EVAL-ADCMP552BRQZ [ADI]

Single Supply High Speed PECL/LVPECL Comparators; 单电源高速PECL / LVPECL比较
EVAL-ADCMP552BRQZ
型号: EVAL-ADCMP552BRQZ
厂家: ADI    ADI
描述:

Single Supply High Speed PECL/LVPECL Comparators
单电源高速PECL / LVPECL比较

文件: 总16页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply High Speed  
PECL/LVPECL Comparators  
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HYS*  
Single power supply  
500 ps propagation delay input to output  
125 ps overdrive dispersion  
Differential PECL/LVPECL compatible outputs  
Differential latch control  
NONINVERTING  
Q OUTPUT  
INPUT  
ADCMP551/  
ADCMP552/  
ADCMP553  
INVERTING  
Q OUTPUT  
INPUT  
Internal latch pull-up resistors  
Power supply rejection greater than 70 dB  
700 ps minimum pulse width  
LATCH ENABLE  
LATCH ENABLE  
INPUT  
INPUT  
Equivalent input rise time bandwidth > 750 MHz  
Typical output rise/fall of 500 ps  
Programmable hysteresis  
*ADCMP552 ONLY  
Figure 1.  
GENERAL DESCRIPTION  
APPLICATIONS  
The ADCMP551/ADCMP552/ADCMP553 are single supply,  
high speed comparators fabricated on Analog Devices’ proprietary  
XFCB process. The devices feature a 500 ps propagation delay  
with less than 125 ps overdrive dispersion. Overdrive dispersion,  
a measure of the difference in propagation delay under differing  
overdrive conditions, is a particularly important characteristic  
of high speed comparators. A separate programmable hysteresis  
pin is available on the ADCMP552.  
Automatic test equipment  
High speed instrumentation  
Scope and logic analyzer front ends  
Window comparators  
High speed line receivers  
Threshold detection  
Peak detection  
High speed triggers  
Patient diagnostics  
A differential input stage permits consistent propagation delay  
with a common-mode range from –0.2 V to VCCI – 2.0 V. Outputs  
are complementary digital signals and are fully compatible with  
PECL and 3.3V LVPECL logic families. The outputs provide  
sufficient drive current to directly drive transmission lines  
terminated in 50 Ω to VCCO − 2 V. A latch input is included  
and permits tracking, track-and-hold, or sample-and-hold  
modes of operation. The latch input pins contain internal pull-  
ups that set the latch in tracking mode when left open.  
Disk drive read channel detection  
Hand-held test instruments  
Zero crossing detectors  
Line receivers and signal restoration  
Clock drivers  
The ADCMP551/ADCMP552/ADCMP553 are specified over  
the –40°C to +85°C industrial temperature range. The ADCMP551  
is available in a 16-lead QSOP package; the ADCMP552 is available  
in a 20-lead QSOP package; and the ADCMP553 is available in  
an 8-lead MSOP package.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADCMP551/ADCMP552/ADCMP553  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing Information ....................................................................... 10  
Applications Information.............................................................. 11  
Clock Timing Recovery............................................................. 11  
Optimizing High Speed Performance ..................................... 11  
Comparator Propagation Delay Dispersion ........................... 11  
Comparator Hysteresis .............................................................. 12  
Minimum Input Slew Rate Requirement................................ 12  
Typical Application Circuits ......................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Considerations.............................................................. 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
6/13—Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 15  
10/04—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
SPECIFICATIONS  
VCCI = 3.3 V, VCCO = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 1. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DC INPUT CHARACTERISTICS  
Input Voltage Range  
Input Differential Voltage Range  
Input Offset Voltage  
Input Offset Voltage Channel Matching  
Offset Voltage Tempco  
Input Bias Current  
−0.2  
−3  
−10.0  
VCCI – 2.0  
+3  
+10.0  
V
V
VOS  
−IN = 0 V, +IN = 0 V  
2.0  
1.0  
2.0  
–6.0  
–5.0  
1.0  
mV  
mV  
µV/°C  
µA  
nA/°C  
µA  
ΔVOS/dT  
IIN  
−IN = −0.2 V, +IN = +1.3 V  
−28.0  
−3.0  
+5.0  
+3.0  
Input Bias Current Tempco  
Input Offset Current  
Input Capacitance  
CIN  
1.0  
pF  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Active Gain  
1800  
1000  
60  
kΩ  
kΩ  
dB  
AV  
Common-Mode Rejection Ratio  
Hysteresis  
CMRR  
VCM = −0.2 V to +1.3 V  
RHYS = ∞  
76  
0.5  
dB  
mV  
LATCH ENABLE CHARACTERISTICS  
Latch Enable Voltage Range  
Latch Enable Differential Voltage Range  
Latch Enable Input High Current  
Latch Enable Input Low Current  
LE Voltage, Open  
VCCI – 1.8  
0.4  
−150  
−150  
VCCI – 0.15  
VCCI/2 – 0.075  
VCCI – 0.8  
1.0  
+150  
+150  
VCCI  
V
V
µA  
µA  
V
@ VCCI – 0.8 V  
@ VCCI – 1.8 V  
Latch inputs not connected  
Latch inputs not connected  
VOD = 250 mV  
VOD = 250 mV  
VOD = 250 mV  
VOD = 250 mV  
LE  
VCCI/2 + 0.075  
V
Voltage, Open  
Latch Setup Time  
Latch Hold Time  
tS  
tH  
100  
100  
450  
700  
ps  
ps  
ps  
ps  
Latch to Output Delay  
Latch Minimum Pulse Width  
DC OUTPUT CHARACTERISTICS  
Output Voltage—High Level  
Output Voltage—Low Level  
AC OUTPUT CHARACTERISTICS  
Rise Time  
tPLOH, tPLOL  
tPL  
VOH  
VOL  
PECL 50 Ω to VDD − 2.0 V  
PECL 50 Ω to VDD − 2.0 V  
VCCO − 1.15  
VCCO − 2.00  
VCCO − 0.78  
VCCO − 1.54  
V
V
tR  
tF  
10% to 90%  
10% to 90%  
510  
490  
ps  
ps  
Fall Time  
AC OUTPUT CHARACTERISTICS (ADCMP553)  
Rise Time  
Fall Time  
tR  
tF  
10% to 90%  
10% to 90%  
440  
410  
ps  
ps  
AC PERFORMANCE  
Propagation Delay  
tPD  
VOD = 1 V  
VOD = 20 mV  
VOD = 1 V  
500  
625  
0.25  
35  
ps  
ps  
ps/°C  
ps  
Propagation Delay Tempco  
Prop Delay Skew—Rising Transition to  
Falling Transition  
ΔtPD/dT  
VOD = 1 V  
Within Device Propagation Delay  
Skew—Channel-to-Channel  
VOD = 1 V  
35  
ps  
Overdrive Dispersion  
Overdrive Dispersion  
Slew Rate Dispersion  
20 mV ≤ VOD ≤ 100 mV  
50 mV ≤ VOD ≤ 1.0 V  
0.4 V/ns ≤ SR ≤ 1.33 V/ns  
75  
75  
75  
ps  
ps  
ps  
Rev. A | Page 3 of 16  
 
ADCMP551/ADCMP552/ADCMP553  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
AC PERFORMANCE (continued)  
Pulse Width Dispersion  
Duty Cycle Dispersion  
Common-Mode Voltage Dispersion  
Equivalent Input Rise Time Bandwidth1  
Maximum Toggle Rate  
700 ps ≤ PW ≤ 10 ns  
33 MHz, 1 V/ns, VCM = 0.5 V  
1 V swing, 0.3 V ≤ VCM ≤ 0.8 V  
0 V to 1 V swing, 2 V/ns  
>50% output swing  
ΔtPD < 25 ps  
25  
10  
10  
750  
800  
700  
1.1  
ps  
ps  
ps  
MHz  
MHz  
ps  
BWEQ  
Minimum Pulse Width  
RMS Random Jitter  
PWMIN  
VOD = 250 mV, 1.3 V/ns,  
ps  
500 MHz, 50% duty cycle  
Unit-to-Unit Propagation Delay Skew  
POWER SUPPLY (ADCMP551/ADCMP552)  
Input Supply Current  
Output Supply Current  
Output Supply Current  
Input Supply Voltage  
Output Supply Voltage  
Positive Supply Differential  
Power Dissipation  
Power Dissipation  
DC Power Supply Rejection Ratio—VCCI  
DC Power Supply Rejection Ratio—VCCO  
POWER SUPPLY (ADCMP553)  
Positive Supply Current  
Positive Supply Current  
Positive Supply Voltage  
Power Dissipation  
Power Dissipation  
DC Power Supply Rejection Ratio—VCC  
HYSTERESIS (ADCMP552 Only)  
Programmable Hysteresis  
50  
ps  
IVCCI  
IVCCO  
@ 3.3 V  
8
3
40  
3.135  
3.135  
–0.2  
40  
12  
5
55  
3.3  
3.3  
17  
9
70  
5.25  
5.25  
+2.3  
75  
mA  
mA  
mA  
V
V
V
mW  
mW  
dB  
dB  
@ 3.3 V without load  
@ 3.3 V with load  
Dual  
VCCI  
VCCO  
VCCO − VCCI  
PD  
Dual  
Dual, without load  
Dual, with load  
55  
110  
75  
90  
130  
PSRRVCCI  
PSRRVCCO  
85  
IVCC  
@ 3.3 V without load  
@ 3.3 V with load  
Dual  
Dual, without load  
Dual, with load  
9
13  
42  
5.25  
42  
75  
mA  
mA  
V
mW  
mW  
dB  
35  
3.3  
30  
60  
70  
VCC  
PD  
3.135  
PSRRVCC  
0
40  
mV  
1 Equivalent input rise time bandwidth assumes a first order input response and is calculated by the following formula: BWEQ = .22/(trCOMP2 − trIN2),  
where trIN is the 20/80 input transition time applied to the comparator and trCOMP is the effective transition time as digitized by the comparator input.  
Rev. A | Page 4 of 16  
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CONSIDERATIONS  
Table 2.  
The ADCMP551 16-lead QSOP package has a θJA (junction-to-  
ambient thermal resistance) of 104°C/W in still air.  
Parameter  
Rating  
Supply Voltages  
The ADCMP552 20-lead QSOP package has a θJA (junction-to-  
ambient thermal resistance) of 80°C/W in still air.  
Input Supply Voltage (VCCI to GND)  
Output Supply Voltage (VCCO to GND)  
Ground Voltage Differential  
Input Voltages  
Input Common-Mode Voltage  
Differential Input Voltage  
Input Voltage, Latch Controls  
Output  
−0.5 V to +6.0 V  
−0.5 V to +6.0 V  
−0.5 V to +0.5 V  
The ADCMP553 8-lead MSOP package has a θJA (junction-to-  
ambient thermal resistance) of 130°C/W in still air.  
−0.5 V to +3.5 V  
−4.0 V to +4.0 V  
−0.5 V to +5.5 V  
ESD CAUTION  
Output Current  
30 mA  
Temperature  
Operating Temperature, Ambient  
Operating Temperature, Junction  
Storage Temperature Range  
−40°C to +85°C  
125°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 5 of 16  
 
 
 
ADCMP551/ADCMP552/ADCMP553  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
V
CCO  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CCO  
QA  
QB  
QB  
V
1
2
3
4
5
6
7
8
16 QB  
15 QB  
QA  
QA  
QA  
3
ADCMP552  
TOP VIEW  
(Not to Scale)  
V
4
CCO  
CCO  
14  
V
CCO  
LEA  
LEA  
LEB  
V
5
CCO  
ADCMP551  
TOP VIEW  
(Not to Scale)  
13 LEB  
12 LEB  
11 AGND  
10 –INB  
LEB  
LEA  
LEA  
6
1
2
3
4
8
7
6
5
AGND  
LEA  
LEA  
V
AGND  
–INB  
+INB  
HYSB  
7
CCI  
ADCMP553  
TOP VIEW  
(Not to Scale)  
V
CC  
–INA  
+INA  
V
8
CCI  
QA  
QA  
+INA  
–INA  
–INA  
+INA  
9
+INB  
9
HYSA  
10  
Figure 2. ADCMP551 16-Lead QSOP  
Pin Configuration  
Figure 3. ADCMP552 20-Lead QSOP  
Pin Configuration  
Figure 4. ADCMP553 8-Lead MSOP  
Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
ADCMP551 ADCMP552 ADCMP553 Mnemonic Function  
3, 14  
1
1, 4, 17, 20  
2
VCCO  
QA  
Logic Supply Terminal.  
6
5
2
One of Two Complementary Outputs for Channel A. QA is logic high if the  
analog voltage at the noninverting input is greater than the analog voltage at  
the inverting input (provided the comparator is in the compare mode). See the  
description of Pin LEA for more information.  
2
4
3
5
QA  
QA  
One of Two Complementary Outputs for Channel A. is logic low if the analog  
voltage at the noninverting input is greater than the analog voltage at the  
inverting input (provided the comparator is in the compare mode). See the  
description of Pin LEA for more information.  
One of Two Complementary Outputs for Channel A Latch Enable. In the  
compare mode (logic high), the output tracks changes at the input of the  
comparator. In the latch mode (logic low), the output reflects the input state just  
LEA  
LEA  
prior to the comparator’s being placed in the latch mode.  
conjunction with LEA.  
must be driven in  
5
6
1
LEA  
One of Two Complementary Outputs for Channel A Latch Enable. In the  
compare mode (logic high), the output tracks changes at the input of the  
comparator. In the latch mode (logic low), the output reflects the input state just  
prior to the comparator’s being placed in the latch mode. LEA must be driven in  
LEA  
conjunction with  
.
6
7
7
8
VCCI  
−INA  
Input Supply Terminal.  
Inverting Analog Input of the Differential Input Stage for Channel A. The  
inverting A input must be driven in conjunction with the noninverting A input.  
Noninverting Analog Input of the Differential Input Stage for Channel A. The  
noninverting A input must be driven in conjunction with the inverting A input.  
4
3
8
9
+INA  
10  
11  
12  
HYSA  
HYSB  
+INB  
Programmable Hysteresis.  
Programmable Hysteresis.  
Noninverting Analog Input of the Differential Input Stage for Channel B. The  
noninverting B input must be driven in conjunction with the inverting B input.  
9
10  
11  
13  
14  
−INB  
Inverting Analog Input of the Differential Input Stage for Channel B. The  
inverting B input must be driven in conjunction with the noninverting B input.  
Analog Ground.  
8
AGND  
Rev. A | Page 6 of 16  
 
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
Pin No.  
ADCMP551 ADCMP552 ADCMP553 Mnemonic Function  
12  
15  
LEB  
One of Two Complementary Inputs for Channel B Latch Enable. In the compare  
mode (logic low), the output tracks changes at the input of the comparator. In  
the latch mode (logic high), the output reflects the input state just prior to the  
comparator’s being placed in the latch mode. LEB must be driven in conjunction  
with LEB.  
13  
16  
LEB  
One of Two Complementary Inputs for Channel B Latch Enable. In the compare  
mode (logic low), the output tracks changes at the input of the comparator. In  
the latch mode (logic high), the output reflects the input state just prior to the  
comparator’s being placed in the latch mode. LEB must be driven in conjunction  
with LEB.  
15  
16  
18  
19  
QB  
QB  
VCC  
One of Two Complementary Outputs for Channel B. QB is logic low if the analog  
voltage at the noninverting input is greater than the analog voltage at the  
inverting input (provided the comparator is in the compare mode). See the  
description of Pin LEB for more information.  
One of Two Complementary Outputs for Channel B. QB is logic high if the analog  
voltage at the noninverting input is greater than the analog voltage at the  
inverting input (provided the comparator is in the compare mode). See the  
description of Pin LEB for more information.  
7
Positive Supply Terminal.  
Rev. A | Page 7 of 16  
ADCMP551/ADCMP552/ADCMP553  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCCI = 3.3 V, VCCO = 3.3 V, TA = 25°C, unless otherwise noted.  
–5  
–6.5  
–6.6  
–6.7  
–6.8  
–6.9  
–7.0  
–7.1  
–7.2  
–7.3  
–7.4  
–7.5  
–6  
–7  
–8  
–9  
–10  
–0.2  
0.1  
0.4  
0.7  
1.0  
1.3  
–40  
–20  
0
20  
40  
60  
80  
NONINVERTING INPUT VOLTAGE (INVERTING VOLTAGE = 0.5V)  
TEMPERATURE (°C)  
Figure 8. Input Bias Current vs. Temperature  
Figure 5. Input Bias Current vs. Input Voltage  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
RISE  
FALL  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
–40  
–20  
0
20  
40  
60  
80  
TIME (ns)  
TEMPERATURE (°C)  
Figure 9. Rise and Fall of Outputs vs. Time  
Figure 6. Input Offset Voltage vs. Temperature  
460  
450  
440  
430  
420  
410  
400  
525  
515  
505  
495  
485  
475  
RISE  
RISE  
FALL  
FALL  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 10. ADCMP553 Rise/Fall Time vs. Temperature  
Figure 7. ADCMP551/2 Rise/Fall Time vs. Temperature  
Rev. A | Page 8 of 16  
 
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
515  
510  
505  
500  
495  
490  
485  
480  
505  
504  
503  
502  
501  
500  
499  
498  
497  
496  
495  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–0.2  
0.1  
0.4  
0.7  
1.0  
1.3  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
Figure 11. Propagation Delay vs. Temperature  
Figure 14. Propagation Delay vs. Common-Mode Voltage  
140  
120  
100  
80  
25  
20  
15  
10  
5
60  
40  
0
20  
0
–5  
0.7  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.7  
2.7  
3.7  
4.7  
5.7  
6.7  
7.7  
8.7  
9.7  
OVERDRIVE VOLTAGE (V)  
PULSE WIDTH (ns)  
Figure 12. Propagation Delay vs. Overdrive Voltage  
Figure 15. Propagation Delay Error vs. Pulse Width  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0
50  
100  
150  
(µA)  
200  
250  
300  
100  
10  
(k)  
1
I
R
HYS  
HYS  
Figure 16. Comparator Hysteresis vs. IHYS  
Figure 13. Comparator Hysteresis vs. RHYS  
Rev. A | Page 9 of 16  
 
ADCMP551/ADCMP552/ADCMP553  
TIMING INFORMATION  
Data Sheet  
LATCH ENABLE  
50%  
LATCH ENABLE  
tS  
tPL  
tH  
V
IN  
DIFFERENTIAL  
INPUT VOLTAGE  
V
± V  
OS  
REF  
V
OD  
tPDL  
tPLOH  
Q OUTPUT  
50%  
50%  
tF  
tPDH  
Q OUTPUT  
tPLOL  
tR  
Figure 17. System Timing Diagram  
Figure 17 shows the compare and latch features of the ADCMP55x family. Table 4 describes the terms in the diagram.  
Table 4. Timing Descriptions  
Symbol Timing  
Description  
tPDH  
tPDL  
tPLOH  
tPLOL  
tH  
Input to Output High Delay  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output low-to-high transition  
Propagation delay measured from the time the input signal crosses the reference ( the  
input offset voltage) to the 50% point of an output high-to-low transition  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output low-to-high transition  
Propagation delay measured from the 50% point of the latch enable signal low-to-high  
transition to the 50% point of an output high-to-low transition  
Input to Output Low Delay  
Latch Enable to Output High Delay  
Latch Enable to Output Low Delay  
Minimum Hold Time  
Minimum time after the negative transition of the latch enable signal that the input signal  
must remain unchanged to be acquired and held at the outputs  
tPL  
tS  
Minimum Latch Enable Pulse Width Minimum time the latch enable signal must be high to acquire an input signal change  
Minimum Setup Time  
Output Rise Time  
Output Fall Time  
Minimum time before the negative transition of the latch enable signal that an input  
signal change must be present to be acquired and held at the outputs  
Amount of time required to transition from a low to a high output as measured at the 20%  
and 80% points  
Amount of time required to transition from a high to a low output as measured at the 20%  
and 80% points  
tR  
tF  
VOD  
Voltage Overdrive  
Difference between the differential input and reference input voltages  
Rev. A | Page 10 of 16  
 
 
 
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
APPLICATIONS INFORMATION  
The comparators in the ADCMP55x series are very high speed  
devices. Consequently, high speed design techniques must be  
employed to achieve the best performance. The most critical  
aspect of any ADCMP55x design is the use of a low impedance  
ground plane. A ground plane, as part of a multilayer board, is  
recommended for proper high speed performance. Using a  
continuous conductive plane over the surface of the circuit  
board can create this, allowing breaks in the plane only for  
necessary signal paths. The ground plane provides a low  
inductance ground, eliminating any potential differences at  
different ground points throughout the circuit board caused by  
ground bounce. A proper ground plane also minimizes the  
effects of stray capacitance on the circuit board.  
used to recover the distorted waveform while maintaining a  
minimum of delay.  
OPTIMIZING HIGH SPEED PERFORMANCE  
As with any high speed comparator amplifier, proper design and  
layout techniques should be used to ensure optimal performance  
from the ADCMP55x. The performance limits of high speed  
circuitry can easily be a result of stray capacitance, improper  
ground impedance, or other layout issues.  
Minimizing resistance from source to the input is an important  
consideration in maximizing the high speed operation of the  
ADCMP55x. Source resistance in combination with equivalent  
input capacitance can cause a lagged response at the input, thus  
delaying the output. The input capacitance of the ADCMP55x,  
in combination with stray capacitance from an input pin to ground,  
could result in several picofarads of equivalent capacitance. A  
combination of 3 kΩ source resistance and 5 pF input capacitance  
yields a time constant of 15 ns, which is significantly slower than  
the 500 ps capability of the ADCMP55x. Source impedances  
should be significantly less than 100 Ω for best performance.  
It is also important to provide bypass capacitors for the power  
supply in a high speed application. A 1 µF electrolytic bypass  
capacitor should be placed within 0.5 inches of each power  
supply pin to ground. These capacitors reduce any potential  
voltage ripples from the power supply. In addition, a 10 nF ceramic  
capacitor should be placed as close to the power supply pins as  
possible on the ADCMP55x to ground. These capacitors act as a  
charge reservoir for the device during high frequency switching.  
Sockets should be avoided due to stray capacitance and inductance.  
If proper high speed techniques are used, the ADCMP55x should  
be free from oscillation when the comparator input signal passes  
through the switching threshold.  
The LATCH ENABLE input is active low (latched). If the latching  
function is not used, the LATCH ENABLE input pins may be  
left open. The internal pull-ups on the latch pins set the latch to  
transparent mode. If the latch is to be used, valid PECL voltages  
are required on the inputs for proper operation. The PECL  
COMPARATOR PROPAGATION DELAY  
DISPERSION  
voltages should be referenced to VCCI  
.
The ADCMP55x has been specifically designed to reduce  
propagation delay dispersion over an input overdrive range of  
20 mV to 1 V. Propagation delay overdrive dispersion is the  
change in propagation delay that results from a change in the  
degree of overdrive (how far the switching point is exceeded by  
the input). The overall result is a higher degree of timing  
accuracy since the ADCMP55x is far less sensitive to input  
variations than most comparator designs.  
Occasionally, one of the two comparator stages within the  
ADCMP551/ADCMP552 is not used. The inputs of the unused  
comparator should not be allowed to float. The high internal  
gain may cause the output to oscillate (possibly affecting the  
comparator that is being used) unless the output is forced into a  
fixed state. This is easily accomplished by ensuring that the two  
inputs are at least one diode drop apart, while also appropriately  
LATCH ENABLE  
connecting the LATCH ENABLE and  
as described previously.  
inputs  
Propagation delay dispersion is an important specification in  
critical timing applications such as ATE, bench instruments, and  
nuclear instrumentation. Overdrive dispersion is defined as the  
variation in propagation delay as the input overdrive conditions  
are changed (Figure 18). For the ADCMP55x, overdrive dispersion  
is typically 125 ps as the overdrive is changed from 20 mV to  
1 V. This specification applies for both positive and negative  
overdrive since the ADCMP55x has equal delays for positive-  
and negative-going inputs.  
The best performance is achieved with the use of proper PECL  
terminations. The open-emitter outputs of the ADCMP55x are  
designed to be terminated through 50 Ω resistors to VCCO − 2.0 V  
or any other equivalent PECL termination. If high speed PECL  
signals must be routed more than a centimeter, microstrip or  
stripline techniques may be required to ensure proper transition  
times and prevent output ringing.  
CLOCK TIMING RECOVERY  
Comparators are often used in digital systems to recover clock  
timing signals. High speed square waves transmitted over a dist-  
ance, even tens of centimeters, can become distorted due to stray  
capacitance and inductance. Poor layout or improper termination  
can also cause reflections on the transmission line, further dis-  
torting the signal waveform. A high speed comparator can be  
Rev. A | Page 11 of 16  
 
 
 
 
ADCMP551/ADCMP552/ADCMP553  
Data Sheet  
–V  
2
+V  
2
1.5V OVERDRIVE  
H
H
0V  
INPUT  
1
INPUT VOLTAGE  
20mV OVERDRIVE  
± V  
V
REF  
OS  
DISPERSION  
Q OUTPUT  
0
Figure 18. Propagation Delay Dispersion  
OUTPUT  
COMPARATOR HYSTERESIS  
The addition of hysteresis to a comparator is often useful in a  
noisy environment or where it is not desirable for the  
Figure 19. Comparator Hysteresis Transfer Function  
comparator to toggle between states when the input signal is at  
the switching threshold. The transfer function for a comparator  
with hysteresis is shown in Figure 19. If the input voltage  
approaches the threshold from the negative direction, the  
comparator switches from a 0 to a 1 when the input crosses  
+VH/2. The new switching threshold becomes −VH/2. The  
comparator remains in a 1 state until the −VH/2 threshold is  
crossed coming from the positive direction. In this manner,  
noise centered on 0 V input does not cause the comparator to  
switch states unless it exceeds the region bounded by VH/2.  
120  
100  
80  
60  
40  
20  
0
Positive feedback from the output to the input is often used to  
produce hysteresis in a comparator (Figure 23). The major  
problem with this approach is that the amount of hysteresis  
varies with the output logic levels, resulting in a hysteresis that  
is not symmetrical around zero.  
100  
10  
(k)  
1
R
HYS  
In the ADCMP552, hysteresis is generated through the  
Figure 20. Comparator Hysteresis Transfer Function  
programmable hysteresis pin. A resistor from the HYS pin to  
V
CCI creates a current into the part that is used to generate  
MINIMUM INPUT SLEW RATE REQUIREMENT  
hysteresis. Hysteresis generated in this manner is independent  
of output swing and is symmetrical around the trip point. The  
hysteresis versus resistance curve is shown in Figure 20.  
As for all high speed comparators, a minimum slew rate must  
be met to ensure that the device does not oscillate when the  
input crosses the threshold. This oscillation is due in part to the  
high input bandwidth of the comparator and the parasitics of  
the package. Analog Devices recommends a slew rate of 1 V/µs  
or faster to ensure a clean output transition. If slew rates less  
than 1 V/µs are used, hysteresis should be added to reduce the  
oscillation.  
A current source can also be used with the HYS pin. The  
relationship between the current applied to the HYS pin and the  
resulting hysteresis is shown in Figure 16.  
Rev. A | Page 12 of 16  
 
 
 
 
 
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
TYPICAL APPLICATION CIRCUITS  
+
V
V
IN  
ADCMP551/  
IN  
ADCMP551/  
ADCMP552/  
ADCMP553  
ADCMP552/  
OUTPUTS  
OUTPUTS  
ADCMP553  
V
REF  
V
REF  
HYS  
0TO 80kΩ  
LATCH  
ENABLE  
INPUTS  
V
CCO  
– 2V  
V
V
– 2.0V  
CCO  
CCI  
ALL RESISTORS 50, UNLESS OTHERWISE NOTED  
ALL RESISTORS 50  
Figure 23. Adding Hysteresis Using the HYS Control Pin  
Figure 21. High Speed Sampling Circuits  
+
+V  
REF  
50  
50Ω  
50Ω  
ADCMP551/  
ADCMP552/  
+
OUTPUTS  
ADCMP551/  
ADCMP552/  
ADCMP553  
V
V
IN  
IN  
50Ω  
ADCMP553  
100Ω  
100Ω  
V
–2V  
CCO  
(V  
CCO  
– 2V) × 2  
+
ADCMP551/  
ADCMP552/  
OUTPUTS  
ADCMP553  
–V  
Figure 24. How to Interface a PECL Output to an Instrument with a  
50 Ω to Ground Input  
REF  
V
–2V  
CCO  
LATCH  
ENABLE  
INPUTS  
ALL RESISTORS 50UNLESS OTHERWISE NOTED  
Figure 22. High Speed Window Comparator  
Rev. A | Page 13 of 16  
 
 
ADCMP551/ADCMP552/ADCMP553  
OUTLINE DIMENSIONS  
Data Sheet  
0.345 (8.76)  
0.341 (8.66)  
0.337 (8.55)  
20  
1
11  
10  
0.158 (4.01)  
0.154 (3.91)  
0.150 (3.81)  
0.244 (6.20)  
0.236 (5.99)  
0.228 (5.79)  
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 25. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Dimensions shown in inches and (millimeters)  
0.197 (5.00)  
0.193 (4.90)  
0.189 (4.80)  
16  
1
9
8
0.158 (4.01)  
0.154 (3.91)  
0.150 (3.81)  
0.244 (6.20)  
0.236 (5.99)  
0.228 (5.79)  
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 16-Lead Shrink Small Outline Package [QSOP]  
(RQ-16)  
Dimensions shown in inches and (millimeters)  
Rev. A | Page 14 of 16  
 
Data Sheet  
ADCMP551/ADCMP552/ADCMP553  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 27. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option Branding  
ADCMP551BRQ  
ADCMP551BRQZ  
ADCMP551BRQZ-REEL7  
EVAL-ADCMP551BRQZ  
ADCMP552BRQ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
16-Lead Shrink Small Outline Package [QSOP]  
16-Lead Shrink Small Outline Package [QSOP]  
16-Lead Shrink Small Outline Package [QSOP]  
Evaluation Board  
RQ-16  
RQ-16  
RQ-16  
−40°C to +85°C  
−40°C to +85°C  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
Evaluation Board  
RQ-20  
RQ-20  
ADCMP552BRQZ  
EVAL-ADCMP552BRQZ  
ADCMP553BRMZ  
EVAL-ADCMP553BRMZ  
−40°C to +85°C  
8-Lead Mini Small Outline Package [MSOP]  
Evaluation Board  
RM-8  
BR53  
1 Z = RoHS Compliant Part.  
Rev. A | Page 15 of 16  
 
ADCMP551/ADCMP552/ADCMP553  
NOTES  
Data Sheet  
©2004–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04722-0-6/13(A)  
Rev. A | Page 16 of 16  

相关型号:

EVAL-ADCMP553BRMZ

Single Supply High Speed PECL/LVPECL Comparators
ADI

EVAL-ADCMP563BRQ

Dual, High Speed ECL Comparators
ADI

EVAL-ADCMP564BRQ

Dual, High Speed ECL Comparators
ADI

EVAL-ADCMP572BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP572BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCP

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP573BCPZ

Ultrafast 3.3 V/5 V Single-Supply SiGe Comparators
ADI

EVAL-ADCMP580BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP580BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP581BCP

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP581BCPZ

Ultrafast SiGe Voltage Comparators
ADI

EVAL-ADCMP582BCP

Ultrafast SiGe Voltage Comparators
ADI