AT73C260 [ATMEL]

Power Supply Support Circuit, 1 Channel, GREEN, QFN-16;
AT73C260
型号: AT73C260
厂家: ATMEL    ATMEL
描述:

Power Supply Support Circuit, 1 Channel, GREEN, QFN-16

文件: 总49页 (文件大小:2584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Pin-programmable Mode  
Supply Voltage Range 1.55V to 3.6V  
PHY IC_USB1.0 Downstream Port  
Bridge USB2.0 Section 7 to IC_USB1.0  
Bridge IC_USB1.0 to USB2.0 Section 7  
3.3V Voltage Reference  
Two 70mA LDO Voltage Regulators  
Less Than 5µA Static Current on Each Supply  
Slew Rate Control to Minimize Radiated EMI  
ESD 4kV Compliant with USB UICC  
Applications:  
Power  
Management  
and Analog  
Companions  
(PMAAC)  
– Mobile USB UICC (ETSI 102 600), PC USB UICC, Token USB  
Description  
The AT73C260 is an Inter Chip USB transceiver fully compliant with the Universal  
Serial Bus Specification, and more specifically with the IC_USB1.0 supplement. The  
AT73C260 is a bidirectional differential interface. The AT73C260 is ideal for applica-  
tions in mobile devices, PCs and USB tokens making use of an USB UICC.  
AT73C260  
The AT73C260’s upstream facing port may be connected to three different interfaces:  
• Digital  
• USB2.0 section 7 with or without cable  
• IC_USB1.0  
Interchip USB  
Transceiver  
The AT73C260’s downstream port complies with IC_USB1.0. The AT73C260’s mode  
is selected by three pins. When PVCC is powered by 3.3V and pull down resistors are  
added on PDM and PDP, the AT73C260’s downstream port complies with USB2.0  
section 7.  
(PHY - IC_USB1.0,  
Voltage Class  
Converter,  
USB2.0 - IC_USB1.0  
Bridges)  
The AT73C260 includes a 3.5V Supply Monitor, a Low Power Band-Gap, a 3.3V  
70mA Linear Voltage Regulator and a 1.8V-3.0V 70mA Linear Voltage Regulator SIM  
FTA compliant Test 27.17.2.1.  
The AT73C260 is specified over the industrial temperature range - 40°C to +85°C.  
The AT73C260 is available in a 3 X 3 mm, 0.5mm pitch, QFN16 package.  
Preliminary  
11030A–PMAAC–13-Sep-10  
1. Block Diagram  
Figure 1-1. AT73C260 functional block diagram  
9
AT73C260  
PVRF  
1
12  
HVCC  
PVCC  
Vref  
3.3Volt  
4
13  
6
V
BUS  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
10  
PDM  
7
8
2
11  
PDP  
3
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
2
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
2. Package and Pinout  
Figure 2-1. AT73C260 QFN16 package pinout - top view  
Thermal Pad  
(BOTTOM)  
8
OE_N  
13  
14  
15  
16  
RCV  
M<2>  
M<1>  
M<0>  
C260B  
YYWW  
XXXXX  
7 HDPO  
6 HDMO  
GND  
5
17 GND  
PIN 1 INDICATOR  
3
11030A–PMAAC–13-Sep-10  
3. Pin Description  
Table 3-1.  
Pin Name  
AT73C260 Pin Description  
I/O  
Pin Number  
Type  
Function  
Host Side VCC  
•When pin 4 (VBUS) is grounded. The LDO on pin HVCC is in  
standby and its output is isolated. The Host supplies HVCC with the  
appropriate voltage to the AT73C260’s upstream transceiver.  
HVCC  
Output  
1
Analog  
•When pin 4 (VBUS) is connected to a voltage source the internal  
voltage reference 3.3V and both LDO are activated. The LDO on pin  
1 provides power at 3.3V to the AT73C260’s upstream transceiver  
and it may source up to 70mA.  
HDP  
I/O  
I/O  
2
3
Digital  
Digital  
Analog  
Analog  
Digital  
Digital  
Digital  
Analog  
Digital  
Digital  
Bidirectional  
HDM  
Bidirectional  
VBUS  
GND  
Input  
Ground  
Output  
Output  
Input  
Input  
I/O  
4
Supply, provides power to the LDOs on pin 1 and 12  
5
GND Ground for Digital and I/Os  
Output  
HDMO  
HDPO  
OE_N  
PVRF  
PDM  
6
7
Output  
8
Input  
9
PVCC LDO input reference  
Bidirectional pad  
Bidirectional pad  
Peripheral Side VCC  
10  
11  
PDP  
I/O  
•When pin 4 (VBUS) is grounded. The LDO on pin PVCC is in  
standby and its output is isolated. The application supplies PVCC  
with the appropriate voltage to the AT73C260’s downstream  
transceiver.  
PVCC  
Input  
12  
Analog  
•When pin 4 (VBUS) is connected to a voltage source, the LDO on  
pin PVCC follows the voltage on pin PVRF. The LDO on pin PVCC  
provides power to the AT73C260’s downstream transceiver and it  
may source up to 70mA.  
RCV  
Output  
Input  
Input  
Input  
13  
14  
15  
16  
Digital  
Digital  
Digital  
Digital  
Output  
M<2>  
M<1>  
M<0>  
Input. For mode configuration  
Input. For mode configuration  
Input. For mode configuration  
Analog Ground. Thermal Pad. Shall be connected to GND for electrical  
and power dissipation reasons.  
GND  
Ground  
17  
Analog  
4
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
4. Absolute Maximum Ratings  
Table 4-1.  
Absolute Maximum Ratings  
Operating Temperature (Industrial)..................-40°C to + 85°C(1)  
*NOTICE:  
Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at these or other conditions beyond those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reli-  
ability.  
Storage Temperature........................................-55°C to + 150°C  
Power Supply Input on HVCC............................... -0.3V to + 3.6V  
Power Supply Input on VBUS............................. -0.3V to + 5.5V  
Digital I/O Input Voltage...................................... -0.3V to + 3.6V  
All Other Pins.......................................................-0.3V to + 3.6V  
ESD (all pins)..............................................................4 KV HBM  
Notes: 1. Refer to Power Dissipation Rating section)  
5. Recommended Operating Conditions  
Table 5-1.  
Parameter  
Recommended Operating Conditions  
Condition  
Min  
-40  
Max  
85  
Units  
°C  
V
Operating Ambient Temperature(1)  
Power Supply Output  
PVCC  
1.55  
1.55  
4.0  
3.6  
3.6  
5.5  
Power Supply Input  
HVCC  
VBUS  
V
Power Supply Input  
V
Note:  
1. Refer to Power Dissipation Rating section  
6. Power Dissipation Ratings  
Table 6-1.  
Parameter  
Recommended Operating Conditions  
Condition  
Min  
Typ  
Max  
Units  
Maximum Junction Temperature  
-40  
--  
--  
125  
°C  
Package thermal junction to ambient  
resistance  
(1)  
RTHjA  
--  
--  
90  
°C / W  
mW  
Maximum On-chip Power Dissipation  
Ambient temperature = 85°C  
--  
400  
Note:  
1. According to specification JESD51-5  
5
11030A–PMAAC–13-Sep-10  
7. Electrical Characteristics  
7.1  
I/Os DC Characteristics Referred to HVCC  
Table 7-1.  
Symbol  
HVCC  
HVCC Referred I/Os: HDP, HDM, RCV, HDMO, HDPO, OE_N and M<2:0>  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Host Side Supply Voltage  
220nF ceramic capacitor (1)  
1.55  
--  
3.6  
V
Full Speed Transceiver / Receiver  
at 12Mbps, CLOAD = 18pF on HDP  
and HDM during transmit  
IHVCC  
Operating HVCC Supply Current  
--  
--  
2
mA  
0.65 x  
HVCC  
HVCC  
0.3  
+
VIH  
VIL  
Input High-Level Voltage  
Input Low-Level Voltage  
VOH > VOH_MIN  
VOH < VOL_MAX  
--  
--  
V
V
0.35 x  
HVCC  
-0.3  
HVCC  
0.45  
-
VOH  
VOL  
Output High-Level Voltage  
Output Low-Level Voltage  
IOH = - 2mA  
IOL = 2mA  
All Cases  
--  
--  
--  
--  
V
V
--  
0.45  
80  
Pull-Down Resistors on HDP,  
HDM  
RPDP  
30  
kΩ  
M<0> = 0  
Upstream Pull-Up Resistors on  
HDP  
(2)  
RPU1  
0.9  
1
--  
--  
3.09  
150  
kΩ  
kΩ  
M<2:1> = connected to HVCC  
Upstream Pull-Up Resistors on  
HDP  
(3)  
RPU2  
M<2:0> = connected to HVCC  
Notes: 1. A 220nF ceramic capacitor is connected between the pin HVCC and the pin GND and closest to HVCC pin.  
2. RPU1 Pull Up resistor is as per the ECN “Pull-up/pull-down resistors” published by the USB-IF. RPU1 value is between 900Ω  
and 1575Ω when the bus is idle and between 1425Ω and 3090Ω when the upstream device is transmitting  
3. RPU2 Pull Up resistor is as per the IC_USB1.0 published by the USB-IF. RPU2 value is between 1kΩ and 3kΩ to attach and  
between 30kΩ and 150kΩ during idle.  
7.2  
I/Os DC Characteristics Referred to PVCC  
Table 7-2.  
Symbol  
PVCC  
PVCC Referred I/Os: PDP, PDM  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Peripheral Side Supply Voltage  
220nF ceramic capacitor (1)  
1.55  
--  
3.6  
V
Full Speed Transceiver / Receiver  
at 12Mbps, CLOAD = 18pF on PDP  
and PDM during transmit  
IPVCC  
Operating PVCC Supply Current  
--  
--  
2
mA  
0.65 x  
PVCC  
PVCC  
0.3  
+
VIH  
VIL  
Input High-Level Voltage  
Input Low-Level Voltage  
Output High-Level Voltage  
VOH > VOH_MIN  
VOH < VOL_MAX  
IOH = - 2mA  
--  
--  
--  
V
V
V
0.35 x  
PVCC  
-0.3  
PVCC  
0.45  
-
VOH  
--  
VOL  
Output Low-Level Voltage  
Pull-Down Resistors  
IOL = 2mA  
--  
--  
--  
0.45  
80  
V
RPDH  
All Cases for PDP, PDM  
30  
kΩ  
Notes: 1. A 220nF ceramic capacitor is connected between the pin PVCC and the pin GND and closest to PVCC pin.  
6
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
7.3  
Timing Characteristics Table  
Table 7-3.  
Symbol  
Timing Table  
Parameter  
Comments  
Min  
--  
Typ  
37  
Max  
--  
Units  
ns  
HVCC = 3.3V and PVCC = 3.0V  
TDELAY  
Propagation Delay Time  
HVCC = 3.3V and PVCC = 1.8V  
--  
42  
--  
ns  
10%-90%, CLOAD=33pF, PVCC=3.0V  
10%-90%, CLOAD=33pF, PVCC=1.8V  
10%-90%, CLOAD=33pF, PVCC=3.0V  
10%-90%, CLOAD=33pF, PVCC=1.8V  
10%-90%, CLOAD=33pF, PVCC=3.0V  
10%-90%, CLOAD=33pF, PVCC=1.8V  
10%-90%, CLOAD=33pF, PVCC=3.0V  
10%-90%, CLOAD=33pF, PVCC=1.8V  
--  
5.7  
10.5  
5.6  
10.6  
6.1  
7.6  
6.1  
7.7  
--  
TSLEW_R_P  
TSLEW_R_M  
TSLEW_F_P  
TSLEW_F_M  
Slew Rate, Rise Time on PDP  
Slew Rate, Rise Time on PDM  
Slew Rate, Fall Time on PDP  
Slew Rate, Fall Time on PDM  
--  
--  
--  
--  
--  
--  
ns  
--  
--  
--  
--  
--  
--  
--  
--  
M<2:0>=110, HVCC = 3.3V and PVCC  
= 3.0V  
TATTACH  
TATTACH  
Attachment Transit Time  
Attachment Transit Time  
--  
--  
400  
400  
--  
--  
ns  
ns  
M<2:0>=111, HVCC = 1.8V and PVCC  
= 3.3V  
Notes: 1. External Capacitor is a 1µF or higher ceramic capacitor connected between the pin VBUS and the pin GND and closest to  
VBUS pin  
7.4  
VBUS Supply Characteristics  
Table 7-4.  
Symbol  
VBUS  
VBUS Supply Monitor  
Parameter  
Comments  
Min  
4.0  
Typ  
5.0  
Max  
5.5  
Units  
V
Input Supply Voltage Range  
Positive Threshold  
Negative Threshold  
Hysteresis  
1µF ceramic capacitor (1)  
VTP  
3.36  
3.02  
348  
3.5  
3.64  
3.28  
374  
V
VTN  
3.15  
361  
V
VHYS  
mV  
Notes: 1. External Capacitor is a 1µF or higher ceramic capacitor connected between the pin VBUS and the pin GND and closest to  
VBUS pin  
.
Table 7-5.  
Symbol  
VBUS  
VBUS Current Consumption  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Input Supply Voltage Range  
1µF ceramic capacitor (1)  
4.0  
5.0  
5.5  
V
VBUS active  
• HVCC= 3.3V nominal  
• 1.55V < PVRF < 3.6V  
• Loads = 0mA  
• Idle  
IVBUS  
VBUS Supply Current  
--  
100  
150  
µA  
Notes: 1. External Capacitor is a 1µF or higher ceramic capacitor connected between the pin VBUS and the pin GND and closest to  
VBUS pin.  
7
11030A–PMAAC–13-Sep-10  
7.5  
HVCC and PVCC Supplies Characteristics  
7.5.1  
HVCC and PVCC Current Consumption  
Table 7-6.  
Symbol  
HVCC  
PVCC and HVCC Current Consumption  
Parameter  
Comments  
Min  
1.55  
1.55  
Typ  
--  
Max  
3.6  
Units  
Host Supply Voltage  
Peripheral Supply Voltage  
V
V
PVCC  
--  
3.6  
VBUS = 0V, PVRF = 0V  
• Loads = 0mA  
IVCC  
XVCC Supply Current  
• Idle  
--  
--  
5
µA  
• HVCC forced at 3.6V  
• PVCC forced at 3.3V  
7.5.2  
3.3V Supplied on HVCC  
When VBUS is greater than 3.5V nominal, an internal LDO voltage regulator provides a 3.3V  
nominal voltage source on pin HVCC  
.
Table 7-7.  
Symbol  
HVCC LDO Characteristics  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
- Enabled when VBUS is greater  
than 3.5V typical.  
(1)  
HVCC  
Output Voltage  
3.0  
3.3  
3.6  
V
- Disabled when VBUS goes below  
3.15V typical  
IO  
Output Current  
0
--  
--  
70  
10  
mA  
mV  
• VBUS > 4.5V  
Static Load Regulation  
--  
• IO = 10% to 90%  
ΔVDD_IL  
• VBUS > 4.5V  
Dynamic Load Regulation  
Static Line Regulation  
• IO = 10% to 90%  
• TRISE = TFALL = 5µs  
--  
50  
--  
mV  
• VBUS from 4.3V to 5.5V  
• IO = Max  
--  
--  
--  
--  
20  
20  
mV  
mV  
ΔVDD_VIN  
• VBUS from 4.0V to 5.5V  
• IO = 7 mA  
• VBUS From 0V to 5.0V  
• TRISE = 10µs  
• IO = 0mA  
TSTART  
Start-up Time  
--  
--  
60  
µs  
• VOUT > 3.0V  
Notes: 1. When VBUS is present and greater than VTP, 10kΩ pull down is removed on HVCC and on PVCC and LDO are started. When  
VBUS goes below VTP, a 10kΩ pull down is connected on HVCC and PVCC and LDO are disabled. When VBUS = 0V and HVCC  
and PVCC within their normal range the 10kΩ pull down are disconnected.  
8
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
7.5.3  
Voltage Supplied on PVCC  
When VBUS is greater than 3.5V nominal, an internal LDO Follower provides a voltage source on  
pin PVCC. The voltage on pin PVCC is equal to the voltage on pin PVRF  
.
PVCC LDO is in accordance with FTA Test 3GPP - 27.17.2.1 dedicated for Subscriber Iden-  
tity Module (SIM) application.  
Table 7-8.  
Symbol  
VBUS  
PVCC LDO Characteristics  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Supply Input Voltage  
On pin VBUS  
4.0  
5.0  
5.5  
V
- Enabled when VBUS is greater  
than 3.5V typical.  
(1)  
PVCC  
Output Voltage  
- Disabled when VBUS goes below  
3.15V typical  
1.55  
--  
3.6  
V
- 1.55V < PVRF < 3.6V  
VOFF  
IO  
Follower Offset Voltage  
Output Current  
P
VCC - PVRF  
-40  
0
--  
--  
40  
70  
mV  
mA  
• VBUS > 4.5V  
Static Load Regulation  
--  
--  
--  
10  
--  
mV  
mV  
• IO = 10% to 90%  
ΔVDD_IL  
• VBUS > 4.5V  
Dynamic Load Regulation  
• IO = 10% to 90%  
• TRISE = TFALL = 5µs  
30  
• VBUS from 4.3V to 5.5V  
• IO = Max  
--  
--  
--  
--  
20  
20  
mV  
mV  
ΔVDD_VIN  
Static Line Regulation  
• VBUS from 4.0V to 5.5V  
• IO = 7 mA  
• VBUS is set at 5.0V  
PVRF 0V to 1.8V with TRISE = 5µs  
• IO = 10mA  
--  
--  
--  
--  
20  
32  
--  
35  
50  
µs  
µs  
µs  
µs  
• VOUT > 1.62V  
TSTART  
Start-up Time  
• VBUS is set at 5.0V  
PVRF 0V to 3.0V with TRISE = 5µs  
• IO = 10mA  
• VOUT > 2.7V  
• VBUS is set at 5.0V  
PVRF 3.0V to 0V with TFALL = 5µs  
• RLOAD = 1KΩ. COUT=220nF/ X5R  
• VOUT < 0.4V  
525  
225  
(2)  
TSTOP  
Power-Off Time  
• VBUS is set at 5.0V  
PVRF 3.0V to 0V with TFALL = 5µs  
• IO = 7mA. COUT=220nF/ X5R  
• VOUT < 0.4V  
--  
Notes: 1. When VBUS is present and greater than VTP, 10kΩ pull down is removed on HVCC and on PVCC and LDO are started. When  
VBUS goes below VTP, a 10kΩ pull down is connected on HVCC and PVCC and LDO are disabled. When VBUS = 0V and HVCC  
and PVCC within their normal range the 10kΩ pull down are disconnected.  
2. Off time is described in Section 9.3.4 on page 16. To reduce TSTOP time an external reisitor is recommended. This value  
depends on COUT and load applied on the system.  
9
11030A–PMAAC–13-Sep-10  
8. Components List.  
Table 8-1.  
AT73C260 External Components List  
Component Name  
Component Type  
Resistor  
Value / Tol.  
33 Ω +/- 5%  
10 Ω +/- 5%  
10kΩ +/- 1%  
100kΩ +/- 1%  
22kΩ +/- 5%  
22pF +/- 20%  
1µF +/- 20%  
220nF +/- 20%  
220nF +/- 20%  
Reference  
Reference  
R1, R2  
R3  
CRG0402J33R  
CRG0603J10R  
Resistor  
R4  
Resistor  
CPF0402F10KE1  
CPF0603F100KC1  
CRG0402J22K  
R5  
Resistor  
R6, R7  
C1, C2  
C3  
Resistor  
Ceramic Capacitor COG  
Ceramic Capacitor X5R  
Ceramic Capacitor X5R  
Ceramic Capacitor X5R  
C1005COG1H220J  
C1005X5R0J105K  
C1005X5R1C224KT  
C1005X5R1C224KT  
GRM1555C1H220JZ01  
GRM155R60J105KE19  
GRM155R60J224KE01  
GRM155R60J224KE01  
C4  
C5  
10  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
9. Functional Description  
9.1  
AT73C260’s Upstream and Downstream Ports  
This section relates to either upstream or downstream ports with digital, IC_USB1.0 or USB2.0  
section 7 electrical characteristics.  
Table 9-1 shows the configuration of the upstream and downstream ports based on pins 14, 15  
and 16 voltages.  
• 0 is when the pin is connected to GND.  
• 1 is when the pin is connected to HVCC  
.
Table 9-1.  
Upstream and Downstream Ports  
M<2>  
M<1>  
M<0>  
Upstream  
Port  
Downstream  
Port  
Pin 14  
Pin 15  
Pin 16  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Digital  
Digital  
IC_USB1.0  
IC_USB1.0  
Digital  
IC_USB1.0  
Digital  
IC_USB1.0  
Not Used  
Digital  
Not Used  
IC_USB1.0  
Section 7  
IC_USB1.0  
IC_USB1.0  
Section 7 (1) / IC_USB1.0  
Notes:1. PVCC is set to 3.3V and external pull down resistors of 22kΩ ± 5% are connected, one between  
PDP and GND and the other between PDM and GND.  
11  
11030A–PMAAC–13-Sep-10  
9.2  
AT73C260 Pull Up and Pull Down Resistors  
Pull down resistors RPDP and RPDH values and behaviors comply with the IC_USB1.0 specifica-  
tion published by the USB-IF.  
9.2.1  
AT73C260 Upstream Port Connectivity (HVCC, HDP, HDM):  
The host, IC_USB1.0 or USB2.0 section 7, is connected to the AT73C260’s upstream port.  
When in IC_USB 1.0 RPU2 is selected.  
When in USB2.0 section 7 RPU1 is selected.  
9.2.2  
AT73C260 Downstream Port Connectivity (PVCC, PDP, PDM):  
The peripheral, IC_USB1.0 or USB2.0 section 7, is connected to the AT73C260’s downstream  
port.  
An IC_USB1.0 peripheral is connected to the AT73C260’s downstream port.  
An USB2.0 section 7 peripheral is connected to the AT73C260’s downstream port with  
external pull down resistors as per precedent note (1) (See Table 9-1 on page 11).  
Figure 9-1. AT73C260 Downstream and Upstream Ports  
HVCC  
PVCC  
SW2  
SW1  
RPU1  
RPU2  
HDP  
HDM  
PDP  
PDM  
RPDP  
SW3  
RPDH  
SW6  
SW5  
SW4  
GND  
12  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
9.3  
Theory Of Operation  
9.3.1  
Remote Wake Up  
The AT73C260 does not support remote wake up.  
9.3.2  
Slew Rate Control  
When the AT73C260 drives an IC_USB bus section the output buffer on each line (Figure 9-2)  
drives the pin with a slew rate control to minimize radiated EMI.  
Figure 9-2. AT73C260 Output Buffer  
Output buffers  
CT = 18pF  
TxIC_DP  
C
C
T
T
TxIC_DM  
Figure 9-3. AT73C260 Output Buffer Slew Rate  
90%  
90%  
10%  
10%  
tR  
tF  
Note:  
See Table 7-3 on page 7 for timing values.  
13  
11030A–PMAAC–13-Sep-10  
9.3.3  
Attach  
Figure 9-4. AT73C260 Attach Sequence  
HDP  
Reset  
idle  
PDP  
idle  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
In the following paragraphs, two different attach sequences are described according the mode  
selected. Mode VCC and Mode S7_ICC_TK are explained.  
9.3.3.1  
Attach Sequence ”Mode VCC”  
The following sequence describes the AT73C260 with an IC_USB upstream connection and an  
IC_USB downstream connection (Mode VCC). For hardware connection refers to “Mode: Volt-  
age Class Converter: VCC” on page 34.  
• HVCC and PVCC are present and are in their dedicated voltage range.  
• RPU1 is not used (SW1 always open). (For more information about switches, refers to Figure  
9-1 on page 12)  
• Before T1, RPDP and RPDH are connected. RPU2 is disconnected. (For more information about  
resistors, refers to Figure 9-1 on page 12)  
T1: Peripheral event.  
Beyond T1, PDP is driven high by the IC_USB peripheral’s pull-up resistor.  
T2: AT73C260 event.  
The signal is above VIH. The AT73C260 verifies that the condition PDP is high lasts more  
than 200ns nominal. This information is passed to the AT73C260’s Host side.  
T3: AT73C260 event.  
Beyond T3, RPU2 (2k nominal) is connected while RPDP on HDP is disconnected.  
T4: Host event.  
From T4 the host drives the reset with SE0.  
T5: AT73C260 event.  
It takes 40 ns nominal beyond T4 for PDP to be driven low.  
T6: AT73C260 event.  
During reset the AT73C260 detects a SE0 for more than 1µs nominal. Beyond T6 both  
R
PDH are disconnected.  
14  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
T7: Host event.  
Host stops driving SE0. The AT73C260 with its 2k nominal resistor, pulls-up HDP.  
T8: AT73C260 event.  
The signal is above VIH.(on HDP)  
T9: AT73C260 event.  
40ns nominal after T8. From T9, the AT73C260 drives high until VIH (on PDP) is reached  
plus 100ns nominal until T11.  
T10: AT73C260 event.  
Between T7 and T10. HDP is pulled-up with 2k nominal until VIH (on HDP) is reached plus  
100ns. At T10 RPU2 becomes 50k nominal.  
9.3.3.2  
Attach Sequence Mode S7_ICC_TK  
The following sequence describes the AT73C260 with an USB2.0 section 7 upstream connec-  
tion and an IC_USB downstream connection (Mode S7_ICC_TK). For hardware connection  
refers to “Mode: USB2.0 section 7 to IC_USB1.0 with PVCC fixed by PVRF: S7_ICC_TK” on  
page 38.  
• HVCC = 3.3V and PVCC are present and are in their dedicated voltage range.  
• RPU2 is not used (SW2 always open). RPDP are not used (SW3 and SW4 always open).(For  
more information about switches, refers to Figure 9-1 on page 12)  
• Before T1, RPDH are connected. RPU2 is disconnected. (For more information about resistors,  
refers to Figure 9-1 on page 12)  
T1: Peripheral event.  
Beyond T1, PDP is driven high by the IC_USB peripheral’s pull-up resistor.  
T2: AT73C260 event.  
The signal is above VIH. The AT73C260 verifies that the condition PDP is high lasts more  
than 200ns nominal. This information is passed to the AT73C260’s Host side.  
T3: AT73C260 event.  
Beyond T3, RPU1 1.2k nominal, is connected.  
T4: Host event.  
From T4 the host drives the reset with SE0.  
T5: AT73C260 event.  
RPU1 becomes 2.2k nominal. It takes 40 ns nominal beyond T4 for PDP to be driven low.  
T6: AT73C260 event.  
During reset the AT73C260 detects a SE0 for more than 1µs nominal. Beyond T6 both  
RPDH are disconnected.  
T7: Host event.  
Host stops driving SE0. The AT73C260 with its 2k nominal resistor, pulls-up HDP.  
T8: AT73C260 event.  
The signal is above VIH.(on HDP)  
15  
11030A–PMAAC–13-Sep-10  
T9: AT73C260 event.  
40ns nominal after T8. From T9, the AT73C260 drives high until VIH (on PDP) is reached  
plus 100ns nominal until T11.  
T10: AT73C260 event.  
Between T7 and T10. HDP is pulled-up with 2.2k nominal until VIH (on HDP) is reached plus  
100ns. At T10 RPU1 becomes 1.2k nominal.  
9.3.4  
PVRF Driving PVCC  
Figure 9-5. AT73C260 PVRF driving PVCC  
PVRF  
TOFF  
PVCC  
90%  
10%  
TSTART  
TSTOP  
When VBUS, pin 4, is providing power to the USB UICC via the LDOs, the voltage on PVCC (pin  
12) is following the voltage on PVRF (pin 9).  
TSTART is mostly related to the capacitive load on PVCC and the strength of the LDO’s PMOS.  
TSTART as mentioned in Table 7-8 on page 9 is less than 50µs.  
TSTOP is mostly related to the load on PVCC since the LDO’s PMOS is off when starts TOFF  
.
Certain applications may require PVCC to fall below a minimum voltage in less than TOFF and  
guarantee a Power On Reset sequence in the USB UICC when PVCC is set again. For these  
applications an extra load, such as a resistor across PVCC and GND in parallel with the USB  
UICC and the decoupling capacitor C5 may be required.  
As an example, for TOFF = 0.4ms, a decoupling capacitor C5 of 220nF and an USB UICC in  
standby (less than 100µA) the extra resistor shall be less than 1kΩ.  
16  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
9.3.5  
Reset Signaling  
At the end of the Reset signaling on AT73C260’s host side and peripheral sides the pulled up  
data line voltage has to reach VIH_MIN in less than TDDIS, see Figure 9-6. If it is not the case, the  
host may see a disconnect condition.  
Reset is forced during T2.  
If a 100kΩ pull up resistor is used while the capacitive load is more than 20pF, the time constant  
is greater than 2µs. To avoid any disconnect condition, the AT73C260 pulls up the appropriate  
data line during about one bit duration with extra strength making the disconnect condition  
unlikely.  
Figure 9-6. AT73C260 Reset Signaling  
IC_DP  
VIH_MIN  
IC_DM  
Less than TDDIS min (2µs)  
Reset signaling  
T1  
T2  
9.3.6  
Resume Signaling  
The AT73C260 supports resume signaling. The timings on IC_DP and IC_DM are those on HDP  
and HDM delayed by 40ns nominal.  
Figure 9-7. AT73C260 Resume Signaling  
One J state  
EOP (Two Low Speed bit time)  
HDP  
SOF  
T
DRSMND (20ms minimum)  
HDM  
3ms max  
Idle, J state  
The Hub signals resume to the UICC by forcing a K state during TDRSMDN(20ms)  
Notes: 1. J state means that HDP = 1 and HDM = 0.  
2. K state means that HDP = 0 and HDM = 1.  
3. SOF = Start Of Frame  
17  
11030A–PMAAC–13-Sep-10  
9.4  
General Description  
The AT73C260 covers four main functions:  
PHY (described in Section 9.4.3 on page 20)  
Bridge (described in Section 9.4.4 on page 30)  
IC_USB1.0 Voltage Class Converter (described in Section 9.4.5 on page 34)  
Bridge with LDOs for two specific applications (described in Section 9.4.6 on page 36),  
and one extra function from many described as an example where the AT73C260 is an inter-  
chip PHY in a digital implementation (FPGA) of a peripheral.  
9.4.1  
Application Modes  
The following Table 9-2 lists the applications and pin settings.  
Table 9-2.  
Mode  
AT73C260 Application Modes (4)  
Application  
M<2>  
M<1>  
M<0>  
Function  
Pin 14  
Pin 15  
Pin 16  
PHY_6_SE0  
PHY_4_SE0  
PHY_6_DPDM  
PHY_4_DPDM  
PHY_3_ULPI  
S7_ICC  
Digital six wires unidirectional DAT_SE0 to IC_USB1.0  
Digital four wires bidirectional DAT_SE0 to IC_USB1.0  
Digital six wires unidirectional DP_DM to IC_USB1.0  
Digital four wires bidirectional DP_DM to IC_USB1.0  
Digital three wires bidirectional (DAT, SE0, OE_N) to IC_USB1.0  
USB2.0 section 7 without cable to IC_USB1.0  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
1
0
PHY  
PHY  
PHY  
PHY  
PHY  
Bridge  
USB2.0 section 7 with cable to IC_USB1.0, LDOs ON  
VCC driven by the Digital Base Band (2)  
Bridge with  
LDOs  
S7_ICC_DBB  
1
1
0
USB2.0 section 7 with cable to IC_USB1.0, LDOs ON  
VCC fixed by PVRF (3)  
Bridge with  
LDOs  
S7_ICC_TK  
ICC_S7  
1
1
1
1
0
1
IC_USB1.0 to USB2.0 section 7 (1)  
Bridge  
Voltage  
Class  
VCC  
IC_USB1.0 to IC_USB1.0  
1
1
1
Converter  
Notes: 1. 22kΩ Pull down on pins 10 and 11  
2. PC with Digital Base Band  
3. Token  
4. M<2:0> code”100” is not used  
18  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
9.4.2  
Function Descriptions  
9.4.2.1  
Downstream Port PHY:  
A set of digital signals generated by an FPGA or an ASIC with I/O powered by a first power sup-  
ply drive the AT73C260 which converts these signals into analog signals IC_DP and IC_DM as  
per IC_USB1.0 powered by a second power supply.  
9.4.2.2  
Bridge:  
Two cases are supported: USB2.0 section 7 to IC_USB1.0 and IC_USB1.0 to USB2.0 section 7.  
USB2.0 section 7 to IC_USB1.0  
Downstream D+ and D- signals drive the AT73C260 which converts these signals into analog  
signals IC_DP and IC_DM as per IC_USB1.0.  
IC_USB1.0 to USB2.0 section 7  
Downstream IC_USB1.0 signals drive the AT73C260 which converts these signals into analog  
signals D+ and D- as per USB2.0 section 7.  
9.4.2.3  
9.4.2.4  
Voltage Class Converter:  
The following applications enable communications between an IC_USB1.0 compliant down-  
stream port with a first voltage class V1 and an IC_USB1.0 compliant peripheral with a second  
voltage class VCC  
.
The range of the supplies, respectively Host and Device, are: HVCC (1.55V - 3.6V) and PVCC  
(1.55V - 3.6V)  
Bridge with LDOs:  
Two cases are supported: one for PC with embedded Digital Base Band and one for Token.  
PC with embedded Digital Base Band  
The AT73C260 provides up to 70mA from VBUS to the UICC under the VCC required by the DBB.  
Also the AT73C260 converts D+ and D- signals into analog signals IC_DP and IC_DM as per  
IC_USB1.0.  
Token  
The AT73C260 provides up to 70mA from VBUS to the UICC under VCC  
.
This voltage is generated by PVCC LDO and set by an external resistor bridge supplied by 3.3V  
voltage reference (HVCC).  
Also the AT73C260 converts D+ and D- signals into analog signals IC_DP and IC_DM as per  
IC_USB1.0.  
19  
11030A–PMAAC–13-Sep-10  
9.4.3  
Downstream Port PHY  
In mobile applications, the USB UICC is handled by the user and special care should be taken in  
the ESD protection on the downstream port facing the USB UICC. The AT73C260 downstream  
port is protected against 4kV ESD.  
Also, the host and the USB UICC may not be located on the same board with a flex connecting  
the two PCBs. The AT73C260 should be located next to the host. The flex is between the  
AT73C260’s downstream port and the USB UICC upstream port. The AT73C260 downstream  
port has slew rate control on both PDM and PDP to minimize the radiated EMI.  
Pins VBUS and PVRF are connected to GND and LDO outputs are isolated and in standby.  
9.4.3.1  
Mode: Digital six wires unidirectional DAT_SE0 to IC_USB1.0: PHY_6_SE0  
Description  
This application allows a Host, ASIC or FPGA, with the digital unidirectional Philips  
PDIUSBP11A (MODE pin = 0) six wires interface to drive an IC_USB downstream port.  
Figure 9-8. PHY_6_SE0 Block Diagram  
6
IC_USB_1.0  
ASIC  
FPGA  
AT73C260  
DAT_SEO  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-3.  
AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Digital six wires unidirectional DAT_SE0 to  
IC_USB1.0  
PHY_6_SE0  
0
0
0
Table 9-4.  
AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Supply by ASIC FPGA I/O Ring (1.55V  
to 3.6V)  
1
HVCC  
A-Power  
--  
2
3
TX_DAT  
TX_SEO  
VBUS  
D-Input  
D-Input  
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
--  
Unidirectional Transmit Data  
Unidirectional Transmit Single Ended 0  
Not Used and Connected to Ground  
Unidirectional Receiving DM  
Unidirectional Receiving DP  
Tx Enable N  
4
--  
6
RX_DM  
RX_DP  
TX_ENABLE_N  
PVRF  
--  
7
--  
8
Low  
--  
9
Connected to Ground  
10  
PDM  
--  
Downstream Port for USB Device  
20  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Table 9-4.  
AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
11  
12  
PDP  
D-I/O  
--  
Downstream Port for USB Device  
Same as peripheral’s power (1.8V or 3V  
typical)  
PVCC  
A-Power  
--  
13  
RX_RCV  
M<2:0>  
D-Output  
D-Inputs  
--  
Unidirectional Receiving RCV  
Connected to Ground  
14, 15, 16  
Low  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-9. AT73C260: PHY - 6 wires DAT_SE0 to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
H
VCC  
BUS  
PVCC  
C
5
C
4
Vref  
3.3Volt  
4
13  
6
ASIC/FPGA : 6 WIRES DAT_SE0  
V
DIGITAL WRAPPER  
rx_rcv  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
10  
rx_dm  
PDM  
IC_DM  
7
rx_dp  
rx_dp  
8
tx_enable_n  
tx_enable_n  
2
11  
IC_DP  
tx_dat  
tx_se0  
tx_dat  
tx_se0  
PDP  
3
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
Note:  
All external components are defined in component list Table 8-1 on page 10  
21  
11030A–PMAAC–13-Sep-10  
9.4.3.2  
Mode: Digital four wires bidirectional DAT_SE0 to IC_USB1.0: PHY_4_SE0  
Description  
This application allows a Host, ASIC or FPGA, with the digital bidirectional UTMIfs, DAT_SE0,  
four wires interface to drive an IC_USB downstream port.  
Figure 9-10. PHY_4_SE0 Block Diagram  
4
IC_USB_1.0  
ASIC  
FPGA  
AT73C260  
DAT_SEO  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-5.  
AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Digital four wires bidirectional DAT_SE0 to  
IC_USB1.0  
PHY_4_SE0  
0
0
HVCC  
Table 9-6.  
AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity Function  
Supply by ASIC FPGA I/O Ring (1.55V to  
3.6V)  
1
HVCC  
A-Power  
--  
2
3
TX_DAT/RX_DP  
TX_SE0/RX_DM  
VBUS  
D-I/O  
D-I/O  
--  
--  
Bidirectional Rx_Dp/Tx_Data  
Bidirectional Rx_DM/Tx_Single Ended 0  
Not Used and Connected to Ground  
Not Connected  
4
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
6
HDMO  
HiZ  
HiZ  
Low  
--  
7
HDPO  
Not Connected  
8
TX_ENABLE_N  
PVRF  
Tx Enable N  
9
Connected to Ground  
10  
11  
PDM  
--  
Downstream Port for USB Device  
Downstream Port for USB Device  
PDP  
D-I/O  
--  
Same as peripheral’s power (1.8V or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
14, 15  
16  
RX_RCV  
M<2:1>  
M<0>  
D-Output  
D-Inputs  
D-Input  
--  
Unidirectional Receiving RCV  
Connected to Ground  
Connected to HVCC  
Low  
High  
22  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-11. AT73C260: PHY - 4 wires DAT_SE0 to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
H
V
VCC  
BUS  
PVCC  
C
5
C
4
Vref  
3.3Volt  
4
ASIC/FPGA : 4 WIRES DAT_SE0  
DIGITAL WRAPPER  
13  
rx_rcv  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
rx_dp  
8
2
3
tx_enable_n  
tx_dat/rx_dp  
tx_se0/rx_dm  
tx_enable_n  
11  
IC_DP  
tx_dat  
tx_se0  
PDP  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
HVCC  
5
Note:  
All external components are defined in component list Table 8-1 on page 10  
23  
11030A–PMAAC–13-Sep-10  
9.4.3.3  
Mode: Digital six wires unidirectional DP_DM to IC_USB1.0: PHY_6_DPDM  
Description  
This application allows a Host, ASIC or FPGA, with the digital unidirectional Philips  
PDIUSBP11A (MODE pin = 1) six wires interface to drive an IC_USB downstream port.  
Figure 9-12. PHY_6_DPDM Block Diagram  
6
IC_USB_1.0  
ASIC  
FPGA  
AT73C260  
DP_DM  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-7.  
AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Digital six wires unidirectional DP_DM to  
IC_USB1.0  
PHY_6_DPDM  
0
HVCC  
0
Table 9-8.  
AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity Function  
Supply by ASIC FPGA I/O Ring (1.55V  
to 3.6V)  
1
HVCC  
A-Power  
--  
2
3
TX_DP  
TX_DM  
VBUS  
D-Input  
D-Input  
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
--  
Unidirectional Tx DP  
Unidirectional Tx DM  
Not Used and Connected to Ground  
Unidirectional Rx DM  
Unidirectional Rx DP  
Tx Enable N  
4
--  
6
RX_DM  
RX_DP  
TX_ENABLE_N  
PVRF  
--  
7
--  
8
Low  
--  
9
Connected to Ground  
Downstream Port for USB Device  
Downstream Port for USB Device  
10  
11  
PDM  
--  
PDP  
D-I/O  
--  
Same as peripheral’s power (1.8V or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
14  
15  
16  
RX_RCV  
M<2>  
D-Output  
D-Input  
D-Input  
D-Input  
--  
Unidirectional Receiving RCV  
Connected to Ground  
Connected to HVCC  
Low  
High  
Low  
M<1>  
M<0>  
Connected to Ground  
24  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-13. AT73C260: PHY - 6 wires DP_ DM to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
C
4
H
VCC  
BUS  
PVCC  
C
5
Vref  
3.3Volt  
4
13  
6
ASIC/FPGA : 6 WIRES DP_DM  
V
DIGITAL WRAPPER  
rx_rcv  
rx_dm  
rx_dp  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
10  
PDM  
IC_DM  
7
rx_dp  
8
tx_enable_n  
tx_dp  
tx_enable_n  
2
11  
IC_DP  
tx_dat  
tx_se0  
PDP  
3
tx_dm  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Note:  
All external components are defined in component list Table 8-1 on page 10  
25  
11030A–PMAAC–13-Sep-10  
9.4.3.4  
Mode: Digital four wires bidirectional DP_DM to IC_USB1.0: PHY_4_DPDM  
Description  
This application allows a Host, ASIC or FPGA, with the digital bidirectional UTMIfs, DP_DM, four  
wires interface to drive an IC_USB downstream port.  
Figure 9-14. PHY_4_DPDM Block Diagram  
4
IC_USB_1.0  
ASIC  
FPGA  
AT73C260  
DP_DM  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-9.  
AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Digital four wires bidirectional DP_DM to  
IC_USB1.0  
PHY_4_DPDM  
0
HVCC  
HVCC  
Table 9-10. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Supply by ASIC FPGA I/O Ring (1.55V  
to 3.6V)  
1
HVCC  
A-Power  
--  
2
3
TX_DP/RX_DP  
TX_DM/RX_DM  
VBUS  
D-I/O  
D-I/O  
--  
--  
Bidirectional Tx_Dp/Dx_DP  
Bidirectional Tx_Dm/Dx_DM  
Not Used and Connected to Ground  
Not Connected  
4
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
6
HDMO  
HiZ  
HiZ  
Low  
--  
7
HDPO  
Not Connected  
8
TX_ENABLE_N  
PVRF  
Tx Enable N  
9
Connected to Ground  
10  
11  
PDM  
--  
Downstream Port for USB Device  
Downstream Port for USB Device  
PDP  
D-I/O  
--  
Same as peripheral’s power (1.8V or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
14  
RX_RCV  
M<2>  
D-Output  
D-Input  
--  
Unidirectional Receiving RCV  
Connected to Ground  
Connected to HVCC  
Low  
High  
15,16  
M<1:0>  
D-Inputs  
26  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-15. AT73C260: PHY - 4 wires DP_ DM to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
C
4
1
12  
HVCC  
GND  
PVCC  
H
VCC  
BUS  
PVCC  
C
5
Vref  
3.3Volt  
4
ASIC/FPGA : 4 WIRES DP_DM  
V
DIGITAL WRAPPER  
13  
rx_rcv  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
rx_dp  
8
2
3
tx_enable_n  
tx_dp/rx_dp  
tx_dm/rx_dm  
tx_enable_n  
11  
IC_DP  
tx_dat  
tx_se0  
PDP  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Note:  
All external components are defined in component list Table 8-1 on page 10  
27  
11030A–PMAAC–13-Sep-10  
9.4.3.5  
Mode: Digital three wires bidirectional (DAT, SE0, OE_N) to IC_USB1.0: PHY_3_ULPI  
Description  
This application allows a Host, ASIC or FPGA, with the digital bidirectional ULPI serial support,  
DAT, SE0, and OE_N, three wires interface to drive an IC_USB downstream port.  
Figure 9-16. PHY_3_ULPI Block Diagram  
3
IC_USB_1.0  
ASIC  
FPGA  
AT73C260  
ULPI  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-11. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Digital three wires bidirectional DAT, SE0, OE_N to  
IC_USB1.0  
PHY_3_ULPI  
HVCC  
0
HVCC  
Table 9-12. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Supply by ASIC FPGA I/O Ring  
(1.55V to 3.6V)  
1
HVCC  
A-Power  
--  
2
3
RX_RCV/TX_DAT  
RX_SE0/TX_SE0  
VBUS  
D-I/O  
D-I/O  
--  
--  
Bidirectional Rx_RCV / Tx_Data  
Bidirectional Rx_SE0/Tx_SE0  
Not Used and Connected to Ground  
Not Connected  
4
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
6
HDMO  
HiZ  
HiZ  
Low  
--  
7
HDPO  
Not Connected  
8
TX_ENABLE_N  
PVRF  
Tx Enable N  
9
Connected to Ground  
10  
11  
PDM  
--  
Downstream Port for USB Device  
Downstream Port for USB Device  
PDP  
D-I/O  
--  
Same as peripheral’s power (1.8V or  
3V typical)  
12  
PVCC  
A-Power  
--  
13  
14  
15  
16  
RCV  
D-Output  
D-Input  
HiZ  
High  
Low  
High  
Not Connected  
M<2>  
M<1>  
M<0>  
Connected to HVCC  
Connected to Ground  
Connected to HVCC  
D-Inputs  
D-Inputs  
28  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-17. AT73C260: PHY - 3 wires DAT, SE0, OE_N to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
C
4
H
V
VCC  
BUS  
PVCC  
C
5
Vref  
3.3Volt  
4
ASIC/FPGA : 3 WIRES DAT, SE0, OE_N  
DIGITAL WRAPPER  
13  
nc  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
rx_dp  
8
2
3
tx_enable_n  
tx_enable_n  
11  
IC_DP  
rx_rcv/tx_dat  
rx_se0/tx_se0  
tx_dat  
tx_se0  
PDP  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Note:  
All external components are defined in component list Table 8-1 on page 10  
29  
11030A–PMAAC–13-Sep-10  
9.4.4  
Bridge  
Pins VBUS and PVRF are connected to GND and LDO outputs are isolated and in standby.  
Pin OE_N is connected to HVCC  
The following applications enable communications between.  
S7_ICC: an USB2.0 section 7 compliant downstream port and an IC_USB1.0 compliant  
peripheral  
.
ICC_S7: an IC_USB1.0 compliant downstream port and an USB2.0 section 7 compliant  
peripheral  
9.4.4.1  
Mode: USB2.0 section 7 downstream port to IC_USB1.0 peripheral: S7_ICC  
Description  
This application establishes a communication path between an USB2.0 section 7 downstream  
port and an IC_USB peripheral.  
An external 3.3V voltage source is applied on HVCC. AT73C260’s D+ and D- input pins are com-  
pliant with USB2.0 core specification.  
This application is particularly well suited for mobile devices where the host may not have an  
IC_USB1.0 downstream port.  
Figure 9-18. S7_ICC Block Diagram  
USB 2.0  
IC_USB_1.0  
AT73C260  
Section 7  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-13. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
USB2.0 section 7 downstream port to IC_USB1.0  
peripheral  
S7_ICC  
HVCC  
HVCC  
0
Table 9-14. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
A-Power  
D-I/O  
Polarity  
Function  
1
2
3
4
6
7
8
HVCC  
D+  
--  
--  
Supplied by host at 3.3V  
Bidirectional D+  
D-  
D-I/O  
--  
Bidirectional D-  
VBUS  
HDMO  
HDPO  
OE_N  
A-Input  
D-Output  
D-Output  
D-Input  
--  
Not Used and Connected to Ground  
Not Connected  
HiZ  
HiZ  
High  
Not Connected  
Connected to HVCC  
30  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Table 9-14. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
A-Input  
D-I/O  
Polarity  
Function  
9
PVRF  
PDM  
PDP  
--  
--  
--  
Connected to Ground  
10  
11  
Downstream Port for USB Device  
Downstream Port for USB Device  
D-I/O  
Same as peripheral’s power (1.8V or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
14  
15  
16  
RCV  
D-Output  
D-Input  
HiZ  
High  
High  
Low  
Not Connected  
M<2>  
M<1>  
M<0>  
Connected to HVCC  
Connected to HVCC  
Connected to Ground  
D-Inputs  
D-Inputs  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-19. AT73C260: Bridge - USB2.0 section 7 downstream port to IC_USB1.0 -application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
C
5
H
V
VCC  
BUS  
PVCC  
C
4
Vref  
3.3Volt  
4
13  
nc  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
8
2
3
HVCC  
11  
IC_DP  
D +  
D -  
PDP  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Note:  
All external components are defined in component list Table 8-1 on page 10  
31  
11030A–PMAAC–13-Sep-10  
9.4.4.2  
Mode: IC_USB1.0 downstream port to USB2.0 section 7 peripheral: ICC_S7  
Description  
This application establishes a communication path between an IC_USB1.0 downstream port  
and an USB2.0 section 7 peripheral.  
Figure 9-20. ICC_S7 Block Diagram  
IC_USB_1.0  
USB 2.0  
µC/ASIC  
AT73C260  
Section 7  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-15. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
IC_USB1.0 downstream port to USB2.0 section 7  
peripheral  
ICC_S7  
HVCC  
HVCC  
HVCC  
Table 9-16. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Same as host I/O Ring Power (1.8V to  
3V typical)  
1
HVCC  
A-Power  
--  
2
3
IC_DP  
IC_DM  
VBUS  
HDMO  
HDPO  
OE_N  
PVRF  
D-  
D-I/O  
D-I/O  
--  
--  
Bidirectional IC_DP  
Bidirectional IC_DM  
Not Used and Connected to Ground  
Not Connected  
4
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
6
HiZ  
HiZ  
High  
--  
7
Not Connected  
8
Connected to HVCC  
9
Connected to Ground  
Downstream Port for USB Device  
Downstream Port for USB Device  
Supplied at 3.3V  
10  
11  
12  
13  
14  
15  
16  
--  
D+  
D-I/O  
--  
PVCC  
RCV  
A-Power  
D-Output  
D-Input  
D-Inputs  
D-Inputs  
--  
HiZ  
High  
High  
High  
Not Connected  
M<2>  
M<1>  
M<0>  
Connected to HVCC  
Connected to HVCC  
Connected to HVCC  
32  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-21. AT73C260: Bridge - IC_USB1.0 downstream port to USB2.0 section 7 - application diagram  
9
PVRF  
AT73C260  
1
12  
H
VCC  
PVCC  
C
5
C
4
H
VCC  
BUS  
PVCC  
GND  
Vref  
3.3Volt  
4
V
13  
nc  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
6
nc  
10  
D -  
PDM  
R
6
7
nc  
8
2
3
H
VCC  
11  
D +  
IC_DP  
IC_DM  
PDP  
R
7
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
H
VCC  
Note:  
R6 and R7 are defined in component list Table 8-1 on page 10  
33  
11030A–PMAAC–13-Sep-10  
9.4.5  
Mode: Voltage Class Converter: VCC  
Description  
Pins VBUS and PVRF are connected to GND and LDO outputs are isolated and in standby.  
Pin OE_N is connected to HVCC  
.
The following applications enable communications between an IC_USB1.0 compliant down-  
stream port with a first voltage class HVCC and an IC_USB1.0 compliant peripheral with a second  
voltage class PVCC  
.
Figure 9-22. Voltage Class Converter Block Diagram  
IC_USB_1.0  
IC_USB_1.0  
ASIC  
AT73C260  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-17. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
VCC  
HVCC  
HVCC  
HVCC  
IC_USB1.0 to IC_USB1.0 Voltage Class Converter  
Table 9-18. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Same as host I/O Ring Power (1.8V to  
3V typical)  
1
HVCC  
A-Power  
--  
2
3
IC_DP  
IC_DM  
VBUS  
HDMO  
HDPO  
OE_N  
PVRF  
PDM  
D-I/O  
D-I/O  
--  
--  
Bidirectional IC_DP  
Bidirectional IC_DM  
4
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
D-I/O  
--  
Connected to Ground  
Not Connected  
6
HiZ  
HiZ  
High  
--  
7
Not Connected  
8
Connected to HVCC  
9
Connected to Ground  
Downstream Port for USB Device  
Downstream Port for USB Device  
10  
11  
--  
PDP  
D-I/O  
--  
Same as peripheral’s power (1.8V or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
14  
15  
16  
RCV  
D-Output  
D-Input  
HiZ  
Not Connected  
M<2>  
M<1>  
M<0>  
High  
High  
High  
Connected to HVCC  
Connected to HVCC  
Connected to HVCC  
D-Inputs  
D-Inputs  
34  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-23. AT73C260: Voltage Class Converter - IC_USB1.0 to IC_USB1.0 - application diagram  
9
P
VRF  
AT73C260  
1
12  
HVCC  
GND  
PVCC  
H
V
VCC  
BUS  
PVCC  
C
4
C5  
Vref  
3.3Volt  
4
13  
nc  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
8
2
3
HVCC  
11  
IC_DP  
IC_DP  
IC_DM  
PDP  
HDM  
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Note:  
All external components are defined in component list Table 8-1 on page 10  
35  
11030A–PMAAC–13-Sep-10  
9.4.6  
Bridge With LDOs  
LDOs are enabled.  
AT73C260’s pin VBUS is connected to the USB signal VBUS through a low pass filter.  
9.4.6.1  
Mode: PC’s USB2.0 section 7 to IC_USB1.0 with VCC driven by the DBB: S7_ICC_DBB  
Description  
The PC’s Digital Base Band may not provide enough power to a USB UICC with mass storage.  
The VBUS power supply voltage will make available that extra power, up to 70mA, through the  
AT73C260’s LDO if needed by the USB UICC.  
The PC’s Digital Base Band supplies on pin 9 the power sequence required by ETSI. The  
AT73C260 buffers the signal on PVRF to PVCC. PVCC sources power from VBUS to VCC  
.
On the Host side HVCC generates 3.3V from VBUS  
Figure 9-24. S7_ICC_DBB Block Diagram  
DBB  
.
ISO7816  
VBUS  
PVRF  
PVCC  
USB 2.0  
IC_USB_1.0  
Phone  
µC/ASIC  
AT73C260  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-19. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
PC’s USB2.0 section 7 to IC_USB1.0 with VCC  
driven by DBB  
S7_ICC_DBB  
HVCC  
HVCC  
0
Table 9-20. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Delivered by AT73C260 from VBUS at  
3.3V  
1
HVCC  
A-Output  
--  
2
3
4
6
7
8
9
D+  
D-I/O  
D-I/O  
--  
--  
Bidirectional D +  
D-  
Bidirectional D -  
VBUS  
HDMO  
HDPO  
OE_N  
PVRF  
A-Input  
D-Output  
D-Output  
D-Input  
A-Input  
--  
Supplied by USB Power Line  
Not Connected  
HiZ  
HiZ  
High  
--  
Not Connected  
Connected to HVCC  
Control by Digital Base Band  
36  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Table 9-20. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
D-I/O  
Polarity  
Function  
10  
11  
PDM  
PDP  
--  
--  
Downstream Port for USB Device  
Downstream Port for USB Device  
D-I/O  
Delivered by AT73C260 from VBUS and  
control by DBB  
12  
PVCC  
A-Output  
--  
13  
14  
15  
16  
RCV  
D-Output  
D-Input  
HiZ  
High  
High  
Low  
Not Connected  
M<2>  
M<1>  
M<0>  
Connected to HVCC  
Connected to HVCC  
Connected to Ground  
D-Inputs  
D-Inputs  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-25. AT73C260: Bridge with LDO - USB2.0 section 7 to IC_USB1.0 with VCC driven by DBB - application diagram  
RST  
Digital  
Base Band  
CLK  
I/O  
9
PVRF  
AT73C260  
1
12  
HVCC  
GND  
H
VCC  
BUS  
PVCC  
C
4
C
5
Vref  
3.3Volt  
R
3
4
VBUS  
V
C
3
13  
nc  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
6
nc  
10  
PDM  
IC_DM  
7
nc  
8
2
3
HVCC  
D +  
R
1
11  
IC_DP  
PDP  
C
1
HDM  
D -  
C
2
R
2
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Notes: 1. PVCC LDO regulator is compliant with SIM FTA 27.17.2.1 Tests Series.  
2. All external components are defined in component list Table 8-1 on page 10  
37  
11030A–PMAAC–13-Sep-10  
9.4.6.2  
Mode: USB2.0 section 7 to IC_USB1.0 with PVCC fixed by PVRF: S7_ICC_TK  
Description  
This is a token application where an USB UICC is connected to an USB2.0 section 7 down-  
stream port.  
The AT73C260’s LDOs supply HVCC set at 3.3V and PVCC set at the power supply voltage  
required by the USB UICC.  
This application establishes a communication path between a USB2.0 section 7 downstream  
port and the USB UICC’s. The power to the USB UICC is provided by VBUS using an LDO able to  
source up to 70mA.  
This is the typical electrical schematic for a USB UICC used in a USB Token to be connected to  
a USB2.0 series A receptacle.  
The voltage divider R4/R5 generates for example 3.0V buffered by the LDO to the downstream  
side of the transceiver and to the USB UICC PVCC  
.
This set up allows passing USB CV tests to the USB UICC under tests.  
Figure 9-26. S7_ICC_TK Block Diagram (Token Application)  
PVRF  
PVCC  
VBUS  
USB 2.0  
IC_USB_1.0  
AT73C260  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-21. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
USB2.0 section 7 to IC_USB1.0 with PVCC fixed by  
PVRF  
S7_ICC_TK  
HVCC  
HVCC  
0
Table 9-22. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Delivered by AT73C260 from VBUS at  
3.3V  
1
HVCC  
A-Output  
--  
2
3
4
6
7
D+  
D-I/O  
D-I/O  
--  
--  
Bidirectional D +  
D-  
Bidirectional D -  
VBUS  
HDMO  
HDPO  
A-Input  
D-Output  
D-Output  
--  
Supplied by USB Power Line  
Not Connected  
HiZ  
HiZ  
Not Connected  
38  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
Table 9-22. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
D-Input  
A-Input  
D-I/O  
Polarity  
Function  
8
9
OE_N  
PVRF  
PDM  
PDP  
High  
--  
Connected to HVCC  
Fixed by external resistor bridge divider  
Downstream Port for USB Device  
Downstream Port for USB Device  
10  
11  
--  
D-I/O  
--  
Delivered by AT73C260 from VBUS  
according external resistor ratio  
12  
PVCC  
A-Output  
--  
13  
14  
15  
16  
RCV  
D-Output  
D-Input  
HiZ  
High  
High  
Low  
Not Connected  
M<2>  
M<1>  
M<0>  
Connected to HVCC  
Connected to HVCC  
Connected to Ground  
D-Inputs  
D-Inputs  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-27. AT73C260: Bridge with LDO - USB2.0 section 7 to IC_USB1.0 with VCC fixed by PVRF - application diagram  
PVRF = PVCC = HVCC * R5/(R5+R4)  
R
4
R5  
9
P
VRF  
AT73C260  
1
4
12  
HVCC  
GND  
H
VCC  
PVCC  
C
4
C5  
Vref  
3.3Volt  
R
3
VBUS  
V
BUS  
C
3
13  
nc  
RCV  
VCC  
6
nc  
10  
HDMO  
HDPO  
OE_N  
HDP  
PDM  
IC_DM  
7
nc  
8
2
3
HVCC  
R
1
11  
IC_DP  
PDP  
D +  
C
1
HDM  
D -  
C
2
R
2
M<2> M<1> M<0> GND  
14 15 16  
5
HVCC  
Notes: 1. PVCC LDO regulator is compliant with SIM FTA 27.17.2.1 Tests Series.  
2. All external components are defined in component list Table 8-1 on page 10  
39  
11030A–PMAAC–13-Sep-10  
3. External resistors shall be in the following range: 100KΩ < R4 + R5 < 330KΩ in order to mini-  
mize current consumption and to reach a good accuracy on PVCC. The bias current of PVRF  
follower is less than +/-100nA.  
40  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
9.4.7  
Example of an Extra Function  
For an FPGA implementation of a USB device, there is a need for an upstream IC_USB 1.0  
PHY.  
For this requirement the AT73C260 product can be configured as described below.  
Pins VBUS and PVRF are connected to GND and LDO outputs are isolated and in standby.  
9.4.7.1  
Mode: Digital six wires unidirectional DAT_SE0 to IC_USB1.0 upstream: Extra Function  
Description  
This application allows a peripheral based on an ASIC or an FPGA with the digital unidirectional  
six wires interface to be connected to an IC_USB 1.0 downstream port.  
Here below, an example is shown. Other digital interfaces are compatible with this upstream  
IC_USB 1.0 port.  
Figure 9-28. PHY_6_SE0 Block Diagram  
pull-up  
Control  
6
ASIC  
FPGA  
HOST  
AT73C260  
IC_USB_1.0  
DAT_SEO  
Hardware Configuration  
In the following tables, the pin and the hardware configuration are described.  
Table 9-23. AT73C260 Hardware Configuration  
M<2>  
M<1>  
M<0>  
Mode  
Pin 14  
Pin 15  
Pin 16  
Application  
Extra Mode  
(as an  
example)  
Digital six wires unidirectional DAT_SE0 to  
IC_USB1.0 upstream  
0
0
0
Table 9-24. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
Polarity  
Function  
Same as peripheral I/O ring (1.55V to  
3.6V typical)  
1
HVCC  
A-Power  
--  
2
3
4
6
7
8
TX_DAT  
TX_SEO  
VBUS  
D-Input  
D-Input  
A-Input  
--  
--  
Unidirectional Transmit Data  
Unidirectional Transmit Single Ended 0  
Not Used and Connected to Ground  
Unidirectional Receiving DM  
Unidirectional Receiving DP  
Tx Enable N  
--  
RX_DM  
D-Output  
D-Output  
D-Input  
--  
RX_DP  
--  
TX_ENABLE_N  
Low  
41  
11030A–PMAAC–13-Sep-10  
Table 9-24. AT73C260 Pin description and configuration  
Pin Number Pin Name  
I/O Type  
A-Input  
D-I/O  
Polarity  
Function  
9
PVRF  
PDM  
PDP  
--  
--  
--  
Connected to Ground  
10  
11  
Downstream Port for USB Device  
Downstream Port for USB Device  
D-I/O  
Same power as host VCC (1.8 or 3V  
typical)  
12  
PVCC  
A-Power  
--  
13  
RX_RCV  
M<2:0>  
D-Output  
D-Inputs  
--  
Unidirectional Receiving RCV  
Connected to Ground  
14, 15, 16  
Low  
Application Diagram  
In the following figure, the hardware configuration is described.  
Figure 9-29. AT73C260: Extra Mode - PHY of a 6-wire FPGA peripheral implementation - application diagram  
9
PVRF  
AT73C260  
1
12  
HVCC  
GND  
C
4
H
VCC  
BUS  
PVCC  
C
5
Vref  
3.3Volt  
4
13  
6
ASIC/FPGA : Peripheral 6 WIRES DAT_SE0  
PVCC  
V
DIGITAL WRAPPER  
rx_rcv  
rx_dm  
rx_dp  
rx_rcv  
rx_dm  
RCV  
HDMO  
HDPO  
OE_N  
HDP  
VCC  
10  
PDM  
IC_DM  
7
PVCC  
R
rx_dp  
HOST  
EXT  
8
tx_enable_n  
tx_dp  
tx_enable_n  
2
11  
IC_DP  
tx_dat  
tx_se0  
PDP  
3
tx_dm  
HDM  
Pull-Up  
Control  
M<2> M<1> M<0> GND  
14 15 16  
5
Pull-Up Control  
HVCC  
Notes: 1. All external components are defined in component list Table 8-1 on page 10  
2. In Upstream port configuration, the software must drive the REXT pull-up resistor.  
42  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
10. Package Information  
Figure 10-1. Mechanical Package Drawing for 16-lead Quad Flat No Lead Package  
Note: All the dimensions are in mm  
43  
11030A–PMAAC–13-Sep-10  
11. Ordering Information  
Table 11-1. Ordering Information  
Ordering Code  
AT73C260  
Package  
Package Type  
Temperature Operating Range  
QFN16 3 x 3 mm  
Green  
-40°C to +85°C  
44  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
12. Revision History  
Change  
Request  
Ref.  
Doc. Rev  
Date  
Comments  
11030A  
13-Sep-10  
First revision  
45  
11030A–PMAAC–13-Sep-10  
46  
AT73C260  
11030A–PMAAC–13-Sep-10  
AT73C260  
1
2
3
4
5
6
7
Block Diagram .......................................................................................... 2  
Package and Pinout ................................................................................. 3  
Pin Description ......................................................................................... 4  
Absolute Maximum Ratings .................................................................... 5  
Recommended Operating Conditions .................................................... 5  
Power Dissipation Ratings ...................................................................... 5  
Electrical Characteristics ........................................................................ 6  
7.1I/Os DC Characteristics Referred to HVCC ...............................................................6  
7.2I/Os DC Characteristics Referred to PVCC ...............................................................6  
7.3Timing Characteristics Table .....................................................................................7  
7.4VBUS Supply Characteristics ....................................................................................7  
7.5HVCC and PVCC Supplies Characteristics ...............................................................8  
8
9
Components List. ................................................................................... 10  
Functional Description .......................................................................... 11  
9.1AT73C260’s Upstream and Downstream Ports .......................................................11  
9.2AT73C260 Pull Up and Pull Down Resistors ...........................................................12  
9.3Theory Of Operation ................................................................................................13  
9.4General Description .................................................................................................18  
10 Package Information .............................................................................. 43  
11 Ordering Information ............................................................................. 44  
12 Revision History ..................................................................................... 45  
i
11030A–PMAAC–13-Sep-10  
ii  
AT73C260  
11030A–PMAAC–13-Sep-10  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
pmaac@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
11030A–PMAAC–13-Sep-10  

相关型号:

AT73C500

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C500-JC

Power Metering
ETC

AT73C501

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C501-JC

Analog-to-Digital Converter, 16-Bit
ETC

AT73C502

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C502-QC

Analog-to-Digital Converter, 16-Bit
ETC

AT74011-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN

AT74011-H2B1-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket
FOXCONN

AT74013-H2B-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Receptacle
FOXCONN

AT74013-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN

AT74013-H2B1-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket,
FOXCONN

AT74017-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN