EVAL-ADAU1979Z [ADI]

Quad Analog-to-Digital Converter (ADC); 四路模拟数字转换器( ADC )
EVAL-ADAU1979Z
型号: EVAL-ADAU1979Z
厂家: ADI    ADI
描述:

Quad Analog-to-Digital Converter (ADC)
四路模拟数字转换器( ADC )

转换器
文件: 总44页 (文件大小:1698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Analog-to-Digital Converter (ADC)  
Data Sheet  
ADAU1979  
FEATURES  
GENERAL DESCRIPTION  
Four 4.5 V rms (typical) differential inputs  
On-chip phase-locked loop (PLL) for master clock  
Low electromagnetic interference (EMI) design  
109 dB (typical) analog-to-digital converter (ADC) dynamic  
range  
Total harmonic distortion + noise (THD + N): −95 dB (typical)  
Selectable digital high-pass filter  
24-bit stereo ADC with 8 kHz to 192 kHz sample rates  
Digital volume control with autoramp function  
I2C/SPI controllable for flexibility  
Software-controllable clickless mute  
Software power-down  
Right justified, left justified, I2S, and TDM modes  
Master and slave operation modes  
40-lead LFCSP package  
The ADAU1979 incorporates four high performance, analog-to-  
digital converters (ADCs) with 4.5 V rms capable ac-coupled  
inputs. The ADCs use a multibit sigma-delta (Σ-Δ) architecture  
with continuous time front end for low EMI. An I2C/serial  
peripheral interface (SPI) control port is included that allows a  
microcontroller to adjust volume and many other parameters.  
The ADAU1979 uses only a single 3.3 V supply. The device  
internally generates the required digital DVDD supply. The low  
power architecture reduces the power consumption. The on-  
chip PLL can derive the master clock from an external clock  
input or frame clock (sample rate clock). When fed with the  
frame clock, it eliminates the need for a separate high frequency  
master clock in the system. The ADAU1979 is available in a  
40-lead LFCSP package.  
Note that throughout this data sheet, multifunction pins, such  
as SCL/CCLK, are referred to either by the entire pin name or  
by a single function of the pin, for example, CCLK, when only  
that function is relevant.  
Qualified for automotive applications  
APPLICATIONS  
Automotive audio systems  
Active noise cancellation systems  
FUNCTIONAL BLOCK DIAGRAM  
3.3V TO 1.8V  
REGULATOR  
DVDD  
ADAU1979  
AVDDx  
AIN1  
AIN1  
AIN2  
AIN2  
AIN3  
AIN3  
AIN4  
AIN4  
IOVDD  
ADC  
ADC  
LRCLK  
BCLK  
ADC  
ADC  
SDATAOUT1  
SDATAOUT2  
AGNDx  
SCL/CCLK  
SDA/COUT  
AVDDx  
2
ADDR1/CIN  
ADDR0/CLATCH  
I C/SPI  
BG  
REF  
CONTROL  
PLL  
PD/RST  
AGNDx  
AGNDx  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADAU1979  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Mode ..................................................................................... 24  
Register Summary .......................................................................... 26  
Register Details ............................................................................... 27  
Master Power and Soft Reset Register..................................... 27  
PLL Control Register ................................................................. 28  
Block Power Control and Serial Port Control Register......... 29  
Serial Port Control Register 1................................................... 30  
Serial Port Control Register 2................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Analog Performance Specifications ........................................... 3  
Digital Input/Output Specifications........................................... 3  
Power Supply Specifications........................................................ 4  
Digital Filter Specifications......................................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 12  
Overview...................................................................................... 12  
Power Supply and Voltage Reference....................................... 12  
Power-On Reset Sequence ........................................................ 12  
PLL and Clock............................................................................. 13  
Analog Inputs.............................................................................. 14  
ADC ............................................................................................. 16  
ADC Summing Modes .............................................................. 16  
Serial Audio Data Output Ports, Data Format ....................... 17  
Control Ports................................................................................... 21  
I2C Mode...................................................................................... 21  
Channel 1 and Channel 2 Mapping for Output Serial Ports  
Register ........................................................................................ 32  
Channel 3 and Channel 4 Mapping for Output Serial Ports  
Register ........................................................................................ 34  
Serial Output Drive Control and Overtemperature Protection  
Status Register............................................................................. 35  
Post ADC Gain Channel 1 Control Register.......................... 36  
Post ADC Gain Channel 2 Control Register.......................... 37  
Post ADC Gain Channel 3 Control Register.......................... 37  
Post ADC Gain Channel 4 Control Register.......................... 38  
High-Pass Filter and DC Offset Control Register and Master  
Mute Register.............................................................................. 38  
ADC Clipping Status Register .................................................. 39  
Digital DC High-Pass Filter and Calibration Register.......... 40  
Typical Application Circuit........................................................... 41  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
Automotive Products................................................................. 42  
REVISION HISTORY  
11/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
Data Sheet  
ADAU1979  
SPECIFICATIONS  
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.  
AVDDx/IOVDD = 3.3 V; DVDD (internally generated) = 1.8 V; TA = −40°C to +105°C, unless otherwise noted. Master clock = 12.288 MHz  
(48 kHz fS, 256 × fS mode); input sample rate = 48 kHz; measurement bandwidth = 20 Hz to 20 kHz; word width = 24 bits; load capacitance  
(digital output) = 20 pF; load current (digital output) = 1 mA; digital input voltage high = 2.0 V; and digital input voltage low = 0.8 V.  
ANALOG PERFORMANCE SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LINE INPUT  
Full Scale AC Differential Input Voltage  
Full Scale Single-Ended Input Voltage  
Input Common-Mode Voltage  
4.18  
2.09  
4.5  
2.25  
1.5  
4.82  
2.41  
V rms  
V rms  
V dc  
VIN, cm at AINx/AINx pins  
ANALOG-TO-DIGITAL CONVERTERS  
Differential Input Resistance  
Single-Ended Input Resistance  
ADC Resolution  
Between AINx and AINx  
Between AINx and AINx  
64.34  
32.17  
24  
109  
−95  
kΩ  
kΩ  
Bits  
dB  
dB  
dB  
%
Dynamic Range (A-Weighted) Line Input1  
Input = 1 kHz, −60 dBFS (0 dBFS = 4.5 V rms input)  
103  
Total Harmonic Distortion + Noise (THD + N) Input = 1 kHz, −1 dBFS (0 dBFS = 4.5 V rms input)  
Digital Gain Post ADC  
Gain Error  
Interchannel Gain Mismatch  
Gain Drift  
Common-Mode Rejection Ratio (CMRR)  
−87  
60  
+10  
0
−10  
−0.25  
+0.25 dB  
ppm/°C  
100  
65  
56  
70  
100  
0
400 mV rms, 1 kHz  
400 mV rms, 20 kHz  
100 mV rms, 1 kHz on AVDD = 3.3 V  
50  
dB  
dB  
dB  
dB  
Power Supply Rejection Ratio (PSRR)  
Interchannel Isolation  
Interchannel Phase Deviation  
REFERENCE  
Degrees  
Internal Reference Voltage  
Output Impedance  
VREF pin  
1.47  
8
1.50  
20  
1.54  
192  
V
kΩ  
ADC SERIAL PORT  
Output Sample Rate  
kHz  
1 This is for a sampling frequency, fS, ranging from 44.1 kHz to 192 kHz.  
DIGITAL INPUT/OUTPUT SPECIFICATIONS  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
Input Leakage Current  
Input Capacitance  
0.7 × IOVDD  
−10  
V
V
µA  
pF  
0.3 × IOVDD  
+10  
5
OUTPUT  
High Level Output Voltage (VOH)  
Low Level Output Voltage (VOL)  
IOH = 1 mA  
IOL = 1 mA  
IOVDD − 0.60  
V
V
0.4  
Rev. 0 | Page 3 of 44  
 
 
 
 
ADAU1979  
Data Sheet  
POWER SUPPLY SPECIFICATIONS  
AVDD = 3.3 V, DVDD = 1.8 V, IOVDD = 3.3 V, and fS = 48 kHz (master mode), unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY  
DVDD  
AVDDx  
IOVDD  
On-chip low dropout (LDO) regulator  
1.62  
3.0  
1.62  
1.8  
3.3  
3.3  
1.98  
3.6  
3.6  
V
V
V
IOVDD CURRENT  
Normal Operation  
Master clock = 256 × fS  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
fS = 48 kHz to 192 kHz  
450  
880  
1.75  
20  
µA  
µA  
mA  
µA  
Power-Down  
AVDDx CURRENT  
Normal Operation  
4-channel ADC, DVDD internal  
4-channel ADC, DVDD external  
14  
9.5  
270  
mA  
mA  
µA  
Power-Down  
DVDD CURRENT  
Normal Operation  
Power-Down  
DVDD external  
5
65  
mA  
µA  
POWER DISSIPATION  
Normal Operation  
Analog Supply  
Master clock = 256 × fS, 48 kHz  
DVDD internal  
DVDD external  
DVDD external  
IOVDD = 3.3 V  
46.2  
31  
8.1  
1.49  
960  
mW  
mW  
mW  
mW  
µW  
Digital Supply  
Digital I/O Supply  
Power-Down, All Supplies  
DIGITAL FILTER SPECIFICATIONS  
Table 4.  
Parameter  
Mode  
Factor  
Min  
Typ  
Max  
Unit  
ADC DECIMATION FILTER  
Pass Band  
All modes, typical at fS = 48 kHz  
0.4375 × fS  
21  
0.015  
kHz  
dB  
Pass-Band Ripple  
Transition Band  
Stop Band  
Stop-Band Attenuation  
Group Delay  
0.5 × fS  
0.5625 × fS  
24  
27  
kHz  
kHz  
dB  
µs  
µs  
79  
fS = 8 kHz to 96 kHz  
fS = 192 kHz  
22.9844/fS  
479  
35  
HIGH-PASS FILTER  
Cutoff Frequency  
Phase Deviation  
Settling Time  
All modes, typical at 48 kHz  
At −3 dB point  
At 20 Hz  
0.9375  
10  
1
Hz  
Degrees  
sec  
ADC DIGITAL GAIN  
Gain Step Size  
All modes  
0
60  
dB  
dB  
0.375  
Rev. 0 | Page 4 of 44  
 
