functional Block Diagram  
VDD1  
LDO1  
VBG  
VDD  
3.0V-3.6V  
HPBG  
VOUT  
1.8V or 2.75V  
GNDA/AVSS  
VO1  
ILOAD 25 mA  
Internal Oscillator  
XRESIN  
VDD2  
LDO2  
XRESO  
Reset Generator  
VDD  
3.0V-3.6V  
TWCK  
TWI  
TWD  
State Machine  
VOUT  
1.5V or 1.8V  
GNDD  
VO2  
ILOAD 30 mA  
Fuse2  
Fuse1  
VZAP  
VMON  
POR1  
POR1  
LDO3  
VDD3  
VBAT  
LDO4  
VDD  
VDD  
2.5V-3.6V  
3.0V-3.6V  
VOUT  
VOUT  
1.2V or 1.5V or 1.8V  
1.23V or 1.5V or 1.8V  
VO3  
VO4  
ILOAD 2 mA  
LPBG  
ILOAD 60 mA  
2
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
3. Pin Description  
Table 3-1.  
Pin Description  
I/O  
Pin Name  
Pin Number  
Type  
Digital  
Analog  
Power  
Digital  
Analog  
Power  
Power  
Digital  
Power  
Analog  
Digital  
Digital  
Power  
Analog  
Analog  
Analog  
Function  
XRESIN  
VO3  
Input  
Output  
Input  
1
2
Reset in pin  
LDO3 output voltage  
LDO3 input voltage  
Reset out pin  
VDD3  
3
XRESO  
VO4  
Output  
Output  
GND  
4
5
LDO4 output voltage  
Digital ground  
GNDD  
6
VBAT  
Input  
7
LDO4 input voltage  
VZAP(1)  
VDD2  
input  
8
Reserved for manufacturing purposes.  
LDO2 input voltage  
Input  
9
VO2  
Output  
Input  
10  
11  
12  
13  
14  
15  
16  
LDO2 output voltage  
TWICK(2)  
TWID(3)  
VDD1  
TWI input  
Input/Output  
Input  
TWI input/output  
LDO1 input voltage  
VO1  
Output  
GND/Input  
Output  
LDO1 output voltage  
GNDA/AVSS  
VBG  
Analog ground and ESD ground  
Voltage reference for analog cells  
Notes: 1. Connected to ground.  
2. Connected to VDD1, 2, 3 if TWI is not used.  
3. Connected to VDD1, 2, 3 if TWI is not used.  
3
6201C–PMAAC–31-Jul-07  
4. Package  
4.1  
16-pin QFN Package Outline  
Figure 4-1 shows the orientation of the 16-pin QFN package.  
Figure 4-1. 16-pin QFN Package - Bottom View  
13 14 15 16  
12  
11  
10  
9
1
2
3
4
8
7
6
5
4
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
5. Application Block Diagram  
Figure 5-1. AT73C239 Application Block Diagram  
AT73C239  
VIN  
VDD1  
LDO1  
GPS  
Antenna  
VDD  
3.0V-3.6V  
CF  
VBG  
HPBG  
CIN1  
VOUT  
1.8V or 2.7V  
GNDA/AVSS  
VO1  
TCXO  
ILOAD 25 mA  
LDO2  
Internal Oscillator  
COUT1  
VIN  
XRESIN  
XRESO  
TWCK  
TWD  
VDD2  
LNA  
RF  
Reset Generator  
VDD  
3.0V-3.6V  
Baseband  
TWI  
SM  
VOUT  
1.5V or 1.8V  
GNDD  
VO2  
ILOAD 30 mA  
Fuse2  
Fuse1  
COUT2  
VIN  
3.0V I/O  
Supply  
VZAP  
VMON  
3.0V Backup Battery (coin cell)  
POR1  
to other regulators  
VIN  
POR1  
LDO3  
VBAT  
VDD3  
3.0V I/O  
Backup Supply  
VBAT  
LDO4  
VDD  
3.0V-3.6V  
CIN4  
(1µF)  
VDD  
2.5V-3.6V  
CIN3  
(1µF)  
VIN 3.3V  
VOUT  
VOUT  
1.2V or 1.5V or 1.8V  
1.2V or 1.5V or 1.8V  
Main Supply  
VO3  
VO4  
1.8V  
ILOAD 60 mA  
ILOAD 2 mA  
LPBG  
Backup Core  
COUT4  
COUT3  
1.8 V Core  
Table 5-1.  
Application Schematic Reference and Pin Description  
Schematic Reference  
Pin  
Description  
CIN1  
VDD1  
VDD2  
VDD3  
VBAT  
VO1  
CIN2  
CIN3  
CIN4  
1 µF ± 20% Ceramic Capacitor, X5R  
COUT1  
COUT2  
COUT3  
COUT4  
CF  
VO2  
VO3  
VO4  
VBG  
100 nF, ± 20% Ceramic Capacitor  
5
6201C–PMAAC–31-Jul-07  
6. Functional Description  
The AT73C239 integrates the power supply channels described in this section.  
6.1  
LDO1  
LDO1 is a 25 mA/1.8V-2.75V linear low drop out regulator with RF performance. LDO1 operates  
with supply from 3.0V to 3.6V and requires at least 300 mV of minimum drop-out. LDO1 supplies  
the RF section of wireless devices, showing high PSRR up to 100 kHz, and very low noise on  
wide frequency bandwidth. LDO1 requires a 1 µF output capacitor.  
Figure 6-1. LDO1 Functional Diagram  
VDD1  
VIN  
current  
reference  
VBG  
VO1  
COUT1  
GNDA  
sel1  
overcurrent  
detection  
onldo1  
AVSS  
GNDA  
6
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
6.2  
LDO2  
LDO2 is a 30 mA/1.5V-1.8V linear low drop out regulator with RF performance. LDO2 operates  
with supply from 3.0V to 3.6V and needs at least 300 mV of minimum drop-out. LDO2supplies  
the RF section of wireless devices, showing high PSRR up to 100 kHz and very low noise on  
wide frequency bandwidth. LDO2 requires a 1 µF output capacitor.  
Figure 6-2. LDO2 Functional Diagram  
VDD2  
VIN  
current  
reference  
VBG  
VO2  
COUT2  
GNDA  
sel2  
overcurrent  
detection  
onldo2  
AVSS  
GNDA  
7
6201C–PMAAC–31-Jul-07  
6.3  
LDO3  
LDO3 is a 60 mA/1.2V or 1.5V or 1.8V linear low drop out regulator with RF performance. LDO3  
operates with supply from 3.0V to 3.6V and needs at least 300 mV of minimum drop-out. LDO3  
supplies the RF section of wireless devices, showing high PSRR up to 100 kHz and low noise on  
wide frequency bandwidth. LDO3 requires a 1 µF output capacitor.  
Figure 6-3. LDO3 Functional Diagram  
VDD3  
VIN  
current  
reference  
VBG  
VO3  
COUT3  
sel3[1:0]  
GNDA  
overcurrent  
detection  
onldo3  
AVSS  
GNDD  
8
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
6.4  
LD04  
LDO4 is a 2 mA/1.2V or 1.5V or 1.8V low drop out voltage regulator with very low quiescent cur-  
rent. LDO4 operates with supply from 2.5V to 3.6V and needs at least 300 mV of minimum drop-  
out. LDO4 supplies the very low power section of the wireless baseband. It is usually supplied by  
the external backup battery and regulates voltage with very low quiescent current, maximizing  
the lifetime of the backup battery. LDO4 requires a 1 µF output capacitor or 470 nF if the load is  
less than 250 µA. LDO4 is always on once the battery is plugged in. The regulator is activated  
when POR1 is released.  
Figure 6-4. LDO4 Functional Diagram  
VBATC  
VBAT  
VBG  
VO4  
COUT4  
GNDD  
sel4[1:0]  
trcore[1:0]  
onldo4  
AVSS  
GNDDC  
GNDA  
6.5  
High Performance Bandgap (HPBG)  
HPBG provides highly accurate, low noise voltage reference to LDOs that supply RF sections.  
HPBG operates in switching mode, thus decreasing its current consumption. The economic High  
Performance Bandgap is particularly efficient when RF LDOs are in idle mode (output voltage  
provided with very low output current e.g. < 1 mA), as the RF section is not active and quiescent  
current must be decreased as much as possible.  
HPBG requires an external 100 nF ceramic capacitor to achieve very low noise high-accuracy  
voltage reference.  
6.6  
6.7  
Low Power Bandgap (LPBG)  
LPBG is used as reference voltage for LDO4. LPBG starts up as soon as the VBAT pin is active  
and does not require an external capacitor for decoupling.  
Reset Generator  
The reset generator produces output reset (XRSTOUT) at least 100 ms after input reset state is  
activated. Input reset state can be produced the following:  
• External manual reset connected to the XRESIN pin  
• Internal POR2 monitoring VIN (on VDD3 pin). POR2 is designed with a maximum threshold at  
1.81V.  
XRESO pin can be generated only if VIN is present.  
9
6201C–PMAAC–31-Jul-07  
6.8  
6.9  
Internal State Machine  
The internal state machine manages the start up of the regulators connected to VDD1, VDD2  
and VDD3 pins. The startup configuration is in the following order:  
1. LDO3  
2. LDO1  
3. LDO2  
Power on Reset on VBAT (POR1)  
POR1 monitors the VBAT pin and generates an internal signal (VPOR1) to enable a fuse read  
operation for LDO4 output voltage programming and LDO4 startup. VPOR1 is released when  
VBAT is higher than 1.5V ± 300 mV.  
6.10 Power on Reset on VDD3 (POR2)  
POR2 monitors the VDD3 pin and generates an internal signal (VPOR2) to reset the internal  
State Machine and startup the Two-wire Interface (TWI). VPOR2 also enables the fuse read  
operation for LDO1, LDO2, LDO3 output voltage programming, reference voltage and internal  
oscillator trimming. VPOR2 is released when VIN is higher than 1.5V ± 300 mV.  
6.11 Internal Oscillator  
The internal oscillator generates the internal master clock to synchronize the state machine that  
monitors start up of the LDOs and controls HPBG.  
6.12 Voltage Supply Monitor on VDD3 (VMON)  
VMON monitors the VDD3 pin and generates an internal signal to enable the state machine to  
start up the LDOs and to generate the XRESO signal. Threshold is set to 2.7V at rising and 2.6V  
at shut down.  
6.13 Two-wire Interface (TWI)  
The TWI can be used to activate, disable and set the output voltage of the LDO1, 2, 3, 4 regula-  
tors. (VDD3 must be present in order for TWI to be used with LDO4.)  
10  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
7. Startup Procedure  
At VBAT Rising:  
• LPBG automatically starts up.  
• POR1 starts up LDO4.  
At VDD3 Rising:  
• POR2 enables the following:  
– Supply Monitor with shutdown threshold setup at 2.7V in order to prevent corruption  
in the baseband chip, when the core is still supplied  
– Internal State machine that enables the other circuits according to the diagram  
shown in Figure 7-1 on page 12.  
Two Wire Interface  
At VDD3 Falling:  
• The Supply Monitor generates a shut-down control signal when VDD3 reaches 2.6V.  
• The State Machine, upon receiving the shut-down control signal, generates the XRESO  
signal to set the baseband chip in reset mode.  
• The State Machine switches off LDO1, LDO2 and LDO3. HPBG is kept on in order to provide  
a fast startup of the LDOs in case of glitches on VDD3  
.
11  
6201C–PMAAC–31-Jul-07  
7.1  
Startup Diagram  
Figure 7-1. Startup Diagram  
Start  
Wait 0.3 ms  
Start VDD3 Comparator  
No  
VIN  
>
2.7V ?  
Yes  
Start LDO3  
Start LDO2  
Start LDO1  
No  
VIN < 2.6 V ?  
Yes  
Wait 220 ms  
XRESO = 1  
XRESO = 0  
Wait 1 ms  
Wait 1 ms  
WRESO = XRESIN  
Stop LDO1, 2, 3  
POR2, supplied by VDD3, resets the startup state machine. After 0.3 ms, the VDD3 comparator is  
started. If VDD3 is greater than 2.7V, LDO regulators are started in the following order: LDO3,  
LDO2, LDO1. During LDO regulator VDD startup, voltage is not checked.  
Then XRESO is kept grounded for 220 ms, tied high for 1 ms, before following XRESIN. During  
that state, VDD3 voltage is monitored and if it is lower than 2.6V, LDO regulators 1, 2 and 3 are  
stopped and XRESO is grounded.  
Both XRESIN and VDD3 comparator output are debounced at rising and falling edges for two 10  
kHz clock cycles. Debounce time is typically between 100 µs and 200 µs. Timings are defined  
± 40%.  
12  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
8. Normal Procedure  
The State Machine monitors the XRESIN pin and provides the proper XRESO pin signal when  
reset occurs.  
Through the Two-wire Interface (TWI), the user can control and change the output voltage deliv-  
ered by LDO1, LDO2, LDO3 and LDO4.  
9. Two-wire Interface (TWI) Protocol  
The two-wire interface interconnects components on a unique two-wire bus, made up of one  
clock line and one data line with speeds up to 400 Kbits per second, based on a byte oriented  
transfer format. The TWI is slave only and has single byte access.  
The TWI adds flexibility to the power supply solution, enabling LDO regulators to be controlled  
depending on the instantaneous application requirements.  
The AT73C239 has the following 7-bit address: 1001000.  
Attempting to read data from register addresses not listed in this section results in 0xFF being  
read out.  
• TWCK is an input pin for the clock  
• TWD is an open-drain pin driving or receiving the serial data  
The data put on TWD line must be 8 bits long. Data is transferred MSB first. Each byte must be  
followed by an acknowledgement.  
Each transfer begins with a START condition and terminates with a STOP condition.  
• A high-to-low transition on TWD while TWCK is high defines a START condition.  
• A low-to-high transition on TWD while TWCK is high defines a STOP condition.  
Figure 9-1. START and STOP Conditions  
TWD  
TWCK  
Start  
Stop  
Figure 9-2.  
Transfer Format  
TWD  
TWCK  
Start  
Address  
R/W  
Ack  
Data  
Ack  
Data  
Ack  
Stop  
After the host initiates a START condition, it sends the 7-bit slave address defined above to  
notify the slave device. A read/write bit follows (read = 1, write = 0).  
13  
6201C–PMAAC–31-Jul-07  
The device acknowledges each received byte. The first byte sent after the device address and  
the R/W bit, is the address of the device register the host wants to read or write.  
For a write operation the data follows the internal address. For a read operation a repeated  
START condition needs to be generated followed by a read on the device.  
Figure 9-3. Write Operation  
S
ADDR  
W
DATA  
A
A
IADDR  
A
P
TWD  
Figure 9-4. Read Operation  
TWD  
S
ADDR  
W
A
IADDR  
A
S
ADDR  
R
A
DATA  
N
P
• S = Start  
• P = Stop  
• W = Write  
• R = Read  
• A = Acknowledge  
• N = Not Acknowledge  
• DADR= Device Address  
• IADR = Internal Address  
14  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
10. Normal Modes and Quiescent Current  
Table 10-1. Normal Modes and Quiescent Current  
Quiescent [µA]  
Modes  
Conditions  
BAT present, VDD3 not present  
LDO4 on  
typ  
max  
V
Backup  
Battery  
10  
30  
VBAT present, VDD3 present  
LDO4 on  
Normal  
800  
LDO1 on  
LDO2 on  
LDO3 on  
15  
6201C–PMAAC–31-Jul-07  
11. Electrical Characteristics  
11.1 Absolute Maximum Ratings  
Table 11-1. Absolute Maximum Ratings  
*NOTICE:  
Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at these or other conditions beyond those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reli-  
ability.  
Operating Temperature (Industrial)..............-40°C to +85°C  
Storage Temperature..................................-55°C to +150°C  
Power Supply Input on VBAT.......................... -0.3V to + 3.6V  
Power Supply Input on VDD1,VDD2,VDD3....... -0.3V to + 3.6V  
Digital IO Input Voltage................................. -0.3V to + 3.6V  
TWI IO Input Voltage .................................... -0.3V to + 5.5V  
All Other Pins................................................ -0.3V to + 3.6V  
11.2 Recommended Operating Conditions  
Table 11-2. Recommended Operating Conditions  
Parameter  
Condition  
Min  
-40  
3.0  
2.5  
Max  
85  
Unit  
°C  
Operating Temperature  
VDD1, VDD2, VDD3  
3.6  
3.6  
V
Power Supply Input  
VBAT  
16  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
12. Timing Diagram  
Figure 12-1. AT73C239 Timings  
1.5V  
VBAT  
POR1  
tSTART1  
LDO4  
2.6V  
2.7V  
1.5V  
VIN  
POR2  
VMON  
tDELAY  
XRESIN  
tRESGEN  
XRESO  
HPBG  
tSTARTHPBG  
0.3 ms  
tSTART2  
LDO3  
LDO2  
tSTART2  
tSTART2  
LDO1  
17  
6201C–PMAAC–31-Jul-07  
At VDD3 startup XRESIN is taken into account only if it occurs after tDELAY  
Table 12-1. Timing Parameters  
.
Parameter  
tSTART1  
Signal  
Constraint  
Min  
10  
Max  
100  
100  
2
Unit  
µsec  
µsec  
ms  
VO4  
LDO4 Startup time  
LDO1,2,3 Startup time  
HPBG startup time  
Delay to XRESOUT active  
tSTART2  
VO1,VO2, VO3  
VBG  
10  
tSTARTHPBG  
tRESGEN  
tDELAY  
XRESOUT  
100  
500  
1
ms  
ms  
18  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
13. Electrical Specification  
13.1 LD01  
Table 13-1. LDO1 Parametric Table  
Symbol  
Parameter  
Comments  
Min  
3.0  
Typ  
3.3  
Max  
3.6  
2.80  
1.85  
25  
Units  
V
VDD1  
Operating supply voltage  
Switching Regulated  
Factory programmed  
Programmable  
2.70  
1.75  
2.75  
1.8  
V
VO1  
Output voltage  
V
I1  
Load current  
mA  
µA  
µA  
mA  
µs  
IQC  
ISC  
ISH  
tR  
Quiescent current  
Shutdown current  
Short circuit current  
Startup time  
300  
1
HiZ output  
200  
100  
VDC  
Line regulation static  
From 3.0V to 3.6V  
From 10% to 100% I1  
From 0 to 100% I1  
2
2
7
mV  
VDC  
Load regulation static  
mV  
From 3.1V to 3.6V  
tR = tF = 5 µs, I1 = 5 mA  
VTRAN  
VTRAN  
Line regulation dynamic  
Load regulation dynamic  
2
mV  
mV  
dB  
dB  
dB  
From 10% to 100%  
I1, tR = tF = 5 µs,  
2.5  
48  
55  
60  
Sine Wave, 100 kHz frequency,  
3.3V mean 200 m vPP  
Sine Wave, 10 kHz frequency,  
3.3V mean, 200 m VPP  
PSRR  
Power Supply Rejection Ratio  
Sine Wave, 1 kHz frequency,  
3.3V mean 200 m VPP  
VOUT  
VN  
StartUp Overshoot  
Output Noise  
40  
45  
55  
mV  
10 Hz - 100 kHz  
10 Hz - 100 kHz  
µVRMS  
µVRMS  
VNT  
Total Output Noise  
Table 13-2. LDO1 External Components  
Schematic Reference  
Description  
COUT1  
X5R 1 µF ± 20% ceramic capacitor  
Table 13-3. Control Modes  
onldo1  
sel1  
VO1  
HiZ  
0
1
1
0
0
1
2.75V  
1.8V  
19  
6201C–PMAAC–31-Jul-07  
13.2 LDO2  
Table 13-4. LDO2 Parametric Table  
Symbol  
Parameter  
Comments  
Min  
3.0  
Typ  
3.3  
1.8  
1.5  
Max  
3.6  
1.85  
1.55  
30  
Units  
V
VDD2  
Operating supply voltage  
Switching Regulated  
Factory programmed  
Programmable  
1.75  
1.45  
V
V02  
Output voltage  
V
I2  
Load current  
mA  
µA  
µA  
mA  
µs  
IQC  
ISC  
ISH  
tR  
Quiescent current  
Shutdown current  
Short circuit current  
Startup time  
300  
1
HiZ output  
200  
100  
VDC  
Line regulation static  
From 3.0V to 3.6V  
From 10% to 100% I2  
From 0 to 100% I2  
2
2
3
mV  
VDC  
Load regulation static  
mV  
From 3.1V to 3.6V  
tR = tF = 5 µs, I2 = 30 mA  
VTRAN  
VTRAN  
Line regulation dynamic  
Load regulation dynamic  
2
mV  
mV  
dB  
dB  
dB  
From 10% to 100%  
I1, tR = tF = 5 µs,  
3
Sine Wave, 100 kHz frequency,  
3.3V mean 200 m VPP  
40  
50  
70  
Sine Wave, 10 kHz frequency,  
3.3V mean, 200 m VPP  
PSRR  
Power Supply Rejection Ratio  
Sine Wave, 1 kHz frequency,  
3.3V mean 200 m VPP  
VOUT  
VN  
Startup Overshoot  
Output Noise  
30  
35  
45  
mV  
10 Hz - 100 kHz  
10 Hz - 100 kHz  
µVRMS  
µVRMS  
VNT  
Total Output Noise  
Table 13-5. External Components  
Schematic Reference  
COUT2  
Description  
X5R 1 µF ± 20% ceramic capacitor  
Table 13-6. Control Modes  
on2ldo  
sel2  
X
VO2  
HiZ  
0
1
1
0
1.8V  
1.5V  
1
20  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
13.3 LDO3  
Table 13-7. LDO3 Parametric Table  
Symbol  
Parameter  
Comments  
Min  
3.0  
Typ  
3.3  
Max  
3.6  
Units  
V
VDD3  
Operating supply voltage  
Switching Regulated  
Factory programmed  
Programmable  
1.75  
1.45  
1.18  
1.8  
1.85  
1.55  
1.28  
60  
V
VO3  
Output voltage  
1.5  
V
Programmable  
1.23  
V
I3  
Load current  
mA  
µA  
µA  
mA  
µs  
IQC  
ISC  
ISH  
tR  
Quiescent current  
Shutdown current  
Short circuit current  
Startup time  
300  
1
HiZ output  
200  
100  
VDC  
Line regulation static  
From 3.0V to 3.6V  
From 10% to 100% I3  
From 0 to 100% I3  
2
2
3
mV  
VDC  
Load regulation static  
mV  
From 3.1V to 3.6V  
tR = tF = 5 µs, I3 = 60 mA  
VTRAN  
VTRAN  
Line regulation dynamic  
Load regulation dynamic  
2
mV  
mV  
dB  
dB  
dB  
From 10% to 100%  
I1, tR = tF = 5 µs,  
3
Sine Wave, 100 kHz frequency,  
3.3V mean 200 m VPP  
40  
50  
70  
Sine Wave, 10 kHz frequency,  
3.3V mean, 200 m VPP  
PSRR  
Power Supply Rejection Ratio  
Sine Wave, 1 kHz frequency,  
3.3V mean 200 m VPP  
VOUT  
VN  
Startup Overshoot  
Output Noise  
30  
35  
45  
mV  
10 Hz - 100 kHz, without VBG  
10 Hz - 100 kHz  
µVRMS  
µVRMS  
VNT  
Total Output Noise  
Table 13-8. External Components  
Schematic Reference  
COUT3  
Description  
X5R 1 µF ± 20% ceramic capacitor  
Table 13-9. Control Modes  
onldo3  
sel3[0]  
sel3[1]  
VO3  
0
1
1
1
X
0
1
0
X
0
0
1
HiZ  
1.8V  
1.5V  
1.23V  
21  
6201C–PMAAC–31-Jul-07  
13.4 LDO4  
LDO4 generates 1.2V, 1.5V or 1.8V voltage from VBAT supply. Max DC load is 2 mA. The regu-  
lator is activated when POR1 is released.  
Table 13-10. LDO4 Parametric Table  
Symbol  
Parameter  
Conditions  
Min  
2.5  
1.7  
1.4  
1.1  
Typ  
Max  
3.6  
1.9  
1.6  
1.3  
2
Unit  
V
VBAT  
Operating supply voltage  
Backup Battery or Supercap  
Factory programmed  
Programmable  
1.8  
1.5  
1.2  
V
VO4  
Output voltage  
V
Programmable  
V
I4  
Load current  
DC load current  
mA  
µA  
µA  
µs  
mV  
mV  
IQC  
ISC  
Quiescent current  
Shutdown current  
Startup time  
3
5
0.5  
200  
100  
100  
tS  
VDC  
VDC  
Line regulation static  
Load regulation static  
2.5V < VBAT < 3.6V  
0 < I4 < 2 mA  
Table 13-11. LDO4 External Components  
Schematic Reference  
Description  
COUT4  
X5R 1 µF ± 20% capacitor  
Table 13-12. onldo4 sel4[1:0] Control Modes  
onldo4  
sel4<1>  
sel4<0>  
VO4  
0
1
1
1
X
0
0
1
X
0
1
0
HiZ  
1.8V  
1.5V  
1.2V  
Table 13-13. trcore[1:0] Control Modes  
trcore<1>  
trcore<0>  
VO4  
0
0
1
1
0
1
0
1
typ  
+ 8 0mV  
- 80 mV  
22  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
13.5 High Performance Bandgap (HPBG)  
Table 13-14. HPBG Parametric Table  
Symbol  
VBG  
ISC  
Parameter  
Conditions  
Min  
Typ  
1.231  
1
Max  
Units  
V
Output voltage  
Shutdown current  
Quiescent current  
Startup time  
Factory trimmed  
encore = en = 0, dcrun = 0 (1)  
6
30  
2
µA  
IQC  
µA  
tS  
CF= 100 nF  
1
7
ms  
VN  
Output noise  
BW 10 Hz to 100 kHz  
µVRMS  
dB  
PSRR  
Power Supply Rejection Ratio F = 100 Hz  
65  
Table 13-15. External Components  
Schematic Reference  
Description  
X5R 100 nF ± 20% ceramic capacitor minimum  
CF  
13.6 Low Power Bandgap (LPBG)  
Table 13-16. LPBG Parametric Table  
Symbol  
VBAT  
IQC  
Parameter  
Conditions  
Min  
Typ  
4
Max  
3.6  
Unit  
V
Operating supply voltage  
Quiescent current  
Startup time  
Backup Battery or Supercap  
2.5  
7.5  
µA  
µs  
V
tS  
100  
1.25  
VLPBG  
Bandgap Voltage  
1.15  
1.2  
13.7 Power On Reset on VBAT (POR1)  
Table 13-17. POR1 Parametric Table  
Symbol  
VBAT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
Operating supply voltage  
Quiescent current  
POR1 on threshold  
POR1 off threshold  
Backup Battery or Supercap  
2.5  
3.6  
IQC  
3
µA  
V
VPON  
VPOFF  
1.45  
1.5  
V
13.8 Power On Reset on VDD3 (POR2)  
Table 13-18. POR2 Parametric Table  
Symbol  
VDD3  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
Operating supply voltage  
Quiescent current  
POR2 on threshold  
POR1 off threshold  
Switching regulated  
0
3.6  
IQC  
3
µA  
V
VPON  
VPOFF  
1.45  
1.5  
V
23  
6201C–PMAAC–31-Jul-07  
13.9 Voltage Monitor  
Table 13-19. Voltage Monitor Parametric Table  
Symbol  
IQC  
Parameter  
Conditions  
Min  
Typ  
Max  
20  
Unit  
µA  
V
Quiescent current  
POR2 on threshold  
POR1 off threshold  
VPON  
on VDD3  
on VDD3  
2.7  
2.6  
2.72  
2.60  
VPOFF  
V
13.10 XRESIN  
Table 13-20. XRESIN Parametric Table  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
driven by CPU GPIO  
1.8  
3.3  
VI  
Input supply voltage range  
driven by CPU open drain output  
connected to VDD3 when not used  
Hiz  
V
VDD3  
V
13.11 XRESO  
Table 13-21. XRESO Parametric Table  
Symbol  
Parameter  
Conditions  
Conditions  
Conditions  
Min  
Typ  
Max  
Unit  
VI  
Input supply voltage range  
1.8  
3.3  
V
13.12 TWICK  
Table 13-22. TWICK Parametric Table  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VI  
Input supply voltage range  
1.8  
5.5  
V
13.13 TWID  
Table 13-23. TWID Parametric Table  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VI  
Input supply voltage range  
1.8  
5.5  
V
24  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
14. AT73C239 User Interface  
Table 14-1. AT73C239 Register Mapping  
Offset  
0×00  
0×08  
0×0A  
Register  
Register Description  
LDO Control  
Access  
Reset Value  
LDO_CTRL  
LDO_TRIM1  
LDO_TRIM4  
Read/Write  
Read/Write  
Read/Write  
0x0F  
0x00  
0x00  
LDO 1,2,3 Trim  
LDO4 Trim  
25  
6201C–PMAAC–31-Jul-07  
14.1 LDO Control Register  
Register Name:  
Reset State:  
Access:  
LDO_CTRL  
0X0F  
Read/Write  
7
6
5
4
3
2
1
0
Onldo4  
Onldo3  
Onldo2  
Onldo1  
• Onldo1:  
LDO1 enable (active high) reset value = 1.  
• Onldo2:  
LDO2 enable (active high) reset value = 1.  
• Onldo3:  
LDO3 enable (active high) reset value = 1.  
• Onldo4:  
LDO4 enable (active high) reset value = 1.  
14.2 LDO 1, 2, 3 Trim Register  
Register Name:  
Reset State:  
Access:  
LDO_TRIM1  
0X08  
Read/Write  
7
6
5
4
3
2
1
0
Sel1  
Sel2  
Sel3  
• Sel3  
LDO3 output voltage select, reset = 00  
• Sel2  
LDO2 output voltage select, reset = 0  
• Sel1  
LDO1 output voltage select, reset = 0  
Sel1  
VO1  
2.75V  
1.8V  
Sel2  
VO2  
Sel3  
00  
VO3  
0
1
0
1
1.8V  
1.5V  
1.8V  
1.5V  
01  
10  
1.23V  
1.8V  
11  
26  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
14.3 LDO 4 Trim Register  
Register Name:  
Reset State:  
Access:  
LDO_TRIM4  
0X0A  
Read/Write  
7
6
5
4
3
2
1
0
Sel4  
• Sel4  
LDO4 output voltage select, reset = 00  
Sel4  
00  
VO4  
1.8V  
1.5V  
1.2V  
1.2V  
01  
10  
11  
27  
6201C–PMAAC–31-Jul-07  
15. Package Information  
Figure 15-1. Mechanical Package Drawing for 16-lead Quad Flat No Lead Package  
Note:  
All dimensions are in mm.  
28  
AT73C239  
6201C–PMAAC–31-Jul-07  
AT73C239  
16. Ordering Information  
Table 16-1. Ordering Information  
Ordering Code  
Package  
Package Type  
Temperature Operating Range  
AT73C239  
QFN3x3 mm  
Green  
0°C to +70°C  
29  
6201C–PMAAC–31-Jul-07  
Revision History  
Doc. Rev  
Date  
Comments  
Change Request Ref.  
01-Sep-05  
11-Oct-05  
First issue  
6201A  
Unqualified on Intranet  
Changed HPBG minimum requirement information in  
Section 6.5 ”High Performance Bandgap  
(HPBG)” on page 9.  
Updated Figure 7-1 on page 12 with new values.  
6201B  
6201C  
03-Mar-06  
09-Jul-07  
2472  
4591  
Updated Figure 12-1 on page 17 with new  
information for LDO2 and LDO3 signals.  
Updated Table 13-14, “HPBG Parametric  
Table,” on page 23 with max value for startup time  
and changed condition.  
Added Section 4. ”Package” on page 4.  
30  
AT73C239  
6201C–PMAAC–31-Jul-07  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contacts  
www.atmel.com  
pmaac@atmel.com  
www.atmel.com/contacts/  
www.atmel.com/PowerMgmnt  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof and others are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
6201C–PMAAC–31-Jul-07  

相关型号:

AT73C240

Power Management and Analog Companions
ATMEL

AT73C246

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64
ATMEL

AT73C246-A

Power Supply Support Circuit, Fixed, 6 Channel
MICROCHIP

AT73C246-B

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64
MICROCHIP

AT73C260

Power Supply Support Circuit, 1 Channel, GREEN, QFN-16
ATMEL

AT73C500

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C500-JC

Power Metering
ETC

AT73C501

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C501-JC

Analog-to-Digital Converter, 16-Bit
ETC

AT73C502

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C502-QC

Analog-to-Digital Converter, 16-Bit
ETC

AT74011-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN