EVAL-ADCMP563BRQ [ADI]

Dual, High Speed ECL Comparators; 双通道,高速ECL比较器
EVAL-ADCMP563BRQ
型号: EVAL-ADCMP563BRQ
厂家: ADI    ADI
描述:

Dual, High Speed ECL Comparators
双通道,高速ECL比较器

比较器
文件: 总16页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, High Speed ECL Comparators  
ADCMP563/ADCMP564  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
HYS*  
Differential ECL-compatible outputs  
700 ps propagation delay input to output  
75 ps propagation delay dispersion  
Input common-mode range: –2.0 V to +3.0 V  
Robust input protection  
NONINVERTING  
Q OUTPUT  
INPUT  
ADCMP563/  
ADCMP564  
INVERTING  
Q OUTPUT  
INPUT  
Differential latch control  
Internal latch pull-up resistors  
Power supply rejection greater than 85 dB  
700 ps minimum pulse width  
LATCH ENABLE  
LATCH ENABLE  
INPUT  
INPUT  
*ADCMP564 ONLY  
1.5 GHz equivalent input rise time bandwidth  
Typical output rise/fall time of 500 ps  
ESD protection > 4kV HBM, >200V MM  
Programmable hysteresis  
Figure 1.  
GND  
QA  
GND  
1
2
20  
19 QB  
1
2
3
4
5
6
7
8
16  
QB  
QA  
QA  
QA  
QB  
3
18  
17  
16  
15  
14  
13  
12  
11  
15 QB  
ADCMP564  
BRQ  
TOP VIEW  
(Not to Scale)  
GND  
LEA  
LEA  
GND  
LEB  
LEB  
4
14 GND  
13 LEB  
12 LEB  
APPLICATIONS  
GND  
LEA  
LEA  
5
ADCMP563  
BRQ  
Automatic test equipment  
High speed instrumentation  
Scope and logic analyzer front ends  
Window comparators  
High speed line receivers  
Threshold detection  
6
TOP VIEW  
(Not to Scale)  
V
V
7
EE  
CC  
11  
V
V
CC  
10 –INB  
+INB  
EE  
–INA  
+INA  
–INB  
+INB  
HYSB  
8
–INA  
+INA  
9
9
HYSA  
10  
Peak detection  
Figure 2. ADCMP563 16-Lead QSOP  
Figure 3. ADCMP564 20-Lead QSOP  
High speed triggers  
QA QA QB QB  
16  
15  
14  
13  
Patient diagnostics  
PIN1  
Hand-held test instruments  
Zero crossing detectors  
Line receivers and signal restoration  
Clock drivers  
GND  
LEA  
LEA  
GND  
LEB  
LEB  
1
2
3
4
12  
11  
10  
9
ADCMP563  
BCP  
TOP VIEW  
(Not to Scale)  
V
V
EE  
CC  
5
6
7
8
GENERAL DESCRIPTION  
–INA +INA +INB –INB  
Figure 4. ADCMP563 16-Lead LFCSP  
The ADCMP563/ADCMP564 are high speed comparators  
fabricated on Analog Devices’ proprietary XFCB process. The  
devices feature a 700 ps propagation delay with less than 75 ps  
overdrive dispersion. Dispersion, a measure of the difference in  
propagation delay under differing overdrive conditions, is a  
particularly important characteristic of high speed comparators.  
A separate programmable hysteresis pin is available on the  
ADCMP564.  
that are fully compatible with ECL 10 K and 10 KH logic  
families. The outputs provide sufficient drive current to directly  
drive transmission lines terminated in 50 Ω to −2 V. A latch  
input, which is included, permits tracking, track-and-hold, or  
sample-and-hold modes of operation. The latch input pins  
contain internal pull-ups that set the latch in tracking mode  
when left open.  
A differential input stage permits consistent propagation delay  
with a wide variety of signals in the common-mode range from  
−2.0 V to +3.0 V. Outputs are complementary digital signals  
The ADCMP563/ADCMP564 are specified over the industrial  
temperature range (−40°C to +85°C).  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
ADCMP563/ADCMP564  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Considerations.............................................................. 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
Timing Information ....................................................................... 10  
Application Information................................................................ 11  
Clock Timing Recovery............................................................. 11  
Optimizing High Speed Performance ..................................... 11  
Comparator Propagation Delay Dispersion ........................... 11  
Comparator Hysteresis .............................................................. 12  
Minimum Input Slew Rate Requirement................................ 12  
Typical Application Circuits ......................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
5/05—Rev. A to Rev. B  
Added 16-Lead LFCSP.......................................................Universal  
Changes to Applications .................................................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Optimizing High Speed Performance Section....... 11  
Changes to Comparator Hysteresis Section................................ 12  
Changes to Minimum Input Slew Rate Requirement Section.. 12  
Changes to Ordering Guide .......................................................... 14  
7/04—Rev. 0 to Rev. A  
Changes to Specification Table ....................................................... 4  
Changes to Figure 14........................................................................ 9  
Changes to Figure 21...................................................................... 12  
Changes to Figure 23...................................................................... 13  
4/04—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
ADCMP563/ADCMP564  
SPECIFICATIONS  
VCC = +5.0 V, VEE = −5.2 V, TA = −40°C to +85°C. Typical values are at TA = +25°C, unless otherwise noted.  
Table 1. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DC INPUT CHARACTERISTICS  
Input Voltage Range  
Input Differential Voltage  
Input Offset Voltage  
Input Offset Voltage Channel Matching  
Offset Voltage Temperature Coefficient  
Input Bias Current  
Input Bias Current Temperature Coefficient  
Input Offset Current  
−2.0  
−5  
−10.0  
3.0  
+5  
V
V
VOS  
VCM = 0 V  
2.0  
2.0  
2.0  
3
0.5  
1.0  
0.75  
750  
1800  
63  
+10.0 mV  
mV  
μV/°C  
+10.0 μA  
nA/°C  
∆VOS/dT  
IBC  
@ −IN = −2 V, +IN = +3 V  
−10.0  
μA  
pF  
Input Capacitance  
CIN  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Active Gain  
Common-Mode Rejection Ratio  
Hysteresis  
kΩ  
kΩ  
dB  
dB  
mV  
AV  
CMRR  
VCM = −2.0 V to +3.0 V  
RHYS = ∞  
80  
1.0  
LATCH ENABLE CHARACTERISTICS  
Latch Enable Voltage Range  
Latch Enable Differential Input Voltage  
Latch Enable Input High Current  
Latch Enable Input Low Current  
LE Voltage, Open  
−2.0  
0.4  
−300  
−300  
−0.2  
−2.8  
0
2.0  
+300 μA  
+300 μA  
+0.1  
−2.4  
V
V
@ 0.0 V  
@ −2.0 V  
Latch inputs not connected  
Latch inputs not connected  
VOD = 250 mV  
0
V
V
LE Voltage, Open  
−2.6  
200  
200  
500  
Latch Setup Time  
Latch Hold Time  
Latch to Output Delay  
tS  
tH  
tPLOH  
tPLOL  
ps  
ps  
ps  
VOD = 250 mV  
VOD = 250 mV  
,
Latch Minimum Pulse Width  
DC OUTPUT CHARACTERISTICS  
Output Voltage—High Level  
Output Voltage—Low Level  
Rise Time  
tPL  
VOD = 250 mV  
500  
ps  
VOH  
VOL  
tR  
ECL 50 Ω to −2.0 V  
ECL 50 Ω to −2.0 V  
10% to 90%  
−1.15  
−1.95  
−0.81  
−1.54  
V
V
ps  
ps  
530  
450  
Fall Time  
tF  
10% to 90%  
AC PERFORMANCE  
Propagation Delay  
tPD  
VOD = 1 V  
VOD = 20 mV  
VOD = 1 V  
700  
830  
0.25  
50  
ps  
ps  
ps/°C  
ps  
Propagation Delay Temperature Coefficient  
Prop Delay Skew—Rising Transition to Falling  
Transition  
∆tPD /dT  
VOD = 1 V  
Within Device Propagation Delay Skew—  
Channel-to-Channel  
VOD = 1 V  
50  
ps  
Overdrive Dispersion  
20 mV ≤ VOD ≤ 100 mV  
100 mV ≤ VOD ≤ 1.5 V  
0.4 V/ns ≤ SR ≤ 1.33 V/ns  
750ps ≤ PW ≤ 10ns  
33 MHz, 1 V/ns, 0.5 V  
1 V swing, −1.5 V ≤ VCM ≤ +2.5 V  
75  
75  
50  
25  
10  
10  
ps  
ps  
ps  
ps  
ps  
ps  
Slew Rate Dispersion  
Pulse Width Dispersion  
Duty Cycle Dispersion  
Common-Mode Voltage Dispersion  
Rev. B | Page 3 of 16  
 
ADCMP563/ADCMP564  
Parameter  
Symbol  
BWEQ  
Conditions  
Min  
Typ  
Max  
Unit  
AC PERFORMANCE (Continued)  
Equivalent Input Rise Time Bandwidth1  
Maximum Toggle Rate  
Minimum Pulse Width  
RMS Random Jitter  
0 V to 1 V swing, 2 V/ns  
>50% output swing, 50% duty cycle  
ΔtPD < 25 ps  
VOD = 400 mV, 1.3 V/ns, 312 MHz,  
50% duty cycle  
1500  
800  
700  
1.0  
MHz  
MHz  
ps  
PWMIN  
ps  
Unit to Unit Propagation Delay Skew  
POWER SUPPLY  
100  
ps  
Positive Supply Current  
Negative Supply Current  
Positive Supply Voltage  
Negative Supply Voltage  
Power Dissipation  
IVCC  
IVEE  
VCC  
VEE  
PD  
@ +5.0 V  
@ −5.2 V  
Dual  
Dual  
Dual, without load  
Dual, with load  
2
10  
4.75  
−4.96 −5.2  
90  
3.2  
19  
5.0  
5
25  
5.25  
−5.45  
150  
230  
mA  
mA  
V
V
120  
180  
85  
mW  
mW  
dB  
dB  
150  
DC Power Supply Rejection Ratio—VCC  
DC Power Supply Rejection Ratio—VEE  
HYSTERESIS (ADCMP564 Only)  
Hysteresis  
PSRRVCC  
PSRRVEE  
85  
RHYS = 23.5 kΩ  
RHYS = 9.0 kΩ  
Referred to AGND  
20  
70  
−1  
3
mV  
mV  
V
Hysteresis Pin Bias Voltage  
Hysteresis Pin Series Resistance  
kΩ  
1 Equivalent input rise time bandwidth assumes a first-order input response and is calculated by the following formula: BWEQ = 0.22/√(trCOMP2 – trIN2), where trIN is the  
20/80 input transition time applied to the comparator and trCOMP is the effective transition time, as digitized by the comparator input.  
Rev. B | Page 4 of 16  
ADCMP563/ADCMP564  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Supply Voltages  
Positive Supply Voltage (VCC to GND)  
Negative Supply Voltage (VEE to GND)  
Ground Voltage Differential  
Input Voltages  
Input Common-Mode Voltage  
Differential Input Voltage  
Input Voltage, Latch Controls  
Output  
−0.5 V to +6.0 V  
−6.0 V to +0.5 V  
−0.5 V to +0.5 V  
−3.0 V to +4.0 V  
−7.0 V to +7.0 V  
VEE to +0.5 V  
THERMAL CONSIDERATIONS  
The ADCMP563 QSOP 16-lead package option has a θJA  
(junction-to-ambient thermal resistance) of 104°C/W in  
still air.  
Output Current  
30 mA  
Temperature  
Operating Temperature, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
−40°C to +85°C  
125°C  
−65°C to +150°C  
The ADCMP563 LFCSP 16-lead package option has a θJA  
(junction-to-ambient thermal resistance) of 70°C/W in  
still air.  
The ADCMP564 QSOP 20-lead package option has a θJA  
(junction-to-ambient thermal resistance) of 80°C/W in  
still air.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 5 of 16  
 
ADCMP563/ADCMP564  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
QA QA QB QB  
16  
15  
14  
13  
GND  
GND  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
16 QB  
QA  
QA  
PIN1  
QA  
QB  
2
GND  
LEA  
LEA  
GND  
LEB  
LEB  
1
2
3
4
12  
11  
10  
9
15 QB  
QA  
QB  
3
14 GND  
13 LEB  
12 LEB  
GND  
LEA  
LEA  
ADCMP563  
BCP  
ADCMP563  
BRQ  
ADCMP564  
BRQ  
TOP VIEW  
(Not to Scale)  
GND  
LEA  
LEA  
GND  
LEB  
LEB  
4
TOP VIEW  
(Not to Scale)  
5
TOP VIEW  
(Not to Scale)  
V
V
EE  
CC  
6
11  
V
V
CC  
10 –INB  
+INB  
EE  
5
6
7
8
V
V
7
EE  
CC  
–INA  
+INA  
–INA +INA +INB –INB  
–INA  
+INA  
–INB  
+INB  
HYSB  
8
9
9
HYSA  
10  
Figure 6. ADCMP564 20-Lead QSOP  
Pin Configuration  
Figure 7. ADCMP563 16-Lead LFCSP  
Pin Configuration  
Figure 5. ADCMP563 16-Lead QSOP  
Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
ADCMP563 ADCMP563 ADCMP564  
16-Lead  
QSOP  
16-Lead  
LFCSP  
20-Lead  
QSOP  
Mnemonic Function  
1
2
GND  
QA  
Analog Ground.  
1
2
15  
16  
One of Two Complementary Outputs for Channel A. QA is logic high if the  
analog voltage at the noninverting input is greater than the analog voltage  
at the inverting input (provided the comparator is in compare mode). See  
the description of the LEA pin for more information.  
One of Two Complementary Outputs for Channel A. QA is logic low if the  
analog voltage at the noninverting input is greater than the analog voltage  
at the inverting input (provided the comparator is in compare mode). See  
the description of the LEA pin for more information.  
3
QA  
3
4
1
2
4
5
GND  
LEA  
Analog Ground.  
One of Two Complementary Inputs for Channel A Latch Enable. In compare  
mode (logic high), the output tracks change at the input of the comparator.  
In latch mode (logic low), the output reflects the input state just prior to the  
comparator being placed in the latch mode. LEA must be driven in  
conjunction with LEA. If left unconnected, the comparator defaults to  
compare mode.  
5
3
6
LEA  
One of Two Complementary Inputs for Channel A Latch Enable. In compare  
mode (logic low), the output tracks change at the input of the comparator.  
In latch mode (logic high), the output reflects the input state just prior to the  
comparator being placed in the latch mode. LEA must be driven in  
conjunction with LEA. If left unconnected, the comparator defaults to  
compare mode.  
6
7
4
5
7
8
VEE  
−INA  
Negative Supply Terminal.  
Inverting Analog Input of the Differential Input Stage for Channel A. The  
Inverting A input must be driven in conjunction with the Noninverting A input.  
8
6
9
+INA  
Noninverting Analog Input of the Differential Input Stage for Channel A. The  
Noninverting A input must be driven in conjunction with the Inverting A input.  
10  
11  
12  
HYSA  
HYSB  
+INB  
Programmable Hysteresis Input.  
Programmable Hysteresis Input.  
Noninverting Analog Input of the Differential Input Stage for Channel B. The  
Noninverting B input must be driven in conjunction with the Inverting B input.  
Inverting Analog Input of the Differential Input Stage for Channel B. The  
Inverting B input must be driven in conjunction with the Noninverting B input.  
Positive Supply Terminal.  
9
7
8
9
10  
11  
13  
14  
−INB  
VCC  
Rev. B | Page 6 of 16  
 
ADCMP563/ADCMP564  
Pin No.  
ADCMP563 ADCMP563 ADCMP564  
16-Lead  
QSOP  
16-Lead  
LFCSP  
20-Lead  
QSOP  
Mnemonic Function  
12  
13  
10  
11  
15  
16  
LEB  
One of Two Complementary Inputs for Channel B Latch Enable. In compare  
mode (logic low), the output tracks change at the input of the comparator.  
In latch mode (logic high), the output reflects the input state just prior to the  
comparator being placed in the latch mode. LEB must be driven in conjunction  
with LEB. If left unconnected, the comparator defaults to compare mode.  
LEB  
One of Two Complementary Inputs for Channel B Latch Enable. In compare  
mode (logic high), the output tracks change at the input of the comparator.  
In latch mode (logic low), the output reflects the input state just prior to the  
comparator being placed in the latch mode. LEB must be driven in conjunction  
with LEB. If left unconnected, the comparator defaults to compare mode.  
14  
15  
12  
13  
17  
18  
GND  
QB  
Analog Ground.  
One of Two Complementary Outputs for Channel B. QB is logic low if the  
analog voltage at the noninverting input is greater than the analog voltage  
at the inverting input (provided the comparator is in compare mode). See  
the description of the LEB pin for more information.  
16  
14  
19  
20  
QB  
One of Two Complementary Outputs for Channel B. QB is logic high if the  
analog voltage at the noninverting input is greater than the analog voltage  
at the inverting input (provided the comparator is in compare mode). See the  
description of the LEB pin for more information.  
GND  
Analog Ground.  
Rev. B | Page 7 of 16  
ADCMP563/ADCMP564  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3 V, TA = 25°C, unless otherwise noted.  
3.0  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
2.64  
2.62  
2.60  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
3.5  
–40  
–20  
0
20  
40  
60  
80  
NONINVERTING INPUT VOLTAGE (INVERTING VOLTAGE = 0V)  
TEMPERATURE (°C)  
Figure 8. Input Bias Current vs. Input Voltage  
Figure 11. Input Bias Current vs. Temperature  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–40  
–20  
0
20  
40  
60  
80  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
TEMPERATURE (°C)  
TIME (ns)  
Figure 9. Input Offset Voltage vs. Temperature  
Figure 12. Rise and Fall of Outputs vs. Time  
550  
545  
540  
535  
530  
525  
520  
515  
510  
505  
500  
475  
470  
465  
460  
455  
450  
445  
440  
435  
430  
425  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Rise Time vs. Temperature  
Figure 13. Fall Time vs. Temperature  
Rev. B | Page 8 of 16  
 
ADCMP563/ADCMP564  
720  
715  
710  
705  
700  
695  
690  
685  
680  
705  
704  
703  
702  
701  
700  
699  
698  
697  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–2  
–1  
0
1
2
3
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 14. Propagation Delay vs. Temperature  
Figure 17. Propagation Delay vs. Common-Mode Voltage  
140  
120  
100  
80  
25  
20  
15  
10  
5
60  
40  
0
20  
0
–5  
0.7  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.7  
2.7  
3.7  
4.7  
5.7  
6.7  
7.7  
8.7  
9.7  
OVERDRIVE VOLTAGE (V)  
PULSE WIDTH (ns)  
Figure 15. Propagation Delay Error vs. Overdrive Voltage  
Figure 18. Propagation Delay Error vs. Pulse Width  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
50  
0
50  
100  
(μA)  
150  
40  
30  
20  
10  
0
I
R
(kΩ)  
HYS  
HYS  
Figure 19. Comparator Hysteresis vs. IHYS  
Figure 16. Comparator Hysteresis vs. RHYS  
Rev. B | Page 9 of 16  
 
ADCMP563/ADCMP564  
TIMING INFORMATION  
LATCH ENABLE  
50%  
LATCH ENABLE  
tS  
tPL  
tH  
V
IN  
DIFFERENTIAL  
INPUT VOLTAGE  
V
± V  
OS  
REF  
V
OD  
tPDL  
tPLOH  
Q OUTPUT  
50%  
50%  
tF  
tPDH  
Q OUTPUT  
tPLOL  
tR  
Figure 20. System Timing Diagram  
Figure 20 shows the compare and latch features of the ADCMP563. Table 4 describes the terms in the diagram.  
Table 4. Timing Descriptions  
Symbol Timing  
Description  
tPDH  
tPDL  
tPLOH  
tPLOL  
tH  
Input-to-Output High Delay  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output low-to-high transition.  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output high-to-low transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output low-to-high transition.  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output high-to-low transition.  
Input-to-Output Low Delay  
Latch Enable to Output High Delay  
Latch Enable to Output Low Delay  
Minimum Hold Time  
Minimum time after the negative transition of the latch enable signal that the input signal  
must remain unchanged to be acquired and held at the outputs.  
tPL  
tS  
Minimum Latch Enable Pulse Width Minimum time the latch enable signal must be high to acquire an input signal change.  
Minimum Setup Time  
Output Rise Time  
Output Fall Time  
Minimum time before the negative transition of the latch enable signal that an input  
signal change must be present to be acquired and held at the outputs.  
Amount of time required to transition from a low to a high output as measured at the  
20% and 80% points.  
Amount of time required to transition from a high to a low output as measured at the  
20% and 80% points.  
tR  
tF  
VOD  
Voltage Overdrive  
Difference between the differential input and reference input voltages.  
Rev. B | Page 10 of 16  
 
 
 
ADCMP563/ADCMP564  
APPLICATION INFORMATION  
The ADCMP563/ADCMP564 comparators are very high speed  
devices. Consequently, high speed design techniques must be  
employed to achieve the best performance. The most critical  
aspect of any ADCMP563/ADCMP564 design is the use of a  
low impedance ground plane. A ground plane, as part of a  
multilayer board, is recommended for proper high speed  
performance. Using a continuous conductive plane over the  
surface of the circuit board can create this, allowing breaks in  
the plane only for necessary signal paths. The ground plane  
provides a low inductance ground, eliminating any potential  
differences at different ground points throughout the circuit  
board caused by ground bounce. A proper ground plane also  
minimizes the effects of stray capacitance on the circuit board.  
CLOCK TIMING RECOVERY  
Comparators are often used in digital systems to recover clock  
timing signals. High speed square waves transmitted over a  
distance, even tens of centimeters, can become distorted due to  
stray capacitance and inductance. Poor layout or improper  
termination can also cause reflections on the transmission line,  
further distorting the signal waveform. A high speed  
comparator can be used to recover the distorted waveform  
while maintaining a minimum of delay.  
OPTIMIZING HIGH SPEED PERFORMANCE  
As with any high speed comparator amplifier, proper design  
and layout techniques should be used to ensure optimal  
performance from the ADCMP563/ADCMP564. The perfor-  
mance limits of high speed circuitry all too often are the result  
of stray capacitance, improper ground impedance, or other  
layout issues.  
It is also important to provide bypass capacitors for the power  
supply in a high speed application. A 1 μF electrolytic bypass  
capacitor should be placed within 0.5 inches of each power  
supply pin to ground. These capacitors reduce any potential  
voltage ripples from the power supply. In addition, a 10 nF  
ceramic capacitor should be placed as close as possible from the  
power supply pins on the ADCMP563/ADCMP564 to ground.  
These capacitors act as a charge reservoir for the device during  
high frequency switching.  
Minimizing resistance from source to the input is an important  
consideration in maximizing the high speed operation of the  
ADCMP563/ADCMP564. Source resistance, in combination  
with equivalent input capacitance, could cause a lagged  
response at the input, thus delaying the output. The input  
capacitance of the ADCMP563/ADCMP564, in combination  
with stray capacitance from an input pin to ground, could result  
in several picofarads of equivalent capacitance. A combination  
of 3 kΩ source resistance and 5 pF input capacitance yields a  
time constant of 15 ns, which is significantly slower than the  
750 ps capability of the ADCMP563/ADCMP564. Source  
impedances should be significantly less than 100 Ω for best  
performance.  
The LATCH ENABLE input is active low (latched). If the  
latching function is not used, the LATCH ENABLE input can be  
left open or grounded (ground is an ECL logic high). The  
complementary input,  
, can be left open or  
LATCH ENABLE  
tied to −2.0 V. Leaving the latch inputs unconnected or  
providing the proper voltages disables the latching function.  
Occasionally, one of the two comparator stages within the  
ADCMP563/ADCMP564 is not used. The inputs of the unused  
comparator should not be allowed to float. The high internal  
gain can cause the output to oscillate (possibly affecting the  
comparator that is being used), unless the output is forced into  
a fixed state. This is easily accomplished by ensuring that the  
two inputs are at least one diode drop apart, while also  
appropriately connecting the LATCH ENABLE and  
Sockets should be avoided due to stray capacitance and induc-  
tance. If proper high speed techniques are used, the devices  
should be free from oscillation when the comparator input  
signal passes through the switching threshold.  
COMPARATOR PROPAGATION DELAY DISPERSION  
The ADCMP563/ADCMP564 have been specifically designed  
to reduce propagation delay dispersion over an input overdrive  
range of 100 mV to 1.5 V. Propagation delay overdrive  
dispersion is the change in propagation delay that results from a  
change in the degree of overdrive (how far the switching point  
is exceeded by the input). The overall result is a higher degree of  
timing accuracy because the ADCMP563/ADCMP564 are far  
less sensitive to input variations than most comparator designs.  
inputs as described previously.  
LATCH ENABLE  
The best performance is achieved with the use of proper ECL  
terminations. The open emitter outputs of the ADCMP563/  
ADCMP564 are designed to be terminated through 50 Ω  
resistors to −2.0 V, or any other equivalent ECL termination. If a  
−2.0 V supply is not available, an 82 Ω resistor to ground and a  
130 Ω resistor to −5.2 V provide a suitable equivalent. If high  
speed ECL signals must be routed more than a centimeter,  
microstrip or stripline techniques may be required to ensure  
proper transition times and prevent output ringing.  
Rev. B | Page 11 of 16  
 
ADCMP563/ADCMP564  
Propagation delay dispersion is important in critical timing  
applications such as ATE, bench instruments, and nuclear  
instrumentation. Overdrive dispersion is defined as the varia-  
tion in propagation delay as the input overdrive conditions are  
changed (Figure 21). For the ADCMP563/ADCMP564, over-  
drive dispersion is typically 75 ps as the overdrive is changed  
from 100 mV to 1.5 V. This specification applies for both  
positive and negative overdrive because the ADCMP563 and  
the ADCMP564 have equal delays for positive and negative  
going inputs.  
A current may be sourced into the HYS pin. The pin is biased  
approximately 1 V below AGND and has a 3 kΩ series  
resistance. The relationship between the current applied to the  
HYS pin and the resulting hysteresis is shown in Figure 19.  
–V  
2
+V  
2
H
H
0V  
INPUT  
1
1.5V OVERDRIVE  
INPUT VOLTAGE  
20mV OVERDRIVE  
± V  
0
V
REF  
OS  
OUTPUT  
DISPERSION  
Figure 22. Comparator Hysteresis Transfer Function  
Q OUTPUT  
Figure 21. Propagation Delay Dispersion  
160  
140  
120  
100  
80  
COMPARATOR HYSTERESIS  
The addition of hysteresis to a comparator is often useful in a  
noisy environment, or where it is not desirable for the compar-  
ator to toggle between states when the input signal is at the  
switching threshold. The transfer function for a comparator  
with hysteresis is shown in Figure 22. If the input voltage  
approaches the threshold from the negative direction, the  
comparator switches from 0 to 1 when the input crosses +VH/2.  
The new switching threshold becomes −VH/2. The comparator  
remains in a 1 state until the threshold −VH/2 is crossed while  
coming from the positive direction. In this manner, noise  
centered on 0 V input does not cause the comparator to switch  
states unless it exceeds the region bounded by VH/2.  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
R
(kΩ)  
HYS  
Figure 23. Comparator Hysteresis vs. RHYS  
The customary technique for introducing hysteresis into a  
comparator uses positive feedback from the output back to the  
input. A limitation of this approach is that the amount of  
hysteresis varies with the output logic levels, resulting in  
hysteresis that can be load dependent and is not symmetrical  
about the threshold. The external feedback network can also  
introduce significant parasitics, which reduce high speed  
performance and can induce oscillation in some cases.  
MINIMUM INPUT SLEW RATE REQUIREMENT  
As for all high speed comparators, a minimum slew rate must  
be met to ensure that the device does not oscillate as the input  
crosses the threshold. This oscillation is due in part to the high  
input bandwidth of the comparator and the parasitics of the  
package. ADI recommends a slew rate of 1 V/μs or faster to  
ensure a clean output transition. If slew rates less than 1 V/μs  
are used, hysteresis can be added to prevent the oscillation.  
In the ADCMP564, hysteresis is generated through the  
programmable hysteresis pin. A resistor from the HYS pin to  
GND creates a current into the part that is used to generate  
hysteresis. Hysteresis generated in this manner is independent  
of output swing and is symmetrical around the trip point. The  
hysteresis vs. resistance curve is shown in Figure 23.  
Rev. B | Page 12 of 16  
 
 
 
 
ADCMP563/ADCMP564  
TYPICAL APPLICATION CIRCUITS  
V
V
IN  
IN  
ADCMP563/  
ADCMP564  
OUTPUTS  
ADCMP564  
OUTPUTS  
V
V
REF  
REF  
HYS  
0Ω TO 80kΩ  
LATCH  
ENABLE  
INPUTS  
–2.0V  
–2.0V  
ALL RESISTORS 50Ω, UNLESS OTHERWISE NOTED  
ALL RESISTORS 50Ω  
Figure 26. Adding Hysteresis Using the HYS Control Pin  
Figure 24. High Speed Sampling Circuits  
+V  
REF  
ADCMP563/  
ADCMP564  
OUTPUTS  
V
IN  
–2V  
ADCMP563/  
ADCMP564  
OUTPUTS  
–V  
REF  
30Ω  
50Ω  
50Ω  
ADCMP563/  
ADCMP564  
V
IN  
30Ω  
127Ω  
127Ω  
–2V  
LATCH  
ENABLE  
INPUTS  
–5.2V  
ALL RESISTORS 50Ω UNLESS OTHERWISE NOTED  
Figure 25. High Speed Window Comparator  
Figure 27. One Method to Interface an ECL Output to an  
Instrument with a 50 Ω to Ground Input  
Rev. B | Page 13 of 16  
 
ADCMP563/ADCMP564  
OUTLINE DIMENSIONS  
0.341  
BSC  
0.193  
BSC  
20  
1
11  
10  
16  
9
0.154  
BSC  
0.154  
BSC  
0.236  
BSC  
0.236  
BSC  
1
8
PIN 1  
PIN 1  
0.069  
0.053  
0.065  
0.049  
0.065  
0.049  
0.069  
0.053  
8°  
0°  
8°  
0°  
0.010  
0.004  
0.010  
0.004  
0.025  
BSC  
0.012  
0.008  
0.025  
BSC  
SEATING  
PLANE  
0.012  
0.008  
0.050  
0.016  
0.050  
0.016  
0.010  
0.006  
SEATING  
PLANE  
0.010  
0.006  
COPLANARITY  
0.004  
COPLANARITY  
0.004  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
COMPLIANT TO JEDEC STANDARDS MO-137-AB  
Figure 29. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Figure 28. 16-Lead Shrink Small Outline Package [QSOP]  
(RQ-16)  
Dimensions shown in inches  
Dimensions shown in inches  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
0.45  
1
4
1.50 SQ  
1.35  
PIN 1  
TOP  
2.75  
BSC SQ  
EXPOSED  
PAD  
INDICATOR  
VIEW  
(BOTTOM VIEW)  
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
0.30  
PLANE  
0.20 REF  
0.23  
0.18  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 30. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADCMP563BRQ  
Temperature Range  
Package Description  
16-Lead QSOP  
16-Lead QSOP  
16-Lead LFCSP_VQ, 250 Unit Reel  
16-Lead LFCSP_VQ, 1,500 Unit Reel  
16-Lead LFCSP_VQ, 50 Unit Waffle Pack  
Evaluation Board  
Package Option  
RQ-16  
RQ-16  
CP-16-3  
CP-16-3  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
ADCMP563BRQZ1  
ADCMP563BCP-R2  
ADCMP563BCP-RL7  
ADCMP563BCP-WP  
EVAL-ADCMP563BRQ  
ADCMP564BRQ  
CP-16-3  
−40°C to +85°C  
−40°C to +85°C  
20-Lead QSOP  
20-Lead QSOP  
RQ-20  
RQ-20  
ADCMP564BRQZ1  
EVAL-ADCMP564BRQ  
Evaluation Board  
1 Z = Pb-free part.  
Rev. B | Page 14 of 16  
 
ADCMP563/ADCMP564  
NOTES  
Rev. B | Page 15 of 16  
ADCMP563/ADCMP564  
NOTES  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04650–0–5/05(B)  
Rev. B | Page 16 of 16  
 

相关型号:

EVAL-ADCMP564BRQ

Dual, High Speed ECL Comparators
ADI

EVAL-ADCMP572BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP572BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP580BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP580BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP581BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP581BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP582BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP582BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP600BKSZ

Rail-to-Rail, Very Fast, 2.5 V to 5.5 V
ADI