 
Data Sheet  
ADAU1979  
TIMING SPECIFICATIONS  
Table 5.  
Limit at  
tMIN tMAX  
Parameter  
Unit  
Description  
INPUT MASTER CLOCK (MCLK)  
Duty Cycle  
fMCLKIN  
40  
60  
%
MHz  
MCLKIN duty cycle; MCLKIN at 256 × fS, 384 × fS, 512 × fS, and 768 × fS  
MCLKIN frequency, PLL in MCLK mode  
See Table 9  
RESET  
Reset Pulse, tRESET  
15  
ns  
RST low  
PLL  
Lock Time  
10  
ms  
ADC SERIAL OUTPUT PORT  
See Figure 2  
tABH  
tABL  
tALS  
10  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
BCLK high, slave mode  
BCLK low, slave mode  
LRCLK setup to BCLK rising, slave mode  
LRCLK hold from BCLK rising, slave mode  
SDATAOUTx delay from BCLK falling  
See Figure 3  
CCLK frequency  
CCLK high  
CCLK low  
CIN setup to CCLK rising  
CIN hold from CCLK rising  
CLATCH setup to CCLK rising  
CLATCH hold from CCLK rising  
CLATCH high  
tALH  
tABDD  
SPI PORT  
fCCLK  
tCCPH  
tCCPL  
tCDS  
18  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
35  
35  
10  
10  
10  
40  
10  
30  
30  
30  
tCDH  
tCLS  
tCLH  
tCLPH  
tCOE  
COUT enable from CLATCH falling  
COUT delay from CCLK falling  
COUT tristate from CLATCH rising  
tCOD  
tCOTS  
I2C PORT  
See Figure 4  
fSCL  
400  
kHz  
µs  
µs  
µs  
µs  
SCL frequency  
SCL high  
SCL low  
tSCLH  
tSCLL  
tSCS  
tSCH  
tDS  
0.6  
1.3  
0.6  
0.6  
100  
0
Setup time; relevant for repeated start condition  
Hold time; after this period of time, the first clock pulse is generated  
Data setup time  
Data hold time  
ns  
tDH  
tSCR  
tSCF  
tSDR  
tSDF  
tBFT  
tSUSTO  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
µs  
µs  
SCL rise time  
SCL fall time  
SDA rise time  
SDA fall time  
Bus-free time; time between stop and start  
Setup time for stop condition  
1.3  
0.6  
Rev. 0 | Page 5 of 44  
 
ADAU1979  
Data Sheet  
Timing Diagrams  
tALS  
LRCLK  
tALH  
tABH  
BCLK  
tABL  
tABDD  
SDATAOUTx  
LEFT JUSTIFIED  
MODE  
MSB  
MSB – 1  
tABDD  
SDATAOUTx  
I S MODE  
MSB  
2
tABDD  
SDATAOUTx  
RIGHT JUSTIFIED  
MODE  
MSB  
LSB  
8-BIT CLOCKS  
(24-BIT DATA)  
12-BIT CLOCKS  
(20-BIT DATA)  
14-BIT CLOCKS  
(18-BIT DATA)  
16-BIT CLOCKS  
(16-BIT DATA)  
Figure 2. ADC Serial Output Port Timing  
tCLH  
tCLS  
tCLPH  
tCOE  
tCCPL  
tCCPH  
CLATCH  
CCLK  
CIN  
tCDH  
tCDS  
tCOTS  
COUT  
tCOD  
Figure 3. SPI Port Timing  
tSCH  
STOP  
START  
tDS  
tSCH  
tSDR  
SDA  
tSDF  
tSCLH  
tBFT  
tSCR  
SCL  
tSCS  
tSUSTO  
tSCLL  
tSCF  
tDH  
Figure 4. I2C Port Timing  
Rev. 0 | Page 6 of 44  
 
 
 
Data Sheet  
ADAU1979  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
THERMAL RESISTANCE  
θJA represents junction-to-ambient thermal resistance, and  
θJC represents the junction-to-case thermal resistance. All  
characteristics are for a standard JEDEC board per JESD51.  
Parameter  
Rating  
Analog (AVDDx) Supply  
Digital Supply  
−0.3 V to +3.6 V  
DVDD  
IOVDD  
−0.3 V to +1.98 V  
−0.3 V to +3.63 V  
20 mA  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−40°C to +105°C  
−40°C to +125°C  
−65°C to +150°C  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Input Current (Except Supply Pins)  
Analog Input Voltage (Signal Pins)  
Digital Input Voltage (Signal Pins)  
Operating Temperature Range (Ambient)  
Junction Temperature Range  
Storage Temperature Range  
40-Lead LFCSP  
32.8  
1.93  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 44  
 
 
 
ADAU1979  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AGND1  
VREF  
PLL_FILT  
AVDD2  
1
2
3
4
5
6
7
8
9
30 NC  
29 AGND6  
28 AGND5  
27 NC  
26 NC  
25 NC  
24 NC  
23 NC  
22 AGND4  
21 AGND3  
ADAU1979  
TOP VIEW  
(Not to Scale)  
AGND2  
PD/RST  
MCLKIN  
NC  
SA_MODE  
DVDD 10  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THESE PINS.  
LEAVE THE NC PINS OPEN.  
2. THE EXPOSED PAD MUST BE CONNECTED TO THE  
GROUND PLANE ON THE PRINTED CIRCUIT BOARD (PCB).  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
AGND1  
VREF  
Type1 Description  
1
2
P
O
Analog Ground.  
Voltage Reference. Decouple VREF to AGND with a 10 µF capacitor in parallel with a 100 nF  
capacitor.  
3
PLL_FILT  
O
Phase-Locked Loop Filter. Return PLL_FILT to AVDD using recommended loop filter  
components.  
4
5
6
7
AVDD2  
AGND2  
PD/RST  
MCLKIN  
P
P
I
Analog Power Supply. Connect AVDD2 to an analog 3.3 V supply.  
Analog Ground.  
Power-Down/Reset (Active Low).  
I
Master Clock Input.  
8, 23 to 27, 30 NC  
No Connect. Do not connect to these pins. Leave the NC pins open.  
9
SA_MODE  
I
Standalone Mode. Connect SA_MODE to IOVDD using a 10 kΩ pull-up resistor for standalone  
mode.  
10  
DVDD  
O
1.8 V Digital Power Supply Output. Decouple DVDD to DGND with 100 nF and 10 µF  
capacitors.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
28  
29  
DGND  
IOVDD  
SDATAOUT1  
SDATAOUT2  
LRCLK  
P
P
Digital Ground.  
Digital I/O Power Supply. Connect IOVDD to a supply from 1.8 V to 3.3 V.  
ADC Serial Data Output Pair 1 (ADC L1 and ADC R1).  
ADC Serial Data Output Pair 2 (ADC L2 and ADC R2).  
Frame Clock for ADC Serial Port.  
O
O
I/O  
I/O  
I/O  
I
BCLK  
Bit Clock for ADC Serial Port.  
SDA/COUT  
SCL/CCLK  
ADDR0/CLATCH  
ADDR1/CIN  
AGND3  
AGND4  
AGND5  
AGND6  
Serial Data Input/Output (I2C)/Control Data Output (SPI).  
Serial Clock Input (I2C)/Control Clock Input (SPI).  
Chip Address Bit 0 Setting (I2C)/Chip Select Input for Control Data (SPI).  
Chip Address Bit 1 Setting (I2C)/Control Data Input (SPI).  
Analog Ground.  
I
I
P
P
P
Analog Ground.  
Analog Ground.  
Analog Ground.  
P
Rev. 0 | Page 8 of 44  
 
Data Sheet  
ADAU1979  
Pin No.  
31  
32  
Mnemonic  
Type1 Description  
AVDD3  
AIN1  
AIN1  
AIN2  
AIN2  
AIN3  
AIN3  
AIN4  
AIN4  
AVDD1  
EP  
P
I
Analog Power Supply. Connect AVDD3 to an analog 3.3 V supply.  
Analog Input Channel 1 Inverting Input.  
33  
34  
I
I
Analog Input Channel 1 Noninverting Input.  
Analog Input Channel 2 Inverting Input.  
35  
36  
I
I
Analog Input Channel 2 Noninverting Input.  
Analog Input Channel 3 Inverting Input.  
37  
38  
I
I
Analog Input Channel 3 Noninverting Input.  
Analog Input Channel 4 Inverting Input.  
39  
40  
I
P
Analog Input Channel 4 Noninverting Input.  
Analog Power Supply. Connect AVDD1 to an analog 3.3 V supply.  
Exposed Pad. The exposed pad must be connected to the ground plane on the printed circuit  
board (PCB).  
1 P = power, O = output, I = input, I/O = input/output.  
Rev. 0 | Page 9 of 44  
 
ADAU1979  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Fast Fourier Transform, 4.5 mV Differential Input at fS = 48 kHz  
Figure 9. CMRR Differential Input, Referenced to 450 mV Differential Input  
10  
0
10  
0
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Fast Fourier Transform, −1 dBFS Differential Input  
Figure 10. Fast Fourier Transform, No Input  
0
0.10  
–10  
0.08  
0.06  
0.04  
0.02  
0
–20  
–30  
–40  
–50  
–60  
–70  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–80  
–90  
–100  
–110  
–120  
5m  
10m  
100m  
1
5
0
2000 4000 6000 8000 10000 12000 14000 16000 18000  
FREQUENCY (Hz)  
INPUT LEVEL (V rms)  
Figure 8. THD + N vs. Input Amplitude  
Figure 11. ADC Pass-Band Ripple at fS = 48 kHz  
Rev. 0 | Page 10 of 44  
 
Data Sheet  
ADAU1979  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5000 10000 15000 20000 25000 30000 35000 40000  
FREQUENCY (Hz)  
Figure 12. ADC Filter Stop-Band Response at fS = 48 kHz  
Rev. 0 | Page 11 of 44  
ADAU1979  
Data Sheet  
THEORY OF OPERATION  
The DVDD settling time depends on the charge-up time for the  
external capacitors and on the AVDDx ramp-up time.  
OVERVIEW  
The ADAU1979 incorporates four high performance ADCs and  
a phase-locked loop (PLL) circuit for generating the necessary  
on-chip clock signals.  
The internal POR circuit is provided with hysteresis to ensure that  
a reset of the device is not initiated by an instantaneous glitch on  
PD RST  
DVDD. The typical trip points are 1.2 V with  
/
high and  
low. This ensures that the core is  
not reset until the DVDD level falls below the 0.6 V trip point.  
PD RST  
pin is pulled high, the internal regulator  
POWER SUPPLY AND VOLTAGE REFERENCE  
PD RST  
0.6 V ( 20%) with  
/
The ADAU1979 requires a single 3.3 V power supply. Decouple  
all AVDDx pins to the nearest AGNDx pin with 100 nF ceramic  
chip capacitors placed as near the AVDDx pins as possible to  
minimize noise pickup. A bulk aluminum electrolytic capacitor  
of at least 10 μF must be provided on the same PCB as the ADC.  
It is important that the analog supply be as clean as possible for  
best performance.  
As soon as the  
/
starts charging up CEXT on the DVDD pin. The DVDD charge-up  
time is based on the output resistance of the regulator and the  
external decoupling capacitor. The time constant can be calcu-  
lated as  
tC = ROUT × CEXT  
The supply voltage for the digital core (DVDD) is generated  
using an internal low dropout regulator. The typical DVDD  
output is 1.8 V and must be decoupled using a 100 nF ceramic  
capacitor and a 10 µF capacitor. Place the 100 nF ceramic  
capacitor as near the DVDD pin as possible.  
where ROUT = 20 Ω typical.  
For example, if CEXT is 10 µF, tC is 200 µs and is the time that it  
takes to reach the DVDD voltage, within 63.6%.  
The power-on reset circuit releases an internal reset of the core  
when DVDD reaches 1.2 V (see Figure 13). Therefore, it is  
recommended to wait for at least the tC period to elapse before  
sending I2C or SPI control signals.  
The voltage reference for the analog blocks is generated  
internally and output at the VREF pin (Pin 2). The typical  
voltage at the VREF pin is 1.5 V with an AVDDx of 3.3 V.  
All digital inputs are compatible with TTL and CMOS levels.  
All outputs are driven from the IOVDD supply. The IOVDD  
can be in the 1.8 V to 3.3 V range. The IOVDD pin must be  
decoupled with a 100 nF capacitor placed as near the IOVDD  
pin as possible.  
AVDDx  
The ADC internal voltage reference is output from the VREF pin  
and must be decoupled using a 100 nF ceramic capacitor in  
parallel with a 10 µF capacitor. The VREF pin has limited current  
capability. The voltage reference is used as a reference to the  
ADC; therefore, it is recommended not to draw current from  
this pin for external circuits. When using this reference, use a  
noninverting amplifier buffer to provide a reference to other  
circuits in the application.  
PD/RST  
1.2V  
tRESET  
tC  
DVDD (1.8V)  
tD  
0.48V  
POR  
Figure 13. Power-On Reset Timing  
In reset mode, the VREF pin is disabled to save power and is  
When applying a hardware reset to the device by pulling the  
PD RST  
enabled only when the  
/
pin is pulled high.  
PD RST  
/
pin (Pin 6) low and then high, there are certain time  
POWER-ON RESET SEQUENCE  
PD RST  
low pulse period, the DVDD  
restrictions. During the  
/
starts discharging. The discharge time constant is determined  
by the internal resistance of the regulator and CEXT. Use the  
following equation to estimate the time required for DVDD to  
fall from 1.8 V to 0.48 V (0.6 V − 20%):  
The ADAU1979 requires that a single 3.3 V power supply be  
provided externally at the AVDDx pin. The device internally  
generates DVDD (1.8 V), which is used for the digital core of  
the ADC. The DVDD supply output pin (Pin 10) is provided  
to connect the decoupling capacitors to DGND. The typical  
recommended values for the decoupling capacitors are 100 nF  
in parallel with 10 µF. During a reset, the DVDD regulator is  
tD = 1.32 × RINT × CEXT  
where RINT = 64 kΩ typical. (RINT can vary due to process by 20%.)  
For example, if CEXT is 10 µF, tD is 0.845 sec.  
PD RST  
disabled to reduce power consumption. After the  
/
pin  
(Pin 6) is pulled high, the device enables the DVDD regulator.  
However, the internal ADC and digital core reset are controlled  
by the internal power-on reset (POR) signal circuit, which  
monitors the DVDD level. Therefore, the device does not exit a  
Depending on CEXT, tD may vary and, in turn, affect the mini-  
PD RST  
PD RST  
mum hold period for the  
/
pulse. The  
/ pulse  
must be held low for the entire tD time period to initialize the  
core properly.  
POR  
reset until DVDD reaches 1.2 V and the  
signal is released.  
Rev. 0 | Page 12 of 44  
 
 
 
 
 
Data Sheet  
ADAU1979  
PD RST  
low pulse period by adding a  
resistor across CEXT. Calculate the new tD value c as  
The PLL_LOCK bit (Bit 7) of Register 0x01 indicates the lock  
status of the PLL. It is recommended that the PLL lock status be  
read after initial power-up to ensure that the PLL outputs the  
correct frequency before unmuting the audio outputs.  
Reduce the required  
/
tD = 1.32 × REQ × CEXT  
where REQ = 64 kΩ || REXT  
.
Table 9. Required Master Clock Input Frequency for  
Common Sample Rates  
The resistor ensures that DVDD not only discharges quickly during  
a reset or an AVDDx power loss but also resets the internal blocks  
correctly. Note that some power loss in this resistor is to be  
expected because the resistor constantly draws current from  
MCS  
Frequency  
MCLKIN  
(Bits[2:0]) fS (kHz) Multiplication Ratio Frequency (MHz)  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
32  
32  
32  
32  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
128 × fS  
256 × fS  
384 × fS  
512 × fS  
768 × fS  
64 × fS  
128 × fS  
192 × fS  
256 × fS  
384 × fS  
32 × fS  
64 × fS  
96 × fS  
128 × fS  
192 × fS  
4.096  
8.192  
DVDD. The typical value for CEXT is 10 µF and 3 kΩ for REXT  
This results in a time constant of  
.
12.288  
16.384  
24.576  
5.6448  
11.2896  
16.9344  
22.5792  
33.8688  
6.144  
12.288  
18.432  
24.576  
36.864  
6.144  
12.288  
18.432  
24.576  
36.864  
6.144  
12.288  
18.432  
24.576  
36.864  
tD = 1.32 × REQ × CEXT = 37.8 ms  
32  
where REQ = 2.866 kΩ (64 kΩ || 3 kΩ).  
44.1  
44.1  
44.1  
44.1  
44.1  
48  
48  
48  
48  
48  
Using this equation at a set CEXT value, the REXT can be calculated  
PD RST  
for a desired  
/
pulse period.  
There is also a software reset bit (S_RST, Bit 7 of Register 0x00)  
available that can be used to reset the part, but note that during an  
AVDDx power loss, the software reset may not ensure proper  
initialization because DVDD may not be stable.  
+3.3V  
AVDD1 AVDD3 AVDD2  
96  
96  
96  
96  
DVDD  
3.3V TO 1.8V  
REGULATOR  
C
0.1µF  
C
10µF  
R
EXT  
EXT  
3kΩ  
MLCC X7R  
96  
TO INTERNAL  
BLOCKS  
192  
192  
192  
192  
192  
+1.8V OR +3.3V  
IOVDD  
ADAU1979  
C
0.1µF  
The PLL can accept the audio frame clock (sample rate clock) as  
the input, but the serial port must be configured as a slave, and  
the frame clock must be fed to the device from the master. It is  
strongly recommended that the PLL be disabled, reprogrammed  
with the new setting, and then reenabled. A lock bit is provided  
that is polled via I2C to check whether the PLL has acquired  
lock.  
Figure 14. DVDD Regulator Output Connections  
PLL AND CLOCK  
The ADAU1979 has a built-in analog PLL to provide a jitter-free  
master clock to the internal ADC. The PLL must be programmed  
for the appropriate input clock frequency. The PLL_CONTROL  
Register 0x01 sets the PLL.  
The PLL requires an external filter, which is connected at the  
PLL_FILT pin (Pin 3). The recommended PLL filter circuit for  
MCLK or LRCLK mode is shown in Figure 15. Using NPO  
capacitors is recommended for temperature stability. Place the  
filter components near the device for best performance.  
The CLK_S bit (Bit 4) of Register 0x01 sets the clock source for  
the PLL. The clock source can be either the MCLKIN pin or the  
LRCLK pin (slave mode). In LRCLK mode, the PLL supports  
sample rates between 32 kHz and 192 kHz.  
In MCLK input mode, the MCS bits (Bits[2:0] of Register 0x01)  
must be set to the desired input clock frequency for the MCLKIN  
pin. Table 9 shows the master clock input frequency required  
for the most common sample rates and the MCS bit settings.  
AVDDx  
AVDDx  
39nF  
5.6nF  
2.2nF  
390pF  
4.87kΩ  
1kΩ  
PLL_FILT  
PLL_FILT  
LRCLK MODE  
MCLK MODE  
Figure 15. PLL Filter  
Rev. 0 | Page 13 of 44  
 
 
 
ADAU1979  
Data Sheet  
14.3kΩ  
ANALOG INPUTS  
32.17kΩ  
32.17kΩ  
AINxP  
AINxN  
The ADAU1979 has four differential analog inputs. The ADCs  
can accommodate both dc- and ac-coupled input signals.  
V
REF  
The block diagram shown in Figure 16 represents the typical  
input circuit.  
In most audio applications, the dc content of the signal is removed  
by using a coupling capacitor. However, the ADAU1979 consists  
of a unique input structure that allows ac coupling of the input  
signals. The typical input resistance is approximately 32 kΩ  
from each input to AGNDx.  
14.3kΩ  
V
V
= V INPUT DIFFERENTIAL  
ID  
AT AINxP/AINxN = 1.5V  
CM  
Figure 16. Analog Input Block  
The high-pass filter has a 1.4 Hz, 6 dB per octave cutoff at a  
48 kHz sample rate. The cutoff frequency scales directly with  
the sample frequency. However, care is required in dc-coupled  
applications to ensure that the common-mode dc voltage does  
not exceed the specified limit. The input required for the full-  
scale ADC output (0 dBFS) is typically 4.5 V rms differential.  
Rev. 0 | Page 14 of 44  
 
 
Data Sheet  
ADAU1979  
Line Inputs  
Refer to Figure 18 for information about connecting the line  
level inputs to the ADAU1979.  
This section describes some of the possible methods to connect  
the line level inputs of the ADAU1979.  
Line Input Unbalanced or Single-Ended, Pseudo Differential  
AC-Coupled Case  
Line Input Balanced or Differential Input DC-Coupled Case  
For a single-ended application, reduce the signal swing by half  
because only one input is used for the signal and the other is  
connected to 0 V. Doing this reduces the input signal capability  
to 2.25 V rms in the single-ended application and measures  
approximately −6.16 dBFS (ac only with a dc high-pass filter) at  
the ADC output.  
For an input signal of 4.5 V rms differential with approximately  
1.5 V common-mode dc, the signal at each input pin has a 2.25  
V rms or 6.36 V p-p signal swing. At a common-mode dc of 1.5 V,  
the signal can swing between (1.5 + 3.18) = 4.68 V and (1.5 –  
3.18) = −1.68 V at each input. Therefore, this is approximately  
AINx  
12.72 V p-p differential across AINx and  
and measures  
near 0 dBFS (ac only with a dc high-pass filter) at the ADC  
output (see Figure 17).  
See Figure 19 for additional information. The value of C1/C2 is  
similar to the balanced ac-coupled case previously mentioned in  
the Line Input Balanced or Differential Input AC-Coupled Case  
section.  
Line Input Balanced or Differential Input AC-Coupled Case  
For connecting the ADAU1979 to a head unit amplifier output,  
AINx  
ac coupling is recommended. In this case, the AINx/  
pins  
are at a common-mode level of 1.5 V. Use the attenuator to  
reduce the input level if it is more than 4.5 V rms.  
Use the following equation to identify the C1 and C2 values for  
the required low frequency cutoff:  
C1 or C2 = 1/(2 × π × fC × Input Resistance)  
where the Input Resistance of the ADAU1979 is 32.17 kΩ  
typical.  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
AINx  
AINx  
V
V
= 4.5V rms AC  
= 1.5V DC  
DIFF  
CM  
OPTION A: DIFFERENTIAL DC-COUPLED  
Figure 17. Connecting the Line Level Inputs—Differential DC-Coupled Case  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
C1  
AINx  
AINx  
ATTENUATOR  
C2  
V
= 2V rms  
DIFF  
OPTION B: DIFFERENTIAL AC-COUPLED  
Figure 18. Connecting the Line Level Inputs—Differential AC-Coupled Case  
TYPICAL AUDIO POWER  
AMPLIFIER OUTPUT  
C1  
AINx  
AINx  
C2  
V
= 2V rms AC  
IN  
OPTION C: PSEUDO DIFFERENTIAL AC-COUPLED  
Figure 19. Connecting the Line Level Inputs—Pseudo Differential AC-Coupled Case  
Rev. 0 | Page 15 of 44  
 
 
 
 
ADAU1979  
Data Sheet  
1-Channel Summing Mode  
ADC  
When the SUM_MODE Bits (Bits[7:6] of Register 0x0E) are set  
to 10, the Channel 1 through Channel 4 ADC data are combined  
and output from the SDATAOUT1 pin. As a result, the SNR  
improves by 6 dB. For this mode, all four channels must be  
connected to the same input signal source.  
The ADAU1979 contains four Σ-Δ ADC channels configured as  
two stereo pairs with configurable differential/single-ended  
inputs. The ADC can operate at a nominal sample rate of 32 kHz  
up to 192 kHz. The ADCs include on-board digital antialiasing  
filters with 79 dB stop-band attenuation and linear phase response.  
Digital outputs are supplied through two serial data output pins  
(one for each stereo pair) and a common frame clock (LRCLK)  
and bit clock (BCLK). Alternatively, one of the TDM modes can  
be used to support up to 16 channels on a single TDM data line.  
OPTION B: DIFFERENTIAL AC-COUPLED  
TYPICAL STEREO  
OUTPUT  
V
= 4.5V rms  
C1  
DIFF  
AIN1  
AIN1  
C2  
With smaller amplitude input signals, a 10-bit programmable  
digital gain compensation for an individual channel is provided  
to scale up the output word to full scale. Take care to avoid  
overcompensation (large gain compensation), which leads to  
clipping and THD degradation in the ADC.  
AIN2  
AIN2  
Σ
AIN3  
AIN3  
The ADCs also have a dc offset calibration algorithm to null the  
systematic dc offset of the ADC. This feature is useful for dc  
measurement applications.  
AIN4  
AIN4  
ADC SUMMING MODES  
The four ADCs can be grouped into either a single stereo ADC  
or a single mono ADC to increase the SNR for the application.  
Two options are available: one option for summing two channels of  
the ADC and another option for summing all four channels of  
the ADC. Summing is performed in the digital block.  
Figure 21. 1-Channel Summing Mode Connection Diagram  
2-Channel Summing Mode  
When the SUM_MODE bits (Bits[7:6] of Register 0x0E) are set  
to 01, the Channel 1 and Channel 2 ADC data are combined  
and output from the SDATAOUT1 pin. Similarly, the Channel 3  
and Channel 4 ADC data are combined and output from the  
SDATAOUT2 pin. As a result, the SNR improves by 3 dB. For this  
mode, both Channel 1 and Channel 2 must be connected to the  
same input signal source. Similarly, Channel 3 and Channel 4  
must be connected to the same input signal source.  
OPTION B: DIFFERENTIAL AC-COUPLED  
TYPICAL STEREO  
OUTPUT  
V
= 4.5V rms  
C1  
DIFF  
AIN1  
AIN1  
C2  
Σ
AIN2  
AIN2  
C3  
C4  
AIN3  
AIN3  
Σ
AIN4  
AIN4  
Figure 20. 2-Channel Summing Mode Connection Diagram  
Rev. 0 | Page 16 of 44  
 
 
Data Sheet  
ADAU1979  
Stereo Mode  
SERIAL AUDIO DATA OUTPUT PORTS, DATA  
FORMAT  
In 2-channel or stereo mode, the SDATAOUT1 outputs ADC  
data for Channel 1 and Channel 2, and the SDATOUT2 outputs  
ADC data for Channel 3 and Channel 4. Figure 22 through  
Figure 24 show the supported audio formats.  
The serial audio port comprises four pins: BCLK, LRCLK,  
SDATAOUT1, and SDATAOUT2. The ADAU1979 ADC outputs  
are available on the SDATAOUT1 and SDATAOUT2 pins in  
serial format. The BCLK and LRCLK pins serve as the bit clock  
and frame clock, respectively. The port can be operated as a  
master or slave and can be set either in stereo mode (2-channel  
mode) or in TDM multichannel mode. The supported popular  
audio formats are I2S, left justified (LJ), and right justified (RJ).  
BCLK  
LRCLK  
SDATAOUT1  
(I S MODE)  
CHANNEL 1  
CHANNEL 2  
2
8 TO 32 BCLKs  
8 TO 32 BCLKs  
CHANNEL 4  
SDATAOUT2  
CHANNEL 3  
2
(I S MODE)  
NOTES  
1. SAI = 0.  
2. SDATA_FMT = 0 (I S).  
2
Figure 22. I2S Audio Format  
BCLK  
LRCLK  
SDATAOUT1  
(LJ MODE)  
CHANNEL 1  
CHANNEL 3  
CHANNEL 2  
CHANNEL 4  
SDATAOUT2  
(LJ MODE)  
NOTES  
1. SDATA_FMT = 1 (LJ).  
Figure 23. Left Justified Audio Format  
BCLK  
LRCLK  
SDATAOUT1  
(RJ MODE)  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
SDATAOUT2  
(RJ MODE)  
CHANNEL 3  
NOTES  
1. SDATA_FMT = 2 (RJ, 24-BIT).  
Figure 24. Right Justified Audio Format  
Rev. 0 | Page 17 of 44  
 
 
 
ADAU1979  
Data Sheet  
TDM Mode  
(Figure 27 shows the TDM mode slot assignments). During the  
unused slots, the output pin becomes high-Z so that the same  
data line can be shared with other devices on the TDM bus.  
Register 0x05 through Register 0x08 provide programmability  
for the TDM mode. The TDM slot width, data width, and  
channel assignment, as well as the pin used to output the data,  
are programmable.  
The TDM port can be operated as either a master or a slave.  
In master mode, the BCLK and LRCLK pins are output from  
the ADAU1979, whereas in slave mode, the BCLK and LRCLK  
pins are set to receive the clock from the master in the system.  
By default, serial data is output on the SDATAOUT1 pin;  
however, the SDATA_SEL bit (Bit 7 of Register 0x06) can be  
used to change the setting so that serial data is output from the  
SDATAOUT2 pin.  
Both the nonpulse and pulse modes are supported. In nonpulse  
mode, the LRCLK signal is typically 50% of the duty cycle, whereas  
in pulse mode, the LRCLK signal must be at least one BCLK wide  
(see Figure 25 and Figure 26).  
The TDM mode supports two, four, eight, or 16 channels. The  
ADAU1979 outputs four channels of data in the assigned slots  
BCLK  
32/24/16 BCLKs  
32/24/16 BCLKs  
32/24/16 BCLKs  
LRCLK  
2
CHANNEL 1  
CHANNEL 2  
8 TO 32 BCLKs  
CHANNEL N  
SDATA I  
S
8 TO 32 BCLKs  
8 TO 32 BCLKs  
SDATA LJ  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
CHANNEL N  
2
CHANNEL 1  
24 OR 16 BCLKs  
CHANNEL 2  
24 OR 16 BCLKs  
SDATA I  
S
24 OR 16 BCLKs  
NOTES  
1. SAI = 001 (2 CHANNELS), 010 (4 CHANNELS), 011 (8 CHANNELS), 100 (16 CHANNELS).  
2
2. SDATA_FMT = 00 (I S), 01 (LJ), 10 (RJ, 24-BIT), 11 (RJ, 16-BIT).  
3. BCLK_EDGE = 0.  
4. LR_MODE = 0.  
5. SLOT_WIDTH = 00 (32 BCLKs), 01 (24 BCLKs), 10 (16 BCLKs).  
Figure 25. TDM Nonpulse Mode Audio Format  
BCLK  
LRCLK  
2
32/24/16 BCLKs  
32/24/16 BCLKs  
32/24/16 BCLKs  
CHANNEL 1  
CHANNEL 2  
CHANNEL N  
8 TO 32 BCLKs  
SDATA I  
S
8 TO 32 BCLKs  
8 TO 32 BCLKs  
SDATA LJ  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
8 TO 32 BCLKs  
2
CHANNEL 1  
24 OR 16 BCLKs  
CHANNEL 2  
CHANNEL N  
24 OR 16 BCLKs  
SDATA I  
S
24 OR 16 BCLKs  
NOTES  
1. SAI = 001 (2 CHANNELS), 010 (4 CHANNELS), 011 (8 CHANNELS), 100 (16 CHANNELS)  
2
2. SDATA_FMT = 00 (I S), 01 (LJ), 10 (RJ, 24-BIT), 11 (RJ, 16-BIT)  
3. BCLK_EDGE = 0  
4. LR_MODE = 1  
5. SLOT_WIDTH = 00 (32 BCLKs), 01 (24 BCLKs), 10 (16 BCLKs)  
Figure 26. TDM Pulse Mode Audio Format  
Rev. 0 | Page 18 of 44  
 
 
Data Sheet  
ADAU1979  
LRCLK  
NUMBER OF BCLK CYCLES = (NUMBER OF BCLKs/SLOT) × NUMBER OF SLOTS  
BCLK  
SLOT1  
SLOT2  
SDATAOUTx—TDM2  
SDATAOUTx—TDM4  
SDATAOUTx—TDM8  
SDATAOUTx—TDM16  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
SLOT1  
SLOT2  
SLOT3  
SLOT4  
SLOT5  
SLOT6  
SLOT7  
SLOT8  
SLOT9  
SLOT10  
SLOT11  
SLOT12  
SLOT13  
SLOT14  
SLOT15  
SLOT16  
DATA WIDTH  
16/24 BITS  
HIGH-Z  
HIGH-Z  
SLOT WIDTH  
16/24/32 BITS  
Figure 27. TDM Mode Slot Assignment  
Table 10. Bit Clock Frequency TDM Mode  
BCLK Frequency  
24 Bit Clocks Per Slot  
48 × fS  
96 × fS  
192 × fS  
Mode  
TDM2  
TDM4  
TDM8  
TDM16  
16 Bit Clocks Per Slot  
32 × fS  
64 × fS  
128 × fS  
256 × fS  
32 Bit Clocks Per Slot  
64 × fS  
128 × fS  
256 × fS  
512 × fS  
384 × fS  
The bit clock frequency depends on the sample rate, the slot  
width, and the number of bit clocks per slot. Use Table 10 to  
calculate the BCLK frequency.  
frame. There are two options in this case: either operate with a  
32-bit data width in TDM4 or operate with a 16-bit data width  
in TDM8. In slave mode, this limitation does not exist because  
the bit clock and frame clock are fed to the ADAU1979. Various  
combinations of BCLK frequencies and modes are available, but  
take care to choose the combination that is most suitable for the  
application.  
The sample rate (fS) can range from 8 kHz up to 192 kHz.  
However, in master mode, the maximum bit clock frequency  
(BCLK) is 24.576 MHz. For example, for a sample rate of  
192 kHz, 128 × fS is the maximum possible BCLK frequency.  
Therefore, only 128-bit clock cycles are available per TDM  
Rev. 0 | Page 19 of 44  
 
 
ADAU1979  
Data Sheet  
SLAVE  
SLAVE  
DSP  
Connection Options  
ADAU1979  
Figure 28 through Figure 32 show the available options for  
connecting the serial audio port in I2S or TDM mode. In  
TDM mode, it is recommended to include a pull-down resistor  
on the data signal to prevent the line from floating when the  
SDATAOUTx pin of the ADAU1979 becomes high-Z during an  
inactive period. Select a resistor value such that no more than  
2 mA is drawn from the SDATAOUTx pin. Although the resistor  
value is typically in the 10 kΩ to 47 kΩ range, the appropriate  
resistor value depends on the devices on the data bus.  
BCLK  
LRCLK  
SDATAOUTx  
MASTER  
ADAU1979  
OR  
SIMILAR ADC  
MASTER  
SLAVE  
BCLK  
LRCLK  
ADAU1979  
DSP  
SDATAOUTx  
BCLK  
LRCLK  
Figure 31. Serial Port Connection Option 4—TDM Mode, Second ADC Master  
SDATAOUT1  
SDATAOUT2  
SLAVE  
MASTER  
DSP  
ADAU1979  
Figure 28. Serial Port Connection Option 1—I2S/Left Justified/Right Justified  
Modes, ADAU1979 Master  
BCLK  
LRCLK  
SLAVE  
MASTER  
DSP  
SDATAOUTx  
ADAU1979  
BCLK  
LRCLK  
SLAVE  
SDATAOUT1  
SDATAOUT2  
ADAU1979  
OR  
SIMILAR ADC  
BCLK  
LRCLK  
Figure 29. Serial Port Connection Option 2—I2S/Left Justified/Right Justified  
Modes, ADAU1979 Slave  
SDATAOUTx  
MASTER  
SLAVE  
DSP  
ADAU1979  
Figure 32. Serial Port Connection Option 5—TDM Mode, DSP Master  
BCLK  
LRCLK  
SDATAOUTx  
SLAVE  
ADAU1979  
OR  
SIMILAR ADC  
BCLK  
LRCLK  
SDATAOUTx  
Figure 30. Serial Port Connection Option 3—TDM Mode, ADAU1979 Master  
Rev. 0 | Page 20 of 44  
 
 
Data Sheet  
ADAU1979  
CONTROL PORTS  
The ADAU1979 control port allows two modes of operation,  
either 2-wire I2C mode or 4-wire SPI mode, for setting the  
internal registers of the device. Both the I2C and SPI modes  
allow read and write capability of the registers. All the registers  
are eight bits wide. The registers start at Address 0x00 and end  
at Address 0x1A.  
ADDR1 and ADDR0 pins, which set the chip address to the  
desired value.  
The 7-bit I2C device address can be set to one of four of the  
following possible options using the ADDR1 and ADDR0 pins:  
I2C Device Address 0010001 (0x11)  
I2C Device Address 0110001 (0x31)  
I2C Device Address 1010001 (0x51)  
I2C Device Address 1110001 (0x71)  
The control port in both I2C and SPI modes is slave only and,  
therefore, requires the master in the system to operate. The  
registers can be accessed with or without the master clock to the  
device. However, to operate the PLL, serial audio ports, and  
boost converter, the master clock is necessary.  
By default, the ADAU1979 operates in I2C mode, but the device  
can be put into SPI mode by pulling the  
times.  
In I2C mode, both the SDA and SCL pins require that an  
appropriate pull-up resistor be connected to IOVDD. Ensure  
that the voltage on these signal lines does not exceed the voltage  
on the IOVDD pin. Figure 44 shows a typical connection  
diagram for the I2C mode.  
CLATCH  
pin low three  
Calculate the value of the pull-up resistor for the SDA or SCL  
pin as follows.  
The control port pins are multifunctional, depending on the  
mode in which the device is operating. Table 12 describes the  
control port pin functions in both modes.  
Minimum RPULL UP = (IOVDD VIL)/ISINK  
I2C MODE  
where:  
IOVDD is the I/O supply voltage, typically ranging from 1.8 V  
up to 3.3 V.  
The ADAU1979 supports a 2-wire serial (I2C-compatible) bus  
protocol. Two pins, serial data (SDA) and serial clock (SCL), are  
used to communicate with the system I2C master controller. In  
I2C mode, the ADAU1979 is always a slave on the bus, meaning  
that it cannot initiate a data transfer. Each slave device on the  
I2C bus is recognized by a unique device address. The device  
VIL is the maximum voltage at Logic Level 0 (that is, 0.4 V, as  
per the I2C specifications).  
I
SINK is the current sink capability of the I/O pin.  
The SDA pin can sink 2 mA of current; therefore, the minimum  
value of RPULL UP for an IOVDD of 3.3 V is 1.5 kΩ.  
W
address and R/ byte for the ADAU1979 are shown in Table 11.  
The address resides in the first seven bits of the I2C write. Bit 7  
and Bit 6 of the I2C address for the ADAU1979 are set by the  
levels on the ADDR1 and ADDR0 pins. The LSB of the first I2C  
Depending on the capacitance of the printed circuit board, the  
speed of the bus can be restricted to meet the rise time and fall  
time specifications.  
W
byte (the R/ bit) from the master identifies whether it is a read  
For fast mode with a bit rate of around 1 Mbps, the rise time  
must be less than 550 ns. Use the following equation to  
determine whether the rise time specification can be met:  
or write operation. Logic Level 1 in the LSB (Bit 0) corresponds  
to a read operation, and Logic Level 0 corresponds to a write  
operation.  
t = 0.8473 × RPULL UP × CBOARD  
Table 11. I2C First Byte Format  
where CBOARD must be less than 236 pF to meet the 300 ns rise  
time requirement.  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
For the SCL pin, the calculations depend on the current sink  
capability of the I2C master used in the system.  
The first seven bits of the I2C chip address for the ADAU1979  
are xx10001. Set Bit 7 and Bit 6 of the address byte using the  
Table 12. Control Port Pin Functions  
I2C Mode  
SPI Mode  
Pin No.  
17  
18  
Mnemonic  
SDA/COUT  
SCL/CCLK  
ADDR0/CLATCH  
ADDR1/CIN  
Pin Function  
SDA data  
SCL clock  
I2C Device Address Bit 0  
I2C Device Address Bit 1  
Pin Type  
Pin Function  
COUT data  
CCLK clock  
CLATCH chip select  
CIN data  
Pin Type  
I/O  
O
I
I
I
I
I
19  
20  
I
Rev. 0 | Page 21 of 44  
 
 
 
 
ADAU1979  
Data Sheet  
Addressing  
W
The R/ bit determines the direction of the data. A Logic 0 on the  
LSB of the first byte means that the master is to write information  
to the slave, whereas a Logic 1 means that the master is to read  
information from the slave after writing the address and repeating  
the start address. A data transfer takes place until a master initiates  
a stop condition. A stop condition occurs when SDA transitions  
from low to high while SCL is held high.  
Initially, each device on the I2C bus is in an idle state and monitors  
the SDA and SCL lines for a start condition and the proper address.  
The I2C master initiates a data transfer by establishing a start  
condition, defined by a high-to-low transition on SDA while  
SCL remains high. This indicates that an address/data stream  
follows. All devices on the bus respond to the start condition  
and acquire the next eight bits from the master (the 7-bit address  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence  
during normal read and write operations, the ADAU1979  
immediately jumps to the idle condition.  
W
plus the R/ bit) MSB first. The master sends the 7-bit device  
W
address with the R/ bit to all the slaves on the bus. The device  
with the matching address responds by pulling the data line  
(SDA) low during the ninth clock pulse. This ninth bit is known  
as an acknowledge bit. All other devices withdraw from the bus  
at this point and return to the idle condition.  
Figure 33 and Figure 34 use the following abbreviations:  
ACK = acknowledge  
No ACK = no acknowledge  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
SCL  
SDA  
FIRST BYTE (DEVICE ADDRESS)  
SECOND BYTE (REGISTER ADDRESS)  
THIRD BYTE (DATA)  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
ACK  
ADAU1979  
ACK  
ADAU1979  
STOP  
START  
Figure 33. I2C Write to ADAU1979 Single Byte  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
SCL  
FIRST BYTE (DEVICE ADDRESS)  
SECOND BYTE (REGISTER ADDRESS)  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
SDA  
ACK  
ADAU1979  
ACK  
ADAU1979  
START  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
SCL  
SDA  
THIRD BYTE (DEVICE ADDRESS)  
DATA BYTE FROM ADAU1979  
ADDR1 ADDR0  
1
0
0
0
1
R/W  
NO ACK  
ACK  
ADAU1979  
REPEAT START  
STOP  
Figure 34. I2C Read from ADAU1979 Single Byte  
Rev. 0 | Page 22 of 44  
 
 
Data Sheet  
ADAU1979  
I2C Read and Write Operations  
W
followed by the chip address byte with the R/ bit set to 1  
(read). This causes the ADAU1979 SDA to reverse and begin  
driving data back to the master. The master then responds every  
ninth pulse with an acknowledge pulse to the ADAU1979.  
Figure 35 shows the format of a single-word I2C write  
operation. Every ninth clock pulse, the ADAU1979 issues an  
acknowledge by pulling SDA low.  
Figure 38 shows the format of a burst mode I2C read sequence.  
This figure shows an example of a read from sequential single-  
byte registers. The ADAU1979 increments its address registers  
after every byte because the ADAU1979 uses an 8-bit register  
address.  
Figure 36 shows the format of a burst mode I2C write sequence.  
This figure shows an example of a write to sequential single-byte  
registers. The ADAU1979 increments its address register after  
every byte because the requested address corresponds to a  
register or memory area with a 1-byte word length.  
Figure 37 shows the format of a single-word I2C read operation.  
Figure 35 to Figure 38 use the following abbreviations:  
S = start bit  
P = stop bit  
AM = acknowledge by master  
AS = acknowledge by slave  
W
Note that the first R/ bit is 0, indicating a write operation.  
This is because the address still needs to be written to set up the  
internal address. After the ADAU1979 acknowledges the receipt  
of the address, the master must issue a repeated start command  
S
CHIP ADDRESS,  
R/W = 0  
AS  
REGISTER ADDRESS  
8 BITS  
AS  
DATA BYTE  
P
Figure 35. Single-Word I2C Write Format  
S
CHIP  
AS REGISTER  
CHIP  
AS DATA AS DATA AS DATA AS DATA AS ...  
P
ADDRESS,  
R/W = 0  
ADDRESS ADDRESS,  
8 BITS R/W = 0  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
Figure 36. Burst Mode I2C Write Format  
S
CHIP  
ADDRESS,  
R/W = 0  
AS  
REGISTER  
ADDRESS  
8 BITS  
AS  
S
CHIP  
ADDRESS,  
R/W = 1  
AS  
DATA  
BYTE 1  
P
Figure 37. Single-Word I2C Read Format  
S
CHIP  
ADDRESS,  
R/W = 0  
AS REGISTER AS  
ADDRESS  
S
CHIP  
ADDRESS,  
R/W = 1  
AS DATA AM DATA AM ...  
BYTE 1 BYTE 2  
P
8 BITS  
Figure 38. Burst Mode I2C Read Format  
Rev. 0 | Page 23 of 44  
 
 
 
 
 
ADAU1979  
Data Sheet  
Register Address  
SPI MODE  
By default, the ADAU1979 is in I2C mode. To invoke SPI control  
The 8-bit address word is decoded to a location in one of the  
registers. This address is the location of the appropriate register.  
CLATCH  
mode, pull  
low three times. This is achieved by perform-  
ing three dummy writes to the SPI port (the ADAU1979 does not  
acknowledge these three writes, see Figure 39). Beginning with the  
fourth SPI write, data can be written to or read from the device.  
The ADAU1979 can be taken out of SPI mode only by a full  
reset initiated by power cycling the device.  
Data Bytes  
The number of data bytes varies according to the register being  
accessed. During a burst mode SPI write, an initial register  
address is written followed by a continuous sequence of data for  
consecutive register locations.  
CLATCH  
The SPI port uses a 4-wire interface, consisting of the  
CCLK, CIN, and COUT signals, and it is always a slave port.  
CLATCH  
,
A sample timing diagram for a single-word SPI write operation  
to a register is shown in Figure 40. A sample timing diagram of  
a single-word SPI read operation is shown in Figure 41. The  
COUT pin transitions being high-Z to being driven at the  
beginning of Byte 3. In this example, Byte 0 to Byte 1 contain  
the device address, the R/ bit, and the register address to be  
read. Subsequent bytes carry the data from the device.  
The  
signal goes low at the beginning of a transaction  
and high at the end of a transaction. The CCLK signal latches  
COUT on a low-to-high transition. COUT data is shifted out of  
the ADAU1979 on the falling edge of CCLK and is clocked into  
a receiving device, such as a microcontroller, on the CCLK  
rising edge. The CIN signal carries the serial input data, and the  
COUT signal carries the serial output data. The COUT signal  
remains tristated until a read operation is requested. This allows  
direct connection to other SPI-compatible peripheral COUT ports  
for sharing the same system controller port. All SPI transactions  
have the same basic generic control word format, as shown in  
Table 15. A timing diagram is shown in Figure 3. Write all data  
MSB first.  
W
Standalone Mode  
The ADAU1979 can also operate in standalone mode. However,  
in standalone mode, the boost converter, microphone bias, and  
diagnostics blocks are powered down. To set the device in  
standalone mode, pull the SA_MODE pin to IOVDD. In this  
mode, some pins change functionality to provide more flexibility  
(see Table 14 for more information).  
W
Chip Address R/  
Table 14. Pin Functionality in Standalone Mode  
Pin Function1  
Setting  
Description  
W
The LSB of the first byte of an SPI transaction is a R/ bit. This bit  
determines whether the communication is a read (Logic Level 1)  
or a write (Logic Level 0). This format is shown in Table 13.  
ADDR0  
0
1
I2S SAI format  
TDM modes, determined by the  
SDATAOUT2 pin  
W
Table 13. SPI Address and R/ Byte Format  
ADDR1  
SDA  
0
1
0
1
0
1
0
1
Master mode SAI  
Slave mode SAI  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
R/W  
MCLK = 256 × fS, PLL on  
MCLK = 384 × fS, PLL on  
48 kHz sample rate  
96 kHz sample rate  
TDM4—LRCLK pulse  
TDM8—LRCLK pulse  
SCL  
SDATAOUT2  
1 Pin functionality, not full pin names, is listed. See Table 12 for additional  
information.  
Table 15. Generic Control Word Format  
Byte 0  
Byte 1  
Byte 2  
Data[7:0]  
Byte 31  
Device Address[6:0], R/W  
Register Address[7:0]  
Data[7:0]  
1 Continues to end of data.  
Rev. 0 | Page 24 of 44  
 
 
 
 
 
Data Sheet  
ADAU1979  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
CLATCH  
CCLK  
CIN  
Figure 39. SPI Mode Initial Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21 22  
23  
24  
25  
14  
CLATCH  
CCLK  
DEVICE ADDRESS (7 BITS)  
R/W  
REGISTER ADDRESS BYTE  
DATA BYTE  
CIN  
Figure 40. SPI Write to ADAU1979 Clocking (Single-Word Write Mode)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21 22  
23  
24  
25  
14  
CCLK  
CLATCH  
DEVICE ADDRESS (7 BITS)  
REGISTER ADDRESS BYTE  
DATA BYTE  
CIN  
R/W  
DATA BYTE FROM ADAU1979  
COUT  
Figure 41. SPI Read from ADAU1979 Clocking (Single-Word Read Mode)  
CLATCH  
CCLK  
CIN  
DATA BYTE1  
DEVICE  
ADDRESS  
BYTE  
REGISTER  
ADDRESS  
BYTE  
DATA BYTE2  
DATA BYTE n – 1  
DATA BYTE n  
Figure 42. SPI Write to ADAU1979 (Multiple Bytes)  
CLATCH  
CCLK  
CIN  
DEVICE  
ADDRESS  
BYTE  
REGISTER  
ADDRESS  
BYTE  
COUT  
DATA BYTE1  
DATA BYTE2  
DATA BYTE3  
DATA BYTE n – 1  
DATA BYTE n  
Figure 43. SPI Read from ADAU1979 (Multiple Bytes)  
Rev. 0 | Page 25 of 44  
 
 
 
ADAU1979  
Data Sheet  
REGISTER SUMMARY  
Table 16. REGMAP_ADAU1979 Register Summary  
Reg Name  
Bits Bit 7  
[7:0] S_RST  
[7:0] PLL_LOCK  
[7:0]  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VREF_EN ADC_EN4  
SAI  
DATA_WIDTH LR_MODE  
Bit 2  
Bit 1  
MCS  
Bit 0  
Reset  
0x00  
0x41  
RW  
RW  
RW  
0x00 M_POWER  
0x01 PLL_CONTROL  
0x02 RESERVED  
0x03 RESERVED  
PWUP  
PLL_MUTE  
RESERVED  
CLK_S  
Reserved Reserved  
Reserved Reserved  
[7:0]  
0x04 BLOCK_POWER_SAI [7:0] LR_POL  
BCLKEDGE  
LDO_EN  
ADC_EN3 ADC_EN2  
FS  
ADC_EN1  
0x3F  
0x02  
0x00  
0x10  
0x32  
0xF0  
0xA0  
0xA0  
0xA0  
0xA0  
0x02  
0xFF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x05 SAI_CTRL0  
[7:0]  
SDATA_FMT  
0x06 SAI_CTRL1  
[7:0] SDATA_SEL  
SLOT_WIDTH  
SAI_MSB  
BCLKRATE SAI_MS  
0x07 SAI_CMAP12  
0x08 SAI_CMAP34  
0x09 SAI_OVERTEMP  
0x0A POSTADC_GAIN1  
0x0B POSTADC_GAIN2  
0x0C POSTADC_GAIN3  
0x0D POSTADC_GAIN4  
0x0E MISC_CONTROL  
0x0F RESERVED  
[7:0]  
CMAP_C2  
CMAP_C4  
CMAP_C1  
[7:0]  
CMAP_C3  
[7:0] SAI_DRV_C4 SAI_DRV_C3  
SAI_DRV_C2 SAI_DRV_C1 DRV_HIZ  
PADC_GAIN1  
RESERVED RESERVED OT  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
PADC_GAIN2  
PADC_GAIN3  
PADC_GAIN4  
[7:0]  
SUM_MODE  
RESERVED  
RESERVED  
MMUTE  
RESERVED  
RESERVED  
DC_CAL  
RESERVED  
[7:0]  
RESERVED  
0x10 RESERVED  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED RESERVED RESERVED 0x0F  
RESERVED RESERVED RESERVED 0x00  
RESERVED RESERVED RESERVED 0x00  
RESERVED RESERVED RESERVED 0x00  
RESERVED RESERVED RESERVED 0x00  
RESERVED RESERVED RESERVED 0x20  
RESERVED RESERVED RESERVED 0x00  
0x11 RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0] RESERVED  
[7:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x12 RESERVED  
0x13 RESERVED  
0x14 RESERVED  
0x15 RESERVED  
0x16 RESERVED  
0x17 RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reserved Reserved  
0x18 RESERVED  
[7:0]  
RESERVED  
ADC_CLIP4  
DC_HPF_C4  
RESERVED RESERVED RESERVED Reserved Reserved  
0x19 ASDC_CLIP  
0x1A DC_HPF_CAL  
[7:0]  
RESERVED  
DC_SUB_C2 DC_SUB_C1  
ADC_CLIP3 ADC_CLIP2 ADC_CLIP1 0x00  
DC_HPF_C3 DC_HPF_C2 DC_HPF_C1 0x00  
RW  
RW  
[7:0] DC_SUB_C4 DC_SUB_C3  
Rev. 0 | Page 26 of 44  
 
Data Sheet  
ADAU1979  
REGISTER DETAILS  
MASTER POWER AND SOFT RESET REGISTER  
Address: 0x00, Reset: 0x00, Name: M_POWER  
The power management control register enables the boost regulator, microphone bias, PLL, band gap reference, ADC, and LDO regulator.  
Table 17. Bit Descriptions for M_POWER  
Bits Bit Name Settings Description  
Reset Access  
7
S_RST  
Software Reset. The software reset resets all internal circuitry and all control registers to  
their respective default states. It is not necessary to reset the ADAU1979 during a power-  
up or power-down cycle.  
0x0  
RW  
0
1
Normal Operation.  
Software Reset.  
Reserved.  
[6:1] RESERVED  
PWUP  
0x00  
0x0  
RW  
RW  
0
Master Power-Up Control. The master power-up control fully powers up or powers down  
the ADAU1979. This must be set to 1 to power up the ADAU1979. Individual blocks can  
be powered down via their respective power control registers.  
0
1
Full Power-Down.  
Master Power-Up.  
Rev. 0 | Page 27 of 44  
 
ADAU1979  
Data Sheet  
PLL CONTROL REGISTER  
Address: 0x01, Reset: 0x41, Name: PLL_CONTROL  
Table 18. Bit Descriptions for PLL_CONTROL  
Bits Bit Name  
Settings Description  
PLL Lock Status. PLL lock status bit. When set to 1, the PLL is locked.  
PLL Not Locked.  
Reset Access  
7
PLL_LOCK  
0x0  
R
0
1
PLL Locked.  
6
PLL_MUTE  
PLL Unlock Automute. When set to 1, it mutes the ADC output if PLL becomes unlocked.  
No Automatic Mute on PLL Unlock.  
Automatic Mute with PLL Unlock.  
0x1  
RW  
0
1
5
4
RESERVED  
CLK_S  
Reserved.  
0x0  
0x0  
RW  
RW  
PLL Clock Source Select. Selecting input clock source for PLL.  
MCLK Used for PLL Input.  
LRCLK Used for PLL Input; Only Supported for Sample Rates in the Range of 32 kHz to  
192 kHz.  
0
1
3
RESERVED  
Reserved.  
0x0  
0x1  
RW  
RW  
[2:0] MCS  
Master Clock Select. MCS bits determine the frequency multiplication ratio of the PLL. It  
must be set based on the input MCLK frequency and sample rate.  
001 256 × fS MCLK for 32 kHz up to 48 kHz (see the PLL and Clock section for other sample rates).  
010 384 × fS MCLK for 32 kHz up to 48 kHz (see the PLL and Clock section for other sample rates).  
011 512 × fS MCLK for 32 kHz up to 48 kHz (see the PLL and Clock section for other sample rates).  
100 768 × fS MCLK for 32 kHz up to 48 kHz (see the PLL and Clock section for other sample rates).  
000 128 × fS MCLK for 32 kHz up to 48 kHz (see the PLL and Clock section for other sample rates).  
101 Reserved.  
110 Reserved.  
111 Reserved.  
Rev. 0 | Page 28 of 44  
 
Data Sheet  
ADAU1979  
BLOCK POWER CONTROL AND SERIAL PORT CONTROL REGISTER  
Address: 0x04, Reset: 0x3F, Name: BLOCK_POWER_SAI  
Table 19. Bit Descriptions for BLOCK_POWER_SAI  
Bits Bit Name  
Settings  
Description  
Reset Access  
7
6
5
4
3
2
1
0
LR_POL  
Sets LRCLK Polarity  
LRCLK Low then High  
LRCLK High then Low  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
BCLKEDGE  
LDO_EN  
Sets the Bit Clock Edge on Which Data Changes  
Data Changes on Falling Edge  
Data Changes on Rising Edge  
LDO Regulator Enable  
LDO Powered Down  
LDO Enabled  
0
1
0
1
VREF_EN  
ADC_EN4  
ADC_EN3  
ADC_EN2  
ADC_EN1  
Voltage Reference Enable  
Voltage Reference Powered Down  
Voltage Reference Enabled  
ADC Channel 4 Enable  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
0
1
ADC Channel 3 Enable  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
ADC Channel 2 Enable  
ADC Channel Powered Down  
ADC Channel Enabled  
0
1
ADC Channel 1 Enable  
0
1
ADC Channel Powered Down  
ADC Channel Enabled  
Rev. 0 | Page 29 of 44  
 
ADAU1979  
Data Sheet  
SERIAL PORT CONTROL REGISTER 1  
Address: 0x05, Reset: 0x02, Name: SAI_CTRL0  
Table 20. Bit Descriptions for SAI_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SDATA_FMT  
Serial Data Format  
00 I2S Data Delayed from Edge of LRCLK by 1 BCLK  
0x0  
RW  
01 Left Justified  
10 Right Justified, 24-Bit Data  
11 Right Justified, 16-Bit Data  
Serial Port Mode  
[5:3]  
[2:0]  
SAI  
FS  
0x0  
RW  
RW  
000 Stereo (I2S, LJ, RJ)  
001 TDM2  
010 TDM4  
011 TDM8  
100 TDM16  
Sampling Rate  
0x2  
000 8 kHz to 12 kHz  
001 16 kHz to 24 kHz  
010 32 kHz to 48 kHz  
011 64 kHz to 96 kHz  
100 128 kHz to 192 kHz  
Rev. 0 | Page 30 of 44  
 
Data Sheet  
ADAU1979  
SERIAL PORT CONTROL REGISTER 2  
Address: 0x06, Reset: 0x00, Name: SAI_CTRL1  
Table 21. Bit Descriptions for SAI_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SDATA_SEL  
SDATAOUTx Pin Selection in TDM4 or Greater Modes  
SDATAOUT1 used for output  
SDATAOUT2 used for output  
0x0  
RW  
0
1
[6:5]  
SLOT_WIDTH  
Number of BCLKs per Slot in TDM Mode  
0x0  
RW  
00 32 BCLKs per TDM slot  
01 24 BCLKs per TDM slot  
10 16 BCLKs per TDM slot  
11 Reserved  
4
3
2
1
DATA_WIDTH  
LR_MODE  
SAI_MSB  
Output Data Bit Width  
24-bit data  
16-bit data  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
Sets LRCLK Mode  
50% duty cycle clock  
Pulse—LRCLK is a single BCLK cycle wide pulse  
Sets Data to be Input/Output Either MSB or LSB First  
MSB first data  
0
1
0
1
LSB first data  
BCLKRATE  
Sets the Number of Bit Clock Cycles per Data Channel Generated When in  
Master Mode  
0
1
32 BCLKs/channel  
16 BCLKs/channel  
0
SAI_MS  
Sets the Serial Port into Master or Slave Mode  
LRCLK/BCLK slave  
LRCLK/BCLK master  
0x0  
RW  
0
1
Rev. 0 | Page 31 of 44  
 
ADAU1979  
Data Sheet  
CHANNEL 1 AND CHANNEL 2 MAPPING FOR OUTPUT SERIAL PORTS REGISTER  
Address: 0x07, Reset: 0x10, Name: SAI_CMAP12  
Table 22. Bit Descriptions for SAI_CMAP12  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
CMAP_C2  
ADC Channel 2 Output Mapping.  
0x1  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. 0 | Page 32 of 44  
 
Data Sheet  
ADAU1979  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:0]  
CMAP_C1  
ADC Channel 1 Output Mapping. If CMAP is set to a slot that does not  
exist for a given serial mode, that channel is not driven. For example, if  
CMAP is set to Slot 9 and the serial format is I2S, that channel is not driven.  
If more than one channel is set to the same slot, only the lowest channel  
number is driven; other channels are not driven.  
0x0  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. 0 | Page 33 of 44  
ADAU1979  
Data Sheet  
CHANNEL 3 AND CHANNEL 4 MAPPING FOR OUTPUT SERIAL PORTS REGISTER  
Address: 0x08, Reset: 0x32, Name: SAI_CMAP34  
Table 23. Bit Descriptions for SAI_CMAP34  
Bits Bit Name Settings Description  
Reset Access  
[7:4] CMAP_C4  
ADC Channel 4 Output Mapping  
0000 Slot 1 for Channel  
0x3  
RW  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
Rev. 0 | Page 34 of 44  
 
Data Sheet  
ADAU1979  
Bits Bit Name Settings Description  
Reset Access  
[3:0] CMAP_C3  
ADC Channel 3 Output Mapping  
0x2  
RW  
0000 Slot 1 for Channel  
0001 Slot 2 for Channel  
0010 Slot 3 for Channel (on SDATAOUT2 in stereo modes)  
0011 Slot 4 for Channel (on SDATAOUT2 in stereo modes)  
0100 Slot 5 for Channel (TDM8+ only)  
0101 Slot 6 for Channel (TDM8+ only)  
0110 Slot 7 for Channel (TDM8+ only)  
0111 Slot 8 for Channel (TDM8+ only)  
1000 Slot 9 for Channel (TDM16 only)  
1001 Slot 10 for Channel (TDM16 only)  
1010 Slot 11 for Channel (TDM16 only)  
1011 Slot 12 for Channel (TDM16 only)  
1100 Slot 13 for Channel (TDM16 only)  
1101 Slot 14 for Channel (TDM16 only)  
1110 Slot 15 for Channel (TDM16 only)  
1111 Slot 16 for Channel (TDM16 only)  
SERIAL OUTPUT DRIVE CONTROL AND OVERTEMPERATURE PROTECTION STATUS REGISTER  
Address: 0x09, Reset: 0xF0, Name: SAI_OVERTEMP  
Table 24. Bit Descriptions for SAI_OVERTEMP  
Bits Bit Name  
Settings Description  
Reset  
Access  
7
SAI_DRV_C4  
Channel 4 Serial Output Drive Enable.  
0x1  
RW  
0
1
Channel Not Driven on Serial Output Port.  
Channel Driven on Serial Output Port. Slot determined by CMAP_C4.  
Rev. 0 | Page 35 of 44  
 
ADAU1979  
Data Sheet  
Bits Bit Name  
Settings Description  
Channel 3 Serial Output Drive Enable.  
Reset  
Access  
6
5
4
3
SAI_DRV_C3  
SAI_DRV_C2  
SAI_DRV_C1  
DRV_HIZ  
0x1  
RW  
0
1
Channel Not Driven on Serial Output Port.  
Channel Driven on Serial Output Port. Slot determined by CMAP_C3.  
Channel 2 Serial Output Drive Enable.  
Channel Not Driven on Serial Output Port.  
Channel Driven on Serial Output Port. Slot determined by CMAP_C2.  
Channel 1 Serial Output Drive Enable.  
Channel Not Driven on Serial Output Port.  
Channel Driven on Serial Output Port. Slot determined by CMAP_C1.  
Select Whether to Tristate Unused SAI Channels or Actively Drive These Data Slots.  
Unused outputs driven low.  
0x1  
0x1  
0x0  
RW  
RW  
RW  
0
1
0
1
0
1
Unused outputs high-Z.  
[2:1] RESERVED  
OT  
Reserved  
0x0  
0x0  
R
R
0
Overtemperature Status  
0
1
Normal Operation.  
Overtemperature Fault.  
POST ADC GAIN CHANNEL 1 CONTROL REGISTER  
Address: 0x0A, Reset: 0xA0, Name: POSTADC_GAIN1  
Table 25. Bit Descriptions for POSTADC_GAIN1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
RW  
[7:0]  
PADC_GAIN1  
Channel 1 Post ADC Gain  
0xA0  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. 0 | Page 36 of 44  
 
Data Sheet  
ADAU1979  
POST ADC GAIN CHANNEL 2 CONTROL REGISTER  
Address: 0x0B, Reset: 0xA0, Name: POSTADC_GAIN2  
Table 26. Bit Descriptions for POSTADC_GAIN2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN2  
Channel 2 Post ADC Gain  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
POST ADC GAIN CHANNEL 3 CONTROL REGISTER  
Address: 0x0C, Reset: 0xA0, Name: POSTADC_GAIN3  
Table 27. Bit Descriptions for POSTADC_GAIN3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN3  
Channel 3 Post ADC Gain  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
Rev. 0 | Page 37 of 44  
 
ADAU1979  
Data Sheet  
POST ADC GAIN CHANNEL 4 CONTROL REGISTER  
Address: 0x0D, Reset: 0xA0, Name: POSTADC_GAIN4  
Table 28. Bit Descriptions for POSTADC_GAIN4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PADC_GAIN4  
Channel 4 Post ADC Gain.  
0xA0  
RW  
00000000 +60 dB Gain  
00000001 +59.625 dB Gain  
00000010 +59.25 dB Gain  
... ...  
10011111 +0.375 dB Gain  
10100000 0 dB Gain  
10100001 −0.375 dB Gain  
... ...  
11111110 −35.625 dB Gain  
11111111 Mute  
HIGH-PASS FILTER AND DC OFFSET CONTROL REGISTER AND MASTER MUTE REGISTER  
Address: 0x0E, Reset: 0x02, Name: MISC_CONTROL  
Rev. 0 | Page 38 of 44  
 
Data Sheet  
ADAU1979  
Table 29. Bit Descriptions for MISC_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
SUM_MODE  
Channel Summing Mode Control for Higher SNR  
0x0  
RW  
00 Normal 4-Channel Operation  
01 2-Channel Summing Operation (See the ADC Summing Modes Section)  
10 1-Channel Summing Operation (See the ADC Summing Modes Section)  
11 Reserved  
Reserved  
5
4
RESERVED  
MMUTE  
0x0  
0x0  
RW  
RW  
Master Mute  
0
1
Normal Operation  
All Channels Muted  
Reserved  
[3:1]  
0
RESERVED  
DC_CAL  
0x0  
0x0  
RW  
RW  
DC Calibration Enable  
Normal Operation  
Perform DC Calibration  
0
1
ADC CLIPPING STATUS REGISTER  
Address: 0x19, Reset: 0x00, Name: ASDC_CLIP  
Table 30. Bit Descriptions for ASDC_CLIP  
Bits  
[7:4]  
3
Bit Name  
RESERVED  
ADC_CLIP4  
Settings  
Description  
Reset  
0x0  
Access  
Reserved  
RW  
R
ADC Channel 4 Clip Status  
Normal Operation  
ADC Channel Clipping  
ADC Channel 3 Clip Status  
Normal Operation  
ADC Channel Clipping  
ADC Channel 2 Clip Status  
Normal Operation  
ADC Channel Clipping  
ADC Channel 1 Clip Status  
Normal Operation  
0x0  
0
1
2
1
0
ADC_CLIP3  
ADC_CLIP2  
ADC_CLIP1  
0x0  
0x0  
0x0  
R
R
R
0
1
0
1
0
1
ADC Channel Clipping  
Rev. 0 | Page 39 of 44  
 
ADAU1979  
Data Sheet  
DIGITAL DC HIGH-PASS FILTER AND CALIBRATION REGISTER  
Address: 0x1A, Reset: 0x00, Name: DC_HPF_CAL  
Table 31. Bit Descriptions for DC_HPF_CAL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DC_SUB_C4  
Channel 4 DC Subtraction from Calibration  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 3 DC Subtraction from Calibration  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 2 DC Subtraction from Calibration  
No DC Subtraction  
DC Value from DC Calibration Is Subtracted  
Channel 1 DC Subtraction from Calibration  
No DC Subtraction  
0x0  
RW  
0
1
6
5
4
3
2
1
0
DC_SUB_C3  
DC_SUB_C2  
DC_SUB_C1  
DC_HPF_C4  
DC_HPF_C3  
DC_HPF_C2  
DC_HPF_C1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
DC Value from DC Calibration Is Subtracted  
Channel 4 DC High-Pass Filter Enable  
HPF Off  
0
1
HPF On  
Channel 3 DC High-Pass Filter Enable  
HPF Off  
HPF On  
0
1
Channel 2 DC High-Pass Filter Enable  
HPF Off  
HPF On  
0
1
Channel 1 DC High-Pass Filter Enable  
HPF Off  
HPF On  
0
1
Rev. 0 | Page 40 of 44  
 
Data Sheet  
ADAU1979  
TYPICAL APPLICATION CIRCUIT  
+3.3V  
10µF  
MLCC X7R  
C12  
0.1µF  
C13  
0.1µF  
C14  
0.1µF  
* FOR MORE INFORMATION ABOUT CALCULATING THE VALUE  
FOR R  
, SEE THE POWER-ON RESET SEQUENCE SECTION.  
EXT  
DVDD  
3.3V TO 1.8V  
REGULATOR  
REFER TO THE SPECIFICATIONS  
SECTION FOR THE TYPICAL  
DIFFERENTIAL INPUT VOLTAGE  
C15  
0.1µF  
C16  
R
*
EXT  
10µF  
ADAU1979  
MLCC X7R  
AIN1  
+1.8V OR +3.3V  
ADC  
ADC  
ADC  
ADC  
LINE1  
AIN1  
IOVDD  
C7  
0.1µF  
AIN2  
LINE2  
AIN2  
LRCLK  
BCLK  
SDATAOUT1  
SDATAOUT2  
AIN3  
TO DSP  
LINE3  
AIN3  
AIN4  
IOVDD  
LINE4  
AIN4  
SCL/CCLK  
SDA/COUT  
ADDR1/CIN  
AGND1  
AVDD2  
AGND3  
2
BG  
REF  
I
C/SPI  
MICRO-  
CONTROLLER  
PLL  
CONTROL  
ADDR0/CLATCH  
PD/RST  
AGND2  
AGND2  
R13  
R14  
NOTES  
1. R9, R10 = TYPICAL 2kΩ FOR IOVDD = 3.3V, 1kΩ FOR IOVDD = 1.8V.  
2. R11 THROUGH R14 USED FOR SETTING THE DEVICE IN I2C MODE.  
3. R16 = TYPICAL 47kΩ FOR IOVDD = 3.3V, 22kΩ FOR IOVDD = 1.8V.  
4. PLL LOOP FILTER:  
C18  
10µF  
C19  
0.1µF  
C21  
R17  
C20  
PLL INPUT OPTION  
LRCLK  
MCLK  
R17  
C20  
C21  
4.87kΩ  
2200pF  
39nF  
1kΩ  
+3.3V (AVDD2)  
390pF  
5600pF  
Figure 44. Typical Application Circuit, Four Inputs, I2C and I2S Mode  
Rev. 0 | Page 41 of 44  
 
 
ADAU1979  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.05  
3.90 SQ  
3.75  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 45. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
Package Option  
ADAU1979WBCPZ  
ADAU1979WBCPZ-RL  
EVAL-ADAU1979Z  
40-Lead LFCSP_WQ  
40-Lead LFCSP, 13”Tape and Reel  
Evaluation Board  
CP-40-14  
CP-40-14  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADAU1979WBCPZ models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. 0 | Page 42 of 44  
 
 
Data Sheet  
NOTES  
ADAU1979  
Rev. 0 | Page 43 of 44  
ADAU1979  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11408-0-11/13(0)  
Rev. 0 | Page 44 of 44  

相关型号:

EVAL-ADAU7002Z

Stereo PDM-to-I2S or TDM Conversion IC
ADI

EVAL-ADCMP551BRQ

Single-Supply, High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP551BRQZ

Single Supply High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP552BRQ

Single-Supply, High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP552BRQZ

Single Supply High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP553BRMZ

Single Supply High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP563BRQ

Dual, High Speed ECL Comparators
ADI

EVAL-ADCMP564BRQ

Dual, High Speed ECL Comparators
ADI

EVAL-ADCMP572BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP572BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI