AT73C240 [ATMEL]

Power Management and Analog Companions; 电源管理和模拟同伴
AT73C240
型号: AT73C240
厂家: ATMEL    ATMEL
描述:

Power Management and Analog Companions
电源管理和模拟同伴

电源电路 电源管理电路 异步传输模式 ATM
文件: 总38页 (文件大小:1128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Stereo Audio DAC  
– 2.7V to 3.3V Analog Supply Operation  
– 2.4V to 3.3V Digital Supply Operation  
– 20-bit Stereo Audio DAC  
– 90 dB SNR Playback Stereo Channels  
– 32 Ohm/20 mW Stereo Headset Drivers with Master Volume and Mute Controls  
– Stereo Line Level Input with Volume Control/Mute and Playback through the  
Headset Drivers  
Power  
– Accepts Mixed Signals from All Signal Paths (Line Inputs and DAC Output)  
– 8, 11.024, 16, 22.05, 24, 32, 44.1 and 48 kHz Sampling Rates  
– 256x or 384xFs Master Clock Frequency  
– I2S Serial Audio Interface  
Management  
and Analog  
Companions  
(PMAAC)  
Mono Audio Power Amplifier  
– Supply Input from Main Li-Ion Battery (3V to 5.5V)  
– 440 mW on 8 Ohm Load  
– Programmable Volume Control (-22 to +20 dB)  
– Fully Differential Structure, Input and Output  
– 8 mA Drain Current in Active Mode  
– Power-down Mode (Consumption Less than 2 µA)  
– Minimum External Components (Direct Connection to the Loudspeaker)  
Applications: Mobile Phones, Digital Cameras, PDAs, SmartPhones, DECT Phones,  
Music Players  
AT73C240  
Audio Interface  
for Portable  
Handsets  
1. Description  
The AT73C240 is a fully integrated, low-cost, combined stereo audio DAC and audio  
power amplifier circuit targeted for Li-Ion or Ni-Mh battery powered devices such as  
mobile phones, smartphones, PDA, DECT phones, digital still cameras, music players  
or any other type of handheld device where an audio interface is needed.  
The stereo DAC section is a complete high performance, stereo, audio digital-to-ana-  
log converter delivering a 90 dB dynamic range. It comprises a multibit sigma-delta  
modulator with dither, continuous time analog filters and analog output drive circuitry.  
This architecture provides a high insensitivity to clock jitter. The digital interpolation fil-  
ter increases the sample rate by a factor of 8 using 3 linear phase half-band filters  
cascaded, followed by a first order SINC interpolator with a factor of 8. This filter elim-  
inates the images of baseband audio, retaining only the image at 64x the input sample  
rate, which is eliminated by the analog post filter. Optionally, a dither signal can be  
added that reduces possible noise tones at the output. However, the use of a multibit  
sigma-delta modulator already provides extremely low noise tone energy.  
Master clock is 256 or 384 times the input data rate, allowing choice of input data rate  
up to 48 kHz, including standard audio rates of 48, 44.1, 32, 16 and 8 kHz.  
The DAC section is followed by a volume and mute control and can be simultaneously  
played back directly through a stereo 32 Ohm headset pair of drivers.  
The stereo 32 Ohm headset pair of drivers also includes a mixer of a LINEL and  
LINER pair of stereo inputs.  
6464A–PMAAC–28-Apr-09  
High quality mono output is provided. The DAC output can be connected through a buffer stage  
to the input of the audio power amplifier, using 2x coupling capacitors The mono buffer stage  
also includes a mixer of the LINEL and LINER inputs which can be, for example, the output of a  
voice Codec output driver in mobile phones.  
The Audio Power Amplifier is a differential amplifier designed in CMOS technology. It is capa-  
ble of driving an 8 Ohm Loudspeaker at maximum power of 440mW, making it suitable as a  
hands-free speaker driver in a Wireless Handset Application.  
The volume, mute, power down, de-emphasis controls and 16-bit, 18-bit and 20-bit audio for-  
mats are digitally programmable via a 4-wire SPI bus or via a 2-wire TWI bus and the digital  
audio data are provided through a multi-format I2S interface.  
2. Block Diagram  
Figure 2-1. AT73C240 Functional Block Diagram  
AT73C240  
VDIG  
AVDD  
Voltage  
Reference  
AVDDHS  
-36 to +12dB / 3dB step  
SPI_DOUT  
LINER  
PGA  
SPI_DIN / TWD  
Status  
INGND  
SPI  
Registers  
SPI_CLK / TWCK  
SPI_CSB / TW_ADD  
-36 to +12dB / 3dB step  
LINEL  
PGA  
-46.5dB to 0dB / 1.5dB step -34.5dB to +12dB / 1.5dB step  
MCLK  
-6 to +6dB / 3dB step  
RSTB  
SMODE  
SDIN  
Volume  
Volume  
+
32  
driver  
HSL  
+
+
Digital Filter  
DAC  
Control  
Control  
VCM  
-6 to +6dB / 3dB step  
Volume  
Control  
32  
driver  
HSR  
Volume  
Control  
LRFS  
Digital Filter  
+
DAC  
BCLK  
GNDA  
-46.5dB to 0dB / 1.5dB step -34.5dB to +12dB / 1.5dB step  
MONOP  
GNDD  
+
MONO  
MONON  
2
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
3. Pin Description  
Table 3-1.  
Pin Name  
VREF  
Pin Description  
I/O  
Pin  
Type  
Analog  
Supply  
Analog  
Analog  
Supply  
Analog  
Analog  
Analog  
Analog  
N/A  
Function  
I
1
Voltage reference pin for decoupling  
Analog supply (DAC + Line in + Mono out)  
Left channel headset driver output  
Right channel headset driver output  
Headset driver analog supply  
Left channel line in  
AVDD  
I
2
HSL  
O
3
HSR  
O
4
AVDDHS  
LINEL  
LINER  
INGND  
VCM  
I
5
I
6
I
7
Right channel line in  
I
8
Line signal ground pin for decoupling  
Common mode reference for decoupling  
Not Connected  
I
9
10  
NC  
N/A  
HPN  
O
11  
Analog  
Supply  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Digital  
Digital  
Digital  
Digital  
Ground  
Supply  
Digital  
Digital  
Digital  
Digital  
Analog  
Analog  
N/A  
Negative speaker output  
VBAT  
I
12  
Audio amplifier supply  
HPP  
O
13  
Positive speaker output  
CBP  
O
14  
Audio amplifier common mode voltage decoupling  
Audio amplifier negative input  
Audio amplifier positive input  
Audio interface serial data input  
Audio interface bit clock  
PAINN  
PAINP  
SDIN  
I
15  
I
16  
I
17  
BCLK  
I
18  
LRFS  
I
19  
Audio interface left/right channel synchronization frame pulse  
Audio interface master clock input  
Master reset (active low)  
MCLK  
RSTB  
I
20  
I
21  
SMODE  
GNDD  
VDIG  
I
GND  
I
22  
Serial interface selection (to connect to ground)  
Digital ground  
23  
24  
Digital supply  
SPI_DOUT  
SPI_DIN/TWD  
O
25  
SPI data output  
I/O  
26  
SPI data input / TWI data input  
SPI clock / TWI clock  
SPI_CLK/TWCK  
SPI_CSB/TW_ADD  
MONON  
MONOP  
I
I
27  
28  
SPI chip select / TWI address bit  
Negative monaural driver output  
Positive monaural driver output  
Not Connected  
O
29  
O
30  
NC  
N/A  
N/A  
GND  
31  
NC  
32  
N/A  
Not Connected  
GNDA  
33 (Bottom)  
Ground  
Analog ground  
3
6464A–PMAAC–28-Apr-09  
4. Electrical Characteristics  
Table 4-1.  
Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at these or other conditions beyond those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reli-  
ability.  
Operating Temperature (Industrial)..............-40°C to +85° C  
Storage Temperature-...................................55°C to +150°C  
Power Supply Input  
on VBAT-...........................................................0.3V to +5.5V  
on VDIG, AVDD, AVDDHS-...............................0.3V to +3.6V  
5. Digital IOs  
All the digital IOs: SDIN, BCLK, LRFS, MCLK, RSTB, SMODE, SPI_DOUT, SPI_DIN/TWD, SPI_CLK/TWCK,  
SPI_CSB/TW_ADD are referred to as VDIG.  
Table 5-1.  
Symbol  
VIL  
Digital IOs  
Parameter  
Conditions  
VDIG  
Min  
-0.3  
Max  
0.2 x VDIG  
VDIG + 0.3  
0.4  
Unit  
V
Low level input voltage  
High level input voltage  
Low level output voltage  
High level output voltage  
Guaranteed input low Voltage  
from 2.4Vto 3.3 V  
VIH  
Guaranteed input high Voltage from 2.4Vto 3.3 V  
0.8 x VDIG  
V
VOL  
IOL = 2 mA  
IOH = 2 mA  
from 2.4Vto 3.3 V  
from 2.4Vto 3.3 V  
V
VOH  
VDIG - 0.5V  
V
4
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
6. Audio Power Amplifier  
6.1  
Electrical Specifications  
VBAT = 3.6V, TA = 25°C unless otherwise noted. 100 nF capacitor connected between CBP and GNDA, 470nF input  
capacitors, load = 8 Ohms.  
Table 6-1.  
Symbol  
VDD  
Audio Power Amplifier Electrical Specifications (General Conditions: VDD = 3.6V,TA = 25°C)  
Parameter  
Conditions  
Min  
Typ  
3.6  
6
Max  
5.5  
12  
Unit  
V
Supply voltage  
Quiescent current  
Standby current  
DC reference  
3
IDD  
Inputs shorted, no load  
mA  
µA  
V
IDDstby  
VCbp  
2
VDD/2  
0
VOS  
Output differential offset  
Full gain, capacitive input coupling  
Active state, maximum gain  
Active state, minimum gain  
-20  
10K  
100K  
6
20  
20k  
200k  
32  
mV  
15k  
150k  
8
ZIN  
Input impedance  
Ohms  
ZLFP  
CL  
Output load  
Ohms  
pF  
Capacitive load  
Between each output and the ground  
200 to 2 kHz differential output  
100  
PSRR  
Power supply rejection ratio  
60  
25  
dB  
1 kHz reference frequency  
3 dB attenuation  
FCL  
Low Frequency Cutoff  
High Frequency Cutoff  
40  
Hz  
Maximum gain  
1 KHz reference frequency  
3 dB attenuation  
FCH  
20  
kHz  
Maximum gain  
Off to on mode  
tUP  
Output setup time  
Output noise  
Voltage already settled  
Input capacitors precharged  
10  
500  
50  
ms  
µVRMS  
dB  
VN  
Max gain, A weighted  
120  
440  
1 kHz  
THD  
Output distortion  
Pout = 3mW to 300mW  
gain = 2dB  
1 KHz  
Pmax  
Maximum power  
mW  
load 8 ohms  
GACC  
Overall Gain accuracy  
Gain Step Accuracy  
-2  
0
0
2
dB  
dB  
GSTEP  
-0.7  
0.7  
5
6464A–PMAAC–28-Apr-09  
7. Audio DAC  
7.1  
Electrical Specifications  
AVDD, AVDDHS = 2.7 V, TA = 25°C, typical case, unless otherwise noted.  
All noise and distortion specifications are measured in the 20 Hz to 0.425xFs range and A-weighted filtered.  
Full-scale levels scale proportionally with the AVDD / AVDDHS supply voltage.  
Table 7-1.  
Electrical Specifications  
Min  
Typ  
Max  
Units  
Overall  
Operating Temperature (ambient)  
Analog Supply Voltage (AVDD, AVDDHS)  
Digital Supply Voltage (VDIG)  
DIGITAL INPUTS/OUTPUTS  
Resolution  
-40  
2.7  
2.4  
+25  
2.8  
2.8  
+85  
3.3  
3.3  
°C  
V
V
20  
bits  
Logic Family  
CMOS  
Logic Coding  
2's Complement  
Analog Performance - DAC to Line-out/Headphone Output  
6.20  
1.75  
mVrms  
Vpp  
Output level for full scale input (for AVDD, AVDDHS = 2.8 V)  
Output common mode voltage  
0.5 x  
AVDDHS  
V
Output load resistance (on HSL, HSR)  
Headphone load  
16  
32  
10  
Ohms  
Line load  
kOhms  
Output load capacitance (on HSL, HSR)  
Headphone load  
30  
30  
1000  
150  
pF  
pF  
Line load  
Signal to Noise Ratio (-1dBFS @ 1kHz input and 0dB Gain)  
Line and Headphone loads, A-Weighted  
90  
dB  
Total Harmonic Distortion (-1dBFS @ 1kHz input and 0dB Gain)  
Line Load  
-80  
-65  
-40  
dB  
dB  
dB  
-75  
Headphone Load  
Headphone Load (16 Ohm)  
Dynamic Range (measured with -60 dBFS @ 1kHz input, extrapolated to  
full-scale), A Weighted  
Line Load  
90  
80  
dB  
dB  
Headphone Load  
Interchannel mismatch  
0.1  
-65  
1
5
dB  
dB  
Left-channel to right-channel crosstalk (300 Hz to 20kHz)  
Output Headset Driver Level Control Range  
Output Headset Driver Level Control Step  
Maximum output power, headphone 32 Ohms load, 1% THD  
-5  
dB  
2.5  
15  
dB  
mVrms  
6
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
Table 7-1.  
Electrical Specifications (Continued)  
Min  
Typ  
Max  
Units  
Maximum output slope at power up (100 to 220 µF coupling capacitor)  
3
V/s  
Analog Performance - Line-in/Microphone Input to Line-out/Headphone Output  
Output level  
@ AVDD, AVDDHS = 2.7 V and 0 dB gain, 500mV Rms  
input level, 2 X 10k Ohms loads (HSL, HSR)  
@ AVDD, AVDDHS = 2.7 V and 20 dB gain, 500mV Rms  
input level, 2 X 32 Ohms loads (HSL, HSR)  
1.62  
570  
1.58  
560  
Vpp  
mVrms  
Vpp  
mVrms  
Input common mode voltage  
0.5 x AVDD  
10  
V
Input impedance  
7
kOhm  
Signal to Noise Ratio  
500mV Rms @ 1kHz input and 0 dB gain  
50mV Rms @ 1kHz input and 20 dB gain  
80  
85  
70  
dB  
dB  
Dynamic Range (extrapolated to nominal 500mV level)  
-60 dBr (500 mVrms)@ 1kHz input and 0 dB gain (10k Ohms load)  
-60 dBr 50 mVrms) @ 1kHz input and 20 dB gain (10k Ohms load)  
85  
85  
dB  
dB  
Total Harmonic Distortion, A-Weighted, line 10k Ohms load  
500mV Rms @ 1kHz input and 0 dB gain  
-85  
-78  
-80  
-70  
dB  
dB  
50mV Rms @ 1kHz input and 20 dB gain  
Total Harmonic Distortion, A-Weighted, line 32 Ohms load  
500mV Rms @ 1kHz input and 0 dB gain  
-70  
-65  
-60  
-55  
dB  
dB  
50mV Rms @ 1kHz input and 20 dB gain  
Interchannel mismatch  
0.1  
-65  
1
dB  
dB  
Left-channel to right-channel crosstalk (300Hz to 20kHz)  
Analog Performance - PA Driver  
Differential output level for one input 500mV Rms singlel  
@ AVDD, AVDDHS = 2.8 V  
500  
mVrms  
Differential output level for stereo inputs 500mV Rms singlel  
@ AVDD, AVDDHS = 2.8 V, inputs internally summed  
1
0.5xAVDDHS  
50  
Vrms  
V
Output common mode voltage  
10  
kOhm  
pF  
Output load (on each input, DC decoupled to the ground)  
30  
Gain (one single input to differential output), 20Hz to 20kHz  
Signal to Noise Ratio (500mV Rms output @ 1kHz)  
-05  
0
0.5  
dB  
dB  
80  
Total Harmonic Distortion (500mV Rms @ 1kHz output)  
2 x 10kOhm balanced load  
-80  
dB  
7
6464A–PMAAC–28-Apr-09  
Table 7-1.  
Electrical Specifications (Continued)  
Min  
Typ  
Max  
Units  
Master Clock  
Master Clock Maximum Long Term Jitter  
Digital Filter Performance  
1.5  
nspp  
Frequency response (10 Hz to 20 kHz)  
Deviation from linear phase (10 Hz to 20 kHz)  
Passband 0.1 dB corner  
0.1  
0.1  
dB  
deg  
Fs  
0.4535  
Stopband  
0.5465  
65  
Fs  
Stopband Attenuation  
dB  
De-emphasis Filter Performance (for 44.1kHz Fs)  
MAX deviation from ideal response  
POWER PERFORMANCE  
-1  
1
dB  
Current consumption from Analog supply in power on  
Current consumption from Analog supply in power down  
Power on Settling Time  
9
mA  
µA  
10  
500  
ms  
From full power down to full power up (Vref and VCM decoupling  
capacitors charge)  
Line in amplifier (line in coupling capacitors charge)  
50  
ms  
ms  
Driver amplifier (out driver DC blocking capacitors charge)  
500  
8
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
7.2  
Digital Filters Transfer Function  
Figure 7-1. Channel Filter  
Figure 7-2. Channel Filter  
Figure 7-3. De-emphasis Filter  
FR of DAC Decimator with Deemphasis Fs=44100; OSR=128  
0
-2  
-4  
-6  
-8  
-10  
-12  
103  
104  
Frequency (Hz)  
9
6464A–PMAAC–28-Apr-09  
7.3  
Data Interface  
Normal operation is entered by applying correct LRFS, BCLK and SDIN waveforms to the serial  
interface, as illustrated in Figure 7-4, Figure 7-5 and Figure 7-6.  
To avoid noise at the output, the reset state is maintained until proper synchronization is  
achieved in the serial interface.  
The data interface allows three different data transfer modes. See Figure 7-4, Figure 7-5 and  
Figure 7-6.  
Figure 7-4. 20-bit I2S Justified Mode  
BCLK  
LRFS  
R1  
R0  
L(N-1)  
L(N-2)  
L(N-3)  
...  
L2  
...  
L2  
L1  
L1  
L1  
L0  
L0  
L0  
R(N-1)  
R(N-2)  
R(N-3)  
R(N-1)  
R(N-3)  
...  
R2  
...  
R2  
R1  
R1  
R1  
R0  
R0  
R0  
SDIN  
Figure 7-5. 20-bit MSB Justified Mode  
BCLK  
LRFS  
R0  
L(N-1)  
L(N-2)  
L(N-3)  
...  
R(N-1)  
R(N-2)  
...  
L(N-1)  
SDIN  
Figure 7-6. 20-bit LSB Justified Mode  
BCLK  
LRFS  
R0  
L(N-1)  
L(N-2)  
R(N-2)  
L(N-1)  
SDIN  
The selection between modes is done using the DINTSEL<1:0> signal.  
DINTSEL <1:0>  
Format  
00  
01  
1x  
I2S Justified  
MSB Justified  
LSB Justified  
The data interface always works in slave mode. This means that the LRFS and the BCLK sig-  
nals are provided by the host controller. In order to achieve proper operation, the LRFS and the  
BCLK signals must be synchronous with the MCLK master clock signal and their frequency rela-  
tionship must reflect the selected data mode. For example, if the data mode selected is the 20-  
bit MSB Justified, then the BCLK frequency must be 40 times higher than the LRFS frequency.  
10  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
7.4  
Timing Specifications  
The timing constraints of the data interface are described in Figure 7-7 and Table 7-2 below.  
Figure 7-7. Data Interface Timing Diagram  
1
20  
M/2+1  
M
BCLK  
ts1  
th1  
LRFS  
SDIN  
ts2  
th2  
Table 7-2.  
Data Interface Timing Parameters  
Parameter  
Min  
Typ  
Max  
Unit  
ts1  
th1  
ts2  
th2  
LRFS set-up time before BCLK rising edge  
LRFS hold time after BCLK rising edge  
DIN set-up time before BCLK rising edge  
DIN hold time after BCLK rising edge  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
7.5  
SMODE Selection  
SMODE input is internally pulled up in the AT73C240. This ensures a TWI communication proto-  
cole default mode  
When setting SMODE to 0, SPI communication protocol can also be used.  
Two cases have to be considered:  
SMODE=1, TWI protocole  
SMODE=0, SPI protocole  
11  
6464A–PMAAC–28-Apr-09  
8. SPI Interface  
8.1  
Architecture  
The SPI is a three-wire bi-directional asynchronous serial link. It works only in slave mode. The  
protocol is the following:  
Figure 8-1. SPI Architecture  
SPI_CSB  
SPI_CLK  
d6  
rw a6 a5 a4 a3 a2 a1 a0 d7  
d5 d4 d3 d2 d1 d0  
SPI_DIN  
d7 d6 d5 d4 d3 d2 d1 d0  
SPI_DOUT  
8.2  
SPI Protocol  
On SPI_DIN, the first bit is a read/write bit. 0 indicates a write operation, while 1 is for a read  
operation. The seven following bits are used for the register address and the eight last ones are  
the write data. For both address and data, the most significant bit is the first one.  
In case of a read operation, SPI_DOUT provides the contents of the read register, MSB first.  
The transfer is enabled by the CSB signal active low. When no operation is being carried out,  
SPI_DOUT is set high impedance to allow sharing of MCU serial interface with other devices.  
The interface is reset at every rising edge of SPI_CSB in order to come back to an idle state,  
even if the transfer does not succeed. The SPI is synchronized with the serial clock SPI_CLK.  
Falling edge latches SPI_DIN input and rising edge shifts SPI_DOUT output bits.  
Note that MCLK must run during any SPI write access from address 0x00 to 0x11.  
12  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
8.3  
SPI Interface Timing  
Figure 8-2. SPI Timing  
SPI_CSB  
SPI_CLK  
SPI_DIN  
Tc  
Tssen  
Thsen  
Twl  
Twh  
Tssdi  
Thsdi  
Thsdo  
Tdsdo  
SPI_DOUT  
Table 8-1.  
Parameter  
Tc  
SPI Timing Parameters  
Description  
Min  
150 ns  
50 ns  
50 ns  
50 ns  
50 ns  
20 ns  
20 ns  
-
Max  
SPI_CLK min period  
-
Twl  
SPI_CLK min pulse width low  
SPI_CLK min pulse width high  
-
Twh  
-
Tssen  
Thsen  
Tssdi  
Setup time SPI_CSB falling to SPI_CLK rising  
Hold time SPI_CLK falling to SPI_CSB rising  
Setup time SPI_DIN valid to SPI_CLK falling  
-
-
-
Thsdi  
Hold time SPI_CLK falling to SPI_DIN not valid  
Delay time SPI_CLK rising to SPI_DOUT valid  
Hold time SPI_CLK rising to SPI_DOUT not valid  
-
20 ns  
-
Tdsdo  
Thsdo  
0 ns  
13  
6464A–PMAAC–28-Apr-09  
9. TWI Interface  
9.1  
TWI Architecture  
The two-wire interface interconnects components on a unique two-wire bus, made up of one  
clock line and one data line with speeds up to 400 Kbits per second, based on a byte oriented  
transfer format. The TWI is slave only and has single byte access.  
The TWI adds flexibility to the power supply solution, enabling LDO regulator and Audio func-  
tionnalities and paths to be controlled depending on the instantaneous application requirements.  
The AT73C240 has the following 7-bit address: 1001000.  
Attempting to read data from register addresses not listed in this section results in 0xFF being  
read out.  
• TWCK is an input pin for the clock  
• TWD is an open-drain pin driving or receiving the serial data  
The data put on TWD line must be 8 bits long. Data is transferred MSB first. Each byte must be  
followed by an acknowledgement.  
Each transfer begins with a START condition and terminates with a STOP condition.  
• A high-to-low transition on TWD while TWCK is high defines a START condition.  
• A low-to-high transition on TWD while TWCK is high defines a STOP condition..  
Figure 9-1. TWI Start and Stop conditions  
TWD  
TWCK  
Start  
Stop  
Figure 9-2. TWI transfert format  
TWD  
TWCK  
Start  
Address  
R/W  
Ack  
Data  
Ack  
Data  
Ack  
Stop  
After the host initiates a START condition, it sends the 7-bit slave address defined above to  
notify the slave device. A read/write bit follows (read = 1, write = 0).  
The device acknowledges each received byte. The first byte sent after the device address and  
the R/W bit, is the address of the device register the host wants to read or write.  
For a write operation the data follows the internal address. For a read operation a repeated  
START condition needs to be generated followed by a read on the device.  
14  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
Figure 9-3. TWI Write operation  
S
ADDR  
W
DATA  
A
A
IADDR  
A
P
TWD  
Figure 9-4. TWI Read operation  
ADDR  
W
A
IADDR  
A
S
ADDR  
R
A
DATA  
• S = Start  
• P = Stop  
• W = Write  
• R = Read  
• A = Acknowledge  
• N = Not Acknowledge  
• DADR= Device Address  
• IADR = Internal Address  
15  
6464A–PMAAC–28-Apr-09  
10. User Interface  
Table 10-1. Register Mapping  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
Register  
Name  
Access  
Reset State  
0x00  
DAC_CTRL  
DAC_LLIG  
DAC_RLIG  
DAC_LMPG  
DAC_RMPG  
DAC_LLOG  
DAC_RLOG  
DAC_OLC  
DAC_MC  
DAC Control  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
DAC Left Line In Gain  
DAC Right Line In Gain  
DAC Left Master Playback Gain  
DAC Right Master Playback Gain  
DAC Left Line Out Gain  
DAC Right Line Out Gain  
DAC Output Level Control  
DAC Mixer Control  
0x05  
0x05  
0x08  
0x08  
0x00  
0x00  
0x22  
0x09  
DAC Clock and Sampling Frequency  
Control  
0x09  
DAC_CSFC  
Read/Write  
0x00  
0x0A  
0x0C  
0x10  
0x11  
DAC_MISC  
DAC_PRECH  
DAC_RST  
PA_CRTL  
DAC Miscellaneous  
DAC Precharge Control  
DAC Reset  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
0x00  
0x00  
0x00  
0x0F  
Power Amplifier Control  
Note:  
MSB = Bit 7, LSB = Bit 0  
16  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.1 DAC Control Register  
Register Name: DAC_CTRL  
Register Address: 0x00  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
ONPADRV  
ONDACR  
ONDACL  
ONLNOR  
ONLNOL  
ONLNIR  
ONLNIL  
• ONLNIL  
Left channel line in amplifier (L to power down, H to power up)  
• ONLNIR  
Right channel line in amplifier (L to power down, H to power up)  
• ONLNOL  
Left channel line out driver (L to power down, H to power up)  
• ONLNOR  
Right channel line out driver (L to power down, H to power up)  
• ONDACL  
Left channel DAC (L to power down, H to power up)  
• ONDACR  
Right channel DAC (L to power down, H to power up)  
• ONPADRV  
Differential mono PA driver (L to power down, H to power up)  
17  
6464A–PMAAC–28-Apr-09  
10.2 DAC Left Line In Gain Register  
Register Name: DAC_LLIG  
Register Address: 0x01  
Reset State: 0x05  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
Not Used  
LLIG  
• LLIG: Left channel line in analog gain selector  
LLIG<4:0>  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
Gain  
20  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
12  
9
6
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
< -60  
18  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.3 DAC Right Line In Gain Register  
Register Name: DAC_RLIG  
Register Address: 0x02  
Reset State: 0x05  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
Not Used  
RLIG  
• RLIG: Right channel line in analog gain selector  
RLIG<4:0>  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
Gain  
20  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
12  
9
6
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
< -60  
19  
6464A–PMAAC–28-Apr-09  
10.4 DAC Left Master Playback Gain Register  
Register Name: DAC_LMPG  
Register Address: 0x03  
Reset State: 0x08  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
LMPG  
• LMPG: Left channel master playback digital gain selector  
LMPG<5:0>  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
Gain  
12.0  
10.5  
9.0  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LMPG<5:0>  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
Gain  
-13.5  
-15.0  
-16.5  
-18.0  
-19.5  
-21.0  
-22.5  
-24.0  
-25.5  
-27.0  
-28.5  
-30.0  
-31.5  
-33.0  
-34.5  
mute  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
-9.0  
-10.5  
-12.0  
20  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.5 DAC Right Master Playback Gain Register  
Register Name: DAC_RMPG  
Register Address: 0x04  
Reset State: 0x08  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
RMPG  
• RMPG: Right channel master playback digital gain selector  
RMPG<5:0>  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
Gain  
12.0  
10.5  
9.0  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RMPG<5:0>  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
Gain  
-13.5  
-15.0  
-16.5  
-18.0  
-19.5  
-21.0  
-22.5  
-24.0  
-25.5  
-27.0  
-28.5  
-30.0  
-31.5  
-33.0  
-34.5  
mute  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
-9.0  
-10.5  
-12.0  
21  
6464A–PMAAC–28-Apr-09  
10.6 DAC Left Line Out Gain Register  
Register Name: DAC_LLOG  
Register Address: 0x05  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
LLOG  
• LLOG: Left channel line out digital gain selector  
LLOG<5:0>  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
Gain  
0
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LLOG<5:0>  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
Gain  
-24.0  
-25.5  
-27.0  
-28.5  
-30.0  
-31.5  
-33.0  
-34.5  
-36.0  
-37.5  
-39.0  
-40.5  
-42.0  
-43.5  
-45.0  
-46.5  
mute  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
-9.0  
-10.5  
-12.0  
-13.5  
-15.0  
-16.5  
-18.0  
-19.5  
-21.0  
-22.5  
22  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.7 DAC Right Line Out Gain Register  
Register Name: DAC_RLOG  
Register Address: 0x06  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
RLOG  
• RLOG: Right channel line out digital gain selector  
RLOG<5:0>  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
Gain  
0
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RLOG<5:0>  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
Gain  
-24.0  
-25.5  
-27.0  
-28.5  
-30.0  
-31.5  
-33.0  
-34.5  
-36.0  
-37.5  
-39.0  
-40.5  
-42.0  
-43.5  
-45.0  
-46.5  
mute  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
-9.0  
-10.5  
-12.0  
-13.5  
-15.0  
-16.5  
-18.0  
-19.5  
-21.0  
-22.5  
23  
6464A–PMAAC–28-Apr-09  
10.8 DAC Output Level Control Register  
Register Name: DAC_OLC  
Register Address: 0x07  
Reset State: 0x22  
Access: Read/Write  
7
6
5
4
3
2
1
0
RSHORT  
ROLC  
LSHORT  
LOLC  
• LOLC: Left channel output level control selector  
LOLC  
100  
Gain  
5
Unit  
dB  
011  
2.5  
0
dB  
010  
dB  
dB  
001  
-2.5  
-5  
000  
dB  
• LSHORT: Left channel short circuit indicator  
Persistent; after being set, bit is not cleared automatically even after the short circuit is eliminated; must be cleared by reset  
cycle or direct register write operation.  
• ROLC: Right channel output level control selector  
ROLC  
100  
Gain  
5
Unit  
dB  
011  
2.5  
0
dB  
010  
dB  
dB  
001  
-2.5  
-5  
000  
dB  
• RSHORT: Right channel short circuit indicator  
Persistent; after being set, bit is not cleared automatically even after the short circuit is eliminated; must be cleared by reset  
cycle or direct register write operation.  
24  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.9 DAC Mixer Control Register  
Register Name: DAC_MC  
Register Address: 0x08  
Reset State: 0x09  
Access: Read/Write  
7
0
6
0
5
4
3
2
1
0
INVR  
INVL  
RMSMIN2  
RMSMIN1  
LMSMIN2  
LMSMIN1  
• LMSMIN1: Left Channel Mono/Stereo Mixer Left Mixed input enable (H to enable, L to disable)  
• LMSMIN2: Left Channel Mono/Stereo Mixer Right Mixed input enable (H to enable, L to disable)  
• RMSMIN1: Right Channel Mono/Stereo Mixer Left Mixed input enable (H to enable, L to disable)  
• RMSMIN2: Right Channel Mono/Stereo Mixer Right Mixed input enable (H to enable, L to disable)  
• INVL: Left channel mixer output invert (H to enable, L to disable)  
• INVR: Right channel mixer output invert (H to enable, L to disable)  
10.9.1  
Digital Mixer Control  
The Audio DAC features a digital mixer that allows the mixing and selection of multiple input  
sources.  
The mixing/multiplexing functions are described in Figure 10-1.  
Figure 10-1. Digital Mixer Functions  
Left channel  
1
+
Volume  
Control  
Volume  
Control  
2
1
From digital  
filters  
To DACs  
Volume  
Control  
Volume  
Control  
+
2
Right channel  
Note:  
When the two mixer inputs are selected, a -6 dB gain is applied to the output signal. When only  
one input is selected, no gain is applied.  
25  
6464A–PMAAC–28-Apr-09  
10.10 DAC Clock and Sampling Frequency Control Register  
Register Name: DAC_CSFC  
Register Address: 0x09  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
Not Used  
OVRSEL  
Not Used  
Not Used  
Not Used  
Not Used  
• OVRSEL: Master clock selector  
L to 256 x Fs, H to 384 x Fs  
Master clock and sampling frequency selection  
Table 10-2 describes the modes available for master clock and sampling frequency selection.  
Table 10-2. Master Clock Modes  
OVRSEL  
Master Clock  
256 x Fs  
0
1
384 x Fs  
26  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.11 DAC Miscellaneous Register  
Register Name: DAC_MISC  
Register Address: 0x0A  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
VCMCAPSEL  
DINTSEL  
DITHEN  
DEEMPEN  
NBITS  
• NBITS<1:0>: Data interface word length  
The selection of input sample size is done using the NBITS field.  
NBITS <1:0>  
Format  
16 bits  
18 bits  
20 bits  
00  
01  
10  
• DEEMPEN: De-emphasis enable (L to disable, H to enable)  
To enable the de-emphasis filtering the DEEMPHEN signal must be set to high.  
• DITHEN: Dither enable (L to disable, H to enable)  
The dither option (added in the playback channel) is enabled by setting the DITHEN signal to high.  
• DINTSEL<1:0>: I2S data format selector  
The selection between modes is done using the DINTSEL<1:0> signal.  
DINTSEL<1:0>  
Format  
00  
01  
1x  
I2S Justified  
MSB Justified  
LSB Justified  
• VCMCAPSEL: VCM decoupling capacitor selector  
Low for 10 µF, High for 100 µF  
27  
6464A–PMAAC–28-Apr-09  
10.12 DAC Precharge Control Register  
Register Name: DAC_PRECH  
Register Address: 0x0C  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
Not Used  
PRCHGPDRV  
PRCHGLNIR  
PRCHGLNIL  
PRCHG  
ONMSTR  
• ONMSTR: Master power on control (L to power down, H to power up)  
• PRCHG: Master pre-charge (H to charge)  
• PRCHGLNIL: Left channel line in pre-charge (H to charge)  
• PRCHGLNIR: Right channel line in pre-charge (H to charge)  
• PRCHGPDRV: Differential mono PA driver pre-charge (H to charge)  
10.13 DAC Reset Register  
Register Name: DAC_RST  
Register Address: 0x10  
Reset State: 0x00  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
RESFILZ  
RSTZ  
• RSTZ: Active low reset of the audio codec  
• RESFILZ: Active low reset of the audio codec filter  
See “Supplies and Start-up” on page 30.  
28  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
10.14 PA Control Register  
Register Name: PA_CTRL  
Register Address: 0x11  
Reset State: 0x0F  
Access: Read/Write  
7
6
5
4
3
2
1
0
Not Used  
Not Used  
APAON  
APAPRECH  
APAGAIN  
• APAGAIN<3:0>: Audio power amplifier gain  
APAGAIN<3:0>  
0000  
Gain db  
APAGAIN<3:0>  
1000  
Gain db  
-1  
FORBIDDEN  
0001  
20  
17  
14  
11  
8
1001  
-4  
0010  
1010  
-7  
0011  
1011  
-10  
-13  
-16  
-19  
-22  
0100  
1100  
0101  
1101  
0110  
5
1110  
0111  
2
1111  
• APAPRECH: Audio power amplifier precharge bit  
• APAON: Audio power amplifier on bit  
APAON  
APAPRECH  
Operating Mode  
Stand-by  
0
0
1
1
0
1
0
1
Input capacitors precharge  
Active mode  
Forbidden state  
29  
6464A–PMAAC–28-Apr-09  
11. Supplies and Start-up  
In operating mode, VBAT (supply of the audio power amplifier) must be between 3V and 5.5V  
and AVDD, AVDDHS and VDIG must be inferior or equal to VBAT and lower than 3.3V.  
A typical application is VBAT connected to a battery and AVDD, AVDDHS and VDIG supplied by  
regulators. VBAT must be present at the same time or before AVDD, AVDDHS and VDIG.  
RSTB must be active (0) until the voltages are stable and reach the proper values.  
To avoid noise issues, it is recommended to use ceramic decoupling capacitors for each supply  
close to the package as defined in the application diagram. See Figure 13-1 on page 33.  
The track of the supplies must be optimized to minimize the resistance, especially on VBAT  
where all the current from the power amplifier comes from.  
HPN and HPP must be routed symmetrically and the resistance must be minimized, at the  
expense of maximum output power capabilities reduction.  
11.1 Audio DAC Start-up Sequences  
In order to minimize the noise during the start-up, a specific sequence should be applied.  
In any audio configuration, always force Bit 2 to high level (“1”) at 0x0B address.  
11.1.1  
Power on Example  
Path DAC to headset output  
1. Write @0x10 => 0x03 (deassert the reset)  
2. Write @0x0C => 0x1F (precharge + master on)  
3. Write @0x00 => 0x0C (ONLNOL and ONLONOR set to 1)  
4. Delay 500 ms  
5. Write @0x0C => 0x01 (precharge off + master on)  
6. Delay 1ms  
7. Write @0x00 => 0x3C (ONLNOL, ONLNOR, ONDACR and ONDACL set to 1)  
11.1.2  
11.1.3  
Power off Example  
1. Write @0x00 => 0xC0 (ONDACR and ONDACL set to 0)  
2. Write @0x0C => 0x00 (master off)  
3. Delay 1ms  
4. Write @0x00 => 0x00 (all off)  
I2S Example  
In order to prevent I2S from generating noise at the output (for example a MP3 player switching  
from one song to another):  
1. Set ONDAC to 0 ((bit 4 and 5 in register @0x00)  
2. Stop I2S and MCLK  
When I2S is restarted, in order to prevent noise generation at the output:  
1. Start MCLK  
2. Write @0x10 => 0x00 (RESFILZ=0, RSTZ=0)  
3. Write @0x10 => 0x03 (RESFILZ=1, RSTZ=1)  
30  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
4. Delay 5 ms  
5. Set ONDAC to 1 (bit 4 and 5 in register @0x00)  
6. Reprogram all DAC settings (Audio format, gains, etc.)  
7. Start I2S.  
11.2 Audio Power Amplifier Power on Sequence  
To avoid an audible “click” at start-up, the input capacitors must be pre-charged before the  
power amplifier.  
1. At start-up, disable APAON, APAGAIN<3:0> set to -22 dB, enable APAPRECH.  
2. Wait 50 ms minimum.  
3. Then disable APAPRECH and enable APAON.  
4. Wait 10 ms min time.  
5. Set the gain to the value chosen.  
11.2.1  
Audio Power Amplifier Power off Sequence  
To avoid an audible “click” at power-off, the gain should be set to the minimum gain (-22 dB)  
before turning off the power amplifier.  
31  
6464A–PMAAC–28-Apr-09  
12. Current Consumption in Different Modes  
Table 12-1. Curent Consumption in Different Modes  
Current  
Consumption  
(typ)  
Current  
Consumption  
(max)  
Mode  
0: Off  
Powered up block  
Unit  
All blocks off and  
RSTB = 0  
5
12  
µA  
total  
total  
5
0
12  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
1: Standby  
Vref generator  
Vcm generator  
250  
250  
0
350  
351  
1
2: DAC Playback Through stereo  
Headset  
Vref generator  
Vcm generator  
250  
850  
850  
1600  
1600  
5150  
0
350  
1200  
1200  
2000  
2000  
6751  
1
Left line out amplifier  
Right line out amplifier  
Left D-to-A converter  
Right D-to-A converter  
(Current in the load not included)  
total  
Vref generator  
3: Stereo DAC Playback to Audio PA  
Vcm generator  
250  
1600  
1600  
800  
6000  
10650  
0
350  
2000  
2000  
1200  
12000  
17551  
1
Left D-to-A converter  
Right D-to-A converter  
(Current in the load not included)  
Differential mono PA driver  
Audio PA  
total  
Vref generator  
4: Playback From Stereo Line Input to  
Stereo Headset  
Vcm generator  
250  
700  
700  
850  
2500  
350  
900  
900  
1200  
3351  
Left line in amplifier  
Right line in amplifier  
Differential mono PA driver  
(Current in the load not included)  
total  
32  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
13. Application Diagram  
Figure 13-1. Application Using One Li-Ion Battery  
PAINN  
2.8V from LDO  
C17  
AT73C240  
22u  
VDIG  
3.6 V  
VBAT  
CBP  
Battery  
(Li-Ion or 3 x NiMh or  
100n  
100n  
10µF  
100n  
C7  
NiCd)  
C16  
2.8V from LDO  
AVDD  
HPP  
C18  
8 Ohm  
Loudspeaker  
Audio PA  
HPN  
AVDDHS  
C19  
C15  
PAINP  
C9  
470n  
470n  
VREF  
VCM  
REF  
MONOP  
MONON  
LINER  
10u  
C11  
10u  
C12  
C8  
C3  
R
L
stereo  
line input  
(e.g. FM Radio)  
SPI_DOUT  
470n  
SPI_DIN/TWD  
LINEL  
SPI / TWI  
SPI_CLK/TWCK  
470n  
DIG  
SPI_CSB/TW_ADD  
SMODE  
RSTB  
Reset active low  
I2S  
MCLK  
SDIN  
LRFS  
C6  
32  
32  
HSR  
HSL  
32 Ohm  
Audio  
DAC  
C5  
100u  
Headset  
BCLK  
or Line Out  
10u  
100u  
INGND  
GNDA  
C10  
GNDD  
33  
6464A–PMAAC–28-Apr-09  
14. Components List  
Table 14-1. Components List  
Reference  
Value  
470 nF  
100 µF  
10 µF  
Techno  
Ceramic  
Ceramic  
Ceramic  
Size  
0402  
1210  
0603  
Manufacturer & Reference  
C3, C8, C12,  
C15  
C1005X5R1A474K (TDK) or GRM155R60J474KE19 (Murata)  
C3225X5R0J107M (TDK) or GRM32ER60J107ME20 (Murata)  
C1608X5R0J106MT (TDK) or GRM188R60J106ME47 (Murata)  
C5, C6  
C9, C10,  
C11, C19  
C7, C17, C18  
C16  
100 nF  
22 µF  
Ceramic  
Ceramic  
0402  
0805  
C1005X5R1C104K (TDK) or GRM155R61A104KA01 (Murata)  
C2012X5R0J226MT (TDK) or GRM21BR60J226ME39 (Murata)  
34  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
15. Package Drawing  
Figure 15-1.Package OutlineR-QFN032_H  
Notes: 1. All dimensions are in mm.  
2. Drawing is for general information only. Refer to JEDEC drawing MO-220 for additional  
information.  
35  
6464A–PMAAC–28-Apr-09  
Figure 15-2. Package Drawing with Pin 1 and Marking for R-QFN032_H package  
36  
AT73C240  
6464A–PMAAC–28-Apr-09  
AT73C240  
16. Revision History  
Change  
Doc. Rev  
Comments  
First issue  
Request Ref.  
6464A  
37  
6464A–PMAAC–28-Apr-09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
Analog Companions (PMAAC)  
Technical Support  
Atmel techincal support  
pmaac@atmel.com  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© Atmel Corporation 2009. All rights reserved. Atmel®, Atmel logo and combinations thereof are and others are registered trademarks or  
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
6464A–PMAAC–28-Apr-09  

相关型号:

AT73C246

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64
ATMEL

AT73C246-A

Power Supply Support Circuit, Fixed, 6 Channel
MICROCHIP

AT73C246-B

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64
MICROCHIP

AT73C260

Power Supply Support Circuit, 1 Channel, GREEN, QFN-16
ATMEL

AT73C500

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C500-JC

Power Metering
ETC

AT73C501

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C501-JC

Analog-to-Digital Converter, 16-Bit
ETC

AT73C502

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C502-QC

Analog-to-Digital Converter, 16-Bit
ETC

AT74011-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN

AT74011-H2B1-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket
FOXCONN