AT73C246-B [MICROCHIP]

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64;
AT73C246-B
型号: AT73C246-B
厂家: MICROCHIP    MICROCHIP
描述:

Power Supply Support Circuit, Fixed, 6 Channel, 7.50 X 7.50 MM, 0.90 MM HEIGHT, GREEN, MO-220, QFN-64

文件: 总159页 (文件大小:11597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
AUDIO CODEC  
– 100dB Dynamic Range Stereo Audio DAC - 8 to 96 kHz sampling frequency  
– 96dB Dynamic Range Stereo Audio ADC - 8 to 96 kHz sampling frequency  
– 16 / 32 Ohms headset amplifier with capless operation  
• SNR: 97 dB A-Weighted  
• THD: -60 dB (16Ohms / 20mW / 3.3V supply)  
• Maximum output power: 55mW (16Ohms / 3.3V supply)  
– Stereo line inputs, stereo auxiliary inputs  
– Stereo microphone inputs with bias generator for electret device  
– Low power Analog Bypass mode (Line / Aux in to Headset Out)  
– Low power Analog sidetone mode (Microphone in to Headset Out)  
– Automatic Audio path control with smooth fade in / fade out operation  
– I2S port  
Power  
Management  
and Analog  
Companions  
(PMAAC)  
• Master / Slave Operation  
• I2S / Left / Right justified modes  
• 16 / 18 / 20 / 24 bit operation  
6x SUPPLY CHANNEL VOLTAGE REGULATORS  
– DCDC0:  
• 1.85V - 600mA. 0.8 to 3.6V / 50mV step.  
AT73C246  
6 Supply  
• 2 MHz switching buck regulator  
• Fast load transient response - PWM / PFM modes.  
• Efficiency up to 92%  
– DCDC1:  
Channel PMU  
With Audio  
Codec  
• 1.2V - 600mA. 0.8 to 3.6V / 50mV step.  
• 2 MHz switching buck regulator  
• Fast load transient response - PWM / PFM modes.  
• Efficiency up to 90%  
– LDO2: 1V - 300mA. 0.8 to 1.35V / 50mV step - Fast transient response  
– LDO3: 3.3V - 200mA. 2.7 to 3.6V / 50mV step - Fast transient response  
– LDO4: 3.3V - 200mA. 2.7 to 3.6V / 50mV step - Audio codec supply  
– LDO5: 2.5V - 10mA - Backup battery charger and RTC supply  
LOW CONSUMPTION POWER MANAGER  
– 2.5V - 5.5V VIN Operation  
– 20uA typical consumption OFF mode  
– VIN monitor, CPU supplies monitor  
– Die temperatue and over-current protections  
– Reset and Interrupt generation  
– Automatic Voltage Ramping on supply channels for DVS applications  
– Standby mode with selectable supplies OFF  
RTC  
– Ultra Low power crystal oscillator (<1uA typ.)  
– Wake up function with programmable alarm or selectable inputs  
10-b / 300kS/s ADC with 4 external / 6 int\ernal selectable inputs  
Two-Wire Interface for PMU and Audio controls  
Available in 7.5 x 7.5 x 0.9 mm 64-pin QFN Package  
Applications: Multimedia, Audio + Supply solution for MPU+DDR2 designs.  
11050A–PMAAC–07-Apr-10  
1. Description  
The AT73C246 is an integrated high performance Power Management and Audio IC. It is specif-  
ically designed for advanced technology application processors with complex and low voltage  
supplies targeting audio applications from low to high end. This System-on-Chip allows signifi-  
cant savings in both cost and board area over previous discrete solutions.  
Directly operated from a 2.9V to 5.5V input voltage, the PMU generates a set of 4 regulated  
power supplies and an associated delayed reset signal. These 4 voltages are built up with 2 high  
efficiency DCDC buck converters and 2 low noise LDOs. Featuring ultra fast transient responses  
and integrating automatic voltage scaling function, these supplies perfectly fit with modern low  
voltage MCU cores and memory supplies (DDR, Flash, ...). An additional 200mA LDO under  
software control is provided for auxiliary application functions. The high performances of this  
LDO (high PSRR, low noise, fast transient response) makes it ideal for analog front-ends (Audio,  
RF...) as well digital peripherals.  
Aside from the PMU, the AT73C246 integrates a complete state-of-the art low power audio  
codec with headphone amplifier. On the input side, a stereo microphone preamplifier with differ-  
ential or single ended connection (MICDIFF / MIC) and 2 selectable stereo inputs (LINE / AUX)  
are directed to a 96dB Dynamic Range stereo audio ADC through an input mixer. On the output  
side a 100dB dynamic range stereo audio DAC drives, through an output mixer, a 60 mW stereo  
headphone amplifier which comes along with a VCM buffer. This VCM buffer allows to save two  
large on-board coupling capacitors for area constrained applications. Additionally two fully ana-  
log paths called bypass and sidetone from line / aux and microphone inputs to headphone  
outputs allow to reduce the audio power consumption to minimum when needed.  
The PMU is complemented with a low power RTC system including a recharging LDO, a crystal  
oscillator and a programmable alarm that is fully integrated in the PMU digital core. Thus, the  
RTC function is able to wake up the PMU, i.e the regulated power supplies, at a programmed  
instant.  
Also, a 10-bit ADC equipped with a 10:1 analog multiplexer is provided to the application to per-  
form voltage measurements.  
Finally, to reduce power consumption to minimum, the PMU features a flexible STANDBY mode  
where the MCU is placed in reset state with selectable supplies ON, OFF or in low-power mode.  
Power consumption in OFF mode is typically 20uA.  
2
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
2. Block Diagram  
Figure 2-1. AT73C246 functional block diagram  
VIN4  
LDO4  
3.3V  
Max: 200mA  
(CODEC)  
37  
36  
VIN0  
SW0  
BUCK0  
1.8V  
57  
VDD4  
58  
56  
59  
53  
VFB0  
Max: 600mA  
(CORE + MEM)  
LINL  
LINR  
28  
GND0  
VIN1  
SW1  
27  
30  
29  
34  
BUCK1  
1.2V  
AUXL  
AUXR  
MICL  
54  
VFB1  
Max: 600mA  
(CORE)  
52  
55  
AUDIO IN  
GND1  
+ ADC  
MICLN  
MICR  
31  
33  
VIN2  
LDO2  
1V  
Max: 300mA  
(CORE)  
51  
VDD2  
VIN3  
MICRN  
32  
50  
38  
LDO3  
3.3V  
Max: 200mA  
(I/O)  
AVDD  
18  
35  
MICBIAS  
AUDIO  
BIAS  
VDD3  
39  
1
VMID  
12  
17  
VBACKUP  
AGND  
LDO5  
2.5V  
Max: 10mA  
(BACKUP)  
AUDIO  
CODEC  
VINSYS  
VDDC  
HPDET  
HPR  
7
8
13  
14  
DIGITAL  
CORE  
LDO6  
1.8V / 10mA  
(Internal  
AUDIO OUT  
+DAC  
HPL  
16  
15  
functions)  
HPVCM  
REXT  
VBG  
10  
9
PMU  
BIAS  
MCLK  
LRFS  
44  
43  
GNDSYS  
11  
AUDIO  
PORT  
BCLK  
DAI  
42  
41  
40  
RSTB  
ITB  
20  
19  
DAO  
WAKEUP1  
WAKEUP2  
23  
24  
XIN  
63  
PMU STATE  
MACHINES  
WAKEUP3  
VPAD  
XOUT  
25  
45  
64  
49  
CLK32K  
WAKEUP0  
VBACKUP  
RTC +  
OSC  
DGND  
LED  
62  
60  
65  
2
HRST  
PWREN  
61  
DIE TEMP  
SENSOR  
Internal voltages  
DCDC  
4MHz RC  
OSCILLATOR  
ANA0  
ANA1  
ANA2  
ANA3  
3
4
5
ANALOG  
MUX  
10b SAR  
ADC  
SYSTEM  
32KHz RC  
OSCILLATOR  
TWI  
NC  
46  
6
NC  
NC  
NC  
TWCK  
TWD  
22  
21  
26  
47  
48  
3
11050A–PMAAC–07-Apr-10  
3. Package and Pinout  
Figure 3-1. AT73C246 QFN64 package pinout - Top view  
64  
49  
48  
VBACKUP  
LED  
1
NC  
NC  
ANA0  
NC  
ANA1  
VPAD  
MCLK  
LRFS  
BCLK  
ANA2  
ANA3  
VINSYS  
VDDC  
VBG  
DAI  
DAO  
REXT  
VDD3  
VIN3  
GNDSYS  
VMID  
VIN4  
HPDET  
HPR  
VDD4  
MICBIAS  
MICL  
MICR  
HPVCM  
HPL  
16  
17  
33  
32  
4
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
4. Pin Description  
Table 4-1.  
Pin Name  
VBACKUP  
Pin Description  
I/O  
Pin Number  
Type  
Function  
Output  
1
Analog  
RTC supply  
Output for blinking led. Leave not  
connected if a LED is not wired.  
LED  
Output  
2
Digital  
ANA0  
ANA1  
ANA2  
ANA3  
VINSYS  
Input  
Input  
Input  
Input  
Input  
3
4
5
6
7
Analog  
Analog  
Analog  
Analog  
Power  
Measurement input 0  
Measurement Input 1  
Measurement Input 2  
Measurement Input 3  
PMU core supply  
PMU / Audio digital supply. Internal use  
only. No resistive load.  
VDDC  
VBG  
Output  
Output  
Output  
8
9
Analog  
Analog  
Analog  
PMU Voltage reference  
Resistor connection for PMU bias  
current  
REXT  
10  
GNDSYS  
VMID  
GND  
Output  
Input  
11  
12  
13  
14  
15  
16  
17  
18  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Power  
PMU ground  
Audio Codec Mid-Supply reference  
Headset detector  
HPDET  
HPR  
Output  
Output  
Output  
GND  
Headset output right  
HPVCM  
HPL  
Headset virtual ground output  
Headset output left  
AGND  
AVDD  
Audio Codec ground  
Audio Codec supply input  
Input  
Interrupt request - Active low - Open-  
drain  
ITB  
Output  
19  
Digital  
RSTB  
TWD  
Output  
Input/Output  
Input  
20  
21  
22  
Digital  
Digital  
Digital  
CPU reset - Active low - Open drain  
Two Wire Interface - Data  
TWCK  
Two Wire Interface - Clock  
Wake up 1 Input - VPAD level - 100k  
Pull down  
WAKEUP1  
WAKEUP2  
WAKEUP3  
Input  
Input  
Input  
23  
24  
25  
Digital  
Digital  
Digital  
Wake up 2 Input - VPAD level - 100k  
Pull down  
Wake up 3 input - VPAD level - 100k  
Pull down  
NC  
-
26  
27  
28  
29  
30  
-
Connect to DGND  
LINR  
LINL  
AUXR  
AUXL  
Input  
Input  
Input  
Input  
Analog  
Analog  
Analog  
Analog  
Audio Line input right  
Audio Line input left  
Audio auxiliary input right  
Audio auxiliary input left  
5
11050A–PMAAC–07-Apr-10  
Table 4-1.  
Pin Name  
MICLN  
MICRN  
MICR  
MICL  
Pin Description  
I/O  
Pin Number  
31  
Type  
Analog  
Analog  
Analog  
Analog  
Analog  
Power  
Analog  
Power  
Analog  
Digital  
Digital  
Digital  
Digital  
Digital  
Power  
-
Function  
Input  
Audio negative microphone input left  
Audio negative microphone input right  
Audio positive microphone input right  
Audio positive microphone input left  
Voltage bias for electret microphone  
LDO4 output - 3.3V typ  
LDO4 input  
Input  
32  
Input  
33  
Input  
34  
MICBIAS  
VDD4  
VIN4  
Output  
Output  
Input  
35  
36  
37  
VIN3  
Input  
38  
LDO3 input  
VDD3  
DAO  
Output  
Output  
Input  
39  
LDO3 output - 3.3V typ  
Digital audio port data output  
Digital audio port data input  
Digital audio port bit clock  
Digital audio port left/right clock  
Audio codec master clock input  
PMU I/O ring supply  
40  
DAI  
41  
BCLK  
LRFS  
MCLK  
VPAD  
NC  
Input/Output  
Input/Output  
Input  
42  
43  
44  
Input  
45  
-
46  
Leave open  
NC  
-
47  
-
Connect to DGND  
NC  
-
48  
-
Connect to DGND  
MCLK32  
VDD2  
VIN2  
Output  
Output  
Input  
49  
Digital  
Analog  
Power  
Analog  
Power  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
RTC clock output - VPAD level  
LDO2 output  
50  
51  
LDO2 input  
VFB1  
VIN1  
Input  
52  
DCDC1 Voltage feedback input  
DCDC1 power stage supply  
DCDC1 power stage output  
DCDC1 power stage ground  
DCDC0 Voltage feedback input  
DCDC0 power stage supply  
DCDC0 power stage output  
DCDC0 power stage ground  
Input  
53  
SW1  
Output  
Ground  
Input  
54  
GND1  
VFB0  
VIN0  
55  
56  
Input  
57  
SW0  
Output  
Ground  
58  
GND0  
59  
Hard reset - VBACKUP level - 100k Pull  
down  
HRST  
Input  
Input  
Input  
60  
61  
62  
Digital  
Digital  
Digital  
Power on/off - VBACKUP level - 100k  
Pull down  
PWREN  
WAKEUP0  
Wake up 0 input - VBACKUP level -  
100k Pull down  
6
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 4-1.  
Pin Name  
XIN  
Pin Description  
I/O  
Pin Number  
Type  
Function  
Input  
63  
64  
65  
Analog  
Analog  
Analog  
RTC crystal oscillator input  
RTC crystal oscillator output  
PMU digital ground + Thermal pad.  
XOUT  
Output  
DGND  
Ground  
7
11050A–PMAAC–07-Apr-10  
5. Application Block Diagram  
Figure 5-1. AT73C246 Application Block Diagram  
37  
VIN4  
LDO4  
3.3V  
Max: 200mA  
(CODEC)  
VIN  
C42  
10µF  
36  
VDD4  
C41  
10µF  
57  
58  
56  
59  
VIN0  
SW0  
VIN  
BUCK0  
1.8V  
LINEJACK  
AUXJACK  
100  
R30  
C1  
28  
3.3µF  
C39  
LINL  
L1  
10µF  
R29  
100K  
C40  
1nF  
VDD0  
2.2µH  
C2  
VFB0  
R28  
Max: 600mA  
(CORE + MEM)  
22µF  
C38  
1nF  
J1  
J2  
100K  
LINR  
27  
30  
3.3µF  
C37  
GND0  
R31  
R27  
100  
100  
AUXL  
3.3µF  
C35  
R25  
100K  
R26  
C36  
1nF  
53  
54  
52  
55  
VIN1  
SW1  
VIN  
BUCK1  
1.2V  
R24  
C34  
1nF  
C3  
10µF  
100K  
L2  
29  
34  
AUDIO IN  
3.3µF  
C33  
AUXR  
MICL  
VDD1  
2.2µH  
100  
+ ADC  
C4  
22µF  
1µF  
C31  
MIC_L  
VFB1  
Max: 600mA  
(CORE)  
C32  
1nF  
J3  
R22  
2K  
GND1  
1µF  
C29  
31  
33  
32  
MICLN  
MICR  
R23  
C30  
1nF  
51  
50  
VIN2  
2K  
LDO2  
1V  
Max: 300mA  
(CORE)  
VDD0  
C5  
2.2µF  
1µF  
C27  
MIC_R  
J4  
C28  
1nF  
R18  
2K  
VDD2  
C6  
10µF  
1µF  
C25  
MICRN  
R19  
2K  
C26  
1nF  
38  
39  
VIN3  
VIN  
LDO3  
3.3V  
Max: 200mA  
(I/O)  
C7  
VDD4  
10µF  
18  
35  
12  
17  
AVDD  
MICBIAS  
VDD3  
AUDIO  
BIAS  
C8  
10µF  
VMID  
C23  
1µF  
R1  
2K  
AGND  
1
VBACKUP  
LDO5  
2.5V  
Max: 10mA  
(BACKUP)  
C9  
2.2µF  
AUDIO  
CODEC  
Backup  
Battery  
BAT1  
DIGITAL  
CORE  
HEADSET 32ohms  
HPDET  
HPR  
VINSYS  
13  
14  
7
8
VINSYS  
C10  
2.2µF  
LDO6  
1.8V / 10mA  
AUDIO OUT  
+DAC  
HPL  
16  
15  
J5  
(Internal  
HPVCM  
VDDC  
functions)  
C11  
2.2µF  
LINEOUT  
C22  
3.3µF  
C21  
3.3µF  
R14  
100  
10  
9
REXT  
R2  
PMU  
BIAS  
560k  
VBG  
1%  
J6  
R13  
100K  
R12  
100  
R15  
C12  
22nF  
100K  
11  
GNDSYS  
44  
43  
42  
MCLK  
LRFS  
VDD0/VDD3  
R3  
4.7K  
AUDIO  
PORT  
I²S  
to MCU  
BCLK  
DAI  
20  
RSTB  
41  
40  
C13  
10nF  
VDD0/VDD3  
R4  
DAO  
4.7K  
19  
ITB  
C19  
C14  
10nF  
12p  
23  
WAKEUP1  
XIN  
63  
64  
49  
X1  
S3  
100K  
XOUT  
WAKEUP2  
WAKEUP3  
C20  
12p  
24  
100K  
25  
100K  
45  
VBACKUP  
PMU STATE  
MACHINES  
From MCU  
CLK32K  
WAKEUP0  
62  
VBACKUP  
PUSHBUTTON  
S2  
100K  
RTC +  
OSC  
VIN  
R5  
470  
HRST  
60  
VDD0/VDD3  
VBACKUP  
VBACKUP  
PUSHBUTTON  
S1  
VPAD  
100K  
D1  
2
65  
LED  
PWREN  
61  
PUSHBUTTON  
DGND  
100K  
DIE TEMP  
SENSOR  
R8  
100  
ANA0  
ANA1  
ANA2  
ANA3  
3
ANA_0  
C15  
R9  
100  
22nF  
DCDC  
4MHz RC  
OSCILLATOR  
4
5
ANA_1  
C16  
22nF  
ANALOG  
INPUTS  
10b SAR  
ADC  
R10  
100  
ANA_2  
ANA_3  
SYSTEM  
32KHz RC  
OSCILLATOR  
C17  
22nF  
R11  
100  
6
NC  
46  
TWI  
C18  
22nF  
26 47 48  
22  
21  
TWCK  
TWD  
VDD0/VDD3  
R6  
4.7K  
TWD  
VDD0/VDD3  
R7  
4.7K  
To MCU TWI  
TWCK  
8
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 5-1.  
Typical Application Components Design  
Schematic Reference  
Value  
2kΩ  
Description  
5% / 0.063W  
1% / 0.063W  
5% / 0.063W  
5% / 0.063W  
R1, R18, R19, R22, R23  
R2  
560kΩ  
4.7kΩ  
470Ω  
R3, R4, R6,R7  
R5  
R8, R9, R10, R11, R14, R15,  
R26, R27, R30, R31  
100Ω  
5% / 0.063W  
5% / 0.063W  
R12, R13, R24, R25, R28,  
R29  
100kΩ  
X5R / 6.3V  
C1, C3, C6, C7, C8, C10,  
C41, C42  
10µF  
22µF  
TDK: C1608X5R0J106MT  
MURATA: GRM188R60J106ME47  
X5R / 6.3V  
C2, C4  
TDK: C2012X5R0J226M  
MURATA: GRM21BR60J226ME39  
C5, C9, C11  
2.2µF  
1µF  
X5R / 6.3V  
C23, C25, C27, C29, C31  
C13, C14  
X5R / 6.3V  
10nF  
22nF  
12pF  
X5R / 6.3V  
C15, C16, C17, C18, C12  
C19, C20  
X5R / 6.3V  
C0G / 25V  
C21, C22, C33, C35, C37,  
C39  
3.3µF  
X5R / 6.3V  
C26, C28, C30, C32, C34,  
C36, C38, C40  
1nF  
X5R  
L1, L2  
2.2µH  
COILCRAFT: LPS3314-222  
9
11050A–PMAAC–07-Apr-10  
10  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
6. Absolute Maximum Ratings  
Table 6-1.  
Absolute Maximum Ratings  
Operating Temperature (Industrial).................-40 C to + 85C(1)  
*NOTICE:  
Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at these or other conditions beyond those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reli-  
ability.  
Storage Temperature......................................-55°C to + 150°C  
Power Supply Input on VINSYS, VIN{0,1,3,4}, VPAD .. -0.3V to + 5.5V  
Power Supply Input on VIN2, AVDD ...................... -0.3V to + 3.6V  
Digital I/O Input Voltage...................................... -0.3V to + 5.5V  
All Other Pins.......................................................-0.3V to + 5.5V  
ESD (all pins).........................................2 KV HBM / 100V MM(2)  
Notes: 1. Refer to Power Dissipation Rating section  
2. According to specifications MIL-883-Method 3015.7 (HBM - Human Body Model) / JESD22 A115 (MM - Machine Model)  
7. Recommended Operating Conditions  
Table 7-1.  
Parameter  
Recommended Operating Conditions  
Condition  
Min  
-40  
Max  
85  
Units  
°C  
V
Operating Ambiant Temperature(1)  
Power Supply Input  
VINSYS  
VIN{0,1,3,4}  
VIN2  
2.5  
5.5  
5.5  
3.6  
3.6  
5.5  
Power Supply Input  
2.9  
V
Power Supply Input  
1.65  
2.7  
V
Power Supply Input  
AVDD  
V
Power Supply Input  
VPAD  
1.75  
V
Note:  
1. Refer to Power Dissipation Rating section  
8. Power Dissipation Ratings  
Table 8-1.  
Parameter  
Recommended Operating Conditions  
Condition  
Min  
-40  
Typ  
Max  
Units  
Junction Temperature (Tj)  
125  
°C  
Package thermal junction to ambient  
resistance  
(1)  
RTHjA  
30  
35  
°C / W  
Ambient temperature = 70°C  
Ambient temperature = 85°C  
1.8  
1.3  
1.6  
1.1  
W
W
Maximum On-chip Power Dissipation  
Note:  
1. According to specification JESD51-5  
11  
11050A–PMAAC–07-Apr-10  
9. PMU Electrical Characteristics  
9.1  
Current Consumption Versus Modes  
Table 9-1.  
Symbol  
VIN  
Current Consumption Versus Modes  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Operating Supply Voltage  
VINSYS, VIN{0,1,3,4} present.  
2.9  
3.6  
5.5  
V
All LDOs and DCDC converters  
OFF. Audio OFF. RTC running.  
POWERDOWN Mode.  
RUN Mode.  
-
-
20  
7
40  
15  
µA  
All LDOs and DCDC converters  
running in PWM. Audio OFF. RTC  
running.  
mA  
IDD_VIN  
Default setup: DCDC0 ON in low-  
power mode. LDO3 ON. All other  
functions OFF.  
STANDBY Mode.  
All Modes.  
-
310  
1
500  
5
µA  
µA  
RTC running. Total current  
entering pin VBACKUP  
IDD_RTC  
9.2  
Supply Monitor Thresholds  
The following table applies to functional state diagrams of Figure 11-1 “AT73C246 Power Man-  
ager Functional State Diagram” on page 25 and Figure 11-2 “AT73C246 Start-up and Shutdown  
State Diagram” on page 26.  
Table 9-2.  
Symbol  
Supply Monitor Thresholds  
Parameter  
Comments  
Min  
3.070  
2.870  
2.70  
2.60  
1.80  
1.70  
Typ  
3.1  
Max  
3.130  
2.930  
2.85  
2.70  
1.90  
Units  
VIN > 3.1V  
PMU Input 3.1V Rising Threshold  
PMU Input 2.9V Falling Threshold  
PMU Input 2.7V Rising Threshold  
PMU Input 2.7V Falling Threshold  
V
V
V
V
V
V
VIN < 2.9V  
2.9  
VIN > 2.7V  
VIN < 2.7V  
2.75  
2.65  
1.85  
1.75  
VBKP > 1.8V VBACKUP Input Rising Threshold  
VBKP < 1.8V VBACKUP Input Falling Threshold  
1.80  
12  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
9.3  
Digital I/Os DC Characteristics  
Table 9-3.  
Symbol  
VPAD  
VPAD Referred Digital I/Os  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Operating Supply Voltage  
1.75  
3.6  
5.5  
V
0.3 x  
VPAD  
VIL  
Input Low-Level Voltage  
Input High-Level Voltage  
Output High-Level Voltage  
Output Low-Level Voltage  
-0.3  
-
-
-
-
V
V
V
V
0.7 x  
VPAD  
VPAD  
0.3  
+
VIH  
VOH  
VOL  
0.75 x  
VPAD  
IO max.  
IO max  
-
0.25 x  
VPAD  
-
IO  
Output Current  
-
-
8
mA  
RP  
Pull-Up or Pull-Down Resistance  
When applicable.  
70  
100  
145  
kΩ  
Notes: 1. VPAD referred pins ITB, RSTB: open drain outputs. Only VOL and IO parameters are applicable.  
2. VPAD referred pins WAKEUP1, WAKEUP2, WAKEUP3, MCLK, DAI, TWCK: CMOS inputs. Only VIH and VIL parameters are  
applicable.  
3. VPAD referred pins MCLK32K, DAO: CMOS outputs. Only VOL, VOH and IO parameters are applicable.  
4. VPAD referred pin TWD: CMOS input and open drain output. Only VIL, VIH, VOL, IO parameters are applicable.  
5. VPAD referred pins LRFS, BCLK: CMOS BiDir. All parameters applicable  
Table 9-4.  
VBACKUP Referred Digital I/Os  
Parameter  
Symbol  
Comments  
Min  
Typ  
Max  
Units  
VBACKUP  
Operating Supply Voltage  
1.75  
2.5  
2.65  
V
0.3 x  
VBACKUP  
VIL  
Input Low-Level Voltage  
Input High-Level Voltage  
Output High-Level Voltage  
Output Low-Level Voltage  
-0.3  
-
-
-
-
V
V
V
V
0.7 x  
VBACKUP  
VBACKUP  
+ 0.3  
VIH  
VOH  
VOL  
0.75 x  
VBACKUP  
IO max.  
IO max  
-
0.25 x  
VBACKUP  
-
IO  
Output Current  
-
-
8
mA  
RP  
Pull-Up or Pull-Down resistance  
When applicable.  
70  
100  
145  
kΩ  
Note:  
VBACKUP referred pins PWREN, HRST, WAKEUP0: CMOS inputs. Only VIL and VIH parameters are applicable.  
13  
11050A–PMAAC–07-Apr-10  
9.4  
DCDC0 and DCDC1  
Unless otherwise specified: External components L=2.2μH, COUT=22μF and CIN=10μF. VIN{0,1} > VDD{0,1} + 500mV.  
TJ = [-40°C ; +125°C].  
Table 9-5.  
Symbol  
VIN  
DCDC0 and DCDC1 Electrical Characteristics  
Parameter  
Comments  
VIN0, VIN1 and VINSYS  
OFF  
Min  
2.9  
-
Typ  
3.6  
-
Max  
5.5  
1
Units  
V
Operating Supply Voltage  
µA  
PFM operation.  
40  
3
80  
µA  
-
-
IDD  
Supply Current(1)  
VDD0 = 1.85V, VDD1 = 1.2V  
PWM operation.  
6.5  
mA  
VDD0 = 1.85V, VDD1 = 1.2V  
PFM operation.  
PWM operation.  
PWM operation.  
VDD0  
-
-
-
-
50  
600  
2.2  
-
mA  
mA  
MHz  
V
IO  
Output Current  
fSW  
Switching Frequency  
Default Output Voltage(2)  
1.8  
-
2
VDD0  
VDD1  
1.85  
1.2  
VDD1  
-
-
V
Programmable Output Voltage  
Range  
VDD_RANGE  
VDD_STEP  
NSTEP  
TSTEP  
PFM or PWM operation.  
PFM or PWM operation.  
0.8  
3.6  
V
Output Voltage Steps  
Number of Output Steps  
Step time  
50  
mV  
In case of direct output voltage  
programming. Automatic ramping  
not active.  
step /  
100µs  
4
With automatic ramping.  
260  
-1.5  
-2  
280  
300  
2.5  
3
µs  
%
PFM; TJ = 25°C ; IO = 0 mA  
PFM; TJ = [-40;125°C] ; IO = 0 mA  
PWM; TJ = 25°C ; IO = 0 mA  
PWM; TJ = [-40;125°C] ; IO = 0 mA  
PWM operation.  
VDD_ACC  
DC Output Voltage Accuracy  
-1.5  
-2  
1.5  
2
VDD_RIPPLE  
Ripple Voltage  
2
2
mV  
mV  
PWM operation. IO ranging from 0  
to IOMAX  
Static Load Regulation  
5
5
ΔVDD_IL  
PWM. IO: 0 to IOMAX ; 1μs rise time  
PWM. IO: IOMAX to 0 ; 1μs fall time  
-40  
40  
Dynamic Load Regulation  
Static Line Regulation  
mV  
VIN0 and VINSYS from 2.9 to 5.5V  
ΔVDD_VIN  
mV  
%
VDD0 = 1.85V, VDD1 = 1.2V  
PWM. IOMAX load. VDD0= 1.85V.  
Relative to VIN0 input supply.  
85  
78  
Eff  
Efficiency  
PWM. IOMAX load. VDD1= 1.2V.  
Relative to VIN1 input supply.  
%
Current from VIN(0,1) and VINSYS  
from 0 to 100% VDD{0,1}  
IINRUSH  
Inrush Current(1)  
30  
200  
mA  
VDD0 = 1.85V, VDD1 = 1.2V  
14  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 9-5.  
Symbol  
OCP  
DCDC0 and DCDC1 Electrical Characteristics  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Over-Current Protection  
Output current.  
1
1.4  
1.8  
A
From OFF to PWM operation.  
VDD(0,1) rising to 95% of final value.  
TSTART  
TPWM  
Start-up Time  
5
ms  
µs  
PFM to PWM Settling Time  
No output load.  
10  
-
Power Fail Detector Threshold  
Accuracy  
Overload of the programmed  
PWRFDET  
-1  
8
+1  
36  
%.VDD  
µF  
threshold by 10mV / 5us min(3)  
.
COUT  
Total Capacitive Load  
At VFB{0,1} pins.  
Notes: 1. Current consumption without load. One DCDC converter ON, the other one OFF.  
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.  
3. Threshold levels are programmed in register PMU_RST_LVL (0x04)  
15  
11050A–PMAAC–07-Apr-10  
9.5  
LDO2  
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].  
Table 9-6.  
Symbol  
VIN  
LDO2 Electrical Characteristics  
Parameter  
Comments  
Min  
Typ  
Max  
3.6  
1
Units  
V
Operating Supply Voltage  
VIN2  
1.65  
1.8  
OFF  
-
-
-
-
-
-
µA  
µA  
mA  
V
IDD  
Supply Current(1)  
ON  
250  
300  
-
IO  
Output Current  
VIN2 > VDD2 + 500mV.  
-
VDD2  
Default Output Voltage(2)  
1
Programmable Output Voltage  
Range  
VDD_RANGE  
0.8  
1.35  
V
VDD_STEP  
TSTEP  
Output Voltage Steps  
Step time  
50  
mV  
µs  
With automatic ramping.  
570  
-1  
600  
630  
1
VIN2 > VDD2 + 500mV  
TJ = 25°C ; IO = 0 mA  
VDD_ACC  
DC Output Voltage Accuracy  
Static Load Regulation  
%
%.VDD2  
mV  
VIN2 > VDD2 + 500mV  
-1.5  
1.5  
1
TJ = [-40°C ; 125°C] ; IO = 0 mA  
VIN2 > VDD2 + 500mV  
0.05  
-50  
50  
IO ranging from 0 to IOMAX  
VIN2 > VDD2 + 500mV  
ΔVDD_IL  
IO: 0 to IOMAX ; 1μs rise time  
Dynamic Load Regulation  
VIN2 > VDD2 + 500mV  
IO: IOMAX to 0 ; 1μs fall time  
IO = 0 mA  
ΔVDD_VIN  
Static Line Regulation  
Drop Out Voltage(4)  
5
mV  
VIN2 from 1.65 to 3.6V  
IO = 200mA  
IO = 300mA  
300  
450  
mV  
mV  
VDROPOUT  
Current from VIN2 from 0 to 95% of  
final value.  
IINRUSH  
Inrush Current  
Start-up Time  
200  
500  
1
mA  
ms  
VDD2 OFF and rising to 95% of  
TSTART  
final value. IO = 0 mA  
Power Fail Detector Threshold  
Accuracy  
Overload of the programmed  
threshold by 10mV / 5us min(3)  
PWRFDET  
-1  
-
+1  
%.VDD2  
.
Notes: 1. Current consumption in VIN2 without load.  
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.  
3. Threshold level is programmed in register PMU_RST_LVL (0x04)  
4. VDROPOUT= VIN2 - VDD2 when VDD2 = 98% of VDD2 obtained with VIN2 > VDD2 + 500mV  
16  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
9.6  
LDO3  
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].  
Table 9-7.  
Symbol  
VIN  
LDO3 Electrical Characteristics  
Parameter  
Comments  
Min  
Typ  
3.6  
-
Max  
5.5  
1
Units  
V
Operating Supply Voltage  
VIN3  
2.9  
OFF  
-
-
-
-
µA  
µA  
mA  
V
IDD  
Supply Current(1)  
ON  
-
350  
200  
-
IO  
Output Current  
VIN3 > VDD3 + 300mV.  
-
VDD3  
Default Output Voltage(2)  
3.3  
Programmable Output Voltage  
Range  
VDD_RANGE  
2.7  
3.6  
V
VDD_STEP  
TSTEP  
Output Voltage Steps  
Step time  
50  
mV  
µs  
With automatic ramping.  
570  
-1  
600  
630  
1
VIN3 > VDD3 + 300mV  
TJ = 25°C ; IO = 0 mA  
VDD_ACC  
DC Output Voltage Accuracy  
Static Load Regulation  
%
%.VDD3  
mV  
VIN3 > VDD3 + 300mV  
-1.5  
1.5  
0.5  
TJ = [-40°C ; 125°C] ; IO = 0 mA  
VIN3 > VDD3 + 300mV  
0.05  
-40  
40  
IO ranging from 0 to IOMAX  
VIN3 > VDD3 + 300mV  
ΔVDD_IL  
IO: 0 to IOMAX ; 1μs rise time  
Dynamic Load Regulation  
VIN3 > VDD3 + 300mV  
IO: IOMAX to 0 ; 1μs fall time  
V
IN3 > VDD3 + 300mV. IO = 0 mA  
ΔVDD_VIN  
Static Line Regulation  
Drop Out Voltage(4)  
5
mV  
VIN3 from 2.9 to 5.5V  
IO = 10mA  
50  
mV  
mV  
VDROPOUT  
IO = 200mA  
250  
V
IN3 > VDD3 + 300mV  
60  
50  
IO = 1mA. DC to 3kHz.  
PSRR  
Power Supply Rejection Ratio  
dB  
VIN3 > VDD3 + 300mV  
IO = 10mA. DC to 3kHz.  
Current from VIN3 from 0 to 95%  
of final value.  
IINRUSH  
Inrush Current  
Start-up Time  
200  
500  
1
mA  
ms  
VDD3 OFF and rising to 95% of  
TSTART  
final value. IO = 0 mA  
Power Fail Detector Threshold  
Accuracy  
Overload of the programmed  
threshold by 10mV / 5us min(3)  
PWRFDET  
-1  
-
+1  
%.VDD3  
.
Notes: 1. Current consumption in VIN3 without load.  
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.  
3. Threshold level is programmed in register PMU_RST_LVL (0x04)  
4. VDROPOUT= VIN3 - VDD3 when VDD3 = 98% of VDD3 obtained with VIN3 > VDD3 + 300mV  
17  
11050A–PMAAC–07-Apr-10  
9.7  
LDO4  
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].  
Table 9-8.  
Symbol  
VIN  
LDO4 Electrical Characteristics  
Parameter  
Comments  
Min  
Typ  
3.6  
-
Max  
5.5  
1
Units  
V
Operating Supply Voltage  
VIN4  
2.9  
OFF  
-
-
-
-
µA  
µA  
mA  
V
IDD  
Supply Current(1)  
ON  
-
350  
200  
-
IO  
Output Current  
VIN4 > VDD4 + 300mV.  
-
VDD4  
Default Output Voltage(2)  
3.3  
Programmable Output Voltage  
Range  
VDD_RANGE  
2.7  
3.6  
V
VDD_STEP  
TSTEP  
Output Voltage Steps  
Step time  
50  
mV  
µs  
With automatic ramping.  
570  
-1  
600  
630  
1
VIN4 > VDD4 + 300mV  
TJ = 25°C ; IO = 0 mA  
VDD_ACC  
DC Output Voltage Accuracy  
Static Load Regulation  
%
%.VDD4  
mV  
VIN4 > VDD4 + 300mV  
-1.5  
1.5  
0.5  
TJ = [-40°C ; 125°C] ; IO = 0 mA  
VIN4 > VDD4 + 300mV  
0.05  
-40  
40  
IO ranging from 0 to IOMAX  
VIN4 > VDD4 + 300mV  
ΔVDD_IL  
IO: 0 to IOMAX ; 1μs rise time  
Dynamic Load Regulation  
VIN4 > VDD4 + 300mV  
IO: IOMAX to 0 ; 1μs fall time  
V
IN4 > VDD4 + 300mV. IO = 0 mA  
ΔVDD_VIN  
Static Line Regulation  
Drop Out Voltage(3)  
5
mV  
VIN4 from 2.9 to 5.5V  
IO = 10mA  
50  
mV  
mV  
VDROPOUT  
IO = 200mA  
250  
V
IN4 > VDD4 + 300mV  
60  
50  
IO = 1mA. DC to 3kHz.  
PSRR  
Power Supply Rejection Ratio  
dB  
VIN4 > VDD4 + 300mV  
IO = 10mA. DC to 3kHz.  
Current from VIN4 from 0 to 95%  
of final value.  
IINRUSH  
TSTART  
Inrush Current  
Start-up Time  
200  
500  
1
mA  
ms  
VDD4 OFF and rising to 95% of  
final value. IO = 0 mA  
Notes: 1. Current consumption in VIN4 without load.  
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.  
3. VDROPOUT= VIN4 - VDD4 when VDD4 = 98% of VDD4 obtained with VIN4 > VDD4 + 300mV  
18  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
9.8  
LDO5  
Unless otherwise specified: External components COUT=2.2µF, CIN=10μF, TJ = [-40°C ; +125°C].  
Table 9-9.  
Symbol  
VIN  
LDO5 Electrical Characteristics  
Parameter  
Comments  
VINSYS  
OFF  
Min  
Typ  
3.6  
-
Max  
5.5  
1
Units  
V
Operating Supply Voltage  
2.7  
-
µA  
µA  
mA  
V
IDD  
Supply Current(1)  
ON  
-
-
-
7
IO  
Output Current  
-
10  
2.58  
10  
15  
VBACKUP  
ΔVDD_VIN  
ΔVDD_VIN  
Output Voltage Accuracy  
Static Line Regulation  
Static Line Regulation  
2.42  
2.5  
3
VINSYS from 2.7 to 5.5V  
mV  
mV  
VINSYS =3.6V, IO from 0 to IOMAX  
10  
Current from VINSYS from 0 to  
TSTART(MAX). VBACKUP = 2.5V  
IINRUSH  
TSTART  
Note:  
Inrush Current  
Start-up Time  
180  
350  
1
mA  
ms  
VBACKUP OFF and rising to 95% of  
final value.  
1. Current consumption in VINSYS without plugged backup battery  
19  
11050A–PMAAC–07-Apr-10  
9.9  
Measurement Bridge and 10-bit ADC  
Table 9-10. Measurement Bridge and 10-bit ADC Electrical Characteristics  
Symbol  
Parameter  
Comments  
VINSYS  
OFF  
Min  
Typ  
Max  
5.5  
1
Units  
V
VIN  
Operating Supply Voltage(1)  
2.9  
3.6  
-
-
-
-
µA  
IDD  
Supply Current  
ON  
2
mA  
Internally connected to  
VDDC pin.  
VREF  
Reference Voltage  
1.75  
1.8  
1.85  
V
INL  
Integral Non Linearity  
Differential Non Linearity  
Offset Error  
End Point Method  
End Point Method  
-2  
-1  
-2  
-2  
-
-
+2  
+1  
+2  
+2  
LSB  
LSB  
LSB  
LSB  
kS/s  
ns  
DNL  
Offset  
GAIN  
FS  
Gain Error  
Sampling Rate  
300  
TACQ  
Track and Hold Acquisition Time  
500  
0.4  
External inputs ANA{0,1,2,3}  
VDD{0,1,2,3,4} inputs  
VINSYS  
4
V
VMEAS  
Measured Input Voltage Range  
0.4  
V
VINSYS input  
0.4  
5.5  
V
External inputs ANA{0,1,2,3}  
-1%  
-1%  
-1%  
96  
0.25  
0.4  
+1%  
+1%  
+1%  
144  
V/V  
V/V  
V/V  
kΩ  
ATTMEAS  
Measured Input Scaling Factor  
ANA{0,1,2,3} Input resistance  
V
DD{0,1,2,3,4,5} inputs  
INSYS input  
V
0.25  
120  
RIN_NOM  
Tj = 25C  
TJ [-40 ; +25]. Relative to  
RIN_NOM  
+ 20  
RIN_TEMP  
RIN deviation with temperature  
%
TJ [25 ; 125]. Relative to  
RIN_NOM  
-16  
CIN  
ANA{0,1,2,3} Input capacitance  
15  
pF  
Notes: 1. The 10-bit ADC is supplied from the regulated VDDC voltage (1.8V) which is generated from VINSYS  
.
2. Please refer to Atmel Data Converter Terminology literature  
20  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
9.10 RTC Crystal Oscillator  
Table 9-11. RTC Crystal Oscillator Electrical Characteristics  
Symbol  
VIN  
Parameter  
Comments  
VBACKUP  
Min  
Typ  
2.5  
32.768  
50  
Max  
Units  
V
Operating Supply Voltage  
Frequency  
1.75  
2.65  
-
Freq  
with crystal  
-
40  
-
kHz  
%
Duty  
Duty Cycle  
60  
OFF  
-
5
nA  
IDD  
Supply Current(1)  
ON  
-
-
1.5  
1500  
300  
µA  
TON  
Startup Time  
CL= 12pF  
-
1000  
250  
300  
10  
ms  
VXIN  
VXOUT  
RF  
Level Sinus Wave on XIN  
Vpp On XOUT  
mVpp  
mVpp  
MΩ  
mn/month  
kΩ  
Internal Resistor  
between xin and xout  
@25°C, +/- 20ppm  
Drift  
Esr  
Accuracy  
1.5  
100  
3
Equivalent Series Resistance Rs  
Motional Capacitance  
Shunt Capacitance  
Load Capacitance  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
Crystal @ 32.768kHz  
50  
CM  
0.6  
0.6  
6
fF  
CSHUNT  
CLOAD  
Note:  
2
pF  
12.5  
pF  
1. Current consumption in VBACKUP with crystal. In case of crystal not present on-board, back-up batteries or supercapacitors,  
must be avoided.  
9.11 Die Temperature Sensor  
Table 9-12. Die Temperature Sensor Electrical Characteristics  
Symbol  
Parameter  
Comments  
Min  
135  
105  
Typ  
145  
115  
Max  
155  
125  
Units  
°C  
TSHUTDOWN  
TRESTART  
130°C Shutdown Threshold  
110°C Restart Threshold  
°C  
21  
11050A–PMAAC–07-Apr-10  
10. Audio Codec Electrical Characteristics  
Unless otherwise specified: AVDD = 3.3V, TA = 25C, MCLK = 12.288MHz, FS = 48kHz. Master mode and 24-bit operation  
on I2S port. All gains set to 0dB, audio effects are off. Noise measurements are made in the [20Hz-20kHz] band using the  
A-Weighting filter. Distortion measurements are made from the 2nd to the 5th harmonic products of a 997Hz input sinewave.  
Input sources have an internal impedance of 50 Ohms. Audio Path without mixing capability.  
Table 10-1. Audio Codec Bias  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
3.6  
20  
Units  
V
AVDD  
Operating Supply Voltage  
2.7  
3.3  
OFF  
µA  
IDD  
Supply Current  
STANDBY  
1
mA  
AVDD /  
2
VMID  
Mid-Supply Reference Voltage  
-1%  
+1%  
V
TMID_ON  
Time to charge VMID capacitor  
Time to discharge VMID capacitor  
From 0 to 95% of final value  
From 0 to 95% of final value  
350  
700  
ms/μF  
ms/μF  
TMID_OFF  
Microphone Bias Reference  
Voltage  
VMICBIAS  
RMICBIAS  
No load.  
AVDD  
1.9  
V
Microphone Bias Reference  
Voltage Internal Resistance  
1.5  
2.3  
kΩ  
Table 10-2. Line Record Path: Line or Auxiliary Input to ADC Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Corresponds to 0dBFs digital  
output signal.  
AVDD /  
3.3  
VFS  
Full Scale Input Voltage(1)  
VRMS  
AVDD = 3.3V  
85  
82  
85  
82  
-
96  
93  
96  
93  
-80  
90  
0
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
kΩ  
pF  
SNR  
DR  
Signal-to-Noise Ratio(2)  
Dynamic Range(3)  
AVDD = 2.7V  
AVDD = 3.3V  
-
AVDD = 2.7V  
-
THD  
Total Harmonic Distortion  
Left / Right Channel separation(5)  
Programmable Gain Range  
Gain Step Size  
-1dBFS digital output  
-74  
-
XTALK  
80  
-34  
-
12  
-
GLINE  
1
Mute Attenuation(6)  
80  
5.9  
-
-
-
RIN  
CIN  
Input Resistance  
7
8.1  
10  
Input Capacitance  
-
Table 10-3. Microphone Record Path: Microphone Input to ADC Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Corresponds to 0dBFs digital  
output signal.  
AVDD /  
3.3  
VFS  
Full Scale Input Voltage(1)  
VRMS  
AVDD = 3.3V  
AVDD = 2.7V  
85  
82  
96  
93  
-
-
dB  
dB  
SNR  
Signal-to-Noise Ratio(2)  
22  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 10-3. Microphone Record Path: Microphone Input to ADC Output  
Symbol  
Parameter  
Comments  
Min  
85  
82  
-
Typ  
96  
93  
-84  
90  
-
Max  
Units  
dB  
AVDD = 3.3V  
-
-
DR  
Dynamic Range(3)  
AVDD = 2.7V  
dB  
THD  
Total Harmonic Distortion  
Left / Right Channel separation(5)  
Programmable Gain Range  
Gain Step Size  
-1dBFS digital output  
-74  
-
dB  
XTALK  
80  
0
dB  
46  
-
dB  
GLINE  
-
1
dB  
Mute Attenuation(6)  
80  
8.4  
-
-
-
dB  
RIN  
CIN  
Input Resistance  
0dB gain  
12  
-
15.6  
10  
kΩ  
pF  
Input Capacitance  
Table 10-4. Playback Path: DAC Input to Headphone Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
AVDD /  
3.3  
VFS  
Full Scale Output Voltage(1)  
0dBFs digital input signal.  
VRMS  
AVDD = 3.3V  
92  
89  
92  
89  
-
97  
94  
97  
94  
-88  
-65  
-60  
30  
50  
90  
60  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mW  
mW  
dB  
dB  
dB  
dB  
dB  
SNR  
DR  
Signal-to-Noise Ratio(2)  
Dynamic Range(3)  
AVDD = 2.7V  
AVDD = 3.3V  
-
AVDD = 2.7V  
-
0dBFs input - 10kΩ load  
20mW output - 32Ω load  
20mW output - 16Ω load  
32Ω load - THD < -40dB or 1%  
16Ω load - THD < -40dB or 1%  
10kΩ AC coupled load  
16Ω DC coupled load  
-80  
-60  
-55  
THD  
Total Harmonic Distortion  
-
-
PO  
Output Power  
XTALK  
Left / Right Channel Separation(5)  
Programmable Gain Range  
Gain Step Size  
-77  
-
+6  
-
GHS  
1
Mute Attenuation(6)  
80  
-
-
Table 10-5. Analog Bypass Path: Line / Auxiliary Input to Headphone Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
AVDD /  
3.3  
VFS  
Full Scale Output Voltage(1)  
VRMS  
AVDD = 3.3V  
AVDD = 2.7V  
AVDD = 3.3V  
AVDD = 2.7V  
92  
89  
92  
89  
97  
94  
97  
94  
-
-
-
-
dB  
dB  
dB  
dB  
SNR  
DR  
Signal-to-Noise Ratio(2)  
Dynamic Range(3)  
23  
11050A–PMAAC–07-Apr-10  
Table 10-5. Analog Bypass Path: Line / Auxiliary Input to Headphone Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
-88  
-65  
-60  
30  
50  
90  
60  
0
Max  
-80  
-60  
-55  
Units  
dB  
0dBFs input - 10kΩ load  
20mW output - 32Ω load  
20mW output - 16Ω load  
32Ω load - THD < -40dB or 1%  
16Ω load - THD < -40dB or 1%  
10kΩ AC coupled load  
16Ω DC coupled load  
-
-
-
THD  
Total Harmonic Distortion  
dB  
dB  
mW  
mW  
dB  
PO  
Output Power  
XTALK  
GBYP  
Left / Right Channel Separation(5)  
dB  
Bypass Gain  
-1  
+1  
-
dB  
Mute Attenuation(6)  
80  
-
dB  
Table 10-6. Analog Sidetone Path: Microphone Input to Headphone Output  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
AVDD /  
3.3  
VFS  
Full Scale Output Voltage(1)  
VRMS  
AVDD = 3.3V  
92  
89  
92  
89  
-
97  
94  
97  
94  
-88  
-65  
-60  
30  
50  
90  
60  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mW  
mW  
dB  
dB  
dB  
dB  
dB  
SNR  
DR  
Signal-to-Noise Ratio(2)  
Dynamic Range(3)  
AVDD = 2.7V  
AVDD = 3.3V  
-
AVDD = 2.7V  
-
0dBFs input - 10kΩ load  
20mW output - 32Ω load  
20mW output - 16Ω load  
32Ω load - THD < -40dB or 1%  
16Ω load - THD < -40dB or 1%  
10kΩ AC coupled load  
16Ω DC coupled load  
-80  
-60  
-55  
THD  
Total Harmonic Distortion  
-
-
PO  
Output Power  
XTALK  
Left / Right Channel Separation(5)  
Programmable Gain Range  
Gain Steps  
-30  
2.5  
80  
0
3.5  
-
GSIDETONE  
3
Mute Attenuation(6)  
-
Notes: 1. Full Scale: A linear extrapolation to 0dBFS of the measured level at -10dBFS.  
2. Signal-to-Noise Ratio: The ratio of the RMS value of a 997Hz full scale sine wave to the RMS value of output noise with no  
signal applied. Device is not muted.  
3. Dynamic Range: According to AES17-1991 (Audio Engineering Society) and EIAJ CP-307 (Electronic Industries Associa-  
tion of Japan), an extrapolation to 0dBFS input signal of the THD+N ratio measurement at -60dBFS. As an example, if  
THD+N @ -60dBFS = -36dB, then DR = 96dB.  
4. Total Harmonic Distortion + Noise Ratio: The ratio of the RMS sum of the noise and the distortion components to the RMS  
value of the signal.  
5. XTALK: Attenuation measurement from one channel to the other one. Measurement is performed by stimulated one channel  
with a 997Hz / -10dBFS sinewave and leaving the other channel unstimulated.  
6. Mute Attenuation: Attenuation measurement of a -10dBFS / 997Hz input signal when concerned gain is set to mute.  
24  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11. PMU Functional Description  
11.1 Power Manager State Diagram  
Figure 11-1. AT73C246 Power Manager Functional State Diagram  
POWERDOWN  
(all supplies OFF)  
RSTB = 0  
POWER-OFF or POWER-FAIL  
EVENT  
STANDBY-OUT or POWER-FAIL  
EVENT  
HRST_POWERDOWN  
EVENT  
POWER-ON EVENT &  
Vin > 3.1V  
STANDBY  
EVENT  
RUN  
(all supplies ON)  
RSTB = 1  
STANDBY  
(selected supplies ON)  
RSTB = 0  
WAKEUP  
EVENT  
HRST  
EVENT  
HRST  
EVENT  
HRST  
EVENT  
HRST_RUN  
EVENT  
HRST  
(all supplies OFF)  
RSTB = 0  
TWI Reset  
AT73C246 is placed in POWERDOWN state at VINSYS rising following the PMU startup state  
diagram described in Figure 11-2 on page 26. From this POWERDOWN state, normal CPU sup-  
plies startup is achieved through validation of one of the POWER-ON events. From this state,  
the PMU may be placed in STANDBY state (e.g.: during CPU sleep periods) upon software  
request (STANDBY event). PMU wake-up is achieved if one of the WAKEUP events is detected.  
The PMU returns to the POWERDOWN state as soon as a POWER-OFF event is detected. A  
special HRST (Hard-Reset) state is provided to ensure complete stop and restart of the CPU  
supplies in case of a software crash. Moreover, die temperature and VDD{0,1,2,3} supplies are  
supervised and may generate a POWER-FAIL event in case of out-of-specification detection.  
25  
11050A–PMAAC–07-Apr-10  
11.2 PMU Startup and Shutdown State Diagram  
Figure 11-2. AT73C246 Start-up and Shutdown State Diagram  
Vin > 2V  
VINSYS < 2.7V  
or  
VDDC_KO  
Start : VINSYS Monitor &  
VDDC = 1.8V.  
PMU_RSTN = 0  
AUDIO_RSTN = 0  
VINSYS > 2.7V &  
VDDC_OK  
PMU_RSTN = 1  
AUDIO_RSTN = 1  
1
1
READ  
CONFIG  
VBACKUP < 1.8V  
VBACKUP > 1.8V  
RTC_RSTN = 0  
OFF  
LDO5  
(BACKUP)  
START  
LDO5  
(BACKUP)  
1
START  
LDO5  
(BACKUP)  
VBACKUP > 1.8V  
VBACKUP > 1.8V  
RTC_RSTN = 1  
VINSYS < 2.7V  
POWER  
DOWN  
The start-up of the AT73C246 follows the flow diagram of Figure 11-2 and aims at placing the  
power manager in the POWERDOWN state.  
When VINSYS rises above 2V:  
• An internal VINSYS monitor starts and holds the internal PMU_RSTN and AUDIO_RSTN  
signals to 0, thus forcing a complete reset of AT73C246. The PMU digital core supply voltage  
26  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
(VDDC = 1.8V) is started. During this PMU reset, the ‘LED’ pin is driven to VINSYS (LED is  
OFF).  
• When VDDC is ready and VINSYS > 2.7V, the internal reset signals previously mentioned are  
released, thus enabling the PMU digital core functions.  
• Before starting the LDO5 (RTC supply), VBACKUP voltage is monitored and if it is lower than  
1.8V, the RTC function is resetted. In case of VBACKUP > 1.8V, no reset is issued on the RTC  
function.  
• At this step, the power manager is placed in POWERDOWN state.  
11.3 Power Manager Conditional Transitions  
11.3.1  
POWER-ON EVENTS  
POWER-ON EVENTS are validated if all these listed conditions are true:  
• VINSYS > 3.1V  
• AT73C246 internal junction temperature Tj < 110°C  
• PWREN pin is high for more than 100ms (see Table 11-1 on page 28).  
Note:  
PWREN pin, with internal 100k pull-down resistor, is active high (VBACKUP level). It is possible to  
hard wire the PWREN pin to VBACKUP to always activate RUN state when VINSYS > 3.1V. Conse-  
quently, using the software POWER-OFF EVENT (described in Section 11.3.2) will lead to going  
back to the RUN state just after the POWERDOWN STATE.  
11.3.2  
POWER-OFF EVENTS  
POWER-OFF EVENTS are validated if one of these listed conditions is true:  
• VINSYS < 2.9V.  
• PWREN pin goes from low to high state and high state is held for more than 5s (see Table  
11-1 on page 28).  
• Software request: bit 0 (OFF) of register 0x00 (PMU_MODES) is written to 1.  
11.3.3  
POWER-FAIL EVENTS  
POWER-FAIL EVENTS are validated if one of these listed conditions is true:  
• AT73C246 internal junction temperature Tj > 130°C  
• Any internal power fail detection signal coming from any CPU power supply (VDD0, VDD1  
,
V
DD2, VDD3) goes from low to high level.  
Note:  
In case of PWREN pin hard wired high (VBACKUP level), the POWER-FAIL EVENTS will lead to the  
POWERDOWN state without possibility to go to the RUN state. The power manager will be able to  
reach the RUN state only after an HRST event. This prevents the power manager from oscillating  
between RUN and POWERDOWN states in case of permanent failure on CPU supplies.  
11.3.4  
11.3.5  
STANDBY EVENT  
STANDBY EVENT is validated if the following condition is true:  
• Software request: bit 1 (STANDBY) of register 0x00 (PMU_MODES) is written to 1.  
STANDBY-OUT EVENT  
STANDBY-OUT EVENT is validated if the following condition is true:  
• VINSYS < 2.9V.  
27  
11050A–PMAAC–07-Apr-10  
11.3.6  
WAKEUP EVENTS  
WAKEUP EVENTS are validated if one of the listed condition is true:  
• WAKEUP0 pin goes from low to high state and WAKEUP0 bit is set to ‘1’ (see Table 11-1) in  
register 0x01 (PMU_WAKEUP_EVENTS).  
• WAKEUP1 pin goes from low to high state and WAKEUP1 bit is set to ‘1’ (see Table 11-1) in  
register 0x01 (PMU_WAKEUP_EVENTS).  
• WAKEUP2 pin goes from low to high state and WAKEUP2 bit is set to ‘1’ (see Table 11-1) in  
register 0x01 (PMU_WAKEUP_EVENTS).  
• WAKEUP3 pin goes from low to high state and WAKEUP3 bit is set to ‘1’ (see Table 11-1) in  
register 0x01 (PMU_WAKEUP_EVENTS).  
• PWREN pin goes from low to high state and high state is held for more than 10ms (see Table  
11-1) and PWREN bit is set to ‘1’ in register 0x01 (PMU_WAKEUP_EVENTS).  
• An RTC alarm occurs and RTC bit is set to ‘1’ in register 0x01 (PMU_WAKEUP_EVENTS).  
Notes: 1. WAKEUP0 and PWREN pins must be driven with VBACKUP level, WAKEUP{1,2,3} pins must be  
driven with VPAD level.  
2. If any WAKEUP EVENT is triggered while AT73C246 is going from RUN to STANDBY state,  
STANDBY state is then first reached before WAKEUP EVENT is taken into account.  
11.3.7  
11.3.8  
HRST EVENT  
HRST EVENT is validated if the following condition is true:  
• HRST pin goes from low to high state and high state is held for more than 1s (see Table 11-  
1).  
HRST RUN EVENTS  
HRST RUN EVENTS are validated if all these listed conditions are true:  
• HRST pin is at low level for more than 10ms (see Table 11-1).  
• VINSYS > 3.1V  
• AT73C246 internal junction temperature Tj < 110°C  
Note:  
In case of 110°C < Tj < 130°C, HRST state is maintained. The self cooling down of the die will lead  
to Tj < 110°C, thus exit of HRST state.  
11.3.9  
HRST POWERDOWN EVENTS  
HRST POWERDOWN EVENTS are validated if all of these listed conditions are true:  
• HRST pin is at low level for more than 10ms.  
• VINSYS < 3.1V or AT73C246 internal junction temperature Tj >130°C  
Table 11-1. EVENTS Timing Table  
Pin  
Parameter  
Comments  
Min  
95  
Typ  
100  
5
Max  
105  
Units  
ms  
PWREN  
PWREN  
PWREN  
HRST  
Pin at VBACKUP Level. Debouncing Time.  
Pin at VBACKUP Level. Debouncing Time.  
Pin at VBACKUP Level. Debouncing Time.  
Pin at VBACKUP Level. Debouncing Time.  
Pin used as POWER-ON event  
Pin used as POWER-OFF event  
Pin used as WAKEUP event  
Pin used as HRST event  
4.75  
9.5  
5.25  
10.5  
1.05  
sec  
ms  
10  
1
0.95  
sec  
Pin used as HRST RUN event  
Pin used as HRST POWERDOWN event  
HRST  
Pin at GND Level. Debouncing Time.  
9.5  
10  
10.5  
ms  
28  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 11-1. EVENTS Timing Table  
Pin Parameter  
Comments  
Min  
5
Typ  
Max  
Units  
ns  
WAKEUP0 Pin pulsed to VBACKUP Level. Pulse Width.  
WAKEUP1 Pin pulsed to VPAD Level. Pulse Width.  
WAKEUP2 Pin pulsed to VPAD Level. Pulse Width.  
WAKEUP3 Pin pulsed to VPAD Level. Pulse Width.  
Pin used as WAKEUP event  
Pin used as WAKEUP event  
Pin used as WAKEUP event  
Pin used as WAKEUP event  
-
-
-
-
-
-
-
-
5
ns  
5
ns  
5
ns  
11.4 Power Manager State Description  
AT73C246 ICs are available with 2 factory programmed power sequences. The following timing  
diagrams refer to “SEQUENCE A” and “SEQUENCE B” programmed ICs as defined in section  
17. “Ordering Information” on page 154. See also the structure of register “VERSION (0x7F)”.  
11.4.1  
POWERDOWN STATE  
When AT73C246 is in POWERDOWN state:  
• Only VBACKUP supply is active. VDD{0,1,2,3,4} power supplies are OFF.  
• Audio function is OFF.  
• ADC function is OFF.  
• RSTB pin is held low.  
• Led pin is set as input with internal 120k pull-up resistor to VINSYS.  
• TWI registers are reset to default value.  
When the POWERDOWN state is reached from the RUN state, the CPU power supplies are  
switched off sequentially as described in Figure 11-3 on page 30.  
29  
11050A–PMAAC–07-Apr-10  
Figure 11-3. AT73C246 - RUN to POWERDOWN state Supplies Shutdown timing diagram.  
SEQUENCE A  
SEQUENCE B  
RUN  
STATE  
POWERDOWN  
STATE  
RUN  
STATE  
POWERDOWN  
STATE  
SUPPLIES SHUTDOWN  
SUPPLIES SHUTDOWN  
TPWRDOWN  
TPWRDOWN  
POWEROFF  
EVENT  
POWEROFF  
EVENT  
TOFF_AUDIO  
3.3V  
TOFF_AUDIO  
RSTB  
RSTB  
1V  
TOFF_VDD3  
TOFF_VDD2  
VDD3 (3.3V)  
VDD1 (1.2V)  
VDD2 (1V)  
TOFF_VDD1  
TOFF_VDD1  
1.2V  
1.2V  
VDD1 (1.2V)  
1.85V  
1.85V  
TOFF_VDD0  
TOFF_VDD0  
V
DD0 (1.85V)  
VDD0 (1.85V)  
TOFF_VDD2  
TOFF_VDD3  
1V  
3.3V  
VDD2 (1V)  
VDD3 (3.3V)  
TOFF_VDD4  
TOFF_VDD4  
VDD4 (CODEC)  
VDD4 (CODEC)  
Table 11-2. RUN to POWERDOWN state timing table  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
POWERDOWN Event detection  
time  
TPWRDOWN  
58  
62  
66  
66  
µs  
µs  
Audio CODEC is OFF or Power Fail  
Occurs  
58  
62  
TOFF_AUDIO  
Audio CODEC Shutdown Time  
VDDx SHUTDOWN Time  
Audio CODEC is ON  
486  
58  
512  
62  
538  
66  
ms  
µs  
VDDx is OFF in RUN state(1)  
VDDx is ON in RUN state(1)  
TOFF_VDDx  
4.8  
5.2  
5.4  
ms  
Note:  
1. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL.  
30  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
When the POWERDOWN state is reached from the STANDBY state, the CPU power supplies  
are switched off sequentially as described in Figure 11-4.  
Figure 11-4. AT73C246 - STANDBY to POWERDOWN state Supplies Shutdown timing diagram.  
SEQUENCE A  
SEQUENCE B  
STANDBY  
STATE  
STANDBY  
STATE  
POWERDOWN  
STATE  
POWERDOWN  
STATE  
SUPPLIES SHUTDOWN  
SUPPLIES SHUTDOWN  
TSTBY_OUT  
TSTBY_OUT  
STANDBY_OUT  
EVENT  
STANDBY_OUT  
EVENT  
RSTB  
RSTB  
3.3V  
1V  
TOFF_VDD3  
TOFF_VDD2  
VDD3 (3.3V)  
VDD1 (1.2V)  
VDD0 (1.85V)  
VDD2 (1V)  
VDD1 (1.2V)  
VDD0 (1.85V)  
TOFF_VDD1  
TOFF_VDD1  
1.2V  
1.2V  
TOFF_VDD0  
TOFF_VDD0  
1.85V  
1.85V  
1V  
3.3V  
TOFF_VDD2  
TOFF_VDD3  
VDD2 (1V)  
VDD3 (3.3V)  
TOFF_VDD4  
TOFF_VDD4  
VDD4 (CODEC)  
VDD4 (CODEC)  
Table 11-3. STANDBY to POWERDOWN state timing table  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max Units  
STANDBY OUT Event  
detection time  
TSTBY_OUT  
95  
100  
105  
µs  
VDDx is OFF during STANDBY state(1)  
VDDx is ON during STANDBY state(1)  
VDD4 is OFF in RUN state(2)  
58  
4.8  
58  
62  
5.2  
62  
66  
5.4  
66  
µs  
ms  
µs  
TOFF_VDDx  
VDDx SHUTDOWN Time  
VDD4 SHUTDOWN Time  
TOFF_VDD4  
VDD4 is ON in RUN state(2)  
4.8  
5.2  
5.4  
ms  
Notes: 1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.  
2. VDD4 activity during RUN state is set by Bit7 of register VDD4_CTRL.  
11.4.2  
RUN STATE  
When AT73C246 is in RUN state:  
• VDD{0,1,2,3,5} power supplies are ON.  
• RSTB pin is released.  
• PMU functions are under software control (LDO4, AUDIO CODEC, ADC Controller)  
• Led pin is driven according to register PMU_LED (0x0B).  
31  
11050A–PMAAC–07-Apr-10  
When RUN state is reached from the POWERDOWN state, the power supplies are sequentially  
started-up according to the Figure 11-5  
Figure 11-5. AT73C246 - POWERDOWN to RUN state Supplies Start-Up timing diagram..  
SEQUENCE A  
SEQUENCE B  
POWERDOWN  
STATE  
POWERDOWN  
STATE  
SUPPLIES START UP  
SUPPLIES START UP  
RUN STATE  
RUN STATE  
PWREN  
EVENT  
PWREN  
EVENT  
1V  
3.3V  
TON_SYS  
TON_SYS  
VDD2 (1V)  
VDD3 (3.3V)  
VDD0 (1.85V)  
VDD1 (1.2V)  
VDD2 (1V)  
1.85V  
1.85V  
TON_VDD2  
TON_VDD3  
VDD0 (1.85V)  
VDD1 (1.2V)  
VDD3 (3.3V)  
1.2V  
1.2V  
TON_VDD0  
TON_VDD0  
3.3V  
1V  
TON_VDD1  
TON_VDD1  
VPAD LEVEL  
VPAD LEVEL  
TON_VDD3  
TON_VDD2  
RSTB  
RSTB  
TRESET  
TRESET  
Table 11-4. POWERDOWN to RUN state timing table  
Symbol  
TON_SYS  
TON_VDD0  
TON_VDD1  
TON_VDD2  
TON_VDD3  
TRESET  
Parameter  
Comments  
Min  
1.7  
5
Typ  
1.8  
5.3  
5.3  
5.5  
5.5  
32  
Max  
Units  
ms  
POWER-ON Event Detection Time  
VDD0 Start-up Time  
1.9  
5.6  
ms  
VDD1 Start-up Time  
5
5.6  
ms  
VDD2 Start-up Time  
5.2  
5.2  
30.4  
5.8  
ms  
VDD3 Start-up Time  
5.8  
ms  
All Regulators ON To RSTB High  
33.6  
ms  
32  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
When RUN state is reached from the STANDBY state, the power supplies are sequentially  
started-up according to the Figure 11-6.  
Figure 11-6. AT73C246 - STANDBY to RUN state Supplies Start-Up timing diagram.  
SEQUENCE A  
SEQUENCE B  
STANDBY  
STATE  
STANDBY  
STATE  
SUPPLIES START UP  
SUPPLIES START UP  
RUN STATE  
RUN STATE  
WAKEUP  
EVENT  
WAKEUP  
EVENT  
TON_SYS  
TON_SYS  
1V  
3.3V  
VDD3 ON  
or OFF  
VDD2 (1V)  
VDD3 (3.3V)  
TON_VDD2  
1.85V  
TON_VDD3  
1.85V  
VDD0  
PWM  
VDD0  
PWM  
VDD0 (1.85V)  
PFM  
VDD0 (1.85V)  
PFM  
1.2V  
1.2V  
TON_VDD0  
TON_VDD0  
VDD1 (1.2V)  
PFM  
VDD1 (1.2V)  
PFM  
VDD1  
PWM  
VDD1  
PWM  
TPFM  
TPFM  
TON_VDD1  
TON_VDD1  
3.3V  
1V  
VDD3 ON  
or OFF  
VDD3 (3.3V)  
RSTB  
VDD2 (1V)  
RSTB  
VPAD LEVEL  
VPAD LEVEL  
TON_VDD3  
TON_VDD2  
TRESET  
TRESET  
Table 11-5. STANDBY to RUN state timing table  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
Time from validated WAKEUP event (end of debounce  
time when applicable) to VDD2 or VDD3 power on.  
TON_SYS  
Start-up Time  
810  
420  
900  
990  
520  
µs  
µs  
Time from validated WAKEUP event (end of debounce  
time when applicable) to PFM/PWM switching if  
applicable.  
PFM/PWM Switching  
time  
TPFM  
470  
VDDx is OFF during STANDBY state(1)  
VDDx is ON during STANDBY state(1)  
5.2  
58  
5.4  
62  
5.7  
66  
ms  
µs  
TON_VDDx VDDx Start-up Time  
All Regulators ON To  
RSTB High  
TRESET  
30.4  
32  
33.6  
ms  
Note:  
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.  
11.4.3  
STANDBY STATE  
When AT73C246 is in STANDBY state:  
• VBACKUP is ON.  
• VDD{0,1,2,3} are ON or OFF according to the status in register 0x03  
(PMU_STANDBY_SUPPLIES)  
• VDD4 is ON or OFF according to the status in register 0x0A (VDD4_CTRL)  
• Audio function is OFF  
• ADC function is ON or OFF according to the status in register 0x30 (ADC_CTRL)  
• RSTB pin is forced to ground.  
• TWI pins are ignored to prevent TWI registers from corruption  
• Led pin is driven according to register PMU_LED (0x0B)  
To reach the STANDBY state, the appropriate power supplies are shut down as described in the  
Figure 11-7 on page 34.  
33  
11050A–PMAAC–07-Apr-10  
Figure 11-7. AT73C246 - RUN to STANDBY state Supplies Shutdown timing diagram.  
SEQUENCE A  
SEQUENCE B  
RUN  
STATE  
RUN  
STATE  
STANDBY  
STATE  
STANDBY  
STATE  
SUPPLIES SHUTDOWN  
SUPPLIES SHUTDOWN  
TSTANDBY  
TSTANDBY  
STANDBY  
EVENT  
STANDBY  
EVENT  
TWAIT +  
TOFF_AUDIO  
3.3V  
TWAIT +  
TOFF_AUDIO  
1V  
RSTB  
RSTB  
TOFF_VDD3  
TOFF_VDD2  
(VDD3 ON  
or OFF)  
(VDD3 ON  
or OFF)  
VDD3 (3.3V)  
VDD2 (1V)  
TOFF_VDD1  
TOFF_VDD1  
1.2V  
1.2V  
VDD1  
PFM  
VDD1  
PFM  
VDD1 (1.2V)  
PWM  
VDD1 (1.2V)  
PWM  
TOFF_VDD0  
TOFF_VDD0  
1.85V  
1.85V  
1.85V  
1.85V  
VDD0 (1.85V)  
PWM  
VDD0  
PFM  
VDD0 (1.85V)  
PWM  
VDD0  
PFM  
TPWM  
TPWM  
TOFF_VDD2  
TOFF_VDD3  
1V  
3.3V  
VDD2 (1V)  
VDD3 (3.3V)  
Table 11-6. RUN to STANDBY state timing table  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
STANDBY Event  
Detection Time  
TSTANDBY  
150  
460  
160  
500  
170  
540  
µs  
µs  
Time from validated WAKEUP event (end of debounce  
time when applicable) to PFM/PWM switching if  
applicable.  
PFM/PWM Switching  
time  
TPWM  
If a WAKEUP event occurs in this window the PMU  
automatically restart at the end of the STANDBY  
process.  
WAKEUP Event  
Detection Window  
TWAIT  
150  
160  
170  
µs  
Audio CODEC is ON  
486  
58  
512  
62  
538  
66  
ms  
µs  
µs  
Audio CODEC  
Shutdown Time  
TOFF_AUDIO  
Audio CODEC is OFF  
VDDx is OFF during both STANBY(1) and RUN(2) states.  
VDDx is OFF during STANBY state(1)  
VDDx is ON during RUN state(2)  
VDDx is ON during STANBY state(1)  
VDDx is OFF during RUN state(2)  
VDDx is ON during both STANBY(1) and RUN(2) states.  
58  
62  
66  
VDDx SHUTDOWN  
Time  
TOFF_VDDx  
.
4.8  
5.2  
5.4  
ms  
.
.
4.8  
58  
5.2  
62  
5.4  
66  
ms  
µs  
.
TON_VDDx  
VDDx STARTUP Time  
Note:  
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.  
2. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL.  
11.4.4  
HRST STATE  
HRST state is a transition state used to restart the CPU:  
• VDD{0,1,2,3,4} are switched off according to figure Figure 11-8 on page 35 depending on the  
previous state  
• VDD5 is ON  
• RSTB pin is forced to ground  
34  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 11-8. AT73C246 - HRST state Supplies Shutdown timing diagram.  
SEQUENCE A  
SEQUENCE B  
RUN / STANDBY /  
POWERDOWN  
STATE  
RUN / STANDBY /  
POWERDOWN  
STATE  
HRST  
STATE  
HRST  
STATE  
SUPPLIES SHUTDOWN  
SUPPLIES SHUTDOWN  
THRST  
THRST  
HRST_EVENT  
EVENT  
HRST_EVENT  
EVENT  
TOFF_AUDIO  
TOFF_AUDIO  
RSTB  
RSTB  
3.3V  
1V  
TOFF_VDD3  
TOFF_VDD2  
VDD3 (3.3V)  
VDD1 (1.2V)  
VDD0 (1.85V)  
VDD2 (1V)  
VDD2 (1V)  
VDD1 (1.2V)  
VDD0 (1.85V)  
VDD3 (3.3V)  
TOFF_VDD1  
TOFF_VDD1  
1.2V  
1.2V  
1.85V  
1.85V  
TOFF_VDD0  
TOFF_VDD0  
TOFF_VDD2  
TOFF_VDD3  
1V  
3.3V  
TOFF_PMU  
TOFF_PMU  
PMU FUNCTIONS  
PMU FUNCTIONS  
(LDO4, ADC, LED,...)  
(LDO4, ADC, LED,...)  
Table 11-7. HRST state timing table from RUN STATE  
Symbol  
Parameter  
Comments  
Min  
58  
Typ  
62  
Max  
66  
Units  
µs  
THRST  
HRST Event Detection Time  
Audio CODEC is ON  
486  
58  
512  
62  
538  
66  
ms  
µs  
TOFF_AUDIO  
Audio CODEC Shutdown Time  
Audio CODEC is OFF  
VDDx is OFF in RUN state(1)  
VDDx is ON in RUN state(1)  
58  
62  
66  
µs  
TOFF_VDDx  
TOFF_PMU  
Note:  
Table 11-8. HRST state timing table from STANDBY STATE  
VDDx SHUTDOWN Time  
4.8  
1.4  
5.2  
1.5  
5.4  
1.6  
ms  
ms  
PMU Functions Shutdown Time  
1. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL  
Symbol  
Parameter  
Comments  
Min  
Typ  
Max  
Units  
HRST Event Detection  
Time  
THRST  
58  
62  
66  
µs  
Audio CODEC is ON  
486  
58  
512  
62  
538  
66  
ms  
µs  
Audio CODEC Shutdown  
Time  
TOFF_AUDIO  
Audio CODEC is OFF  
VDDx is OFF during STANDBY state(1)  
VDDx is ON during STANDBY state(1)  
VDD4 is OFF in RUN state(2)  
VDD4 is ON in RUN state(2)  
58  
62  
66  
µs  
TOFF_VDDx  
VDDx SHUTDOWN Time  
VDD4 SHUTDOWN Time  
4.8  
58  
5.2  
62  
5.4  
66  
ms  
µs  
TOFF_VDD4  
4.8  
5.2  
5.4  
ms  
PMU Functions Shutdown  
Time  
TOFF_PMU  
1.4  
1.5  
1.6  
ms  
Notes: 1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.  
2. VDD4 activity during RUN state is set by Bit7 of register VDD4_CTRL.  
35  
11050A–PMAAC–07-Apr-10  
11.5 DCDC0 and DCDC1 Functional Description  
DCDC0 and DCDC1 are 2 identical high performance synchronous step-down (buck) convert-  
ers. They feature:  
• 2 control modes: PFM and PWM,  
• A soft start circuit,  
• A software programmable output voltage between 0.8 and 3.6V with automatic ramping for  
DVS application,  
• An Over-Current-Protection circuit,  
• A 180 degree out of phase operating mode.  
11.5.1  
PFM and PWM Control Modes  
Pulse Frequency Modulation control is an hysteretic control of the output voltage. It is specially  
intended for light loads (< 50mA typ). In this mode, the DCDC converter exhibits a very low qui-  
escent current (< 50µA) thus achieving very high efficiency at light loads. The frequency of  
operation in this mode is not fixed but proportional to the load current.  
Pulse Width Modulation control is a fixed frequency, variable duty cycle control of the DCDC  
converter. It has a fast and precise feedback loop specially intended to handle hard loads and  
low output ripple voltage.  
At start-up, DCDC0 and DCDC1 operate in PWM mode. This way, high load at CPU boot are  
properly handled. Through software control in registers VDD0_CTRL (0x06) and VDD1_CTRL  
(0x07), the user may enter the low-power mode (PFM) when the application consumption is  
reduced.  
11.5.2  
11.5.3  
Soft-start Circuit  
DCDC0 and DCDC1 feature a soft start circuit to prevent high input current while charging the  
output capacitor from 0V to the default output voltage. Typically, the in-rush current at start-up  
(with no load) is limited to 30 mA.  
Output Voltage Programming  
DCDC0 and DCDC1 output voltages can be managed through software control in registers  
VDD0_CTRL (0x06) and VDD1_CTRL (0x07). 50mV steps are provided from 0.8V to 3.6V. It is  
recommended to use the automatic ramping function in register PMU_SUPPLY_CTRL (0x04) to  
achieve smooth operation. When the DVS_VDD{0,1} bit is active (default mode), output voltages  
are ramped from the current value to the final value in 50mV / 280us steps. For users who intend  
to disable the DVS_VDD{0,1} bit, a maximum of 4 steps (= 200mV) per 100us is allowed.  
At power up, DCDC0 and DCDC1 default output voltages are respectively 1.85V and 1.20V. For  
different default output voltages, please contact Atmel.  
11.5.4  
180° Out-of-phase Operation  
DCDC0 and DCDC1 can be operated in-phase or at 180° out-of-phase according to the selec-  
tion bit in register PMU_SUPPLY_CTRL (0x04). When operated in phase both converters will  
start charging their inductor at the same time. When operated at 180° out-of-phase, the inductor  
charge start time will be shifted by half a 2MHz clock delay (= 250ns) from one converter to the  
other. This latter scheme tends to average the input current of both DCDC converters.  
36  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.6 LDO2 Functional Description  
LDO2 is a linear voltage regulator intended to supply CPU core voltages in the range 0.8V to  
1.35V. Its maximum input voltage is 3.6V. Thus, it must not be wired to the VIN plane with VIN-  
SYS, VIN0, VIN1, VIN3 and VIN4 if VIN is above 3.6V. Considering its low-output voltage and  
for the sake of efficiency and power dissipation, the user may connect it at the output of DCDC0.  
This LDO features:  
• A soft start circuit,  
• A software programmable output voltage between 0.8 and 1.35V with automatic ramping for  
DVS application.  
11.6.1  
11.6.2  
Soft-start Circuit  
LDO2 features a soft start circuit to prevent high input current while charging the output capaci-  
tor from 0V to the default output voltage. This soft start circuit limits the input current during 5ms  
(+/-5%) at startup to 200mA in typical conditions. After this delay, LDO2 recovers full current  
capability.  
Output Voltage Programming  
LDO2 output voltage can be managed through software control in register VDD2_CTRL (0x08).  
50mV steps are provided from 0.8V to 1.35V. It is recommended to use the automatic ramping  
function in register PMU_SUPPLY_CTRL (0x04) to achieve smooth operation. When the  
DVS_VDD2 bit is active (default mode), output voltages are ramped from the current value to  
the final value in 50mV / 600us steps.  
At power up, LDO2 default output voltage is 1V. For different default output voltage, please con-  
tact Atmel.  
11.7 LDO3 and LDO4 Functional Description  
LDO3 and LDO4 are low dropout linear voltage regulators intended to supply CPU peripherals  
(I/Os, analog functions) in the range 2.7V to 3.6V. They can be operated directly from a 5.5V  
maximum input voltage. They feature:  
• A soft start circuit,  
• A software programmable output between 2.7V and 3.6V voltage with automatic ramping for  
DVS application,  
11.7.1  
11.7.2  
Soft-start Circuit  
LDO3 and LDO4 feature a soft start circuit to prevent high input current while charging the out-  
put capacitor from 0V to the default output voltage. This soft start circuit limits the input current  
during 5ms (+/-5%) at startup to 200mA in typical conditions. After this delay, LDO3(4) recovers  
full current capability.  
Output Voltage Programming  
LDO3 and LDO4 output voltages can be managed through software control in registers  
VDD3_CTRL (0x09) and VDD4_CTRL (0x0A). 50mV steps are provided from 2.7V to 3.6V. It is  
recommended to use the automatic ramping function in register PMU_SUPPLY_CTRL (0x04) to  
achieve smooth operation. When the DVS_VDD{3,4} bit is active (default mode), output voltages  
are ramped from the current value to the final value in 50mV / 600us steps.  
37  
11050A–PMAAC–07-Apr-10  
At power up, LDO3 an LDO4 default output voltages are both 3.3V. For different default output  
voltages, please contact Atmel.  
11.8 Power Fail Detectors  
AT73C246 features a Power Fail detector on each CPU supplies (VDD0, VDD1, VDD2, VDD3). This  
function is made of a comparator that toggles each time one the listed power supplies goes  
below a defined threshold. The comparator toggling is considered by the PMU digital state  
machine as a POWER-FAIL event.  
The threshold value of the power fail detector is proportional to the output voltage of the regula-  
tor. It is not a fixed voltage, it is adapted to the programmed output voltage. The default  
threshold value is set according to register PMU_RST_LVL (0x05) and can be programmed to  
another value through TWI access. For other default threshold values at startup, please contact  
Atmel.  
11.9 Measurement Bridge and 10-bit ADC  
AT73C246 features a 10-channel measurement chain including:  
• A multiplexer + attenuator followed by a unity gain buffer  
• A 300kS/s 10-bit SAR ADC.  
ADC function is enabled through the register ADC_CTRL (0x30). ADC_MUX_1 (0x31) and  
ADC_MUX_2 (0x32) allow the selection of inputs to be measured. 1 to 10 inputs can be  
selected. The ADC will then perform serial conversion on these inputs and write the correspond-  
ing result in registers 0x33 to 0x49.  
2 sampling modes are provided to perform periodic conversions:  
• Max speed  
• Low speed.  
To enter these modes, refer to the sampling period bits (TS) in the register ADC_CTRL (0x30).  
When MAX_SPEED mode is selected, the ADC runs at 300kS/s and loop without any dead time  
over the selected inputs. When a LOW_SPEED sampling period is selected, the ADC performs  
a set of input conversions (1 to 10) at 300kS/s and then wait for one sampling period (defined by  
TS bits) to start another set of conversions.  
38  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 11-9. Measurement Bridge and 10-bit ADC Block Diagram.  
ADC_MUX_1 0x31  
ADC_MUX_2 0x32  
VINSYS  
VDD0  
VDD1  
VDD2  
VDD3  
VDD4  
VDDC  
TWI Registers  
ADC_ANA0_MSB  
ADC_ANA0_LSB  
VREFP  
MUX  
10  
1
BUFFER  
ADC  
ADCOUT <9:0>  
VREFN  
ANA0  
ANA1  
ANA2  
ANA3  
ADC_ANA_LSB  
GNDSYS  
ADC_CTRL 0x30  
39  
11050A–PMAAC–07-Apr-10  
11.10 Real Time Clock (RTC) User Interface  
Figure 11-10. RTC Block Diagram  
RTC DATA 3  
RTC DATA 2  
RTC DATA 1  
RTC DATA 0  
CONTROL REGISTER  
MODE REGISTER  
TIME REGISTER  
RTC_SEL  
CALENDAR REGISTER  
TIME ALARM REGISTER  
CALENDAR ALARM REGISTER  
STATUS REGISTER  
RTC_EN  
RTC  
CTRL  
RTC  
STATUS CLEAR COMMAND REGISTER  
INTERRUPT ENABLE REGISTER  
INTERRUPT DISABLE REGISTER  
INTERRUPT MASK REGISTER  
VALID ENTRY REGISTER  
RTC_WRITE  
VERSION REGISTER  
RESERVED REGISTER  
RTC ADDR  
Table 11-9.  
Offset  
0x00  
Register Mapping  
Register  
Name  
RTC_CR  
Access  
Read-write  
Read-write  
Read-write  
Read-write  
Read-write  
Read-write  
Read-only  
Write-only  
Write-only  
Write-only  
Read-only  
Read-only  
Read-only  
---  
Reset  
Control Register  
0x0  
0x04  
Mode Register  
RTC_MR  
0x0  
0x08  
Time Register  
RTC_TIMR  
RTC_CALR  
RTC_TIMALR  
RTC_CALALR  
RTC_SR  
0x0  
0x0C  
0x10  
Calendar Register  
Time Alarm Register  
Calendar Alarm Register  
Status Register  
0x01819819  
0x0  
0x14  
0x01010000  
0x18  
0x0  
---  
0x1C  
0x20  
Status Clear Command Register  
Interrupt Enable Register  
Interrupt Disable Register  
Interrupt Mask Register  
Valid Entry Register  
Version Register(1)  
Reserved Register  
RTC_SCCR  
RTC_IER  
---  
0x24  
RTC_IDR  
RTC_IMR  
RTC_VER  
RTC_VERSION  
---  
---  
0x28  
0x0  
0x0  
---  
0x2C  
0xFC  
0xFC  
---  
Note:  
1. Values in the Version Register vary with the version of the IP block implementation.  
40  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.1 RTC Register Read/Write Operation  
Figure 11-11. RTC Read Operation  
WRITE  
RTC_ADDR  
WRITE 02  
@RTC_CTRL  
WRITE 03  
@RTC_CTRL  
WRITE 02  
@RTC_CTRL  
READ  
RTC_DATA3  
READ  
RTC_DATA2  
READ  
RTC_DATA1  
READ  
RTC_DATA0  
WRITE 00  
@RTC_CTRL  
TWI ACCESS  
RTC_EN = 0  
RTC_EN = 1  
RTC_EN = 0  
RTC_EN = 0  
RTC_SEL = 1  
RTC_WRITE = 0  
RTC_SEL = 1  
RTC_WRITE = 0  
RTC_SEL = 1  
RTC_WRITE = 0  
RTC_SEL = 0  
RTC_WRITE = 0  
RTC_ADDR  
RTC_DATA  
RTC_EN  
RTC_SEL  
RTC_WRITE  
Figure 11-12. RTC Write Operation  
WRITE  
RTC_ADDR  
WRITE  
RTC_DATA3  
WRITE  
RTC_DATA2  
WRITE  
RTC_DATA1  
WRITE  
RTC_DATA0  
WRITE 06  
@RTC_CTRL  
WRITE 07  
@RTC_CTRL  
WRITE 06  
@RTC_CTRL  
WRITE 00  
@RTC_CTRL  
TWI ACCESS  
RTC_EN = 0  
RTC_EN = 1  
RTC_EN = 0  
RTC_EN = 0  
RTC_SEL = 1  
RTC_WRITE = 1  
RTC_SEL = 1  
RTC_WRITE = 1  
RTC_SEL = 1  
RTC_WRITE = 1  
RTC_SEL = 0  
RTC_WRITE = 0  
RTC_ADDR  
RTC_DATA  
RTC_EN  
RTC_SEL  
RTC_WRITE  
41  
11050A–PMAAC–07-Apr-10  
11.10.2 RTC Control Register  
Name:  
RTC_CR  
Read-write  
0x00  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
CALEVSEL  
TIMEVSEL  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
UPDCAL  
UPDTIM  
• UPDTIM: Update Request Time Register  
0 = No effect.  
1 = Stops the RTC time counting.  
Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and  
acknowledged by the bit ACKUPD of the Status Register.  
• UPDCAL: Update Request Calendar Register  
0 = No effect.  
1 = Stops the RTC calendar counting.  
Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once  
this bit is set.  
• TIMEVSEL: Time Event Selection  
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.  
0 = Minute change.  
1 = Hour change.  
2 = Every day at midnight.  
3 = Every day at noon.  
• CALEVSEL: Calendar Event Selection  
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.  
0 = Week change (every Monday at time 00:00:00).  
1 = Month change (every 01 of each month at time 00:00:00).  
2, 3 = Year change (every January 1 at time 00:00:00)  
42  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.3 RTC Mode Register  
Name:  
RTC_MR  
Read-write  
0x04  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HRMOD  
• HRMOD: 12-/24-hour Mode  
0 = 24-hour mode is selected.  
1 = 12-hour mode is selected.  
All non-significant bits read zero.  
43  
11050A–PMAAC–07-Apr-10  
11.10.4 RTC Time Register  
Name:  
RTC_TIMR  
Read-write  
0x08  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
16  
AMPM  
HOUR  
15  
14  
6
11  
9
8
MIN  
7
3
1
0
SEC  
• SEC: Current Second  
The range that can be set is 0 - 59 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
• MIN: Current Minute  
The range that can be set is 0 - 59 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
• HOUR: Current Hour  
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.  
• AMPM: Ante Meridiem Post Meridiem Indicator  
This bit is the AM/PM indicator in 12-hour mode.  
0 = AM.  
1 = PM.  
All non-significant bits read zero.  
44  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.5 RTC Calendar Register  
Name:  
RTC_CALR  
Read-write  
0x0C  
Access:  
Address:  
31  
30  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
26  
25  
17  
9
24  
16  
8
DATE  
23  
22  
18  
DAY  
MONTH  
15  
14  
6
10  
2
YEAR  
7
3
1
0
CENT  
• CENT: Current Century  
The range that can be set is 19 - 20 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
• YEAR: Current Year  
The range that can be set is 00 - 99 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
• MONTH: Current Month  
The range that can be set is 01 - 12 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
• DAY: Current Day  
The range that can be set is 1 - 7 (BCD).  
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.  
• DATE: Current Date  
The range that can be set is 01 - 31 (BCD).  
The lowest four bits encode the units. The higher bits encode the tens.  
All non-significant bits read zero.  
45  
11050A–PMAAC–07-Apr-10  
11.10.6 RTC Time Alarm Register  
Name:  
RTC_TIMALR  
Read-write  
0x10  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
13  
5
20  
12  
4
19  
18  
10  
2
17  
16  
HOUREN  
AMPM  
HOUR  
15  
14  
6
11  
9
8
MINEN  
MIN  
7
3
1
0
SECEN  
SEC  
• SEC: Second Alarm  
This field is the alarm field corresponding to the BCD-coded second counter.  
• SECEN: Second Alarm Enable  
0 = The second-matching alarm is disabled.  
1 = The second-matching alarm is enabled.  
• MIN: Minute Alarm  
This field is the alarm field corresponding to the BCD-coded minute counter.  
• MINEN: Minute Alarm Enable  
0 = The minute-matching alarm is disabled.  
1 = The minute-matching alarm is enabled.  
• HOUR: Hour Alarm  
This field is the alarm field corresponding to the BCD-coded hour counter.  
• AMPM: AM/PM Indicator  
This field is the alarm field corresponding to the BCD-coded hour counter.  
• HOUREN: Hour Alarm Enable  
0 = The hour-matching alarm is disabled.  
1 = The hour-matching alarm is enabled.  
46  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.7 RTC Calendar Alarm Register  
Name:  
RTC_CALALR  
Read-write  
0x14  
Access:  
Address:  
31  
30  
29  
28  
20  
27  
19  
26  
25  
17  
24  
16  
DATEEN  
DATE  
23  
22  
21  
18  
MTHEN  
MONTH  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
• MONTH: Month Alarm  
This field is the alarm field corresponding to the BCD-coded month counter.  
• MTHEN: Month Alarm Enable  
0 = The month-matching alarm is disabled.  
1 = The month-matching alarm is enabled.  
• DATE: Date Alarm  
This field is the alarm field corresponding to the BCD-coded date counter.  
• DATEEN: Date Alarm Enable  
0 = The date-matching alarm is disabled.  
1 = The date-matching alarm is enabled.  
47  
11050A–PMAAC–07-Apr-10  
11.10.8 RTC Status Register  
Name:  
RTC_SR  
Read-only  
0x18  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CALEV  
TIMEV  
SEC  
ALARM  
ACKUPD  
• ACKUPD: Acknowledge for Update  
0 = Time and calendar registers cannot be updated.  
1 = Time and calendar registers can be updated.  
• ALARM: Alarm Flag  
0 = No alarm matching condition occurred.  
1 = An alarm matching condition has occurred.  
• SEC: Second Event  
0 = No second event has occurred since the last clear.  
1 = At least one second event has occurred since the last clear.  
• TIMEV: Time Event  
0 = No time event has occurred since the last clear.  
1 = At least one time event has occurred since the last clear.  
The time event is selected in the TIMEVSEL field in RTC_CTRL (Control Register) and can be any one of the following  
events: minute change, hour change, noon, midnight (day change).  
• CALEV: Calendar Event  
0 = No calendar event has occurred since the last clear.  
1 = At least one calendar event has occurred since the last clear.  
The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week  
change, month change and year change.  
48  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.9 RTC Status Clear Command Register  
Name:  
RTC_SCCR  
Write-only  
0x1C  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CALCLR  
TIMCLR  
SECCLR  
ALRCLR  
ACKCLR  
• ACKCLR: Acknowledge Clear  
0 = No effect.  
1 = Clears corresponding status flag in the Status Register (RTC_SR).  
• ALRCLR: Alarm Clear  
0 = No effect.  
1 = Clears corresponding status flag in the Status Register (RTC_SR).  
• SECCLR: Second Clear  
0 = No effect.  
1 = Clears corresponding status flag in the Status Register (RTC_SR).  
• TIMCLR: Time Clear  
0 = No effect.  
1 = Clears corresponding status flag in the Status Register (RTC_SR).  
• CALCLR: Calendar Clear  
0 = No effect.  
1 = Clears corresponding status flag in the Status Register (RTC_SR).  
49  
11050A–PMAAC–07-Apr-10  
11.10.10 RTC Interrupt Enable Register  
Name:  
RTC_IER  
Write-only  
0x20  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CALEN  
TIMEN  
SECEN  
ALREN  
ACKEN  
• ACKEN: Acknowledge Update Interrupt Enable  
0 = No effect.  
1 = The acknowledge for update interrupt is enabled.  
• ALREN: Alarm Interrupt Enable  
0 = No effect.  
1 = The alarm interrupt is enabled.  
• SECEN: Second Event Interrupt Enable  
0 = No effect.  
1 = The second periodic interrupt is enabled.  
• TIMEN: Time Event Interrupt Enable  
0 = No effect.  
1 = The selected time event interrupt is enabled.  
• CALEN: Calendar Event Interrupt Enable  
0 = No effect.  
• 1 = The selected calendar event interrupt is enabled.  
50  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.11 RTC Interrupt Disable Register  
Name:  
RTC_IDR  
Write-only  
0x24  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CALDIS  
TIMDIS  
SECDIS  
ALRDIS  
ACKDIS  
• ACKDIS: Acknowledge Update Interrupt Disable  
0 = No effect.  
1 = The acknowledge for update interrupt is disabled.  
• ALRDIS: Alarm Interrupt Disable  
0 = No effect.  
1 = The alarm interrupt is disabled.  
• SECDIS: Second Event Interrupt Disable  
0 = No effect.  
1 = The second periodic interrupt is disabled.  
• TIMDIS: Time Event Interrupt Disable  
0 = No effect.  
1 = The selected time event interrupt is disabled.  
• CALDIS: Calendar Event Interrupt Disable  
0 = No effect.  
1 = The selected calendar event interrupt is disabled.  
51  
11050A–PMAAC–07-Apr-10  
11.10.12 RTC Interrupt Mask Register  
Name:  
RTC_IMR  
Read-only  
0x28  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CAL  
TIM  
SEC  
ALR  
ACK  
• ACK: Acknowledge Update Interrupt Mask  
0 = The acknowledge for update interrupt is disabled.  
1 = The acknowledge for update interrupt is enabled.  
• ALR: Alarm Interrupt Mask  
0 = The alarm interrupt is disabled.  
1 = The alarm interrupt is enabled.  
• SEC: Second Event Interrupt Mask  
0 = The second periodic interrupt is disabled.  
1 = The second periodic interrupt is enabled.  
• TIM: Time Event Interrupt Mask  
0 = The selected time event interrupt is disabled.  
1 = The selected time event interrupt is enabled.  
• CAL: Calendar Event Interrupt Mask  
0 = The selected calendar event interrupt is disabled.  
1 = The selected calendar event interrupt is enabled.  
52  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
11.10.13 RTC Valid Entry Register  
Name:  
RTC_VER  
Read-only  
0x2C  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NVCALALR  
NVTIMALR  
NVCAL  
NVTIM  
• NVTIM: Non-valid Time  
0 = No invalid data has been detected in RTC_TIMR (Time Register).  
1 = RTC_TIMR has contained invalid data since it was last programmed.  
• NVCAL: Non-valid Calendar  
0 = No invalid data has been detected in RTC_CALR (Calendar Register).  
1 = RTC_CALR has contained invalid data since it was last programmed.  
• NVTIMALR: Non-valid Time Alarm  
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).  
1 = RTC_TIMALR has contained invalid data since it was last programmed.  
• NVCALALR: Non-valid Calendar Alarm  
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).  
1 = RTC_CALALR has contained invalid data since it was last programmed.  
53  
11050A–PMAAC–07-Apr-10  
11.10.14 RTC Version register  
Name:  
RTC_VERSION  
Read-only  
0xFC  
Access:  
Address:  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
10  
2
17  
16  
MFN  
15  
14  
13  
12  
11  
9
1
8
VERSION  
7
6
5
4
3
0
VERSION  
• VERSION  
Reserved. Value subject to change. No funcionality associated. This is the Atmel internal version of the macrocell.  
• MFN  
Reserved. Value subject to change. No funcionality associated.  
11.11 Die Temperature Sensor  
The AT73C246 features a die temperature sensor for protection reasons. If the junction temper-  
ature rises above the shutdown threshold for a minimum time of 1ms (+/- 5%), the power  
manager event TJ > 130°C is asserted. In a similar fashion, if the temperature falls through the  
restart threshold for more than 1ms, the power manager event TJ <110°C is asserted.  
The two internal thresholds shutdown and restart are defined in Section 9.11 “Die Temperature  
Sensor” on page 21.  
54  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
12. Audio Codec Functional Description  
12.1 Description  
AT73C246 features a high quality, low power stereo audio codec with integrated headphone  
amplifier.  
The playback channel accommodates 16 to 24-bit stereo programmable format entering the dig-  
ital audio interface (I2S) and delivers an internal analog audio output through a 100dB SNR  
Sigma Delta Stereo DAC. An output mixer allows to mix this DAC output with a line / aux or  
microphone input.  
A 16-32 Ohms Stereo headphone amplifier with virtual ground output provides a 97dB SNR out-  
put for line / headphone loads. The virtual ground output allows to remove 2 space demanding  
coupling capacitors on board.  
On the record side, a multiplexer can select between a main stereo line input and a stereo auxil-  
iary input such as an FM radio. A stereo microphone input with up to 46dB gain is provided. A  
stereo input mixer allows mixing between line (or aux) and microphone channels before entering  
a 96dB SNR Stereo Sigma Delta ADC. The digital audio signal is then digitally filtered and trans-  
ferred to the I2S audio interface.  
12.2 Audio Codec Block Diagram  
Figure 12-1. Audio Codec Block Diagram  
BYPASS  
0 -> -30dB  
1dB Step  
-34 -> +12dB  
1dB Step  
MUX  
LINL  
-77/+6dB  
1dB Step  
AUXL  
ADC  
DAC  
HPL  
0 -> +46dB  
1dB Step  
MICL  
DSP  
+
Audio  
Controller  
MICLN  
VMID  
HPVCM  
0 -> +46dB  
1dB Step  
MICR  
-77/+6dB  
1dB Step  
MICRN  
ADC  
DAC  
HPR  
-34 -> +12dB  
1dB Step  
MUX  
LINR  
AUXR  
HPDET  
0 -> -30dB  
1dB Step  
BYPASS  
Codec Bias  
200K  
I²S  
2K  
200K  
MICBIAS AVDD  
VMID AGND  
PAO  
DAI  
LRFS BCLK MCLK  
55  
11050A–PMAAC–07-Apr-10  
12.3 Audio Codec Controls  
Figure 12-2. Audio Codec Controls  
RHSBOTH  
LHSBOTH  
ENASR  
ASRTIME  
STDBY  
ENAC  
LINBOTH  
RINBOTH  
PATHSEL  
BCLKINV  
MASTER  
MCLKSEL  
SSCMODE  
WL  
DAIMODE  
SELFS  
56  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
12.4 Audio Controller  
The audio controller sequences the power-up and power-down of the audio codec sub-functions  
(Mic.amp / ADC / DAC / …). During these transitioning phases, the controller also manages the  
gain steps to fade them in and out, thus providing smooth operation.  
Depending on the application, two modes are provided:  
1. Automatic path control  
Dedicated to the major audio path scenarios (those described in Table 13-25 on page 95), this  
mode enables the whole audio path setup only via "PATHSEL" bits in register AUTOSTART  
(0x10).  
2. Custom path control  
Dedicated to audio path scenarios not described in the previously mentioned table, this mode  
brings the flexibility to start manually the audio sub-functions.  
The following figure shows the global context of the audio codec control.  
Figure 12-3. Audio Codec Typical Control Sequence  
Apply Supply  
& MCLK  
1
Registers to set  
AUDIO_CONTROL (0x11)  
(Set DCBlock bit here)  
:
Configure  
Analog & Digital  
Interfaces  
-
Registers to set  
See dedicated sections.  
Automatic path  
control  
Custom path  
control  
6
2
-
-
-
-
MIC_CONTROL (0x12)  
DAI_CONTROL (0x13)  
FRAME_CONTROL (0x14)  
Register to set  
MUTE (0x15)  
:
Register to set  
:
Shutdown  
Audio Codec  
-
Unmute Codec  
3
4
7
-
AUTOSTART (0x10)  
Start Audio  
Codec in  
Standby  
8
Register to set  
:
At least 1s.  
See “Power-off Time”  
-
AUTOSTART (0x10)  
-
Software  
Wait  
section.  
5
Typically 350ms.  
See VMID section.  
Register to set  
:
Unset  
DCBLOCK bit  
-
9
-
-
AUDIO_CONTROL (0x11)  
See “AC/DC coupled load  
Software  
Wait  
management” section.  
Remove MCLK  
& supply  
10  
57  
11050A–PMAAC–07-Apr-10  
12.4.1  
Audio Codec General Recommendations  
12.4.1.1  
VMID  
• VMID is the common mode voltage of the audio codec analog core. It is recommended to  
decouple this voltage with a 1uF capacitor to ensure low noise operation as well as slow  
(thus silent) transients at codec power up and power down.  
• The VMID capacitor is charged and discharged whenever the ENAC bit is set or cleared.  
Particularly, placing the audio codec in STANDBY mode does not discharge the VMID  
capacitor. The software WAIT operations in the previous diagram (step #5 and step #8 in  
“Audio Codec Typical Control Sequence” on page 57) should accommodate VMID's settling  
time constant. See “Audio Codec Bias” on page 22..  
12.4.1.2  
AC / DC Coupled Load Management  
• By default the audio codec is in DC-coupled load configuration: DCBLOCK = 0 in register  
AUDIO_CONTROL(0x11). In this case, a virtual ground voltage is provided on pin HPVCM (a  
buffered version of VMID). It allows to directly connect headphones or line loads between  
HPVCM and HPL(or R) without any coupling capacitors. To prevent any audio pop at start-up  
or shutdown in this DC coupling mode, the audio codec fastly starts HPL, HPR and HPVCM  
outputs shorted all together. No software management is required to achieve pop-less  
operation.  
• If output loads are AC coupled to the headphone amplifier, the audio codec DCBLOCK bit  
must be set and unset as described in “Audio Codec Typical Control Sequence” on page 57.  
This bit partially controls the two switches S1 and S2 described in the following figure. When  
DCBLOCK = 1 and the headphone amplifier is OFF, the output coupling capacitors are  
charged and discharged by the amplifier “VMID_BUFFER”. In order to achieve silent startup  
and shutdown, the following rules must be respected:  
– DCBLOCK = 0 at supply power-on and power-off. This ensures that the LDO4  
power-on and power-off transients are not transmitted to the audio loads.  
– DCBLOCK = 1 when ENAC = 1. Particularly, DCBLOCK must be set before  
ENAC=1 and unset after ENAC=0. This ensures that the full VMID waveform is  
properly buffered to the output loads.  
– DCBLOCK = 1 after ENAC = 0 and until VMID capacitor is fully discharged. At codec  
shutdown (ENAC=0), VMID will discharge slowly. The VMID_BUFFER ensures slow  
and silent discharge of the output coupling capacitors, and needs S1 and S2 to be  
closed.  
58  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 12-4. AC / DC Coupled Load Management Schematic View  
VIN4  
AT73C246  
CL  
LDO4  
HPL  
LEFT  
VDD4  
S1  
RL  
10uF  
ENAC  
DCBLOCK.ONHP  
AVDD  
VMID  
VMID  
BUFFER  
RR  
CR  
S2  
200k  
RIGHT  
HPR  
200k  
1uF  
AGND  
Figure 12-5. Audio Codec Typical Startup and Shutdown Waveforms With AC Coupled Loads.  
VDD4  
VMID  
HP(L/R)  
DCBLOCK  
ENAC  
STANDBY  
S1 & S2  
S1 AND S2 OPENED  
BY AUDIO CODEC  
12.4.1.3  
12.4.1.4  
12.4.1.5  
MUTE Register  
By default, the audio codec starts muted. To enable the audio processing, the MUTE register  
(0x15) must be cleared. Unmute operation can be performed before or after releasing the  
STANDBY mode. During operation, this register provides a convenient way of muting the audio  
signal without changing the various gain registers.  
Master Clock Input (MCLK)  
The Audio Controller is clocked by MCLK pin. Therefore a clock must be present at this pin  
before each codec control change. Particularly, the master clock must be present at power-on,  
power-off, gain change, path change. The master clock must also be available when fully analog  
path are used.  
Power-off Conditions  
Three audio codec power-off conditions can occur:  
• Sofware request (ENAC = 0 in AUTOSTART register). In this case, the codec is smoothly  
powered off by the audio controller.  
• PMU Power-off event or Standby event (as defined in Section 11.3 “Power Manager  
Conditional Transitions” on page 27). In this case, the codec is smoothly powered off with a  
59  
11050A–PMAAC–07-Apr-10  
500ms timeout. Contrary to the first point, which has no timeout, the audio power-off time  
limit is here fixed to 500ms. Beyond this limit, the codec is hardly reseted as in the following  
point.  
• PMU Power-fail event. In this case, the PMU finite state machine makes an immediate hard  
reset of the audio codec to ensure fast shutdown. This case may generate an audible click /  
pop noise.  
12.4.1.6  
Power-off Time  
At power-off, the audio controller needs to perform several controls on audio codec sub-func-  
tions and to discharge the output coupling capacitors. Therefore, the codec’s power-off time is  
divided into:  
• a digital power-off time and,  
• an analogue one.  
During this power-off phase, the codec‘s master clock and supply must be present. See “Audio  
Codec Power-off Waveforms” on page 60.  
Figure 12-6. Audio Codec Power-off Waveforms  
VDD4  
MCLK  
ENAC  
VMID  
analog  
power-off  
time  
AUDIO  
SIGNAL  
digital  
power-off  
time  
The digital power-off time depends on the number of controls (power-off, gain steps ramping, ...)  
to perform and for this reason strongly varies according to:  
• the master clock frequency,  
• the current path,  
• the current gains and  
• the current Automatic Soft Ramping time (ASR_TIME in AUDIO_CONTROL(0x11)).  
In worst case conditions (slowest clock, maximum ASR_TIME, maximum complexity audio path,  
maximum gains everywhere), the power-off time reaches 3 seconds. During this period, the  
60  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
master clock must be running to properly shutdown the codec. This time linearly varies with  
ASR_TIME value. See Table 12-1  
Table 12-1. Audio Codec Maximum Power-off Time  
ASR_TIME  
Power-off time (ms)  
00  
01  
10  
11  
375  
750  
1500  
3000  
The analog power-off time corresponds to the VMID’s discharge time specified in “Audio Codec  
Bias” on page 22: TMID_OFF  
.
Finally, the wait step #8 in “Audio Codec Typical Control Sequence” on page 57 needs to acco-  
modate the digital power-off time + the analog power-off time.  
12.4.2  
Automatic Path Configuration  
In this automatic path mode, the audio path control is fully managed by the AUTOSTART(0x10)  
register and more precisely by the following bits:  
• ENAC (Enable Audio codec),  
• STANDBY(1) (Audio standby) and  
• PATHSEL (Audio path selection).  
When the audio controller detects a change in these bits, it generates sequential controls to the  
audio codec sub-functions (power-up, gain ramping, unmute,…) with the right timing and order.  
Notes: 1. Audio STANDBY does not refer to the PMU STANDBY state as defined in “AT73C246 Power  
Manager Functional State Diagram” on page 25. The audio STANDBY mode activated by reg-  
ister AUTOSTART (0x10) only refers to the audio codec controller.  
12.4.2.1  
STANDBY Release  
Once the CODEC is started and in standby mode (ENAC=1 and STANDBY=1, step #5 in “Audio  
Codec Typical Control Sequence” on page 57), the audio path is simply selected by PATHSEL  
bits.  
At STANDBY release (STANDBY=0), the audio controller will:  
• Power-up the requested audio sub-functions. To do so, the audio controller makes WRITE  
accesses to the registers  
– INPUT_CONTROL (0x1E),  
– OUTPUT_CONTROL (0x1F) and  
– INPUT_MIXER (0x20).  
• Ramp-up the concerned path gains from mute to their current register value.  
Notes: 1. Changing PATHSEL value with STANDBY=1 does not changes the codec state. It remains in  
STANDBY mode.  
2. The audio controller always ensures minimum power consumption by powering only needed  
sub-functions.  
3. Audio parameters (volume, mute, effects…) can be modified before or after releasing the  
standby mode.  
61  
11050A–PMAAC–07-Apr-10  
12.4.2.2  
Pause Management With STANDBY Bit  
To pause the audio codec activity and reduce power consumption to few hundreds of micro-  
amps, the STANDBY bit can be activated in register AUTOSTART (0x10). The Audio codec will  
then:  
• Softly ramp down all the path concerned gains down-to mute and  
• Power off all the audio sub-functions. The registers INPUT_CONTROL (0x1E),  
OUTPUT_CONTROL (0x1F), and INPUT_MIXER (0x20) are modified by the audio  
controller.  
Notes: 1. Placing the codec in standby mode maintains the common mode voltage at VMID pin and thus  
allows to re-start fastly,  
2. Standby release is simply achieved by clearing the STANDBY bit (STANDBY = 0). The proce-  
dure described in “STANDBY Release” on page 61 applies.  
12.4.2.3  
On-the-fly Path Change  
The audio controller is able to softly switch from one audio path configuration to another without  
shutting down the codec nor entering the STANDBY mode. As soon as it detects a change in the  
PATHSEL value, the following mechanism occurs:  
• Power up and/or power down of the audio sub-functions according to the final state to reach.  
This operation generates automatic changes in the registers INPUT_CONTROL (0x1E),  
OUTPUT_CONTROL (0x1F), and INPUT_MIXER (0x20).  
• Ramp up and/or ramp down of the concerned path gain.  
Notes: 1. A channel may be temporarily and smoothly switched off and on to reach the new path.  
2. Any software write operation in the registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL  
(0x1F), and INPUT_MIXER (0x20) will generate a series of control on the audio codec sub-  
functions. In automatic path control, the order of the write operations in those registers is of  
prime importance. Please note that changing those registers updates the used audio path  
without updating the PATHSEL value. Therefore, these write operations are not recommended  
and must be limited to simple ones (for example changing LINESEL bit in register  
INPUT_CONTROL (0x1E) ).  
12.4.2.4  
Audio Codec Shutdown  
The Audio controller will start to shutdown the codec if ENAC = 0. The shutdown sequence is  
made of the following steps:  
• Softly ramp down all the path concerned gains down-to mute,  
• Power off all the audio sub-functions and,  
• Power off the common voltage VMID.  
Notes: 1. In this mode, the power consumption is reduced to few hundreds of nA.  
2. The common mode voltage power-off follows VMID time constant and thus may take a few  
hundreds of milliseconds depending on VMID capacitor. See “Audio Codec Bias” on page  
22.  
A software example of audio codec control using automatic path control is provided in the sec-  
tion “Basic Audio Codec Setting Using Automatic Path Control” on page 134.  
12.4.3  
Custom Path Configuration  
In this custom path mode, the audio path control is managed by the following registers:  
• AUTOSTART (0x10) (ENAC and STANDBY bits only)  
• AUDIO_CONTROL (0x11) (ENCONF and CUSTCONF bits only)  
62  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
• INPUT_CONTROL (0x1E)  
• OUTPUT_CONTROL (0x1F)  
• INPUT_MIXER (0x20)  
Like in the automatic path configuration, the audio controller will sequence audio codec sub-  
functions ON/OFF as well as gain stepping. However, the audio path is no more selected via the  
"PATHSEL" value in register AUTOSTART.  
To specify a custom audio path:  
• The bit CUSTCONF in register AUDIO_CONTROL (0x11) must be set to '1' to specify the  
'custom' path configuration mode.  
• The registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL (0x1F), and INPUT_MIXER  
(0x20) are set to define the audio path,  
• The bit ENCONF in register AUDIO_CONTROL (0x11) is pulsed to '1' to enable the audio  
controller sequencing.  
Notes: 1. “Pulsed to ‘1’ ”means written to ‘1’ and then written to ’0’.  
2. In this mode, the STANDBY bit behaves like in the automatic mode. It is possible to place the  
CODEC in standby mode to reduce power consumption during audio pause by simply setting  
the STANDBY bit to 1. STANDBY release is achieved by clearing this bit.  
3. On-the-fly path change is achieved by modifying the registers INPUT_CONTROL (0x1E),  
OUTPUT_CONTROL (0x1F) , and INPUT_MIXER (0x20) to define the new audio path config-  
uration and then pulsing to '1' the ENCONF bit. In this case, a channel may be temporarily  
(and smoothly) switched off and on to reach the new configuration.  
4. Changing the three registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL (0x1F) , and  
INPUT_MIXER (0x20) with the ENCONF bit set to ‘1’ makes the changes to take effect imme-  
diately. Therefore, the order of write operations is of prime importance. It is then recommended  
to write these registers with ENCONF set to 0 and then pulse ENCONF to ‘1’ once the new  
audio path is fully specified. Knowing the final state to reach, the audio controller is able to  
sequence the controls with the right order and timings to ensure noise-free operation.  
5. In this custom mode, the Audio Controller may forbid any configuration that does not make  
sense. For example, it will prevent the headphone amplifier from being switched on if it has no  
input source (DAC, Microphone, or Line).  
6. It is possible and sometimes convenient to switch from an automatically set path to a custom  
one. In this case, the audio controller softly performs the required path change. However, acti-  
vating an automatic path configuration from a current custom path configuration is not allowed.  
The audio codec must be switched off first (ENAC=0).  
A software example of audio codec control using custom path control is provided in the section  
“Basic Audio Codec Setting Using Custom Path Control” on page 135.  
12.5 Audio Codec Power Consumption Versus Programmed Audio Path  
Unless otherwise specified:  
• AVDD = 3.3V  
• MCLK = 12.288MHz , FS = 48KHz  
• All Gains set to 0dB  
• No audio signal  
• TA = 25°C.  
• Headphone amplifier set in AC coupling mode.  
63  
11050A–PMAAC–07-Apr-10  
• Current consumptions don’t account for load consumption and are measured in AVDD pin and  
INSYS pin.  
V
Table 12-2. Audio PATH Power Consumption  
Consumption  
PATH_SEL  
AUDIO PATH  
Description  
Units  
VINSYS  
AVDD  
0.61  
5.2  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
No Path  
0.10  
1.80  
0.10  
0.10  
0.10  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
1.80  
1.80  
1.80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DAC Playback  
Mic Sidetone  
Digital IN - Headphone OUT  
Microphone IN - Headphone OUT  
Aux IN - Headphone OUT  
2.65  
2.65  
2.65  
3.40  
3.40  
3.40  
5.05  
5.05  
5.05  
3.70  
3.70  
5.60  
5.60  
5.60  
Aux Bypass  
Line Bypass  
Line IN - Headphone OUT  
Mic IN - Digital OUT  
Mic Record  
Aux Record  
Aux IN - Digital OUT  
Line Record  
Line IN - DIGITAL OUT  
Mic Sidetone + Record  
Aux Bypass + Record  
Line Bypass + Record  
Mic + Aux Record  
Mic + Line Record  
Mic IN - Headphone and Digital OUT  
Aux IN - Headphone and Digital OUT  
Line IN - Headphone and Digital OUT  
Mic + Aux IN - Digital OUT  
Mic + Line IN - Digital OUT  
DAC Playback + Mic Sidetone Digital + Mic IN - Headphone OUT  
DAC Playback + Aux Bypass  
DAC Playback + Line Bypass  
Digital + Aux IN - Headphone OUT  
Digital + Line IN - Headphone OUT  
DAC Playback + Mic Sidetone  
+ Aux Bypass  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
Digital + Mic + Aux IN - Headphone OUT  
Digital + Mic + Line IN - Headphone OUT  
1.80  
1.80  
3.80  
3.80  
3.80  
3.80  
3.80  
5.85  
5.85  
8.00  
8.00  
8.00  
8.00  
8.00  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DAC Playback + Mic Sidetone  
+ Line Bypass  
DAC Playback and  
MIC Record  
Digital IN - Headphone OUT  
Mic IN - Digital OUT  
DAC Playback and  
Aux Record  
Digital IN - Headphone OUT  
Aux IN - Digital OUT  
DAC Playback and  
Line Record  
Digital IN - Headphone OUT  
Line IN - Digital OUT  
DAC Playback + Mic Sidetone Digital + Mic IN - Headphone OUT  
and Mic Record  
Mic IN - Digital OUT  
DAC Playback + Aux Bypass  
and Aux Record  
Digital + Aux IN - Headphone OUT  
Aux IN - Digital OUT  
64  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Table 12-2. Audio PATH Power Consumption  
Consumption  
PATH_SEL  
AUDIO PATH  
Description  
Units  
VINSYS  
AVDD  
DAC Playback + Line Bypass  
and Line Record  
Digital + Line IN - Headphone OUT  
Line IN - Digital OUT  
10111  
3.80  
8.00  
mA  
DAC Playback + Mic Sidetone  
+ Aux Bypass and  
Mic + Aux Record  
Digital + Mic + Aux IN - Headphone OUT  
Mic + Aux IN - Digital OUT  
11000  
11001  
3.80  
3.80  
8.25  
8.25  
mA  
mA  
DAC Playback + Mic Sidetone  
+ Line Bypass and  
Mic + Line Record  
Digital + Mic + Line IN - Headphone OUT  
Mic + Line IN - Digital OUT  
65  
11050A–PMAAC–07-Apr-10  
12.6 Digital Audio Interface  
12.6.1  
General Description  
AT73C246 features a 16 to 24-bit multi-mode master / slave I2S port. The following modes are  
provided:  
• I2S,  
• Left Justified,  
• Right Justified, and  
• SSC  
The I2S port is configured through register I2S_CONTROL (0x13) and FRAME_CONTROL  
(0x14). For each of the listed modes, the data transfer is described in the following sections.  
The following table provides authorized MCLK / FS ratios and associated filter types:  
Table 12-3. Authorized MCLK / FS Ratios & Filter Types  
12 MHz(1)  
12.288 MHz  
18.432 MHz  
11.2896 MHz  
16.9344 MHz  
8 KHz  
0
0
0
3
4
1
1
3
2
2
2
2
NA  
NA  
NA  
NA  
NA  
1
NA  
NA  
NA  
NA  
NA  
1
16 KHz  
32 KHz  
48 KHz  
96 KHz  
22.05 KHz  
44.1 KHz  
88.2 KHz  
2
2
1
1
3
3
NA  
NA  
NA  
NA  
NA  
NA  
1
1
3
3
Note:  
1. 12.0000 MHz case is not provided if DAI is configured in Right-Justified and Master mode in  
DAI_CONTROL (0x13) and FRAME_CONTROL registers (0x14).  
12.6.2  
Data Transfer: I²S MODE  
Figure 12-7. N-bit I²S Mode (FS = 44.1KHz - MCLK = 256 x FS)  
MCLK  
LRFS  
BCLK  
SDOUT  
SDIN  
Ln  
Ln-1  
L0  
Rn  
Rn-1  
R3  
R2  
R1  
R0  
n bits Left Channel  
n bits Right Channel  
66  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
12.6.3  
Data Transfer: Left Justified Mode  
Figure 12-8. N-bit Left Justified Mode (FS = 44.1KHz - MCLK = 256 x FS)  
MCLK  
LRFS  
BCLK  
SDOUT  
SDIN  
Ln  
Ln-1  
Ln-2  
L0  
Rn  
Rn-1  
Rn-2  
R3  
R2  
R1  
R0  
n bits Left Channel  
n bits Right Channel  
12.6.4  
Data Transfer: Right Justified Mode  
Figure 12-9. N-bit Right Justified Mode (FS = 44.1KHz - MCLK = 256 x FS)  
MCLK  
LRFS  
BCLK  
SDOUT  
SDIN  
Ln  
Ln-1  
Ln-2  
L0  
Rn  
Rn-1  
Rn-2  
R3  
R2  
R1  
R0  
n bits Right Channel  
n bits Left Channel  
67  
11050A–PMAAC–07-Apr-10  
12.6.5  
Timing Specifications  
Figure 12-10. Timing Diagram of data interface (I²S Mode)  
T
LRCLK  
TLRCLK  
V
IH  
LRFS  
BCLK  
V
IL  
T
BCLK  
VIH  
V
IL  
T
HSDX  
T
LSDX  
V
XH  
DAI  
MSB  
LSB  
LSB  
MSB  
LSB  
DAO  
V
XL  
Word N  
Left Channel  
Word N-1  
Right Channel  
Word N  
Right Channel  
Table 12-4. Digital Audio InterfaceTiming Specifications  
Parameter  
Symbols  
TLRCLK  
Min  
Typ  
1 / (2 x FS)  
Max  
Unit  
Left/Right Word Cycle Time  
Bit Clock Period  
s
s
TBCLK  
TMCLK / 2  
5
BCLK Posedge to {DAI, DAO and LRFS} Change  
Hold Time  
THSDX  
TLSDX  
ns  
ns  
{DAI, DAO and LRFS} Change to BCLK  
Posedge Setup Time  
5
12.7 Digital Filters Transfer Function  
12.7.1  
DAC Frequency Response  
The following diagrams are referred to FS = 1 (Sampling Frequency).  
Figure 12-11. DAC Type 0 Frequency Response  
Overall  
Ripple  
68  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 12-12. DAC Type 1 Frequency Response  
Overall  
Ripple  
Ripple  
Ripple  
Figure 12-13. DAC Type 2 Frequency Response  
Overall  
Figure 12-14. DAC Type 3 Frequency Response  
Overall  
69  
11050A–PMAAC–07-Apr-10  
Figure 12-15. DAC Type 4 Frequency Response  
Overall  
Ripple  
12.7.2  
ADC Frequency Response  
The following diagrams are referred to FS = 1 (Sampling Frequency).  
Figure 12-16. ADC Type 0 Frequency Response  
Overall  
Ripple  
Figure 12-17. ADC Type 1 Frequency Response  
Overall  
Ripple  
70  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 12-18. ADC Type 2 Frequency Response  
Overall  
Ripple  
Figure 12-19. ADC Type 3 Frequency Response  
Overall  
Ripple  
Figure 12-20. ADC Type 4 Frequency Response  
Overall  
Ripple  
71  
11050A–PMAAC–07-Apr-10  
12.7.3  
De-Emphasis Filter Frequency Response  
12.7.3.1  
De-Emphasis Filter: Frequency Response & Error (FS = 32kHz)  
Figure 12-21. De-Emphasis Filter: Frequency Response & Error (FS = 32kHz)  
Response  
Error  
Fequency (Hz)  
Fequency (Hz)  
12.7.3.2  
De-Emphasis Filter: Frequency Response & Error (FS = 44.1kHz)  
Figure 12-22. De-Emphasis Filter: Frequency Response & Error (FS = 44.1kHz)  
Response  
Error  
Fequency (Hz)  
Fequency (Hz)  
12.7.3.3  
De-Emphasis Filter: Frequency Response & Error (FS = 48kHz)  
Figure 12-23. De-Emphasis Filter: Frequency Response & Error (FS = 48kHz)  
Response  
Error  
Fequency (Hz)  
Fequency (Hz)  
72  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
12.7.4  
Equalizer Frequency Response  
The following figures show the frequency response of the equalizer function implemented in the  
D/A channels.  
Figure 12-24. Bass Filters Response  
dB  
Fs  
Figure 12-25. Medium Filters Response  
dB  
Fs  
73  
11050A–PMAAC–07-Apr-10  
Figure 12-26. Treble Filters Response  
dB  
Fs  
12.8 Analog Audio Interfaces  
12.8.1  
Microphone Inputs  
The following figures show recommended application circuits for microphone inputs  
configurations:  
• Mono - single-ended and differential microphone  
• Stereo - single ended and differential microphone  
• Long-wires microphone  
Recommended resistor / capacitor / inductor value may be tuned to the final application,  
depending on:  
• the microphone specified load resistance,  
• the high pass filter desired corner frequency,  
• the level and frequency of unwanted signals to be rejected.  
Depending also on desired high frequency filtering: common-mode or differential, the differential  
suggested application diagrams may be modified.  
74  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 12-27. Mono - Single Ended and Differential Microphone Applications  
VIN4  
VIN4  
LDO4  
LDO4  
VDD4  
AVDD  
VDD4  
AVDD  
10uF  
10uF  
2k  
2k  
MICBIAS  
MICBIAS  
2k  
1k  
1k  
AT73C246  
AT73C246  
10uF  
10uF  
1uF  
1uF  
1uF  
MICL  
MICLN  
MICR  
MICL  
MICLN  
MICR  
2.2nF  
M
NC  
M
2.2nF  
NC  
NC  
NC  
MICRN  
MICRN  
NC  
Figure 12-28. Stereo - Single Ended and Differential Microphone Applications  
VIN4  
VIN4  
LDO4  
LDO4  
VDD4  
AVDD  
VDD4  
AVDD  
470  
470  
470  
470  
10uF  
10uF  
2k  
2k  
10uF  
10uF  
10uF  
10uF  
NC  
NC  
MICBIAS  
MICBIAS  
2k  
1k  
1k  
AT73C246  
AT73C246  
1uF  
1uF  
MICL  
MICL  
2.2nF  
2.2nF  
M
M
1uF  
MICLN  
NC  
MICLN  
1k  
2k  
1uF  
1uF  
1uF  
MICR  
MICR  
2.2nF  
2.2nF  
M
M
1k  
MICRN  
NC  
MICRN  
Figure 12-29. Long Wires Microphone Applications  
VIN4  
LDO4  
VDD4  
VIN4  
LDO4  
VDD4  
AVDD  
10uF  
10uF  
470  
470  
AVDD  
2k  
2k  
10uF  
1k  
10uF  
NC  
MICBIAS  
MICBIAS  
2k  
AT73C246  
AT73C246  
10uF  
10uH  
1uF  
1uF  
MICL  
MICL  
10uH  
2.2nF  
1nF  
M
long wires  
1uF  
MICLN  
NC  
MICLN  
10uH  
M
2.2nF  
1nF  
1k  
long wires  
1k  
10uH  
1uF  
1uF  
MICR  
NC  
NC  
MICR  
1nF  
10uH  
M
2.2nF  
long wires  
MICRN  
MICRN  
1k  
75  
11050A–PMAAC–07-Apr-10  
12.8.2  
Aux / Line Inputs  
Figure 12-30. Aux and Line Input Application Circuits  
3.3uF  
100  
AUXL  
10nF  
10nF  
ON-BOARD  
AUDIO IC  
SOURCE  
(FM receiver, ...)  
AUXR  
100  
3.3uF  
3.3uF  
AT73C246  
100  
LINL  
LINR  
10nF  
10nF  
jack  
100  
3.3uF  
12.8.3  
Line / Headphone Outputs  
Figure 12-31. AC Coupled Output Application Circuits  
3.3uF  
330uF  
100  
HPR  
HPR  
HPVCM  
HPL  
jack  
jack  
HPVCM  
NC  
NC  
AT73C246  
AT73C246  
line-output  
headphone  
output  
16 / 32 Ohms  
3.3uF  
330uF  
100  
HPL  
Figure 12-32. DC Coupled (CAPLESS) Application Circuits  
HPR  
HPR  
DIFF. IN /  
DIFF. OUT  
POWER AMP.  
jack  
HPVCM  
HPVCM  
AT73C246  
AT73C246  
headphone  
output  
16 / 32 Ohms  
DIFF. IN /  
DIFF. OUT  
POWER AMP.  
HPL  
HPL  
76  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
13. Two Wire Interface and Control Registers  
13.1 Two-wire Interface (TWI) Protocol  
The two-wire interface interconnects components on a unique two-wire bus, made up of one  
clock line and one data line with speeds up to 400 Kbits per second, based one a byte oriented  
transfer format. The TWI is slave only and single byte access.  
The interface adds flexibility to the power supply solution, enabling LDO regulators to be con-  
trolled depending on the instantaneous application requirements.  
The AT73C246 has the following 7-bit address:1001001.  
Attempting to read data from register addresses not listed in this section results in 0xFF being  
read out.  
• TWCK is an input pin for the clock  
• TWD is an open-drain pin that drives or receives the serial data  
The data put on the TWD line must be 8 bits long. Data is transferred MSB first. Each byte must  
be followed by an acknowledgement.  
Each transfer begins with a START condition and terminates with a STOP condition.  
• A high-to-low transition on TWD while TWCK is high defines a START condition.  
• A low-to-high transition on TWD while TWCK is high defines a STOP condition.  
Figure 13-1. TWI Start/Stop Cycle  
TWD  
TWCK  
Start  
Stop  
Figure 13-2. TWI Data Cycle  
TWD  
TWCK  
Start  
Address  
R/W  
Ack  
Data  
Ack  
Data  
Ack  
Stop  
After the host initiates a Start condition, it sends the 7-bit slave address defined above to notify  
the slave device. A Read/Write bit follows (Read = 1, Write = 0).  
The device acknowledges each received byte.  
The first byte sent after device address and R/W bit is the address of the device register the host  
wants to read or write.  
For a write operation the data follows the internal address  
77  
11050A–PMAAC–07-Apr-10  
For a read operation a repeated Start condition needs to be generated followed by a read on the  
device.  
Figure 13-3. TWD Write Operation  
S
ADDR  
W
DATA  
A
A
IADDR  
A
P
TWD  
Figure 13-4. TWD Read Operation  
TWD  
S
ADDR  
W
A
IADDR  
A
S
ADDR  
R
A
DATA  
N
P
• S = Start  
• P = Stop  
• W = Write  
• R = Read  
• A = Acknowledge  
• N = Not Acknowledge  
• ADDR = Device address  
• IADDR = Internal address  
78  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
13.2 PMU Register Tables  
13.2.1  
Register Mapping  
Table 13-1. Register Mapping  
Addr  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x30  
0x31  
0x32  
0x33  
Name  
7
-
6
-
5
-
4
3
2
1
0
PMU_MODES  
PMU_WAKEUP_EVENTS  
PMU_WAKEUP_TRIG  
PMU_STANDBY_SUPPLIES  
PMU_SUPPLY_CTRL  
PMU_RST_LEVEL  
VDD0_CTRL  
-
-
STANDBY  
WAKEUP2  
WAKEUP2  
VDD2  
PWRDOWN  
WAKEUP1  
WAKEUP1  
VDD1  
RUN  
-
-
RTC  
PWREN  
PWREN  
LP_VDD0  
DVS_VDD4  
WAKEUP3  
WAKEUP3  
VDD3  
WAKEUP0  
WAKEUP0  
VDD0  
-
-
RTCR  
LP_VDD1  
IN_PHASE  
-
-
-
-
DVS_VDD3  
DVS_VDD2  
DVS_VDD1  
DVS_VDD0  
RST_VDD3  
RST_VDD2  
RST_VDD1  
RST_VDD0  
ON_VDD0  
ON_VDD1  
ON_VDD2  
ON_VDD3  
ON_VDD4  
LPMODE  
VDD0_SEL  
VDD1_SEL  
VDD1_CTRL  
LPMODE  
VDD2_CTRL  
-
-
-
-
VDD2_SEL  
VDD3_CTRL  
-
VDD3_SEL  
VDD4_SEL  
VDD4_CTRL  
-
PMU_LED  
TON_LED  
PERIOD_LED  
BLINK  
ON_LED  
RTC_IT  
PMU_MASK  
-
-
-
-
-
-
-
-
RTC_ALARM  
RTC_ALARM  
VDD2_WUP  
PMU_IT  
-
-
-
-
-
RTC_IT  
PMU_WAKEUP_SUPPLIES  
AUTOSTART  
-
-
-
VDD0_WUP  
VDD1_WUP  
PATH_SEL  
ENASR  
VDD3_WUP  
-
ENAC  
STANDBY  
DCBLOCK  
MICLDIFF  
AUDIO_CONTROL  
MIC_CONTROL  
DAI_CONTROL  
FRAME_CONTROL  
MUTE  
-
BCLKINV  
ENCONF  
CUSTCONF  
ASR_TIME  
-
-
-
MICRDIFF  
MICDET  
ONMICBIAS  
MCLKSEL  
SELFS  
MICDET_ST  
MUTEHPR  
-
MASTER  
SSCMODE  
MUTEDACL  
-
WL  
DAIMODE  
MUTEDACR  
MUTEINL  
MUTEINR  
MUTEMICL  
MUTEMICR  
MUTEHPL  
MICLVOL  
-
-
MICLVOL  
MICRVOL  
INLVOL  
INRVOL  
HPLVOL  
HPRVOL  
MICRVOL  
-
INLVOL  
INLBOTH  
INRBOTH  
INRVOL  
HPLVOL  
HPRVOL  
HP_CONTROL  
AUDIO_EFFECTS  
INPUT_CONTROL  
OUTPUT_CONTROL  
INPUT_MIXER  
SIDETONE_VOL  
EQUALIZER  
HPDET_ST  
LHPBOTH  
RHPBOTH  
ONDEEMP  
ONLINR  
3DFX_DEPTH  
ON3DFX  
SWAP_DAC  
SWAP_ADC  
ONADCL  
ONHPL  
MONO_DAC MONO_ADC  
-
LINESEL  
ONMICL  
ONMICR  
ONBYPASS  
MIXMICR  
ONADCR  
ONHPR  
ONLINL  
ONDACL  
ONMIXL  
ONSIDETONE  
ONPLAYBACK  
-
ONDACR  
ONMIXR  
-
-
MIXMICL  
MIXLINEL  
MIXLINER  
-
-
-
-
SIDETONE_VOL  
-
-
ON_BUF  
VIN  
-
EQ_SEL  
ADC_CTRL  
ON_ADC  
TS  
ADC_MUX_1  
-
-
-
-
VDD4  
-
VDD3  
ANA3  
VDD2  
ANA2  
VDD1  
ANA1  
VDD0  
ANA0  
ADC_MUX_2  
-
ADC_ANA0_MSB  
ADC<9:2>  
79  
11050A–PMAAC–07-Apr-10  
Table 13-1. Register Mapping  
Addr  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x47  
0x48  
0x49  
0x50  
0X51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x7F  
Name  
7
6
5
4
3
2
1
0
ADC_ANA0_LSB  
ADC_ANA1_MSB  
ADC_ANA1_LSB  
ADC_ANA2_MSB  
ADC_ANA2_LSB  
ADC_ANA3_MSB  
ADC_ANA3_LSB  
ADC_VDD0_MSB  
ADC_VDD0_LSB  
ADC_VDD1_MSB  
ADC_VDD1_LSB  
ADC_VDD2_MSB  
ADC_VDD2_LSB  
ADC_VDD3_MSB  
ADC_VDD3_LSB  
ADC_VDD4_MSB  
ADC_VDD4_LSB  
ADC_VIN_MSB  
ADC_VIN_LSB  
ADC_ANA_LSB  
RTC_CTRL  
-
-
-
-
-
-
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<1:0>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
ADC<9:2>  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC_ANA3<1:0>  
- -  
ADC_ANA2<1:0>  
- -  
ADC_ANA1<1:0>  
RTC_WRITE  
ADC_ANA0<1:0>  
-
RTC_SEL  
RTC_EN  
RTC_ADDR  
RTC_ADDR  
RTC_DATA0  
RTC_DATA1  
RTC_DATA2  
RTC_DATA3  
RTC_DATA0  
RTC_DATA1  
RTC_DATA2  
RTC_DATA3  
BACKUP_CTRL  
VERSION  
-
-
-
-
OSC_UPDT  
OSC_EN  
OSC_STAT  
RST_BKUP  
SOFTWARE_TAG  
VERSION  
80  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
13.2.2  
PMU Control  
Name:  
PMU_MODES  
Read / Write  
0x00  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
-
2
1
0
STANDBY  
PWRDOWN  
RUN  
Table 13-2. PMU_MODES (0x00) Structure  
Bit  
Name  
Description  
Reset value  
7:3  
-
unused  
00000  
STANDBY request  
0: Default value.  
1: STANDBY request. Reset to 0 at STANDBY  
exit.  
2
STANDBY  
0
POWERDOWN request  
0: Default value.  
1: POWERDOWN request. Reset to 0 when  
POWERDOWN state reached.  
1
0
PWRDOWN  
RUN  
0
0
RUN mode  
Notes: 1. Please refer to Section 11. “PMU Functional Description” on page 25  
2. ‘RUN’ bit is read-only. Only ‘STANDBY’ and ‘PWRDOWN’ bits can be written  
81  
11050A–PMAAC–07-Apr-10  
Name:  
PMU_WAKEUP_EVENTS  
Read / Write  
Access:  
Address:  
0x01  
7
-
6
-
5
4
3
2
1
0
RTC  
PWREN  
WAKEUP3  
WAKEUP2  
WAKEUP1  
WAKEUP0  
Table 13-3. PMU_WAKEUP_EVENTS (0x01) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
-
unused  
00  
Wake up by RTC alarm input  
0: disabled  
1: enabled  
5
4
3
2
1
RTC  
0
0
0
0
0
1
Wake up by PWREN input  
0: disabled  
1: enabled  
PWREN  
Wake up by WAKEUP3 input  
0: disabled  
1: enabled  
WAKEUP3  
WAKEUP2  
WAKEUP1  
WAKEUP0  
Wake up by WAKEUP2 input  
0: disabled  
1: enabled  
Wake up by WAKEUP1 input  
0: disabled  
1: enabled  
Wake up by WAKEUP0 input  
0: disabled  
0
1: enabled  
Note:  
Please refer to Section 11. “PMU Functional Description” on page 25  
82  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
PMU_WAKEUP_TRIG  
Read Only  
Access:  
Address:  
0x02  
7
-
6
-
5
4
3
2
1
0
RTCR  
PWREN  
WAKEUP3  
WAKEUP2  
WAKEUP1  
WAKEUP0  
Table 13-4. PMU_WAKEUP_TRIG (0x02) Structure  
Bit  
7:6  
5
Name  
Description  
Reset value  
-
unused  
00  
0
RTCR  
WAKEUP_EVENT trigged on RTC alarm  
WAKEUP_EVENT trigged on PWREN  
WAKEUP_EVENT trigged on WAKEUP3  
WAKEUP_EVENT trigged on WAKEUP2  
WAKEUP_EVENT trigged on WAKEUP1  
WAKEUP_EVENT trigged on WAKEUP0  
4
PWREN  
WAKEUP3  
WAKEUP2  
WAKEUP1  
WAKEUP0  
0
3
0
2
0
1
0
0
0
Note:  
Please refer to Section 11. “PMU Functional Description” on page 25  
83  
11050A–PMAAC–07-Apr-10  
Name:  
PMU_STANDBY_SUPPLIES  
Access:  
Address:  
Read / Write  
0x03  
7
-
6
-
5
4
3
2
1
0
LP_VDD1  
LP_VDD0  
VDD3  
VDD2  
VDD1  
VDD0  
Table 13-5. PMU_STANDBY_SUPPLIES (0x03) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
-
unused  
00  
VDD1 Low power mode in STANDBY  
0: Full power (PWM)  
1: Low power (PFM)  
5
4
3
2
1
0
LP_VDD1  
LP_VDD0  
VDD3  
1
1
1
0
0
1
VDD0 Low power mode in STANDBY  
0: Full power (PWM)  
1: Low power (PFM)  
VDD3 in STANDY state  
0: OFF  
1: ON  
VDD2 in STANDY state  
0: OFF  
1: ON  
VDD2  
VDD1 in STANDY state  
0: OFF  
1: ON  
VDD1  
VDD0 in STANDY state  
0: OFF  
1: ON  
VDD0  
84  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
PMU_SUPPLY_CTRL  
Read / Write  
0x04  
Access:  
Address:  
7
-
6
-
5
4
3
2
1
0
IN_PHASE  
DVS_VDD4 DVS_VDD3 DVS_VDD2 DVS_VDD1 DVS_VDD0  
Table 13-6. PMU_SUPPLY_CTRL (0x04) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
-
unused  
00  
DCDC0 and DCDC1 phase operation  
0: out-of phase  
1: in-phase  
5
4
3
2
1
0
IN_PHASE  
DVS_VDD4  
DVS_VDD3  
DVS_VDD2  
DVS_VDD1  
DVS_VDD0  
0
1
1
1
1
1
DVS function on VDD4  
0: OFF  
1: ON  
DVS function on VDD3  
0: OFF  
1: ON  
DVS function on VDD2  
0: OFF  
1: ON  
DVS function on VDD1  
0: OFF  
1: ON  
DVS function on VDD0  
0: OFF  
1: ON  
85  
11050A–PMAAC–07-Apr-10  
Name:  
PMU_RST_LVL  
Read / Write  
0x05  
Access:  
Address:  
7
6
5
4
3
2
1
0
RST_VDD3  
RST_VDD2  
RST_VDD1  
RST_VDD0  
Table 13-7. PMU_RST_LVL (0x05) Structure  
Bit  
7:6  
5:4  
3:2  
1:0  
Name  
Description  
Reset value  
RST_VDD3  
RST_VDD2  
RST_VDD1  
RST_VDD0  
RST level on VDD3  
RST level on VDD2  
RST level on VDD1  
RST level on VDD0  
01  
10  
10  
11  
Table 13-8. VDDx Reset Level Selection Table  
RST_VDDx  
RST LEVEL  
0.85 x VDDx  
0.90 x VDDx  
0.92 x VDDx  
0.95 x VDDx  
00  
01  
10  
11  
86  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
VDD0_CTRL  
Read / Write  
0x06  
Access:  
Address:  
7
6
5
4
3
2
1
0
ON_VDD0  
LPMODE  
VDD0_SEL  
Table 13-9. VDD0_CTRL (0x06) Structure  
Bit  
Name  
Description  
Reset value  
VDD0 ON/OFF  
0: OFF  
7
ON_VDD0  
0
1: ON  
VDD0 Low power mode  
0: Full power (PWM)  
1: Low power (PFM)  
6
LPMODE  
0
5:0  
VDD0_SEL  
VDD0 voltage selection  
010101  
Table 13-10. VDD0 Voltage Selection Table  
VDD0_SEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
VDD0 (V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
VDD0_SEL  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
VDD0 (V)  
VDD0_SEL  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
VDD0 (V)  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
100000  
100001  
100010  
100011  
100100  
100101  
87  
11050A–PMAAC–07-Apr-10  
Name:  
VDD1_CTRL  
Read / Write  
0x07  
Access:  
Address:  
7
6
5
4
3
2
1
0
ON_VDD1  
LPMODE  
VDD1_SEL  
Table 13-11. VDD1_CTRL (0x07) Structure  
Bit  
Name  
Description  
Reset value  
VDD1 ON / OFF  
0: OFF  
7
ON_VDD1  
0
1: ON  
VDD1 Low power mode  
0: Full power (PWM)  
1: Low power (PFM)  
6
LPMODE  
0
5:0  
VDD1_SEL  
VDD1 voltage selection  
001000  
Table 13-12. VDD1 Voltage Selection Table  
VDD1_SEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
VDD1 (V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
VDD1_SEL  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
VDD1 (V)  
VDD1_SEL  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
VDD1 (V)  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
100000  
100001  
100010  
100011  
100100  
100101  
88  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
VDD2_CTRL  
Read / Write  
0x08  
Access:  
Address:  
7
6
-
5
-
4
3
2
1
0
ON_VDD2  
VDD2_SEL  
Table 13-13. VDD2_CTRL (0x08) Structure  
Bit  
Name  
Description  
Reset value  
VDD2 ON / OFF  
0: OFF  
7
ON_VDD2  
0
1: ON  
6:5  
4:0  
-
unused  
00  
VDD2_SEL  
VDD2 voltage selection  
00100  
Table 13-14. VDD2 Voltage Selection Table  
VDD2_SEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
VDD2 (V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
01000  
01001  
01010  
01011  
89  
11050A–PMAAC–07-Apr-10  
Name:  
VDD3_CTRL  
Read / Write  
0x09  
Access:  
Address:  
7
6
-
5
-
4
3
2
1
0
ON_VDD3  
VDD3_SEL  
Table 13-15. VDD3_CTRL (0x09) Structure  
Bit  
Name  
Description  
Reset value  
VDD3 ON / OFF  
0: OFF  
7
ON_VDD3  
0
1: ON  
6:5  
4:0  
-
unused  
00  
VDD3_SEL  
VDD3 voltage selection  
01100  
Table 13-16. VDD3 Voltage Selection Table  
VDD3_SEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
VDD3 (V)  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
10000  
10001  
10010  
90  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
VDD4_CTRL  
Read / Write  
0x0A  
Access:  
Address:  
7
6
-
5
-
4
3
2
1
0
ON_VDD4  
VDD4_SEL  
Table 13-17. VDD4_CTRL (0x0A) Structure  
Bit  
Name  
Description  
Reset value  
VDD4 ON / OFF  
0: OFF  
7
ON_VDD4  
0
1: ON  
6:5  
4:0  
-
unused  
00  
VDD4_SEL  
VDD4 voltage selection  
01100  
Table 13-18. VDD4 Voltage Selection Table  
VDD4_SEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
VDD4 (V)  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
10000  
10001  
10010  
91  
11050A–PMAAC–07-Apr-10  
Name:  
PMU_LED  
Read / Write  
0x0B  
Access:  
Address:  
7
6
5
4
3
2
1
0
TON_LED  
PERIOD_LED  
BLINK  
ON_LED  
Table 13-19. PMU_LED (0x0B) Structure  
Bit  
7:5  
4:2  
Name  
Description  
Reset value  
000  
TON_LED  
PERIOD_LED  
LED ‘ON’ time  
LED blinking period  
010  
Blinking function ON / OFF  
1
0
BLINK  
0: OFF  
1: ON  
0
0
Led ON / OFF  
0: OFF  
ON_LED  
1: ON  
Table 13-20. LED Blinking Function Parameters Selection Table  
TON_LED  
000  
LED ‘ON’ Time (ms)  
PERIOD_LED  
BLINKING PERIOD (s)  
25  
000  
001  
010  
011  
100  
101  
110  
111  
0.5  
1
001  
50  
010  
75  
2
011  
100  
125  
150  
175  
200  
3
100  
4
101  
5
110  
6
111  
8
Note:  
In case of TON_LED = 175ms, PERIOD_LED=5s and BLINK=1 selection, the LED pin is driven  
according to the following diagram. During 9 clock periods (internal RC 32kHz oscillator) the pin is  
driven to 0, and during 1 clock period the pin is configured as ‘input’ with an internal pull up resis-  
tor to VINSYS.  
Figure 13-5. LED Pin Timing Diagram for TON_LED = 175ms and PERIOD_LED=5s  
Internal  
RC 32kHz  
Pin forced to ‘0’  
LED Pin  
9 x 32kHz clock periods  
92  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
PMU_MASK  
Read / Write  
0x0C  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
RTC_ALA  
RM  
RTC_IT  
Table 13-21. PMU_MASK (0x0C) Structure  
Bit  
Name  
Description  
Reset value  
7:2  
-
unused  
111111  
Mask RTC alarm  
0: not masked  
1: masked  
1
0
RTC_ALARM  
RTC_IT  
1
1
Mask RTC interrupt  
0: not masked  
1: masked  
Name:  
PMU_IT  
Access:  
Address:  
Read Only  
0x0D  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
RTC_ALA  
RM  
RTC_IT  
Table 13-22. PMU_IT (0x0D) Structure  
Bit  
Name  
Description  
Reset value  
7:2  
-
unused  
000000  
RTC alarm interrupt  
0: default value  
1: RTC alarm has occurred. Reset to 0 at read.  
1
0
RTC_ALARM  
RTC_IT  
0
0
RTC interrupt  
0: default value  
1: RTC interrupt has occurred. Reset to 0 at read.  
93  
11050A–PMAAC–07-Apr-10  
Name:  
PMU_WAKEUP_SUPPLIES  
Read / Write  
Access:  
Address:  
0x0E  
7
-
6
-
5
-
4
-
3
2
1
0
VDD0_WUP VDD1_WUP VDD2_WUP VDD3_WUP  
Table 13-23. PMU_WAKEUP_SUPPLIES (0x0E) Structure  
Bit  
Name  
Description  
Reset value  
7:4  
-
unused  
0000  
VDD0 Value at WAKEUP  
0: Programmed value  
1: Default value  
3
2
1
0
VDD0_WUP  
VDD1_WUP  
VDD2_WUP  
VDD3_WUP  
1
1
1
1
VDD1Value at WAKEUP  
0: Programmed value  
1: Default value  
VDD2 Value at WAKEUP  
0: Programmed value  
1: Default value  
VDD3 Value at WAKEUP  
0: Programmed value  
1: Default value  
94  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
AUTOSTART  
Read / Write  
0x10  
Access:  
Address:  
7
-
6
5
4
3
2
1
0
ENAC  
STANDBY  
PATH_SEL  
Table 13-24. AUTOSTART (0x10) Structure  
Bit  
Name  
Description  
Reset value  
7
-
unused  
0
Audio Codec ON / OFF  
6
ENAC  
0: OFF  
1: ON  
0
Audio STANDBY mode ON / OFF  
0: Audio codec active  
1: Audio codec in standby  
5
STANDBY  
PATH_SEL  
1
4:0  
Audio PATH selection  
00000  
Table 13-25. Audio Path Selection Table  
PATH_SEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
AUDIO PATH  
No Path  
DAC Playback  
Mic Sidetone  
Digital IN - Headphone OUT  
Microphone IN - Headphone OUT  
Aux IN - Headphone OUT  
Line IN - Headphone OUT  
Mic IN - Digital OUT  
Aux Bypass  
Line Bypass  
Mic Record  
Aux Record  
Aux IN - Digital OUT  
Line Record  
Line IN - DIGITAL OUT  
Mic Sidetone + Record  
Aux Bypass + Record  
Line Bypass + Record  
Mic + Aux Record  
Mic + Line Record  
Mic IN - Headphone and Digital OUT  
Aux IN - Headphone and Digital OUT  
Line IN - Headphone and Digital OUT  
Mic + Aux IN - Digital OUT  
Mic + Line IN - Digital OUT  
DAC Playback + Mic Sidetone Digital + Mic IN - Headphone OUT  
DAC Playback + Aux Bypass  
DAC Playback + Line Bypass  
Digital + Aux IN - Headphone OUT  
Digital + Line IN - Headphone OUT  
DAC Playback + Mic Sidetone  
+ Aux Bypass  
10000  
10001  
10010  
Digital + Mic + Aux IN - Headphone OUT  
Digital + Mic + Line IN - Headphone OUT  
DAC Playback + Mic Sidetone  
+ Line Bypass  
DAC Playback and  
MIC Record  
Digital IN - Headphone OUT  
Mic IN - Digital OUT  
95  
11050A–PMAAC–07-Apr-10  
Table 13-25. Audio Path Selection Table  
PATH_SEL  
AUDIO PATH  
DAC Playback and  
Aux Record  
Digital IN - Headphone OUT  
Aux IN - Digital OUT  
10011  
DAC Playback and  
Line Record  
Digital IN - Headphone OUT  
Line IN - Digital OUT  
10100  
10101  
10110  
10111  
DAC Playback + Mic Sidetone Digital + Mic IN - Headphone OUT  
and Mic Record  
Mic IN - Digital OUT  
DAC Playback + Aux Bypass  
and Aux Record  
Digital + Aux IN - Headphone OUT  
Aux IN - Digital OUT  
DAC Playback + Line Bypass  
and Line Record  
Digital + Line IN - Headphone OUT  
Line IN - Digital OUT  
DAC Playback + Mic Sidetone  
+ Aux Bypass and  
Mic + Aux Record  
Digital + Mic + Aux IN - Headphone OUT  
Mic + Aux IN - Digital OUT  
11000  
11001  
DAC Playback + Mic Sidetone  
+ Line Bypass and  
Mic + Line Record  
Digital + Mic + Line IN - Headphone OUT  
Mic + Line IN - Digital OUT  
96  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
AUDIO_CONTROL  
Read / Write  
0x11  
Access:  
Address:  
7
-
6
5
4
3
2
1
0
CUST_CO  
NF  
BCLKINV  
DCBLOCK  
ENCONF  
ENASR  
ASR_TIME  
Table 13-26. AUDIO_CONTROL (0x11) Structure  
Bit  
Name  
Description  
Reset value  
7
-
-
0
Bit clock inversion on I2S port  
0: not inverted  
6
5
BLCKINV  
0
0
1: inverted  
Headphone output coupling configuration  
0: DC coupled (capless operation)  
1: AC coupled  
DCBLOCK  
Custom configuration enable  
0: Default value.  
1: custom configuration is send to audio  
controller.  
4
3
ENCONF  
0
0
Custom audio configuration  
0: Audio path are set with PATH_SEL  
1: Custom audio path set by software  
CUST_CONF  
Gain soft ramping ON / OFF  
2
ENASR  
0: OFF  
1: ON  
1
1:0  
ASR_TIME  
Gain soft ramping timing selection  
11  
Table 13-27. Gain Soft Ramping Timing Selection Table  
ASR_TIME  
Timing  
00  
01  
10  
11  
MCLK / (32 x 512)  
MCLK / (64 x 512)  
MCLK / (128 x 512)  
MCLK / (256 x 512)  
97  
11050A–PMAAC–07-Apr-10  
Name:  
MIC_CONTROL  
Read / Write  
0x12  
Access:  
Address:  
7
-
6
-
5
4
3
2
1
0
MICLDIFF  
MICRDIFF  
MICDET  
ONMICBIAS MICDET_ST  
Table 13-28. MIC_CONTROL (0x12) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
-
unused  
00  
Left microphone differential configuration  
0: Single-ended  
5
MICLDIFF  
0
1: Differential  
Right microphone differential configuration  
0: Single-ended  
1: Differential  
4
MICRDIFF  
MICDET  
0
3:2  
1
Microphone detector threshold  
00  
0
Microphone bias generator ON / OFF  
0: OFF  
1: ON  
ONMICBIAS  
MICBIAS pin microphone detector status bit  
0: No microphone detected  
0
MICDET_ST  
0
1: Microphone detected  
Table 13-29. Microphone Detector Threshold Selection Table  
MICDET  
MICBIAS PIN LEVEL (V)  
AVDD - 0.1  
00  
01  
10  
11  
AVDD - 0.2  
AVDD - 0.3  
AVDD - 0.4  
98  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
DAI_CONTROL  
Read / Write  
0x13  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
2
1
0
MASTER  
MCLKSEL  
Table 13-30. DAI_CONTROL (0x13) Structure  
Bit  
Name  
Description  
Reset value  
7:4  
-
unused  
0000  
MASTER / SLAVE operation on DAI port  
0: Slave  
1: Master  
3
MASTER(1)  
MCLKSEL  
0
2:0  
Audio Master clock frequency selection  
001  
Note:  
1. The MASTER mode is not provided for 12.0000 MHz clock case and Right-Justified mode on  
DAI.  
Table 13-31. Audio Master Clock Selection Table  
MCLKSEL  
000  
MCLK (MHz) MCLKSEL  
MCLK (MHz)  
12.000  
12.288  
11.2896  
18.432  
100  
101  
110  
111  
16.9344  
001  
-
-
-
010  
011  
99  
11050A–PMAAC–07-Apr-10  
Name:  
FRAME_CONTROL  
Read / Write  
0x14  
Access:  
Address:  
7
6
5
4
3
2
1
0
SSCMODE  
WL  
DAI_MODE  
SELFS  
Table 13-32. FRAME_CONTROL (0x14) Structure  
Bit  
Name  
Description  
Reset value  
SSC mode for DAI  
7
SSCMODE  
0: DAI according to DAI_MODE bits  
1: SSC mode  
0
6:5  
4:3  
2:0  
WL  
Word length selection  
11  
DAI_MODE  
SELFS  
Digital Audio Interface mode control  
Audio Frame frequency selection  
00  
011  
Table 13-33. Digital Audio Interface Word Length Selection Table  
WL  
00  
01  
10  
11  
MODE  
16  
18  
20  
24  
Table 13-34. Digital Audio Interface Mode Selection Table  
DAIMODE  
MODE  
00  
01  
10  
11  
I2S  
Left-Justified  
Right-Justified(1)  
N/A  
Note:  
1. The Right-Justified mode is not provided for 12.0000 MHz clock case and MASTER mode on  
DAI.  
Table 13-35. Audio Sampling Frequency Selection Table  
SELFS  
000  
FS (kHz)  
SELFS  
100  
FS (kHz)  
96  
8
001  
16  
32  
48  
101  
22.050  
44.100  
88.200  
010  
110  
011  
111  
100  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
MUTE  
Access:  
Address:  
Read / Write  
0x15  
7
6
5
4
3
2
1
0
MUTEDAC  
MUTEDACL  
MUTEINL  
MUTEINR  
MUTEMICL MUTEMICR  
MUTEHPL  
MUTEHPR  
R
Table 13-36. MUTE (0x15) Structure  
Bit  
Name  
Description  
Reset value  
DAC Left mute  
0: active  
7
MUTEDACL  
1
1: muted  
DACR Right mute  
0: active  
1: muted  
6
5
4
3
2
1
0
MUTEDACR  
MUTEINL  
1
1
1
1
1
1
1
AUX / LINE Left mute  
0: active  
1: muted  
AUX / LINE Right mute  
0: active  
1: muted  
MUTEINR  
MUTEMICL  
MUTEMICR  
MUTEHPL  
MUTEHPR  
MIC Left mute  
0: active  
1: muted  
MIC Right mute  
0: active  
1: muted  
Headphone Left mute  
0: active  
1: muted  
Headphone Right mute  
0: active  
1: muted  
101  
11050A–PMAAC–07-Apr-10  
Name:  
MICLVOL  
Read / Write  
0x16  
Access:  
Address:  
7
-
6
-
5
4
3
2
1
0
MICLVOL  
Table 13-37. MICLVOL (0x16) Structure  
Bit  
7:6  
5:0  
Name  
Description  
Reset value  
00  
-
unused  
MICLVOL  
Microphone Left volume selection  
000000  
Table 13-38. Microphone Left Volume Selection Table  
MICLVOL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
GAIN(dB)  
MICLVOL  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
GAIN(dB)  
16  
MICLVOL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
GAIN(dB)  
32  
0
1
17  
33  
2
18  
34  
3
19  
35  
4
20  
36  
5
21  
37  
6
22  
38  
7
23  
39  
8
24  
40  
9
25  
41  
10  
11  
12  
13  
14  
15  
26  
42  
27  
43  
28  
44  
29  
45  
30  
46  
31  
Other values  
46  
102  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
MICRVOL  
Read / Write  
0x17  
Access:  
Address:  
7
-
6
-
5
4
3
2
1
0
MICRVOL  
Table 13-39. MICRVOL (0x17) Structure  
Bit  
7:6  
5:0  
Name  
Description  
Reset value  
0
-
unused  
MICRVOL  
Microphone Right volume selection  
000000  
Table 13-40. Microphone Right Volume Selection Table  
MICRVOL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
GAIN(dB)  
MICRVOL  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
GAIN(dB)  
16  
MICRVOL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
GAIN(dB)  
32  
0
1
17  
33  
2
18  
34  
3
19  
35  
4
20  
36  
5
21  
37  
6
22  
38  
7
23  
39  
8
24  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
40  
9
25  
41  
10  
11  
12  
13  
14  
15  
26  
42  
27  
43  
28  
44  
29  
45  
30  
46  
31  
Other values  
46  
103  
11050A–PMAAC–07-Apr-10  
Name:  
INLVOL  
Read / Write  
0x18  
Access:  
Address:  
7
6
5
4
3
2
1
0
INLBOTH  
INLVOL  
Table 13-41. INLVOL (0x18) Structure  
Bit  
Name  
Description  
Reset value  
1
AUX / LINE Left volume controls Right channel  
0: inactive  
1: active. Prioritary bit over INRBOTH.  
7
INLBOTH  
INLVOL  
6:0  
AUX / LINE input Left volume selection  
0000000  
Table 13-42. AUX / LINE Left Volume Selection Table  
INLVOL  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
GAIN(dB)  
MUTE  
-35  
INLVOL  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
GAIN(dB)  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
-12  
-11  
-10  
-9  
INLVOL  
1111110  
GAIN(dB)  
-2  
-1  
0
1111111  
-34  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
>=0101111  
-33  
1
-32  
2
-31  
3
-30  
4
-29  
5
-28  
6
-27  
7
-26  
8
-25  
-8  
9
-24  
-7  
10  
11  
12  
-23  
-6  
-22  
-5  
-21  
-4  
-20  
-3  
104  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
INRVOL  
Read / Write  
0x19  
Access:  
Address:  
7
6
5
4
3
2
1
0
INRBOTH  
INRVOL  
Table 13-43. INRVOL (0x19) Structure  
Bit  
Name  
Description  
Reset value  
0
AUX / LINE Right volume controls left channel  
0: inactive  
1: active.  
7
INRBOTH  
INRVOL  
6:0  
AUX / LINE input Right volume selection  
0000000  
Table 13-44. AUX / LINE Right Volume Selection Table  
INLVOL  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
GAIN(dB)  
MUTE  
-35  
INLVOL  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
GAIN(dB)  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
-12  
-11  
-10  
-9  
INLVOL  
1111110  
GAIN(dB)  
-2  
-1  
0
1111111  
-34  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
>=0101111  
-33  
1
-32  
2
-31  
3
-30  
4
-29  
5
-28  
6
-27  
7
-26  
8
-25  
-8  
9
-24  
-7  
10  
11  
12  
-23  
-6  
-22  
-5  
-21  
-4  
-20  
-3  
105  
11050A–PMAAC–07-Apr-10  
Name:  
HPLVOL  
Read / Write  
0x1A  
Access:  
Address:  
7
6
5
4
3
2
1
0
HPLVOL  
Table 13-45. HPLVOL (0x1A) Structure  
Bit  
Name  
Description  
Headphone Left volume selection  
Reset value  
7:0  
HPLVOL  
00000000  
Table 13-46. Headphone Left Volume Selection Table  
GAIN  
(dB)  
GAIN  
(dB)  
GAIN  
(dB)  
GAIN  
(dB)  
HPLVOL  
HPLVOL  
HPLVOL  
HPLVOL  
MUT  
E
10110010  
11001000  
-56  
11011110  
-34  
11110100  
-12  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
-77  
-76  
-75  
-74  
-73  
-72  
-71  
-70  
-69  
-68  
-67  
-66  
-65  
-64  
-63  
-62  
-61  
-60  
-59  
-58  
-57  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
-55  
-54  
-53  
-52  
-51  
-50  
-49  
-48  
-47  
-46  
-45  
-44  
-43  
-42  
-41  
-40  
-39  
-38  
-37  
-36  
-35  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
-33  
-32  
-31  
-30  
-29  
-28  
-27  
-26  
-25  
-24  
-23  
-22  
-21  
-20  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
-11  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
>=00000110  
1
2
3
4
5
6
106  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
HPRVOL  
Read / Write  
0x1B  
Access:  
Address:  
7
6
5
4
3
2
1
0
HPRVOL  
Table 13-47. HPRVOL (0x1B) Structure  
Bit  
Name  
Description  
HEADSET Right volume selection  
Reset value  
7:0  
HPRVOL  
00000000  
Table 13-48. Headphone Right Volume Selection Table  
GAIN  
(dB)  
GAIN  
(dB)  
GAIN  
(dB)  
GAIN  
(dB)  
HPRVOL  
HPRVOL  
HPRVOL  
HPRVOL  
MUTE  
-77  
-76  
-75  
-74  
-73  
-72  
-71  
-70  
-69  
-68  
-67  
-66  
-65  
-64  
-63  
-62  
-61  
-60  
-59  
-58  
-57  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
-56  
-55  
-54  
-53  
-52  
-51  
-50  
-49  
-48  
-47  
-46  
-45  
-44  
-43  
-42  
-41  
-40  
-39  
-38  
-37  
-36  
-35  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
-34  
-33  
-32  
-31  
-30  
-29  
-28  
-27  
-26  
-25  
-24  
-23  
-22  
-21  
-20  
-19  
-18  
-17  
-16  
-15  
-14  
-13  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
-12  
-11  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
>=00000110  
1
2
3
4
5
6
107  
11050A–PMAAC–07-Apr-10  
Name:  
HP_CONTROL  
Read / Write  
0x1C  
Access:  
Address:  
7
-
6
-
5
4
-
3
-
2
1
0
-
HPDET_ST  
LHPBOTH  
RHPBOTH  
Table 13-49. HP_CONTROL (0x1C) Structure  
Bit  
Name  
Description  
Reset value  
7:3  
-
unused  
00000  
Headphone plug in-out detector  
2
1
0
HPDET_ST  
LHPBOTH  
RHPBOTH  
0: OFF  
1: ON  
0
1
0
Right Headphone volume follows left  
0: inactive  
1: active. Prioritary bit over RHPBOTH.  
Left Headphone volume follows right  
0: inactive  
1: active  
108  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
AUDIO_EFFECTS  
Read / Write  
0x1D  
Access:  
Address:  
7
6
5
4
3
2
1
0
3DFX_DEPTH  
ON3DFX  
SWAP_DAC SWAP_ADC MONO_DAC MONO_ADC ONDEEMP  
Table 13-50. AUDIO_EFFECTS (0x1D) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
3DFX_DEPTH 3D effect depth control  
00  
3D effect  
5
4
3
2
1
0
ON3DFX  
0: OFF  
1: ON  
0
0
0
0
0
0
DAC Left / Right channel swap  
0: Left / Right inputs on Left / Right outputs  
1: Left / Right inputs on Right / Left outputs  
SWAP_DAC  
SWAP_ADC  
MONO_DAC  
MONO_ADC  
ONDEEMP  
ADC Left / Right channel swap  
0: Left / Right inputs on Left / Right outputs  
1: Left / Right inputs on Right / Left outputs  
(Left + Right) / 2 on Left and Right channels  
0: inactive  
1: active  
Left ADC output on both Left and Right channels  
0: inactive  
1: active  
De-emphasis filter  
0: OFF  
1: ON  
Table 13-51. 3-D Effect Depth Control Table  
3DFX_DEPTH  
Attenuation  
0dB  
00  
01  
10  
11  
-6dB  
-12dB  
-18dB  
109  
11050A–PMAAC–07-Apr-10  
Name:  
INPUT_CONTROL  
Access:  
Read / Write.  
This register is modified by Audio Controller at audio path change.  
0x1E  
Address:  
7
-
6
5
4
3
2
1
0
LINESEL  
ONMICL  
ONMICR  
ONADCL  
ONADCR  
ONLINL  
ONLINR  
Table 13-52. INPUT_CONTROL (0x1E) Structure  
Bit  
Name  
Description  
Reset value  
7
unused  
0
LINE / AUX input selection  
0: Aux input selected  
1: Line input selected  
LINESEL  
ONMICL  
ONMICR  
ONADCL  
ONADCR  
ONLINL  
6
5
4
3
2
1
0
1
0
0
0
0
0
0
Left microphone amplifier  
0: OFF  
1: ON  
Right microphone amplifier  
0: OFF  
1: ON  
Left ADC  
0: OFF  
1: ON  
Right ADC  
0: OFF  
1: ON  
Left line input amplifier  
0: OFF  
1: ON  
Right line input amplifier  
0: OFF  
1: ON  
ONLINR  
110  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
OUTPUT_CONTROL  
Read / Write  
Access:  
This register is modified by Audio Controller at audio path change.  
0x1F  
Address:  
7
-
6
5
4
3
2
1
0
ONSIDETONE  
ONPLAYBACK  
ONBYPASS  
ONHPL  
ONHPR  
ONDACL  
ONDACR  
Table 13-53. OUTPUT_CONTROL (0x1F) Structure  
Bit  
Name  
Description  
Reset value  
7
unused  
0
Sidetone switch  
0: muted  
1: enabled  
ONSIDETONE  
ONPLAYBACK  
ONBYPASS  
ONHPL  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
Playback switch  
0: muted  
1: enabled  
Bypass switch  
0: muted  
1: enabled  
Left headphone amplifier  
0: OFF  
1: ON  
Right headphone amplifier  
0: OFF  
1: ON  
ONHPR  
Left DAC  
0: OFF  
1: ON  
ONDACL  
Right DAC  
0: OFF  
ONDACR  
1: ON  
111  
11050A–PMAAC–07-Apr-10  
Name:  
INPUT_MIXER  
Access:  
Read / Write  
This register is modified by Audio Controller at audio path change.  
0x20  
Address:  
7
-
6
-
5
4
3
2
1
0
MIXMICL  
MIXMICR  
MIXLINEL  
MIXLINER  
ONMIXL  
ONMIXR  
Table 13-54. INPUT_MIXER (0x20) Structure  
Bit  
Name  
Description  
Reset value  
7:6  
-
unused  
00  
Left microphone input mixer switch  
5
4
3
2
1
0
MIXMICL  
MIXMICR  
MIXLINEL  
MIXLINER  
ONMIXL  
0: muted  
1: enabled  
0
0
0
0
0
0
Right microphone input mixer switch  
0: muted  
1: enabled  
Left line / aux input mixer switch  
0: muted  
1: enabled  
Right line / aux input mixer switch  
0: muted  
1: enabled  
Left input mixer ON / OFF  
0: muted  
1: enabled  
Right input mixer ON / OFF  
0: muted  
ONMIXR  
1: enabled  
112  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
SIDETONE_VOL  
Read / Write  
0x21  
Access:  
Address:  
7
-
6
-
5
-
4
3
2
1
0
SIDETONE_VOL  
Table 13-55. SIDETONE_VOL (0x21) Structure  
Bit  
7:5  
4:0  
Name  
Description  
Reset value  
000  
unused  
SIDETONE_VOL  
Left / Right sidetone path attenuation  
01011  
Table 13-56. Left / Right Sidetone Path Attenuation Selection Table  
SIDETONE_VOL  
00000  
ATT(dB)  
SIDETONE_VOL  
00100  
ATT(dB)  
SIDETONE_VOL  
01000  
ATT(dB)  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
30  
00001  
00101  
01001  
00010  
00110  
01010  
00011  
00111  
>=01011  
113  
11050A–PMAAC–07-Apr-10  
Name:  
EQUALIZER  
Read / Write  
0x22  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
2
1
0
EQ_SEL  
Table 13-57. EQUALIZER (0x22) Structure  
Bit  
7:4  
3:0  
Name  
Description  
Reset value  
0
EQ_SEL  
Equalizer selection  
0000  
Table 13-58. Equalizer Selection Table(0x22) Structure  
EQ_SEL  
0000  
Description  
Flat Response  
0001  
Bass boost +12dB  
Bass boost +6dB  
Bass cut -12dB  
Bass cut -6dB  
0010  
0011  
0100  
0101  
Medium boost +3dB  
Medium boost +8dB  
Medium cut -3dB  
Medium cut -8dB  
Treble boost +12dB  
Treble boost +6dB  
Treble cut -12dB  
Treble cut -6dB  
Flat response.  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
Other value  
114  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_CTRL  
Read / Write  
0x30  
Access:  
Address:  
7
6
5
-
4
-
3
-
2
1
0
ON_ADC  
ON_BUF  
TS  
Table 13-59. ADC_CTRL (0x30) Structure  
Bit  
Name  
Description  
Reset value  
ADC function  
0: OFF  
7
ON_ADC  
0
1: ON  
Analog buffer  
0: OFF  
6
ON_BUF  
0
1: ON  
5:3  
2:0  
unused  
TS  
-
000  
000  
Sampling period  
Table 13-60. ADC Sampling Period Selection Table  
SAMPLING  
PERIOD (s)  
TS  
000  
001  
010  
011  
100  
101  
110  
111  
0.01  
0.02  
0.1  
1
2
3
4
Max speed  
115  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_MUX_1  
Read / Write  
0x31  
Access:  
Address:  
7
-
6
5
-
4
3
2
1
0
VIN  
VDD4  
VDD3  
VDD2  
VDD1  
VDD0  
Table 13-61. ADC_MUX1 (0x31) Structure  
Bit  
Name  
Description  
Reset value  
7
unused  
-
0
VIN channel selection  
0: Not selected  
1: Selected  
6
5
4
VIN  
1
1
1
unused  
VDD4  
-
VDD4 channel selection  
0: Not selected  
1: Selected  
VDD3 channel selection  
0: Not selected  
1: Selected  
3
2
1
0
VDD3  
VDD2  
VDD1  
VDD0  
1
1
1
1
VDD2 channel selection  
0: Not selected  
1: Selected  
VDD1 channel selection  
0: Not selected  
1: Selected  
VDD0 channel selection  
0: Not selected  
1: Selected  
116  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_MUX_2  
Read / Write  
0x32  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
2
1
0
ANA3  
ANA2  
ANA1  
ANA0  
Table 13-62. ADC_MUX2 (0x32) Structure  
Bit  
Name  
Description  
Reset value  
7:4  
unused  
-
0000  
ANA3 channel selection  
0: Not selected  
1: Selected  
3
2
1
0
ANA3  
ANA2  
ANA1  
ANA0  
1
1
1
1
ANA2 channel selection  
0: Not selected  
1: Selected  
ANA1 channel selection  
0: Not selected  
1: Selected  
ANA0 channel selection  
0: Not selected  
1: Selected  
117  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_ANA0_MSB  
Read Only  
0x33  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-63. ADC_ANA0_MSB (0x33) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for ANA0 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_ANA0_LSB  
Read Only  
0x34  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-64. ADC_ANA0_LSB (0x34) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for ANA0 Channel  
00  
118  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_ANA1_MSB  
Read Only  
0x35  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-65. ADC_ANA1_MSB (0x35) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for ANA1 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_ANA1_LSB  
Read Only  
0x36  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-66. ADC_ANA1_LSB (0x36) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for ANA1 Channel  
00  
119  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_ANA2_MSB  
Read Only  
0x37  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-67. ADC_ANA2_MSB (0x37) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for ANA2 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_ANA2_LSB  
Read Only  
0x38  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-68. ADC_ANA2_LSB (0x38) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for ANA2 Channel  
00  
120  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_ANA3_MSB  
Read Only  
0x39  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-69. ADC_ANA3_MSB (0x39) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for ANA3 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_ANA3_LSB  
Read Only  
0x3A  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-70. ADC_ANA3_LSB (0x3A) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for ANA3 Channel  
00  
121  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_VDD0_MSB  
Read Only  
0x3B  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-71. ADC_VDD0_MSB (0x3B) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VDD0 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_VDD0_LSB  
Read Only  
0x3C  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-72. ADC_VDD0_LSB (0x3C) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VDD0 Channel  
00  
122  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_VDD1_MSB  
Read Only  
0x3D  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-73. ADC_VDD1_MSB (0x3D) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VDD1 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_VDD1_LSB  
Read Only  
0x3E  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-74. ADC_VDD1_LSB (0x3E) Structure  
Bit  
Name  
Description  
Reset value  
7:2  
1:0  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VDD1 Channel  
00  
123  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_VDD2_MSB  
Read Only  
0x3F  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-75. ADC_VDD2_MSB (0x3F) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VDD2 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_VDD2_LSB  
Read Only  
0x40  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-76. ADC_VDD2_LSB (0x40) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VDD2 Channel  
00  
124  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_VDD3_MSB  
Read Only  
0x41  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-77. ADC_VDD3_MSB (0x41) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VDD3 Channel  
Reset value  
7:2  
ADC<9:2>  
00000000  
Name:  
ADC_VDD3_LSB  
Read Only  
0x42  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-78. ADC_VDD3_LSB (0x42) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VDD3 Channel  
00  
125  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_VDD4_MSB  
Read Only  
0x43  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-79. ADC_VDD4_MSB (0x43) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VDD4 Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_VDD4_LSB  
Read Only  
0x44  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-80. ADC_VDD4_LSB (0x44) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VDD4 Channel  
00  
126  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
ADC_VIN_MSB  
Read Only  
0x47  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<9:2>  
Table 13-81. ADC_VIN_MSB (0x47) Structure  
Bit  
Name  
Description  
ADC_OUT<9:2> for VIN Channel  
Reset value  
7:0  
ADC<9:2>  
00000000  
Name:  
ADC_VIN_LSB  
Read Only  
0x48  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC<1:0>  
Table 13-82. ADC_VIN_LSB (0x48) Structure  
Bit  
7:2  
1:0  
Name  
Description  
Reset value  
-
unused  
ADC<1:0>  
ADC_OUT<1:0> for VIN Channel  
00  
127  
11050A–PMAAC–07-Apr-10  
Name:  
ADC_ANA_LSB  
Read Only  
0x49  
Access:  
Address:  
7
6
5
4
3
2
1
0
ADC_ANA3<1:0>  
ADC_ANA2<1:0>  
ADC_ANA1<1:0>  
ADC_ANA0<1:0>  
Table 13-83. ADC_ANA_LSB (0x49) Structure  
Bit  
7:6  
5:4  
3:2  
1:0  
Name  
Description  
Reset value  
ADC_ANA3<1:0>  
ADC_ANA2<1:0>  
ADC_ANA1<1:0>  
ADC_ANA0<1:0>  
ADC_OUT<1:0:> for ANA3 Channel  
ADC_OUT<1:0:> for ANA2 Channel  
ADC_OUT<1:0:> for ANA1 Channel  
ADC_OUT<1:0:> for ANA0 Channel  
00  
00  
00  
00  
Name:  
RTC_CTRL  
Access:  
Address:  
Read / Write  
0x50  
7
-
6
-
5
4
3
2
1
0
RTC_WRITE RTC_SEL  
RTC_EN  
Table 13-84. RTC_CTRL (0x50) Structure  
Bit  
Name  
Description  
unused  
Reset value  
7:3  
-
RTC read/write:  
2
1
0
RTC_WRITE  
RTC_SEL  
RTC_EN  
RTC_WRITE = 0: Read mode  
RTC_WRITE = 1: Write mode  
0
0
0
RTC block select:  
RTC_SEL = 0: Not Selected  
RTC_SEL = 1: Selected  
RTC block enable:  
RTC_EN = 0: Disabled  
RTC_EN = 1: Enabled  
128  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
RTC_ADDR  
Read / Write  
0x51  
Access:  
Address:  
7
6
5
4
3
2
1
0
RTC_ADDR  
Table 13-85. RTC_ADDR (0x51) Structure  
Bit  
Name  
Description  
Reset value  
7:0  
RTC_ADDR  
RTC address  
0000  
Name:  
RTC_DATA0  
Read / Write  
0x52  
Access:  
Address:  
7
6
5
4
3
2
1
0
RTC_DATA0  
Table 13-86. RTC_DATA0 (0x52) Structure  
Bit  
Name  
Description  
Reset value  
7:0  
RTC_DATA0  
RTC DATA 0  
0000000  
129  
11050A–PMAAC–07-Apr-10  
Name:  
RTC_DATA1  
Read / Write  
0x53  
Access:  
Address:  
7
6
5
4
3
3
3
2
2
2
1
1
1
0
RTC_DATA1  
Table 13-87. RTC_DATA1 (0x53) Structure  
Bit  
Name  
Description  
Reset value  
7:0  
RTC_DATA1  
RTC DATA 1  
0000000  
Name:  
RTC_DATA2  
Read / Write  
0x54  
Access:  
Address:  
7
6
5
4
0
RTC_DATA2  
Table 13-88. RTC_DATA2 (0x54) Structure  
Bit  
Name  
Description  
Reset value  
7:0  
RTC_DATA2  
RTC DATA 2  
0000000  
Name:  
RTC_DATA3  
Read / Write  
0x55  
Access:  
Address:  
7
6
5
4
0
RTC_DATA3  
Table 13-89. RTC_DATA3 (0x55) Structure  
Bit  
Name  
Description  
Reset value  
7:0  
RTC_DATA3  
RTC DATA 3  
0000000  
130  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Name:  
BACKUP_CTRL  
Read / Write  
0x56  
Access:  
Address:  
7
-
6
-
5
-
4
-
3
2
1
0
OSC_UPDT  
OSC_EN  
OSC_STAT RST_BKUP  
Table 13-90. BACKUP_CTRL (0x56) Structure  
Bit  
Name  
Description  
Reset value  
7:4  
-
unused  
0000  
RTC Oscillator update  
0: No action.  
1: Update RTC oscillator with OSC_EN  
3
2
1
0
OSC_UPDT  
OSC_EN  
0
0
0
0
RTC Oscillator enable request  
0: Oscillator off.  
1: Oscillator on.  
RTC Oscillator status (read only)  
0: Oscillator off.  
1: Oscillator on.  
OSC_STAT  
RST_BKUP  
Reset of the Backup Area  
0: Backup area active  
1: Backup area in reset state  
Name:  
VERSION  
Access:  
Address:  
Read  
0x7F  
7
6
5
4
3
2
1
0
SOFTWARE_TAG  
VERSION  
Table 13-91. VERSION (0x7F) Structure  
Bit  
Name  
Description  
Reset value  
Software Tag to identify product specificities as  
described in Section 17. “Ordering Information”  
on page 154.  
SOFTWARE_TAG  
7:4  
XXXX  
‘0001’: Rev. C samples  
‘0010’: Rev. D samples  
3:0  
VERSION  
XXXX  
131  
11050A–PMAAC–07-Apr-10  
14. PMU and Audio Soft Control: Quick Start  
14.1 RTC Examples  
14.1.1  
14.1.2  
14.1.3  
14.1.4  
RTC Oscillator POWER-ON  
// Set OSC_EN = 1 and OSC_UPDT = 1  
TWI_WRITE 0x0C @BACKUP_CTRL  
// Wait > 200us.  
WAIT 200us  
// Set OSC_UPDT = 0  
TWI_WRITE 0x04 @BACKUP_CTRL  
// Read BACKUP_CTRL to verify OSC_STAT bit. Result = 0x06.  
TWI_READ @BACKUP_CTRL  
RTC Oscillator POWER-OFF  
// Set OSC_EN = 0 and OSC_UPDT = 1  
TWI_WRITE 0x08 @BACKUP_CTRL  
// Wait 200us  
WAIT 200us  
// Set OSC_UPDT = 0  
TWI_WRITE 0x00 @BACKUP_CTRL  
// Read BACKUP_CTRL to verify OSC_STAT bit. Result = 0x00.  
TWI_READ @BACKUP_CTRL  
RTC Domain RESET  
// Set RST_BKUP = 1  
TWI_WRITE 0x01 @BACKUP_CTRL  
// Wait 200s  
WAIT 200us  
// Set RST_BKUP = 0  
TWI_WRITE 0x00 @BACKUP_CTRL  
Note:  
RTC Write Operation  
Reset of the RTC domain powers off the RTC oscillator.  
The following example makes a generic 32-bit write operation into the RTC macro. The 32-bit  
data is split into 4 bytes, that are successively sent over the TWI.  
unsigned int RTC_DATA;  
char DATA0 = (char) (RTC_DATA); // LSBs  
char DATA1 = (char) (RTC_DATA >> 8);  
char DATA2 = (char) (RTC_DATA >> 16);  
char DATA3 = (char) (RTC_DATA >> 24); // MSBs  
// Select RTC_ADDR = ADDR. ADDR is the RTC macro register to write,  
TWI_WRITE ADDR @RTC_ADDR  
// Set RTC_DATA0 to RTC_DATA4 registers.  
TWI_WRITE DATA0 @RTC_DATA0  
TWI_WRITE DATA1 @RTC_DATA1  
132  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
TWI_WRITE DATA2 @RTC_DATA2  
TWI_WRITE DATA3 @RTC_DATA3  
// Set RTC_WRITE = 1 (write) and RTC_SEL = 1  
TWI_WRITE 0x06 @ RTC_CTRL  
// Pulse RTC_EN  
TWI_WRITE 0x07 @ RTC_CTRL  
TWI_WRITE 0x06 @ RTC_CTRL  
// Disable RTC access  
TWI_WRITE 0x00 @ RTC_CTRL  
14.1.5  
RTC Read Operation  
The following example makes a generic 32-bit read operation into the RTC macro. The 32-bit  
RTC data is split into 4 bytes, that are successively read over the TWI.  
// Select RTC_ADDR = ADDR. ADDR is the RTC macro register to read,  
TWI_WRITE ADDR @RTC_ADDR  
// Set RTC_WRITE = 0 (read) and RTC_SEL = 1  
TWI_WRITE 0x02 @ RTC_CTRL  
// Pulse RTC_EN  
TWI_WRITE 0x03 @ RTC_CTRL  
TWI_WRITE 0x02 @ RTC_CTRL  
// Read RTC_DATA0 to RTC_DATA4 registers.  
TWI_READ @RTC_DATA0 // LSBs  
TWI_READ @RTC_DATA1  
TWI_READ @RTC_DATA2  
TWI_READ @RTC_DATA3 // MSBs  
// Disable RTC access  
TWI_WRITE 0x00 @ RTC_CTRL  
14.1.6  
RTC Date and Time Update  
In the following example, the RTC date and time is set to “12 October 2004, 08h 49min 59s”.  
The WRITE_RTC and READ_RTC functions operate as described in the previous sections.  
// Disable RTC interrupt MASK  
TWI_WRITE 0xFE @PMU_MASK  
// Enable RTC ACKUPD IT @RTC_IER (RTC_ADDR 0x20).  
WRITE_RTC 0x00000001 @RTC_IER  
// Set UPDTIME and UPDCAL @RTC_CR (RTC_ADDR 0x00).  
WRITE_RTC 0x00000003 @RTC_CR  
// Wait ITB low. This ensures that the RTC is ready to be updated.  
// Reset IT by read operation, result is 0x01.  
TWI_READ @PMU_IT  
// Read in RTC_SR that ACKUPD = 1 (RTC_ADDR = 0x18)  
READ_RTC @RTC_SR  
// Disable ACKUPD IT @RTC_IDR (RTC_ADDR = 0x24)  
WRITE_RTC 0x00000001 @RTC_IDR  
// Write Date @RTC_CALR (RTC_ADDR = 0x0C) (12 October 2004)  
WRITE_RTC 0x12300420 @RTC_CALR  
133  
11050A–PMAAC–07-Apr-10  
// Write Time @RTC_TIMR (RTC_ADDR = 0x08) (08h 49min 59s)  
WRITE_RTC 0x00084959 @RTC_TIMR  
// Start RTC @RTC_CR (RTC_ADDR = 0x00)  
WRITE_RTC 0x00000000 @RTC_CR  
14.2 Audio Examples  
14.2.1  
Basic Audio Codec Setting Using Automatic Path Control  
The following example demonstrates an automatic audio path setting. Assuming that the audio  
codec is supplied by the LDO4, the sequence is the following:  
• Make the codec interface configuration,  
• Set the Digital-IN to Headphone-OUT path,  
• Put the audio codec in standby mode,  
• Release the standby mode to re-activate the selected path,  
• Change the path on-the-fly,  
• Shutdown the codec.  
// Start LDO4 @3.3V  
TWI_WRITE 0x8C @ VDD4_CTRL  
// Digital Audio Interface configuration  
// Master clock = 12.288MHz, Master / Slave = slave.  
// DAI mode = I2S mode, Word length = 24 bits, FS = 48kHz  
TWI_WRITE 0x01 @ DAI_CONTROL  
TWI_WRITE 0x63 @ FRAME_CONTROL  
// Analog interface configuration  
// Mic. config: L & R single ended, Micbias = OFF, Mic. detection = OFF.  
// Headphone config: AC coupled,  
// Automatic Soft Ramping = ON, ASR timing = 11 (~10ms / step)  
TWI_WRITE 0x00 @ MIC_CONTROL  
TWI_WRITE 0x27 @ AUDIO_CONTROL  
// Analog gain  
// Headphone (L & R) gain: -20dB. (LHPBOTH set by default in HP_CONTROL)  
// Mic L & R gain: +26 dB.  
// Unmute all gains. No power-up is performed.  
TWI_WRITE 0xEC @ HPLVOL  
TWI_WRITE 0x1A @ MICLVOL  
TWI_WRITE 0x1A @ MICRVOL  
TWI_WRITE 0x00 @ MUTE  
// Audio Start  
// ENAC = 1, STANDBY = 1. PATH = 1 (DAC playback)  
// At the first start, VMID capacitor is charged.  
134  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
// Wait (3.tau) = 300ms with 1uF before standby release. (VMID will be  
// discharged only when ENAC = 0.)  
// From this point Audio Data can be sent over the Digital audio interface.  
TWI_WRITE 0x61 @ AUTOSTART.  
WAIT 300ms  
// Release standby. The audio codec starts silently, the gains are slowly  
// ramped up from mute to the register gains. The codec is active.  
TWI_WRITE 0x41 @ AUTOSTART  
// Codec Pause by Standby  
// All gains are softly ramped down to mute. The codec functions are  
// shut down. Current consumption is reduced to a few hundreds of micro-  
// amps. VMID remains charged  
TWI_WRITE 0x61 @ AUTOSTART  
// Pause out: Standby release. The codec softly re-starts.  
TWI_WRITE 0x41 @ AUTOSTART  
// On-the-fly path change  
// PATH = 19: Digital IN to Headphone OUT + Mic IN to Digital OUT.  
// The codec controller powers up automatically the new path. The DAC  
// playback is not affected by starting the Mic. recording.  
TWI_WRITE 0x52 @ AUTOSTART  
// Codec Shutdown. ENAC = 0, STANDBY = 1. The codec turns off smoothly.  
// In case of AC Coupling output configuration, HPR & HPL will slowly  
// discharge following VMID time constant.  
TWI_WRITE 0x20 @ AUTOSTART  
WAIT 600ms  
// Disable DCBLOCK bit.  
TWI_WRITE 0x07 @ AUDIO_CONTROL  
// LDO4 shutdown.  
TWI_WRITE 0x0C @ VDD4_CONTROL  
14.2.2  
Basic Audio Codec Setting Using Custom Path Control  
The following example demonstrates a custom audio path setting. Assuming that the audio  
codec is supplied by the LDO4, the sequence is the following:  
• Make the codec analog and digital interfaces configuration,  
• Enter the custom path mode and configure a path with DAC input and Headphone Amplifier  
output,  
• Put the audio codec in standby mode,  
• Release the standby mode to re-activate the selected path,  
• Change the path on-the-fly to add the microphone inputs to the DAC signal,  
• Shutdown the codec.  
135  
11050A–PMAAC–07-Apr-10  
// Start LDO4 @3.3V  
TWI_WRITE 0x8C @ VDD4_CTRL  
// Digital Audio Interface configuration  
// Master clock = 12.288MHz, Master / Slave = slave.  
// DAI mode = I2S mode, Word length = 24 bits, FS = 48kHz  
TWI_WRITE 0x01 @ DAI_CONTROL  
TWI_WRITE 0x63 @ FRAME_CONTROL  
// Analog interface configuration  
// Mic. config: L & R single ended, Micbias = OFF, Mic. detection = OFF.  
// Headphone config: AC coupled,  
// Automatic Soft Ramping = ON, ASR timing = 11 (~10ms / step)  
TWI_WRITE 0x00 @ MIC_CONTROL  
TWI_WRITE 0x27 @ AUDIO_CONTROL  
// Analog gain  
// Headphone (L & R) gain: -20dB. (LHPBOTH set by default in HP_CONTROL)  
// Mic L & R gain: +26 dB.  
// Unmute all gains. No power-up is performed.  
TWI_WRITE 0xEC @ HPLVOL  
TWI_WRITE 0x1A @ MICLVOL  
TWI_WRITE 0x1A @ MICRVOL  
TWI_WRITE 0x00 @ MUTE  
// Enter the custom path configuration mode  
TWI_WRITE 0x2F @ AUDIO_CONTROL  
// Audio Start  
// ENAC = 1, STANDBY = 1. PATH = 0 (Not read by the audio controller)  
// At the first start, VMID capacitor is charged.  
// Wait (3.tau) = 300ms with 1uF before standby release. (VMID will be  
// discharged only when ENAC = 0.)  
// From this point Audio Data can be sent over the Digital audio interface.  
TWI_WRITE 0x60 @ AUTOSTART.  
WAIT 300ms  
// Audio path definition: DAC input to Headphone output. The software sets  
// the bits: ONDACL, ONDACR, ONHPL, ONHPR and PLAYBACK by writing  
// the registers INPUT_CONTROL, OUTPUT_CONTROL, and INPUT_MIXER.  
// The changes are not taken immediately into account (ENCONF = 0).  
TWI_WRITE 0x40 @ INPUT_CTRL  
TWI_WRITE 0x2F @ OUTPUT_CTRL  
TWI_WRITE 0x00 @ INPUT_MIXER  
// ENCONF pulse: the audio controller takes the requested changes into  
136  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
// account.  
TWI_WRITE 0x3F @ AUDIO_CONTROL  
TWI_WRITE 0x2F @ AUDIO_CONTROL  
// STANDBY release. The codec softly starts.  
TWI_WRITE 0x40 @ AUTOSTART.  
// Codec Pause by Standby  
// All gains are softly ramped down to mute. The codec functions are  
// shut down. Current consumption is reduced to a few hundreds of micro-  
// amps. VMID remains charged  
TWI_WRITE 0x60 @ AUTOSTART  
// Pause out: Standby release. The codec softly re-starts.  
TWI_WRITE 0x40 @ AUTOSTART  
// On-the-fly path change: the stereo microphone inputs are added to the  
// DAC playback. The software sets: ONMICL, ONMICR, and ONSIDETONE.  
TWI_WRITE 0x70 @ INPUT_CTRL  
TWI_WRITE 0x6F @ OUTPUT_CTRL  
TWI_WRITE 0x00 @ INPUT_MIXER  
// Sidetone gain  
TWI_WRITE 0x00 @ SIDETONE_VOL  
// ENCONF pulse: the audio controller takes the requested changes into  
// account. The path modification is here immediate because STANDBY=0.  
TWI_WRITE 0x3F @ AUDIO_CONTROL  
TWI_WRITE 0x2F @ AUDIO_CONTROL  
// Codec Shutdown. ENAC = 0, STANDBY = 1. The codec turns off smoothly.  
// In case of AC Coupling output configuration, HPR & HPL will slowly  
// discharge following VMID time constant.  
TWI_WRITE 0x20 @ AUTOSTART  
WAIT 600ms  
// Disable DCBLOCK bit.  
TWI_WRITE 0x07 @ AUDIO_CONTROL  
// LDO4 shutdown.  
TWI_WRITE 0x0C @ VDD4_CONTROL  
137  
11050A–PMAAC–07-Apr-10  
138  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
15. Typical Performance Characteristics  
15.1 PMU: Power Supply Sequences  
Figure 15-1. Powerdown State to Run State Supplies Start-Up  
Powerdown to Run State  
SEQUENCE A  
Powerdown to Run State  
SEQUENCE B  
Figure 15-2. Run Sate to Powerdown State Supplies Shut-Down  
Run to Powerdown State  
SEQUENCE A  
Run to Powerdown State  
SEQUENCE B  
139  
11050A–PMAAC–07-Apr-10  
Figure 15-3. Detailed Supplies Start-Up  
Detailed Supplies Start-Up  
SEQUENCE A  
Detailed Supplies Start-Up  
SEQUENCE B  
Figure 15-4. Detailed Supplies Shutdown  
Detailed Supplies Shutdown  
SEQUENCE A  
Detailed Supplies shutdown  
SEQUENCE B  
140  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 15-5. Run State to Standby State  
Run To Standby State (default setting)  
SEQUENCE A  
Run To Standby State (default setting)  
SEQUENCE B  
Figure 15-6. Standby To Run State  
Standby To Run State (default setting)  
SEQUENCE A  
Standby To Run State (default setting)  
SEQUENCE B  
141  
11050A–PMAAC–07-Apr-10  
15.2 DCDC0 and DCDC1  
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those  
described in Section 5. “Application Block Diagram” on page 8.  
Figure 15-7. DCDC0 Transient Load Regulation Performance  
DCDC0 - VIN = 3.3V - VOUT = 1.85V  
Load Step 0 To 600mA / 1us  
DCDC0 - VIN = 3.3V - VOUT = 1.85V  
Load Step 600 To 0mA / 1us  
DCDC0 - VIN = 5.5V - VOUT = 1.85V  
Load Step 0 To 600mA / 1us  
DCDC0 - VIN = 5.5V - VOUT = 1.85V  
Load Step 600 To 0mA / 1us  
142  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 15-8. DCDC0 Ripple and Efficency Performance  
DCDC0 - VOUT = 1.8V  
Efficiency in PFM and PWM modes  
DCDC0 - VIN = 5.5V - VOUT = 1.8V  
Output Voltage Ripple  
143  
11050A–PMAAC–07-Apr-10  
Figure 15-9. DCDC1Transient Load Regulation Performance  
DCDC0 - VIN = 3.3V - VOUT = 1.2V  
Load Step 0 To 600mA / 1us  
DCDC0 - VIN = 3.3V - VOUT = 1.2V  
Load Step 600 To 0mA / 1us  
DCDC0 - VIN = 5.5V - VOUT = 1.2V  
DCDC0 - VIN = 5.5V - VOUT = 1.2V  
Load Step 0 To 600mA / 1us  
Load Step 600 To 0mA / 1us  
144  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 15-10. DCDC0 Ripple and Efficiency Performance  
DCDC1 - VOUT = 1.2V  
Efficiency in PFM and PWM modes  
DCDC1 - VIN = 5.5V - VOUT = 1.2V  
Output Voltage Ripple  
145  
11050A–PMAAC–07-Apr-10  
15.3 LDO2  
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those  
described in Section 5. “Application Block Diagram” on page 8.  
Figure 15-11. LDO2 Tansient and Static Load Regulation Performance  
LDO2- VIN = 1.8V - VOUT = 1V  
Load Step 0 To 300mA / 1us  
LDO2 - VIN = 1.8V - VOUT = 1V  
Load Step 300 To 0mA / 1us  
LDO2 - VIN = 1.8V - VOUT = 1V  
LDO2 - VIN = 1.7V - VOUT = 1.2V  
Static Load Regulation - 0 To 300mA  
Static Load Regulation - 0 To 300mA  
146  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
15.4 LDO3  
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those  
described in Section 5. “Application Block Diagram” on page 8.  
Figure 15-12. LDO3 Transient and Static Load Regulation Performance  
LDO3- VIN = 5.5V - VDD3 = 3.3V  
Load Step 0 To 200mA / 1us  
LDO3 - VIN = 5.5V - VDD3 = 3.3V  
Load Step 200 To 0mA / 1us  
LDO3 - VIN = 3.6V - VDD3 = 3.3V  
Static Load Regulation - 0 To 200mA  
LDO3 - VDD3 = 3.3V - 200mA output load  
Drop Out Characteristic.  
(VDD3REG = VDD3 with VIN3 > VDD3 + 300mV)  
147  
11050A–PMAAC–07-Apr-10  
15.5 AUDIO  
Unless otherwise noted, the reported measurement were performed at room temperature with AVDD = 3.3V supplied from  
LDO4. Typical components as described in Section 5. “Application Block Diagram” on page 8 are used.  
Figure 15-13. Microphone Recording Waveforms  
Differential Microphone Recording ( Path 5)  
-1dBV / 1kHz Input - Fs = 48kHz - 16kpts FFT  
Differential Microphone Recording ( Path 5)  
-60dBV / 1kHz Input - Fs = 48kHz - 16kpts FFT  
Differential Microphone Recording ( Path 5)  
THD+N Ratio Versus Input Level  
148  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 15-14. DAC Playback Waveforms  
DAC playback ( Path 1) - Load 10k  
0 dBFs / 1kHz Input - Fs = 48kHz - 32kpts FFT  
DAC playback ( Path 1) - Load 10k  
-60 dBFs / 1kHz Input - Fs = 48kHz - 32kpts FFT  
DAC playback ( Path 1) - Load 10k  
THD+N Ratio Versus Input Level  
DAC playback ( Path 1) - Load 32 Ohms AC coupled  
20mW Ouput Power - Fs = 48kHz - 32kpts FFT  
149  
11050A–PMAAC–07-Apr-10  
Figure 15-15. Line Record Waveforms  
Line Record (path 7)  
-1 dBV / 1kHz Input - Fs = 48kHz - 32kpts FFT  
Line Record (path 7)  
-60 dBV / 1kHz Input - Fs = 48kHz - 32kpts FFT  
Line Record (path 7)  
THD+N Ratio Versus Input Level  
150  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
Figure 15-16. Line Bypass Waveforms  
Line Bypass (path 5)  
0 dBV / 1kHz Input - 10k load - 16kpts FFT  
Line Bypass (path 5)  
-60 dBV / 1kHz Input - 10k load - 16kpts FFT  
Line Record (path 5) - 10k load  
THD+N Ratio Versus Input Level  
151  
11050A–PMAAC–07-Apr-10  
152  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
16. Package Information  
Figure 16-1. Mechanical Package Drawing for 64-lead Quad Flat No Lead Package  
153  
11050A–PMAAC–07-Apr-10  
17. Ordering Information  
Table 17-1. Ordering Information  
Temperature  
Ordering Code  
Package  
Power Sequence  
Type(2)  
Software  
Tag(1)  
Supplies Default Values  
and Marking  
Operating Range  
VDD0 = 1.85V  
VDD1 = 1.20V  
VDD2 = 1.00V  
VDD3 = 3.30V  
VDD4 = 3.30V  
QFN64 7.5 x7.5mm  
AT73C246  
Green  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
A
B
B
0000  
0001  
0010  
VDD0 = 1.80V  
VDD1 = 1.20V  
VDD2 = 1.20V  
VDD3 = 3.30V  
VDD4 = 3.30V  
QFN64 7.5 x7.5mm  
AT73C246-A  
Green  
VDD0 = 1.80V  
VDD1 = 1.00V  
VDD2 = 1.00V  
VDD3 = 3.30V  
VDD4 = 3.30V  
QFN64 7.5 x7.5mm  
AT73C246-B  
Green  
Notes: 1. See “VERSION” (0x7F) register definition.  
2. See “Power Manager State Description” on page 29 and “Typical Performance Characteristics” on page 139.  
154  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
18. Revision History  
Table 18-1. Revision History  
Change  
Request  
Ref.  
Doc. Rev  
Date  
Comments  
11050A  
07-Apr-10  
First issue  
155  
11050A–PMAAC–07-Apr-10  
156  
AT73C246  
11050A–PMAAC–07-Apr-10  
AT73C246  
1
2
3
4
5
6
7
8
9
Description ............................................................................................... 2  
Block Diagram .......................................................................................... 3  
Package and Pinout ................................................................................. 4  
Pin Description ......................................................................................... 5  
Application Block Diagram ..................................................................... 8  
Absolute Maximum Ratings .................................................................. 11  
Recommended Operating Conditions .................................................. 11  
Power Dissipation Ratings .................................................................... 11  
PMU Electrical Characteristics ............................................................. 12  
9.1Current Consumption Versus Modes ......................................................................12  
9.2Supply Monitor Thresholds ......................................................................................12  
9.3Digital I/Os DC Characteristics ................................................................................13  
9.4DCDC0 and DCDC1 ................................................................................................14  
9.5LDO2 .......................................................................................................................16  
9.6LDO3 .......................................................................................................................17  
9.7LDO4 .......................................................................................................................18  
9.8LDO5 .......................................................................................................................19  
9.9Measurement Bridge and 10-bit ADC .....................................................................20  
9.10RTC Crystal Oscillator ...........................................................................................21  
9.11Die Temperature Sensor .......................................................................................21  
10 Audio Codec Electrical Characteristics ............................................... 22  
11 PMU Functional Description ................................................................. 25  
11.1Power Manager State Diagram .............................................................................25  
11.2PMU Startup and Shutdown State Diagram ..........................................................26  
11.3Power Manager Conditional Transitions ................................................................27  
11.4Power Manager State Description .........................................................................29  
11.5DCDC0 and DCDC1 Functional Description .........................................................36  
11.6LDO2 Functional Description .................................................................................37  
11.7LDO3 and LDO4 Functional Description ...............................................................37  
11.8Power Fail Detectors .............................................................................................38  
11.9Measurement Bridge and 10-bit ADC ....................................................................38  
11.10Real Time Clock (RTC) User Interface ................................................................40  
11.11Die Temperature Sensor .....................................................................................54  
i
11050A–PMAAC–07-Apr-10  
12 Audio Codec Functional Description ................................................... 55  
12.1Description .............................................................................................................55  
12.2Audio Codec Block Diagram ..................................................................................55  
12.3Audio Codec Controls ............................................................................................56  
12.4Audio Controller .....................................................................................................57  
12.5Audio Codec Power Consumption Versus Programmed Audio Path ....................63  
12.6Digital Audio Interface ...........................................................................................66  
12.7Digital Filters Transfer Function .............................................................................68  
12.8Analog Audio Interfaces ........................................................................................74  
13 Two Wire Interface and Control Registers ........................................... 77  
13.1Two-wire Interface (TWI) Protocol .........................................................................77  
13.2PMU Register Tables ............................................................................................79  
14 PMU and Audio Soft Control: Quick Start ......................................... 132  
14.1RTC Examples ....................................................................................................132  
14.2Audio Examples ...................................................................................................134  
15 Typical Performance Characteristics ................................................. 139  
15.1PMU: Power Supply Sequences .........................................................................139  
15.2DCDC0 and DCDC1 ............................................................................................142  
15.3LDO2 ...................................................................................................................146  
15.4LDO3 ...................................................................................................................147  
15.5AUDIO .................................................................................................................148  
16 Package Information ............................................................................ 153  
17 Ordering Information ........................................................................... 154  
18 Revision History ................................................................................... 155  
ii  
AT73C246  
11050A–PMAAC–07-Apr-10  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
www.atmel.com/PowerManage  
Technical Support  
pmaac@atmel.com  
Atmel Techincal Support  
Sales Contacts  
www.atmel.com/contacts/  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifica-  
tions and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically pro-  
vided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted  
for use as components in applications intended to support or sustain life.  
© 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof and others, are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
11050A–PMAAC–07-Apr-10  

相关型号:

AT73C260

Power Supply Support Circuit, 1 Channel, GREEN, QFN-16
ATMEL

AT73C500

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C500-JC

Power Metering
ETC

AT73C501

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C501-JC

Analog-to-Digital Converter, 16-Bit
ETC

AT73C502

Chip Set Solution for Watt-Hour Meters
ATMEL

AT73C502-QC

Analog-to-Digital Converter, 16-Bit
ETC

AT74011-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN

AT74011-H2B1-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket
FOXCONN

AT74013-H2B-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Receptacle
FOXCONN

AT74013-H2B1-4F

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket, ROHS COMPLIANT
FOXCONN

AT74013-H2B1-4N

Card Edge Connector, 240 Contact(s), 2 Row(s), Female, Straight, 0.039 inch Pitch, Press Fit Terminal, Latch & Eject, Black Insulator, Socket,
FOXCONN