W83977CTF-PW [WINBOND]

WINBOND I/O; WINBOND I / O
W83977CTF-PW
型号: W83977CTF-PW
厂家: WINBOND    WINBOND
描述:

WINBOND I/O
WINBOND I / O

文件: 总161页 (文件大小:1004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W83977EF/CTF  
WINBOND I/O  
W83977EF/CTF Data Sheet Revision History  
Version  
Pages  
Dates  
Version  
Main Contents  
First published.  
on Web  
1
N.A.  
06/01/98  
0.40  
For Beta Site customers only  
Data correction  
4, 7, 49, 50, 53,  
55, 90, 91  
2
3
06/16/98  
08/17/98  
0.41  
0.42  
Parallel port pin description  
correction  
14, 15, 16  
Explanation of Keyboard/Mouse  
Wake-Up and ACPI function.  
4
5
6
119, 120  
09/07/98  
11/09/98  
0.43  
0.50  
Typo correction.  
1, 2, 8, 83, 116  
A1  
7
8
9
10  
Please note that all data and specifications are subject to change without notice. All the trade marks  
of products and companies mentioned in this data sheet belong to their respective owners.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where  
malfunction of these products can reasonably be expected to result in personal injury. Winbond  
customers using or selling these products for use in such applications do so at their own risk and  
agree to fully indemnify Winbond for any damages resulting from such improper use or sales.  
W83977EF/ CTF  
PRELIMINARY  
Table of Contents-  
GENERAL DESCRIPTION..........................................................................................1  
FEATURES.................................................................................................................2  
PIN CONFIGURATION ...............................................................................................5  
1.0 PIN DESCRIPTION..................................................................................................................... 6  
1.1 HOST INTERFACE...................................................................................................................... 6  
1.2 GENERAL PURPOSE I/O PORT ................................................................................................. 8  
1.3 SERIAL PORT INTERFACE ........................................................................................................ 9  
1.4 INFRARED INTERFACE............................................................................................................ 10  
1.5 MULTI-MODE PARALLEL PORT............................................................................................... 11  
1.6 FDC INTERFACE ...................................................................................................................... 16  
1.7 KBC INTERFACE ...................................................................................................................... 18  
1.8 POWER PINS............................................................................................................................ 18  
1.9 ACPI INTERFACE ..................................................................................................................... 18  
2.0 FDC FUNCTIONAL DESCRIPTION ...................................................................19  
2.1 W83977EF/CTF FDC................................................................................................................. 19  
2.1.1 AT interface......................................................................................................................... 19  
2.1.2 FIFO (Data) ......................................................................................................................... 19  
2.1.3 Data Separator .................................................................................................................... 20  
2.1.4 Write Precompensation........................................................................................................ 20  
2.1.5 Perpendicular Recording Mode ............................................................................................ 21  
2.1.6 FDC Core ............................................................................................................................ 21  
2.1.7 FDC Commands.................................................................................................................. 21  
2.2 REGISTER DESCRIPTIONS ..................................................................................................... 33  
2.2.1 Status Register A (SA Register) (Read base address + 0) ................................................... 33  
Publication Release Date: March 1999  
-I -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
2.2.2 Status Register B (SB Register) (Read base address + 1) ................................................... 35  
2.2.3 Digital Output Register (DO Register) (Write base address + 2)........................................... 37  
2.2.4 Tape Drive Register (TD Register) (Read base address + 3)................................................ 37  
2.2.5 Main Status Register (MS Register) (Read base address + 4).............................................. 38  
2.2.6 Data Rate Register (DR Register) (Write base address + 4)................................................. 38  
2.2.7 FIFO Register (R/W base address + 5)................................................................................ 40  
2.2.8 Digital Input Register (DI Register) (Read base address + 7)................................................ 42  
2.2.9 Configuration Control Register (CC Register) (Write base address + 7)................................ 43  
3.0 UART PORT .......................................................................................................45  
3.1 UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART A, UART B).................... 45  
3.2 REGISTER ADDRESS............................................................................................................... 45  
3.2.1 UART Control Register (UCR) (Read/Write)......................................................................... 45  
3.2.2 UART Status Register (USR) (Read/Write) .......................................................................... 47  
3.2.3 Handshake Control Register (HCR) (Read/Write)................................................................. 48  
3.2.4 Handshake Status Register (HSR) (Read/Write) .................................................................. 49  
3.2.5 UART FIFO Control Register (UFR) (Write only).................................................................. 50  
3.2.6 Interrupt Status Register (ISR) (Read only) .......................................................................... 51  
3.2.7 Interrupt Control Register (ICR) (Read/Write)....................................................................... 52  
3.2.8 Programmable Baud Generator (BLL/BHL) (Read/Write) ..................................................... 52  
3.2.9 User-defined Register (UDR) (Read/Write)........................................................................... 53  
4.0 INFRARED (IR) PORTS......................................................................................54  
4.1 IR PORT .................................................................................................................................... 54  
4.2 CIR PORT(FOR W83977CTF ONLY) ........................................................................................ 54  
4.2.1 Bank0.Reg0 - Receiver Buffer Registers (RBR) (Read)........................................................ 54  
4.2.2 Bank0.Reg1 - Interrupt Control Register (ICR) ..................................................................... 54  
4.2.3 Bank0.Reg2 - Interrupt Status Register (ISR)....................................................................... 55  
4.2.4 Bank0~3.Reg3 - CIR Control Register 0/Bank Select Register (CTR0/BSR) (BANK0~3)...... 56  
4.2.5 Bank0.Reg4 - CIR Control Register (CTR) ........................................................................... 57  
4.2.6 Bank0.Reg5 - UART Line Status Register (USR) ................................................................ 58  
Publication Release Date: March 1999  
-I I -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
4.2.7 Bank0.Reg6 - Remote Infrared Config Register (RIR_CFG)................................................. 58  
4.2.8 Bank0.Reg7 - User Defined Register (UDR/AUDR).............................................................. 59  
4.2.9 Bank1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL)........................................................... 60  
4.2.10 Bank1.Reg2 - Version ID Regiister I (VID).......................................................................... 61  
4.2.11 Bank0~3.Reg3 - CIR Control Register 0/Bank Select Register (CTR0/BSR) (BANK0~3).... 61  
4.2.12 Bank1.Reg4 - Timer Low Byte Register (TMRL)................................................................. 61  
4.2.13 Bank1.Reg5 - Timer High Byte Register (TMRH) ............................................................... 61  
4.3 DEMODULATION BLOCK DIAGRAM........................................................................................ 62  
5.0 PARALLEL PORT .............................................................................................63  
5.1 PRINTER INTERFACE LOGIC .................................................................................................. 63  
5.2 ENHANCED PARALLEL PORT (EPP) ....................................................................................... 64  
5.2.1 Data Swapper..................................................................................................................... 65  
5.2.2 Printer Status Buffer ............................................................................................................ 65  
5.2.3 Printer Control Latch and Printer Control Swapper.............................................................. 66  
5.2.4 EPP Address Port................................................................................................................ 66  
5.2.5 EPP Data Port 0-3 ............................................................................................................... 67  
5.2.6 Bit Map of Parallel Port and EPP Registers.......................................................................... 67  
5.2.7 EPP Pin Descriptions.......................................................................................................... 68  
5.2.8 EPP Operation..................................................................................................................... 68  
5.3 EXTENDED CAPABILITIES PARALLEL (ECP) PORT.............................................................. 69  
5.3.1 ECP Register and Mode Definitions ..................................................................................... 69  
5.3.2 Data and ecpAFifo Port........................................................................................................ 70  
5.3.3 Device Status Register (DSR)............................................................................................. 70  
5.3.4 Device Control Register (DCR) ............................................................................................ 71  
5.3.5 cFifo (Parallel Port Data FIFO) Mode = 010 ....................................................................... 72  
5.3.6 ecpDFifo (ECP Data FIFO) Mode = 011............................................................................... 72  
5.3.7 tFifo (Test FIFO Mode) Mode = 110.................................................................................... 72  
5.3.8 cnfgA (Configuration Register A) Mode = 111 ..................................................................... 72  
5.3.9 cnfgB (Configuration Register B) Mode = 111 .................................................................... 72  
5.3.10 ecr (Extended Control Register) Mode = all....................................................................... 73  
Publication Release Date: March 1999  
-I I I -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
5.3.11 Bit Map of ECP Port Registers........................................................................................... 74  
5.3.12 ECP Pin Descriptions....................................................................................................... 75  
5.3.13 ECP Operation................................................................................................................. 76  
5.3.14 FIFO Operation................................................................................................................. 76  
5.3.15 DMA Transfers................................................................................................................. 77  
5.3.16 Programmed I/O (NON-DMA) Mode.................................................................................. 77  
5.4 EXTENSION FDD MODE (EXTFDD) ........................................................................................ 77  
5.5 EXTENSION 2FDD MODE (EXT2FDD) .................................................................................... 77  
6.0 KEYBOARD CONTROLLER..............................................................................78  
6.1 OUTPUT BUFFER.................................................................................................................... 78  
6.2 INPUT BUFFER........................................................................................................................ 78  
6.3 STATUS REGISTER................................................................................................................. 79  
6.4 COMMANDS.............................................................................................................................. 80  
6.5 HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC............................................ 81  
6.5.1 KB Control Register (Logic Device 5, CR-F0)....................................................................... 82  
6.5.2 Port 92 Control Register (Default Value = 0x24)................................................................... 82  
6.6 ONNOW / SECURITY KEYBOARD AND MOUSE WAKE-UP.................................................... 83  
6.6.1 Keyboard Wake-Up Function ............................................................................................... 83  
6.6.2 Keyboard Password Wake-Up Function.............................................................................. 83  
6.6.3 Mouse Wake-Up Function.................................................................................................... 83  
7.0 GENERAL PURPOSE I/O...................................................................................84  
7.1 BASIC I/O FUNCTIONS............................................................................................................. 86  
7.2 ALTERNATE I/O FUNCTIONS................................................................................................... 88  
7.2.1 Interrupt Steering ................................................................................................................. 88  
7.2.2 Watch Dog Timer Output ..................................................................................................... 89  
7.2.3 Power LED .......................................................................................................................... 89  
7.2.4 General Purpose Address Decoder...................................................................................... 89  
8.0 PLUG AND PLAY CONFIGURATION ................................................................90  
Publication Release Date: March 1999  
-I V -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
8.1 COMPATIBLE PNP.................................................................................................................... 90  
8.1.1 Extended Function Registers ............................................................................................... 90  
8.1.2 Extended Functions Enable Registers (EFERs) ................................................................... 91  
8.1.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers(EFDRs) .... 91  
8.2 CONFIGURATION SEQUENCE ............................................................................................... 91  
8.2.1 Enter the extended function mode........................................................................................ 91  
8.2.2 Configurate the configuration registers................................................................................. 92  
8.2.3 Exit the extended function mode .......................................................................................... 92  
8.2.4 Software programming example........................................................................................... 92  
9.0 ACPI REGISTERS FEATURES..........................................................................93  
10.0 CONFIGURATION REGISTER........................................................................94  
10.1 CHIP (GLOBAL) CONTROL REGISTER.................................................................................. 94  
10.2 LOGICAL DEVICE 0 (FDC)....................................................................................................100  
10.3 LOGICAL DEVICE 1 (PARALLEL PORT)...............................................................................104  
¢)  
10.4 LOGICAL DEVICE 2 (UART A) ............................................................................................105  
10.5 LOGICAL DEVICE 3 (UART B) ...............................................................................................105  
10.6 LOGICAL DEVICE 5 (KBC)....................................................................................................108  
10.7 LOGICAL DEVICE 6 (CIR)......................................................................................................109  
10.8 LOGICAL DEVICE 7 (GP I/O PORT I) ....................................................................................109  
10.9 LOGICAL DEVICE 8 (GP I/O PORT II) ...................................................................................113  
10.10 LOGICAL DEVICE A (ACPI).................................................................................................118  
11.0 SPECIFICATIONS...........................................................................................125  
11.1 ABSOLUTE MAXIMUM RATINGS .........................................................................................125  
11.2 DC CHARACTERISTICS .......................................................................................................125  
11.3 AC CHARACTERISTICS........................................................................................................129  
11.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec......................................................129  
11.3.2 UART/Parallel Port...........................................................................................................131  
11.3.3 Parallel Port Mode Parameters ........................................................................................131  
Publication Release Date: March 1999  
-V -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
11.3.4 EPP Data or Address Read Cycle Timing Parameters......................................................132  
11.3.5 EPP Data or Address Write Cycle Timing Parameters......................................................133  
11.3.6 Parallel Port FIFO Timing Parameters..............................................................................134  
11.3.7 ECP Parallel Port Forward Timing Parameters.................................................................134  
11.3.8 ECP Parallel Port Reverse Timing Parameters.................................................................134  
11.3.9 KBC Timing Parameters ..................................................................................................135  
11.3.10 GPIO Timing Parameters...............................................................................................136  
11.3.11 Keyboard/Mouse Timing Parameters .............................................................................136  
12.0 TIMING WAVEFORMS ..................................................................................137  
12.1 FDC .......................................................................................................................................137  
12.2 UART/PARALLEL ..................................................................................................................138  
12.2.1 Modem Control Timing.....................................................................................................139  
12.3 PARALLEL PORT..................................................................................................................140  
12.3.1 Parallel Port Timing..........................................................................................................140  
12.3.2 EPP Data or Address Read Cycle (EPP Version 1.9).......................................................141  
12.3.3 EPP Data or Address Write Cycle (EPP Version 1.9).......................................................142  
12.3.4 EPP Data or Address Read Cycle (EPP Version 1.7).......................................................143  
12.3.5 EPP Data or Address Write Cycle (EPP Version 1.7).......................................................144  
12.3.6 Parallel Port FIFO Timing.................................................................................................144  
12.3.7 ECP Parallel Port Forward Timing....................................................................................145  
12.3.8 ECP Parallel Port Reverse Timing....................................................................................145  
12.4 KBC .......................................................................................................................................146  
12.4.1 Write Cycle Timing...........................................................................................................146  
12.4.2 Read Cycle Timing...........................................................................................................146  
12.4.3 Send Data to K/B.............................................................................................................146  
12.4.4 Receive Data from K/B.....................................................................................................147  
12.4.5 Input Clock.......................................................................................................................147  
12.4.6 Send Data to Mouse ........................................................................................................147  
12.4.7 Receive Data from Mouse................................................................................................147  
12.5 GPIO WRITE TIMING DIAGRAM ..........................................................................................148  
Publication Release Date: March 1999  
-VI -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
12.6 MASTER RESET (MR) TIMING.............................................................................................148  
12.7 KEYBOARD/MOUSE WAKE-UP TIMING ..............................................................................148  
13.0 APPLICATION CIRCUITS ..............................................................................149  
13.1 PARALLEL PORT EXTENSION FDD.....................................................................................149  
13.2 PARALLEL PORT EXTENSION 2FDD...................................................................................150  
13.3 FOUR FDD MODE.................................................................................................................151  
14.0 ORDERING INFORMATION...........................................................................151  
15.0 HOW TO READ THE TOP MARKING...........................................................151  
16.0 PACKAGE DIMENSIONS ..............................................................................152  
Publication Release Date: March 1999  
-VI I -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
GENERAL DESCRIPTION  
The W83977EF/CTF is an evolving product from Winbond's most popular I/O chip W83877F ---  
which integrates the disk drive adapter, serial port (UART), IrDA 1.0 SIR, parallel port, and  
configurable plug-and-play registers for the whole chip --- plus additional powerful features: ACPI,  
8042 keyboard controller with PS/2 mouse support, 14 general purpose I/O ports, full 16-bit address  
decoding, OnNow keyboard Wake-Up, OnNow mouse Wake-Up and OnNow CIR(W83977CTF only)  
Wake-Up.  
The disk drive adapter functions of W83977EF/CTF include a floppy disk drive controller compatible  
with the industry standard 82077/ 765, data separator, write pre-compensation circuit, decode logic,  
data rate selection, clock generator, drive interface control logic, and interrupt and DMA logic. The  
wide range of functions integrated onto the W83977EF/CTF greatly reduces the number of  
components required for interfacing with floppy disk drives. The W83977EF/CTF supports four 360K,  
720K, 1.2M, 1.44M, or 2.88M disk drives and data transfer rates of 250 Kb/s, 300 Kb/s, 500 Kb/s,1  
Mb/s, and 2 Mb/s.  
The W83977EF/CTF provides two high-speed serial communication ports (UARTs), one of which  
supports serial Infrared communication. Each UART includes a 16-byte send/receive FIFO, a  
programmable baud rate generator, complete modem control capability, and a processor interrupt  
system. Both UARTs provide legacy speed with baud rate up to 115.2k bps and also advanced speed  
with baud rates of 230k, 460k, or 921k bps which support higher speed modems.  
The W83977EF/CTF supports one PC-compatible printer port (SPP), Bi-directional Printer port (BPP)  
and also Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP). Through the printer  
port interface pins, also available are: Extension FDD Mode and Extension 2FDD Mode, allowing one  
or two external floppy disk drives to be connected.  
The configuration registers support mode selection, function enable/disable, and power down function  
selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature  
demand of Windows 95TM, which makes system resource allocation more efficient than ever.  
W83977EF/CTF provides functions that comply with ACPI (Advanced Configuration and Power  
Interface), including support for legacy and ACPI power management through SMI or SCI function  
pins. W83977EF/CTF also has auto power management to reduce power consumption.  
The keyboard controller is based on 8042 compatible instruction set, with a 2K Byte programmable  
ROM and a 256-Byte RAM bank. Keyboard BIOS firmware is available with optional AMIKEYTM -2,  
Phoenix MultiKey/42TM, or customer code.  
The W83977EF/CTF provides the system designer with a set of flexible I/O control functions through  
a set of General Purpose I/O ports. These GPIO ports may serve as simple I/O, or may be  
individually configured to provide a predefined alternate function.  
The W83977EF/CTF also supports Power-loss control, and ensures that the system never fails to  
detect any Wake-Up event provided by a chipset such as INTEL PIIX4 TM  
.
W83977EF/CTF is made to fully comply with Microsoft PC98 Hardware Design Guide. IRQs,  
DMAs, and I/O space resource are flexible to adjust to meet ISA PnP requirements. Moreover,  
W83977EF/CTF is made to meet the specification of PC98's requirements in power management:  
ACPI and DPM (Device Power Management).  
Another benifit is that W83977EF/CTF has the same pin assignment as W83977AF, W83977F,  
W83977TF, W83977ATF. This makes the design very flexible.  
Publication Release Date: March 1999  
-1 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
FEATURES  
General  
· Plug & Play 1.0A compatible  
· Supports 12 IRQs, 4 DMA channels, full 16-bit address decoding  
· Capable of ISA Bus IRQ Sharing  
· Compliant with Microsoft PC98 Hardware Design Guide  
·
Supports DPM (Device Power Management), ACPI  
· Reports ACPI status interrupt by SCI# signal issued from any of the 12 IQRs pins or GPIO xx  
· Programmable configuration settings  
· Single 24/48 Mhz clock input  
FDC  
· Compatible with IBM PC AT disk drive systems  
· Variable write pre-compensation with track selectable capability  
· Supports vertical recording format  
· DMA enable logic  
· 16-byte data FIFOs  
· Supports floppy disk drives and tape drives  
· Detects all overrun and underrun conditions  
· Built-in address mark detection circuit to simplify the read electronics  
· FDD anti-virus functions with software write protect and FDD write enable signal (write data signal is  
forced to be inactive)  
· Supports up to four 3.5-inch or 5.25-inch floppy disk drives  
· Completely compatible with industry standard 82077  
· 360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate  
·
Supports 3-mode FDD, and its Win95 driver  
UART  
· Two high-speed 16550 compatible UARTs with 16-byte send/receive FIFOs  
· MIDI compatible  
· Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop bits generation  
Publication Release Date: March 1999  
Revision A1  
-2 -  
W83977EF/ CTF  
PRELIMINARY  
· Internal diagnostic capabilities:  
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
· Programmable baud generator allows division of 1.8461 Mhz and 24 Mhz by 1 to (216-1)  
· Maximum baud rate up to 921k bps for 14.769 Mhz and 1.5M bps for 24 Mhz  
Infrared  
· Supports IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
· Supports SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
· Supports Consumer Infrared (CIR) port. (for W83977CTF only)  
Parallel Port  
· Compatible with IBM parallel port  
· Supports PS/2 compatible bi-directional parallel port  
· Supports Enhanced Parallel Port (EPP) - Compatible with IEEE 1284 specification  
· Supports Extended Capabilities Port (ECP) - Compatible with IEEE 1284 specification  
· Extension FDD mode supports disk drive B; and Extension 2FDD mode supports disk drives A and  
B through parallel port  
· Enhanced printer port back-drive current protection  
Keyboard Controller  
· 8042 based with optional F/W from AMIKKEYTM-2, Phoenix MultiKey/42TM or customer code  
· With 2K bytes of programmable ROM, and 256 bytes of RAM  
· Asynchronous Access to Two Data Registers and One status Register  
·
Software compatibility with the 8042 and PC87911 microcontrollers  
· Supports PS/2 mouse  
· Supports port 92  
· Supports both interrupt and polling modes  
·
Fast Gate A20 and Hardware Keyboard Reset  
· 8 Bit Timer/ Counter  
· Supports binary and BCD arithmetic  
· 6MHz, 8 MHz, 12 MHz, or 16 MHz operating frequency  
Publication Release Date: March 1999  
Revision A1  
-3 -  
W83977EF/ CTF  
PRELIMINARY  
General Purpose I/O Ports  
· 14 programmable general purpose I/O ports: 6 dedicate, 8 optional  
· General purpose I/O ports can serve as simple I/O ports, interrupt steering inputs, watch-dog timer  
output, power LED output, infrared I/O pins, general purpose address decoder, KBC control I/O  
pins  
OnNow Funtions  
· Keyboard Wake-Up by programmable keys  
· Mouse Wake-Up by programmable buttons  
· CIR(Consumer Infra-Red) Wake-Up by programmable keys (for W83977CTF only)  
Package  
· 128-pin PQFP  
Publication Release Date: March 1999  
-4 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
PIN CONFIGURATION  
P
P
P
A
W
R
C
T
L
A N  
N
S
S
M
I
S
W
WO  
I
U
T
#
#
/
N
#
#
I
I
I
/
R
Q
R
Q
1
R
Q
I
I
I
I
I
I
G
P
I
M K /  
/
/
G
P
/
G
G
R
R
R
R A  
A
1
V
C
R
I
R R  
R
A
1
A
A
C
A
V
C
R
I
V
P P  
Q Q  
A
A
A
A
1 1 Q Q Q  
Q NQ  
L L  
1
1 A A A A A A  
S 2 2  
1 1  
S
2
2
2 1 0 1 3 4 5 6 7 C9 5 S 4 3 2 1 C 0 9 8 7 6 5 4 3 2 1 0 3 2 B 1 K K B A  
0
9
9
8
7
7
6
6
6
6
6
1 1  
9
9 8 8 8 8  
8
7 7  
7
7 7  
7
7
1 9  
9 9 9 9 9  
8
8 8  
7
6
5
8
0
8 7  
1
6 5  
7 6 4 3  
0 9  
2 1 8 7  
0
0 9  
6 5 4 3 2 0 9 8 7  
3 2 1 0 9 8  
5
4
2 1 0  
64  
103  
104  
VBAT  
XTAL1  
VSS  
IRQ14/GP14  
IRQ15/GP15  
IOR#  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
105  
106  
107  
108  
109  
110  
111  
112  
XTAL2  
MDATA  
IOW#  
AEN  
IOCHRDY  
D0  
KDATA  
KBLOCK/GP13  
KBRST/GP12  
GA20/GP11  
VCC  
D1  
D2  
D3  
113  
DCDB#  
D4  
114  
115  
116  
117  
118  
119  
120  
121  
122  
D5  
SOUTB/PEN48  
SINB  
VCC  
D6  
DTRB#  
D7  
RTSB  
MR  
DSRB#  
DACK0#/GP16  
CTSB#  
VSS  
DCDA#  
SCI#/DRQ0/GP17  
DACK1#  
SOUTA/PENKBC  
SINA  
123  
124  
125  
126  
127  
DRQ1  
DTRA#/PNPCSV#  
DACK2#  
RTSA#/HEFRAS  
DRQ2  
DSRA#  
DACK3#  
CTSA#  
DRQ3  
CIRRX/GP24  
SUSCIN#/GP25  
128  
TC  
3
1 2  
2
2 3 3 3  
1 1 1 1 1  
2 2 2 2 2 2  
3
3 3  
1 1 1 1  
2
3
8
3
7
3 4  
7
/
0
3
2
4 5  
1 2  
5 6  
9
/
4
8 9  
3
6 7 8 9  
8
0 1 2 3 5 6 7  
1 2 4 5  
0 1  
6
C D D /  
/
/
/
/
/
/
/
/
/
/
/
S P V B / P P V P P P P P P /  
/
/
/
/
I
I
R
T
R
A
K
0
I
A D D  
D H  
WWS D D DM L E  
U
D
D
S
R
R
X
R R  
W
D
D
I
E A S  
R
T
X
L
K
I
M
C
S
S
D D  
N C  
C 7  
6
V
T
E
P
O
A
5
3
2 1  
0
L
E D  
I
4
N
I
F
V
D
A
T
A
S S  
A B  
E
C S  
S
P
O
T
B
R
R
D
E
X
T
D
E
N
1
,
Y K  
D
E
N
0
R
D
K A  
I
B
N
T
C
H
G
D
N
G
P
1
0
,
/
S
C
I
Publication Release Date: March 1999  
Revision A1  
-5 -  
W83977EF/ CTF  
PRELIMINARY  
1.0 PIN DESCRIPTION  
Note: Please refer to Section 11.2 DC CHARACTERISTICS for details.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
- TTL level bi-directional pin with 6 mA source-sink capability  
- TTL level bi-directional pin with 8 mA source-sink capability  
- CMOS level bi-directional pin with 8 mA source-sink capability  
- TTL level bi-directional pin with 12 mA source-sink capability  
- CMOS level bi-directional pin with 12 mA source-sink capability  
6t  
8t  
8
12t  
12  
16u  
- CMOS level bi-directional pin with 16 mA source-sink capability with internal pull-up resistor  
- CMOS level bi-directional pin open drain output with 16 mA sink capability with internal pull-up resistor  
- TTL level bi-directional pin with 24 mA source-sink capability  
- TTL level output pin with 8 mA source-sink capability  
- TTL level output pin with 12 mA source-sink capability  
- Open-drain output pin with 12 mA sink capability  
- Open-drain output pin with 24 mA sink capability  
- TTL level input pin  
I/OD  
16u  
I/O  
24t  
OUT  
OUT  
8t  
12t  
OD  
OD  
12  
24  
IN  
IN  
IN  
IN  
IN  
IN  
t
- CMOS level input pin  
c
- CMOS level input pin with internal pull-up resitor  
- CMOS level Schmitt-triggered input pin  
cu  
cs  
ts  
- TTL level Schmitt-triggered input pin  
- TTL level Schmitt-triggered input pin with internal pull-up resistor  
tsu  
1.1 Host Interface  
SYMBOL  
A0- A10  
A11-A14  
A15  
PIN  
I/O  
INt  
INt  
INt  
FUNCTION  
System address bus bits 0-10  
74-84  
86-89  
91  
System address bus bits 11-14  
System address bus bit 15  
109-114  
116-117  
105  
I/O12t System data bus bits 0-5  
I/O12t System data bus bits 6-7  
D0- D5  
D6- D7  
IOR#  
INts  
INts  
INts  
CPU I/O read signal  
IOW#  
106  
CPU I/O write signal  
AEN  
107  
System address bus enable  
IOCHRDY  
108  
OD24 In EPP Mode, this pin is the IO Channel Ready output to  
extend the host read/write cycle.  
MR  
118  
INts  
Master Reset; Active high; MR is low during normal  
operations.  
Publication Release Date: March 1999  
Revision A1  
-6 -  
W83977EF/ CTF  
PRELIMINARY  
1.1 Host Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
DACK0#  
119  
INtsu  
DMA Channel 0 Acknowledge signal. (CR2C bit 5_4 = 00,  
default)  
GP16  
I/O12t  
General purpose I/O port 1bit 6. (CR2C bit 5_4 = 01)  
Alternate function from GP16: Watch dog timer output  
KBC P15 I/O port. (CR2C bit 5_4 = 10)  
(WDTO)  
P15  
I/O12t  
DRQ0  
121  
OUT12t DMA Channel 0 request signal. (CR2C bit 7_6 = 00, default)  
GP17  
I/O12t  
General purpose I/O port 1bit 7. (CR2C bit 7_6 = 01)  
Alternate function from GP17: Power LED output.  
KBC P14 I/O port (CR2C bit 7_6 = 10)  
(PLEDO)  
P14  
I/O12t  
SCI#  
OUT12t System Control Interrupt (CR2C bit 7_6 = 11)  
INts DMA Channel 1 Acknowledge signal  
OUT12t DMA Channel 1 request signal  
INts DMA Channel 2 Acknowledge signal  
OUT12t DMA Channel 2 request signal  
INts DMA Channel 3 Acknowledge signal  
OUT12t DMA Channel 3 request signal  
INts Terminal Count. When active, this pin indicates termination of a  
DMA transfer.  
DACK1#  
DRQ1  
DACK2#  
DRQ2  
DACK3#  
DRQ3  
TC  
122  
123  
124  
125  
126  
127  
128  
IRQ1  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
99  
98  
OUT12t Interrupt request 1  
OUT12t Interrupt request 3  
OUT12t Interrupt request 4  
OUT12t Interrupt request 5  
OUT12t Interrupt request 6  
OUT12t Interrupt request 7  
OUT12t Interrupt request 9  
OUT12t Interrupt request 10  
OUT12t Interrupt request 11  
OUT12t Interrupt request 12  
97  
96  
95  
94  
92  
100  
101  
102  
Publication Release Date: March 1999  
Revision A1  
-7 -  
W83977EF/ CTF  
PRELIMINARY  
1.1 Host Interface, continued  
SYMBOL  
IRQ14  
PIN  
I/O  
FUNCTION  
103  
OUT12t Interrupt request 14. (CR2C bit 1_0 = 00, default)  
GP14  
I/O12t  
General purpose I/O port 1 bit 4. (CR2C bit 1_0 = 01)  
(GPACS1#)  
Alternate Function 1 from GP14: General purpose address  
decode output.  
(P17)  
Alternate Function 2 from GP14: KBC P17 I/O port.  
PLEDO  
IRQ15  
OUT12t Power LED output. (CR2C bit 1_0 = 10)  
104  
OUT12t Interrupt request 15.(CR2C bit 3_2 = 00, default)  
GP15  
I/O12t  
General purpose I/O port 1 bit 5. (CR2C bit 3_2 = 01)  
(GPACS2#)  
Alternate Function 1 from GP15: General purpose address write  
enable output.  
(P12)  
WDT  
Alternate Function 2 from GP15: KBC P12 I/O port.  
OUT12t Watch-Dog timer output. (CR2C bit 3_2 = 10)  
CLKIN  
1
INt  
24 or 48 MHz clock input, selectable through bit 5 of CR24.  
1.2 General Purpose I/O Port  
SYMBOL  
PWR_CTL#  
GP20  
PIN  
I/O  
FUNCTION  
69  
OD16u  
Power supply control  
I/O16tu General purpose I/O port 2 bit 0.  
(KBRST)  
SMI #  
Alternate Function from GP20: Keyboard reset (KBC P20)  
70  
72  
OD12t  
I/O12t  
System Management Interrupt. (CR2B bit 4_3 = 00, default)  
In the legacy power management mode, SMI# is drive low by the  
power management events.  
GP21  
(P13)  
General purpose I/O port 2 bit 1. (CR2B bit 4_3 = 01)  
Alternate Function from GP21: KBC P13 I/O port.  
KBC P16 I/O port. (CR2B bit 4_3 = 10)  
P16  
I/O12t  
OD12t  
I/O12t  
PANSWOT#  
GP22  
(P14)  
Panel Switch output. (CR2B bit 5 = 0, default)  
General purpose I/O port 2 bit 2. (CR2B bit 5 = 1)  
Alternate Function from GP22: KBC P14 I/O port.  
Publication Release Date: March 1999  
-8 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.2 General Purpose I/O Port ,continued  
SYMBOL  
PANSWIN#  
GP23  
PIN  
I/O  
INt  
FUNCTION  
73  
Panel Switch input. (CR2B bit 7_6 = 00, default)  
General purpose I/O port 2 bit 3. (CR2B bit 7_6 = 01)  
Alternate Function from GP23: KBC P15 I/O port  
Consumer infrared receiver input  
I/O12t  
(P15)  
CIRRX  
(P16)  
40  
39  
INt  
Alternate Function from GP24: KBC P16 I/O port  
General purpose I/O port 2 bit 4 (CR2A bit 5_4 = 01)  
KBC P13 I/O port. (CR2A bit 5_4 = 10)  
Suspend C input  
GP24  
I/O12t  
I/O12t  
INts  
P13  
SUSC#  
(GA20)  
GP25  
Alternate Function from GP25: GATE A20 (KBC P21)  
General purpose I/O port 2 bit 5.  
I/O12  
1.3 Serial Port Interface  
SYMBOL  
CTSA#  
PIN  
41  
I/O  
FUNCTION  
INt  
Clear To Send is the modem control input.  
48  
CTSB#  
The function of these pins can be tested by reading Bit 4 of the  
handshake status register.  
42  
49  
INt  
DSRA#  
DSRB#  
Data Set Ready. An active low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
43  
I/O8t  
UART A Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
RTSA#  
During power-on reset, this pin is pulled down internally and is  
defined as HEFRAS, which provides the power-on value for  
CR26 bit 6 (HEFRAS). A 4.7 kW is recommended if intending to  
pull up. (select 370H as configuration I/O port¢s address)  
HEFRAS  
50  
I/O8t  
UART B Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
RTSB#  
Publication Release Date: March 1999  
-9 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.3 Serial Port Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
44  
I/O8t  
UART A Data Terminal Ready. An active low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRA#  
During power-on reset, this pin is pulled down internally and is  
defined as PNPCSV#, which provides the power-on value for  
CR24 bit 0 (PNPCSV#). A 4.7 kW is recommended if intending to  
pull up. (clears the default value of FDC, UARTs, and PRT).  
PNPCSV#  
51  
I/O8t  
UART B Data Terminal Ready. An active low signal informs the  
modem or data set that controller is ready to communicate.  
DTRB#  
45, 52  
46  
INt  
SINA  
SINB  
Serial Input. Used to receive serial data through the  
communication link.  
I/O8t  
UART A Serial Output. Used to transmit serial data out to the  
communication link.  
SOUTA  
During power-on reset, this pin is pulled down internally and is  
defined as PENKBC, which provides the power-on value for  
CR24 bit 2 (ENKBC). A 4.7 kW resistor is recommended if  
intending to pull up. (enables KBC).  
PENKBC  
SOUTB  
PEN48  
53  
I/O8t  
UART B Serial Output. During power-on reset, this pin is pulled  
down internally and is defined as PEN48, which provides the  
power-on value for CR24 bit 6 (EN48). A 4.7 kW resistor is  
recommended if intending to pull up.  
47  
54  
INt  
INt  
DCDA#  
DCDB#  
RIA#  
Data Carrier Detect. An active low signal indicates the modem  
or data set has detected a data carrier.  
65  
66  
Ring Indicator. An active low signal indicates that a ring signal is  
being received from the modem or data set.  
RIB#  
1.4 Infrared Interface  
SYMBOL  
IRRX  
IRTX  
PIN  
37  
I/O  
FUNCTION  
INcs  
Infrared Receiver Input.  
38  
OUT12t Infrared Transmitter Output.  
Publication Release Date: March 1999  
Revision A1  
-10 -  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port  
The following pins have alternate functions, which are controlled by CR28 and L3-CRF0.  
SYMBOL  
SLCT  
PIN  
I/O  
FUNCTION  
PRINTER MODE: SLCT  
18  
INt  
An active high input on this pin indicates that the printer is  
selected. This pin is pulled high internally. Refer to description  
of the parallel port for definition of this pin in ECP and EPP  
mode.  
EXTENSION FDD MODE:  
WE2#  
OD12  
OD12  
INt  
This pin is for Extension FDD B; its function is the same as the  
WE# pin of FDC.  
EXTENSION 2FDD MODE: WE2#  
This pin is for Extension FDD A and B; its function is the same  
as the WE# pin of FDC.  
PRINTER MODE: PE  
PE  
19  
An active high input on this pin indicates that the printer has  
detected the end of the paper. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in  
ECP and EPP mode.  
EXTENSION FDD MODE: WD2#  
OD12  
OD12  
This pin is for Extension FDD B; its function is the same as the  
WD# pin of FDC.  
EXTENSION 2FDD MODE: WD2#  
This pin is for Extension FDD A and B; its function is the same  
as the WD# pin of FDC.  
Publication Release Date: March 1999  
-11 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
BUSY  
PIN  
I/O  
FUNCTION  
21  
INt  
PRINTER MODE: BUSY  
An active high input indicates that the printer is not ready to  
receive data. This pin is pulled high internally. Refer to  
description of the parallel port for definition of this pin in ECP  
and EPP mode.  
OD12  
OD12  
EXTENSION FDD MODE: MOB2#  
This pin is for Extension FDD B; the function of this pin is the  
same as the MOB# pin of FDC.  
EXTENSION 2FDD MODE:MOB2#  
This pin is for Extension FDD A and B; the function of this pin is  
the same as the MOB# pin of FDC.  
ACK#  
22  
INt  
PRINTER MODE: ACK#  
An active low input on this pin indicates that the printer has  
received data and is ready to accept more data. This pin is  
pulled high internally. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: DSB2#  
OD12  
OD12  
INt  
This pin is for the Extension FDD B; its function is the same as  
the DSB# pin of FDC.  
EXTENSION 2FDD MODE: DSB2#  
This pin is for Extension FDD A and B; it function is the same as  
the DSB# pin of FDC.  
ERR#  
34  
PRINTER MODE: ERR#  
An active low input on this pin indicates that the printer has  
encountered an error condition. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in  
ECP and EPP mode.  
EXTENSION FDD MODE: HEAD2#  
OD12  
OD12  
This pin is for Extension FDD B; its function is the same as the  
HEAD#pin of FDC.  
EXTENSION 2FDD MODE: HEAD2#  
This pin is for Extension FDD A and B; its function is the same  
as the HEAD# pin of FDC.  
Publication Release Date: March 1999  
-12 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
SLIN#  
32  
OD12  
PRINTER MODE: SLIN#  
Output line for detection of printer selection. This pin is pulled  
high internally. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE:STEP2#  
OD12  
This pin is for Extension FDD B; its function is the same as the  
STEP# pin of FDC.  
EXTENSION 2FDD MODE: STEP2#  
OD12  
OD12  
This pin is for Extension FDD A and B; its function is the same as  
the STEP# pin of FDC.  
INIT#  
33  
PRINTER MODE: INIT#  
Output line for the printer initialization. This pin is pulled high  
internally. Refer to description of the parallel port for definition of  
this pin in ECP and EPP mode.  
EXTENSION FDD MODE: DIR2#  
OD12  
This pin is for Extension FDD B; its function is the same as the  
DIR# pin of FDC.  
EXTENSION 2FDD MODE: DIR2#  
OD12  
OD12  
This pin is for Extension FDD A and B; its function is the same as  
the DIR# pin of FDC.  
AFD#  
35  
PRINTER MODE: AFD#  
An active low output from this pin causes the printer to auto feed  
a line after a line is printed. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in  
ECP and EPP mode.  
EXTENSION FDD MODE: DRVDEN0  
OD12  
OD12  
This pin is for Extension FDD B; its function is the same as the  
DRVDEN0 pin of FDC.  
EXTENSION 2FDD MODE: DRVDEN0  
This pin is for Extension FDD A and B; its function is the same as  
the DRVDEN0 pin of FDC.  
Publication Release Date: March 1999  
-13 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
STB#  
PIN  
I/O  
FUNCTION  
36  
OD12  
PRINTER MODE: STB#  
An active low output is used to latch the parallel data into the  
printer. This pin is pulled high internally. Refer to description of  
the parallel port for definition of this pin in ECP and EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
PRINTER MODE: PD0  
31  
30  
29  
I/O12t  
PD0  
PD1  
PD2  
Parallel port data bus bit 0. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
INt  
INt  
EXTENSION FDD MODE: INDEX2#  
This pin is for Extension FDD B; the function of this pin is the  
same as the INDEX# pin of FDC. It is pulled high internally.  
EXTENSION 2FDD MODE: INDEX2#  
This pin is for Extension FDD A and B; the function of this pin is  
the same as the INDEX# pin of FDC. It is pulled high internally.  
I/O12t  
PRINTER MODE: PD1  
Parallel port data bus bit 1. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: TRAK02#  
INt  
This pin is for Extension FDD B; the function of this pin is the  
same as the TRAK0# pin of FDC. It is pulled high internally.  
EXTENSION. 2FDD MODE: TRAK02#  
INt  
This pin is for Extension FDD A and B; the function of this pin is  
the same as the TRAK0# pin of FDC. It is pulled high internally.  
I/O12t  
PRINTER MODE: PD2  
Parallel port data bus bit 2. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: WP2#  
INt  
INt  
This pin is for Extension FDD B; the function of this pin is the  
same as the WP# pin of FDC. It is pulled high internally.  
EXTENSION. 2FDD MODE: WP2#  
This pin is for Extension FDD A and B; the function of this pin is  
the same as the WP# pin of FDC. It is pulled high internally.  
Publication Release Date: March 1999  
-14 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PD3  
PIN  
I/O  
FUNCTION  
28  
I/O12t  
PRINTER MODE: PD3  
Parallel port data bus bit 3. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
INt  
INt  
EXTENSION FDD MODE: RDATA2#  
This pin is for Extension FDD B; the function of this pin is the  
same as the RDATA# pin of FDC. It is pulled high internally.  
EXTENSION 2FDD MODE: RDATA2#  
This pin is for Extension FDD A and B; this function of this pin is  
the same as the RDATA# pin of FDC. It is pulled high  
internally.  
27  
I/O12t  
INt  
PRINTER MODE: PD4  
PD4  
Parallel port data bus bit 4. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: DSKCHG2#  
This pin is for Extension FDD B; the function of this pin is the  
same as the DSKCHG# pin of FDC. It is pulled high internally.  
EXTENSION 2FDD MODE: DSKCHG2#  
INt  
This pin is for Extension FDD A and B; this function of this pin is  
the same as the DSKCHG# pin of FDC. It is pulled high  
internally.  
26  
24  
I/O12t  
PRINTER MODE: PD5  
PD5  
PD6  
Parallel port data bus bit 5. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
I/O12t  
PRINTER MODE: PD6  
Parallel port data bus bit 6. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION. 2FDD MODE: MOA2#  
OD12  
This pin is for Extension FDD A; its function is the same as the  
MOA# pin of FDC.  
Publication Release Date: March 1999  
-15 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PD7  
PIN  
I/O  
FUNCTION  
23  
I/O12t  
PRINTER MODE: PD7  
Parallel port data bus bit 7. Refer to description of the parallel  
port for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: DSA2#  
-
OD12  
This pin is for Extension FDD A; its function is the same as the  
DSA# pin of FDC.  
1.6 FDC Interface  
SYMBOL  
DRVDEN0  
DRVDEN1  
GP10  
PIN  
I/O  
FUNCTION  
2
3
OD24  
OD12  
IO12t  
Drive Density Select bit 0.  
Drive Density Select bit 1. (CR2A bit 1_0 = 00, default)  
General purpose I/O port 1 bit 0. (CR2A bit 1_0 = 01)  
Alternate Function from GP10: Interrupt channel input.  
KBC P12 I/O port. (CR2A bit 1_0 = 10)  
(IRQIN1)  
P12  
IO12t  
SCI#  
OUT12t System Control Interrupt (CR2A bit 1_0 = 11)  
HEAD#  
5
OD24  
Head select. This open drain output determines which disk drive  
head is active.  
Logic 1 = side 0  
Logic 0 = side 1  
WE#  
WD#  
9
OD24  
OD24  
Write enable. An open drain output.  
10  
Write data. This logic low open drain writes pre-compensation  
serial data to the selected FDD. An open drain output.  
STEP#  
DIR#  
11  
12  
OD24  
OD24  
Step output pulses. This active low open drain output produces  
a pulse to move the head to another track.  
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion  
Logic 0 = inward motion  
MOB#  
13  
OD24  
Motor B On. When set to 0, this pin enables disk drive 1. This is  
an open drain output.  
Publication Release Date: March 1999  
-16 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.6 FDC Interface, continued  
SYMBOL  
DSA#  
PIN  
I/O  
FUNCTION  
14  
OD24  
Drive Select A. When set to 0, this pin enables disk drive A.  
This is an open drain output.  
DSB#  
15  
16  
4
OD24  
OD24  
INcs  
Drive Select B. When set to 0, this pin enables disk drive B.  
This is an open drain output.  
MOA#  
Motor A On. When set to 0, this pin enables disk drive 0. This is  
an open drain output.  
DSKCHG#  
Diskette change. This signal is active low at power on and  
whenever the diskette is removed. This input pin is pulled up  
internally by a 1 KW resistor. The resistor can be disabled by bit  
7 of L0-CRF0 (FIPURDWN).  
RDATA#  
WP#  
6
7
INcs  
INcs  
The read data input signal from the FDD. This input pin is pulled  
up internally by a 1 KW resistor. The resistor can be disabled by  
bit 7 of L0-CRF0 (FIPURDWN).  
Write protected. This active low Schmitt input from the disk  
drive indicates that the diskette is write-protected. This input pin  
is pulled up internally by a 1 KW resistor. The resistor can be  
disabled by bit 7 of L0-CRF0 (FIPURDWN).  
TRAK0#  
INDEX#  
8
INcs  
Track 0. This Schmitt-triggered input from the disk drive is  
active low when the head is positioned over the outermost track.  
This input pin is pulled up internally by a 1 KW resistor. The  
resistor can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
17  
INcs  
This Schmitt-triggered input from the disk drive is active low  
when the head is positioned over the beginning of a track  
marked by an index hole. This input pin is pulled up internally by  
a 1 KW resistor. The resistor can be disabled by bit 7 of L0-CRF0  
(FIPURDWN).  
Publication Release Date: March 1999  
-17 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1.7 KBC Interface  
SYMBOL  
KDATA  
MDATA  
KCLK  
PIN  
59  
I/O  
FUNCTION  
I/O16u  
I/O16u  
I/O16u  
I/O16u  
I/O12t  
I/O12t  
Keyboard Data  
PS2 Mouse Data  
Keyboard Clock  
PS2 Mouse Clock  
60  
67  
68  
56  
MCLK  
GA20  
KBC GATE A20 (P21) Output. (CR2A bit 6 = 0, default)  
General purpose I/O port 1 bit 1. (CR2A bit 6 = 1)  
Alternate Function from GP11: Interrupt channel input.  
W83C45 Keyboard Reset (P20) Output. (CR2A bit 7 = 0, default)  
General purpose I/O port 1 bit 2. (CR2A bit 7 = 1)  
Alternate Function 1 from GP12 : Watchdog timer output.  
W83C45 KINH (P17) Input. (CR2B bit 0 = 0, default)  
General purpose I/O port 1 bit 3. (CR2B bit 0 = 1)  
GP11  
(IRQIN2)  
KBRST  
GP12  
57  
58  
I/O12t  
I/O12t  
(WDTO)  
KBLOCK  
GP13  
INts  
I/O16t  
1.8 POWER PINS  
SYMBOL  
PIN  
FUNCTION  
VCC  
20, 55, 85,  
115  
+5V power supply for the digital circuitry  
VSB  
71  
+5V stand-by power supply for the digital circuitry  
Ground  
GND  
25, 62, 90,  
120  
1.9 ACPI Interface  
SYMBOL  
VBAT  
PIN  
64  
I/O  
NA  
INC  
O8t  
FUNCTION  
Battery voltage input  
XTAL1  
XTAL2  
63  
32.768Khz Clock Input  
61  
32.768Khz Clock Output  
Publication Release Date: March 1999  
-18 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
2.0 FDC FUNCTIONAL DESCRIPTION  
2.1 W83977EF/CTF FDC  
The floppy disk controller of the W83977EF/CTF integrates all of the logic required for floppy disk  
control. The FDC implements a PC/AT or PS/2 solution. All programmable options default to  
compatible values. The FIFO provides better system performance in multi-master systems. The  
digital data separator supports up to 2 M bits/sec data rate.  
The FDC includes the following blocks: AT interface, Precompensation, Data Rate Selection, Digital  
Data Separator, FIFO, and FDC Core.  
2.1.1 AT interface  
The interface consists of the standard asynchronous signals: RD#, WR#, A0-A3, IRQ, DMA control,  
and a data bus. The address lines select between the configuration registers, the FIFO and  
control/status registers. This interface can be switched between PC/AT, Model 30, or PS/2 normal  
modes. The PS/2 register sets are a superset of the registers found in a PC/AT.  
2.1.2 FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM  
and DIO bits in the Main Status Register.  
The FIFO defaults to disabled mode after any form of reset. This maintains PC/AT hardware  
compatibility. The default values can be changed through the CONFIGURE command. The  
advantage of the FIFO is that it allows the system a larger DMA latency without causing disk errors.  
The following tables give several examples of the delays with a FIFO. The data are based upon the  
following formula:  
THRESHOLD # ´ (1/DATA/RATE) *8 - 1.5 mS = DELAY  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 ´ 16 mS - 1.5 mS = 14.5 mS  
2 ´ 16 mS - 1.5 mS = 30.5 mS  
8 ´ 16 mS - 1.5 mS = 6.5 mS  
15 ´ 16 mS - 1.5 mS = 238.5 mS  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 1M BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 ´ 8 mS - 1.5 mS = 6.5 mS  
2 ´ 8 mS - 1.5 mS = 14.5 mS  
8 ´ 8 mS - 1.5 mS = 62.5 mS  
15 ´ 8 mS - 1.5 mS = 118.5 mS  
Publication Release Date: March 1999  
-19 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
At the start of a command the FIFO is always disabled and command parameters must be sent based  
upon the RQM and DIO bit settings in the main status register. When the FDC enters the command  
execution phase, it clears the FIFO of any data to ensure that invalid data are not transferred.  
An overrun and underrun will terminate the current command and the data transfer. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to  
remove the remaining data so that the result phase may be entered.  
DMA transfers are enabled with the SPECIFY command, and are initiated by the FDC by activating  
the DRQ pin during a data transfer command. The FIFO is enabled directly by asserting DACK# and  
addresses need not be valid.  
Note that if the DMA controller is programmed to function in verify mode, a pseudo read is performed  
by the FDC based only onDACK#. This mode is only available when the FDC has been configured  
into byte mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled the above  
operation is performed by using the new VERIFY command. No DMA operation is needed.  
¡
2.1.3 Data Separator  
The function of the data separator is to lock onto the incoming serial read data. When a lock is  
achieved the serial front end logic of the chip is provided with a clock which is synchronized to the  
read data. The synchronized clock, called the Data Window, is used to internally sample the serial  
data portion of the bit cell, and the alternate state samples the clock portion. Serial to parallel  
conversion logic separates the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
The DDS circuit cycles once every 12 clock cycles ideally. Any data pulse input will be synchronized  
and then adjusted by immediate error adjustment. The control logic will generate RDD and RWD for  
every pulse input. During any cycle where no data pulse is present, the DDS cycles are based on  
speed. A digital integrator is used to keep track of the speed changes in the input data stream.  
2.1.4 Write Precompensation  
The write precompensation logic is used to minimize bit shifts in the RDDATA stream from the disk  
drive. Shifting of bits is a known phenomenon in magnetic media and is dependent on the disk media  
and the floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known. Depending upon the pattern, the bit is shifted either early or late  
relative to the surrounding bits.  
Publication Release Date: March 1999  
-20 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
2.1.5 Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented  
vertically. This method packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks, and can read and write  
perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. The perpendicular mode requires a 1 Mbps data rate for the FDC. At this data rate the  
FIFO eases the host interface bottleneck due to the speed of data transfer to or from the disk.  
2.1.6 FDC Core  
The W83977EF/CTF FDC is capable of performing twenty commands. Each command is initiated by  
a multi-byte transfer from the microprocessor. The result can also be a multi-byte transfer back to the  
microprocessor. Each command consists of three phases: command, execution, and result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information is provided  
to the microprocessor.  
2.1.7 FDC Commands  
Command Symbol Descriptions:  
C:  
Cylinder number 0 - 256  
Data Pattern  
D:  
DIR:  
Step Direction  
DIR = 0, step out  
DIR = 1, step in  
Disk Drive Select 0  
Disk Drive Select 1  
Data Length  
DS0:  
DS1:  
DTL:  
EC:  
Enable Count  
Publication Release Date: March 1999  
Revision A1  
-21 -  
W83977EF/ CTF  
PRELIMINARY  
EOT:  
EFIFO:  
EIS:  
End of Track  
Enable FIFO  
Enable Implied Seek  
End of track  
EOT:  
FIFOTHR:  
GAP:  
GPL:  
H:  
FIFO Threshold  
Gap length selection  
Gap Length  
Head number  
HDS:  
HLT:  
Head number select  
Head Load Time  
Head Unload Time  
HUT:  
LOCK:  
Lock EFIFO, FIFOTHR, PTRTRK bits prevent chip from being affected by software  
reset  
MFM:  
MT:  
MFM or FM Mode  
Multitrack  
N:  
The number of data bytes written in a sector  
New Cylinder Number  
Non-DMA Mode  
NCN:  
ND:  
OW:  
PCN:  
POLL:  
PRETRK:  
R:  
Overwritten  
Present Cylinder Number  
Polling Disable  
Precompensation Start Track Number  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sector/per cylinder  
Skip deleted data address mark  
Step Rate Time  
SK:  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
Write gate alters timing of WE  
Publication Release Date: March 1999  
-22 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
(1) Read Data  
PHASE  
R/W  
W
D7  
D6 D5 D4  
D3  
0
D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
1
0
Command codes  
W
0
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
R
Sector ID information after  
command execution  
Publication Release Date: March 1999  
Revision A1  
-23 -  
W83977EF/ CTF  
PRELIMINARY  
(2) Read Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
0
1
0
0
Command codes  
W
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: March 1999  
Revision A1  
-24 -  
W83977EF/ CTF  
PRELIMINARY  
(3) Read A Track  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
W
W
W
W
W
W
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system; FDD  
reads contents of all  
cylinders from index hole to  
EOT  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: March 1999  
Revision A1  
-25 -  
W83977EF/ CTF  
PRELIMINARY  
(4) Read ID  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
0
1
0
Command codes  
W
HDS DS1 DS0  
Execution  
Result  
The first correct ID  
information on the cylinder  
is stored in Data Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
Disk status after the  
command has been  
completed  
R
R
(5) Verify  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
Execution  
Result  
No data transfer takes  
place  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: March 1999  
Revision A1  
-26 -  
W83977EF/ CTF  
PRELIMINARY  
(6) Version  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command code  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
Enhanced controller  
(7) Write Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
0
0
1
0
1
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to Command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
Command execution  
Sector ID information after  
Command execution  
Publication Release Date: March 1999  
Revision A1  
-27 -  
W83977EF/ CTF  
PRELIMINARY  
(8) Write Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
1
0
0
1
Command codes  
W
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: March 1999  
Revision A1  
-28 -  
W83977EF/ CTF  
PRELIMINARY  
(9) Format A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
Command codes  
HDS DS1 DS0  
---------------------- N ------------------------  
--------------------- SC -----------------------  
--------------------- GPL ---------------------  
---------------------- D ------------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector  
Input Sector Parameters  
Repeat:  
Result  
Status information after  
command execution  
R
R
R
R
R
R
(10) Recalibrate  
PHASE  
R/W D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
0
0
0
0
1
1
1
Command codes  
0
0
DS1 DS0  
Execution  
Head retracted to Track 0  
Interrupt  
Publication Release Date: March 1999  
Revision A1  
-29 -  
W83977EF/ CTF  
PRELIMINARY  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
R
0
0
0
0
1
0
0
0
Command code  
---------------- ST0 -------------------------  
---------------- PCN -------------------------  
Status information at the end  
of each seek operation  
R
(12) Specify  
PHASE  
R/W D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
0
0
0
0
0
0
1
1
Command codes  
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
(13) Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
1
0
1
1
1
Command codes  
W
HDS DS1 DS0  
W
-------------------- NCN -----------------------  
Execution  
R
Head positioned over proper  
cylinder on diskette  
(14) Configure  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
W
0
W
EIS EFIFO POLL | ------ FIFOTHR ----|  
W
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
Publication Release Date: March 1999  
Revision A1  
-30 -  
W83977EF/ CTF  
PRELIMINARY  
(15) Relative Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
1
0
DIR  
0
0
0
0
0
1
0
1
1
1
Command codes  
W
HDS DS1 DS0  
W
| -------------------- RCN ---------------------------- |  
(16) Dumpreg  
PHASE  
Command  
Result  
R/W  
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
1
1
0
Registers placed in FIFO  
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
R
R
R
R
R
R
R
R
R
(17) Perpendicular Mode  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
1
0
0
1
0
Command Code  
W
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
LOCK 0  
0
0
1
0
0
1
0
0
0
0
Command Code  
R
0
0
LOCK  
0
Publication Release Date: March 1999  
Revision A1  
-31 -  
W83977EF/ CTF  
PRELIMINARY  
(19) Sense Drive Status  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
0
1
0
0
Command Code  
W
0
HDS DS1 DS0  
Result  
R
---------------- ST3 -------------------------  
Status information about  
disk drive  
(20) Invalid  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
------------- Invalid Codes -----------------  
Invalid codes (no  
operation- FDC goes to  
standby state)  
Result  
R
-------------------- ST0 ----------------------  
ST0 = 80H  
Publication Release Date: March 1999  
Revision A1  
-32 -  
W83977EF/ CTF  
PRELIMINARY  
2.2 Register Descriptions  
There are several status, data, and control registers in W83977EF/CTF. These registers are defined  
below:  
ADDRESS  
REGISTER  
OFFSET  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
2.2.1 Status Register A (SA Register) (Read base address + 0)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP#  
INDEX#  
HEAD  
TRAK0#  
STEP  
DRV2#  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRV2# (Bit 6):  
0
1
A second drive has been installed  
A second drive has not been installed  
STEP (Bit 5):  
This bit indicates the complement of STEP# output.  
TRAK0#(Bit 4):  
This bit indicates the value of TRAK0# input.  
Publication Release Date: March 1999  
Revision A1  
-33 -  
W83977EF/ CTF  
PRELIMINARY  
HEAD (Bit 3):  
This bit indicates the complement of HEAD# output.  
0
1
side 0  
side 1  
INDEX#(Bit 2):  
This bit indicates the value of INDEX# output.  
WP#(Bit 1):  
0
1
disk is write-protected  
disk is not write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
outward direction  
inward direction  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR#  
WP  
INDEX  
HEAD#  
TRAK0  
STEP F/F  
DRQ  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRQ (Bit 6):  
This bit indicates the value of DRQ output pin.  
STEP F/F (Bit 5):  
This bit indicates the complement of latched STEP# output.  
TRAK0 (Bit 4):  
This bit indicates the complement of TRAK0# input.  
HEAD# (Bit 3):  
This bit indicates the value of HEAD# output.  
0
1
side 1  
side 0  
Publication Release Date: March 1999  
Revision A1  
-34 -  
W83977EF/ CTF  
PRELIMINARY  
INDEX (Bit 2):  
This bit indicates the complement of INDEX# output.  
WP (Bit 1):  
0
1
disk is not write-protected  
disk is write-protected  
DIR#(Bit 0)  
This bit indicates the direction of head movement.  
0
1
inward direction  
outward direction  
2.2.2 Status Register B (SB Register) (Read base address + 1)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
1
6
5
4
3
0
1
MOT EN A  
MOT EN B  
WE  
RDATA Toggle  
WDATA Toggle  
Drive SEL0  
Drive SEL0 (Bit 5):  
This bit indicates the status of DO REGISTER bit 0 (drive select bit 0).  
WDATA Toggle (Bit 4):  
This bit changes state at every rising edge of the WD# output pin.  
RDATA Toggle (Bit 3):  
This bit changes state at every rising edge of the RDATA# output pin.  
WE (Bit 2):  
This bit indicates the complement of the WE# output pin.  
MOT EN B (Bit 1)  
This bit indicates the complement of the MOB# output pin.  
MOT EN A (Bit 0)  
This bit indicates the complement of the MOA# output pin.  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
Publication Release Date: March 1999  
Revision A1  
-35 -  
W83977EF/ CTF  
PRELIMINARY  
2
1
7
6
5
4
3
0
DSC#  
DSD#  
WE F/F  
RDATA F/F  
WD F/F  
DSA#  
DSB#  
DRV2#  
DRV2# (Bit 7):  
0
1
A second drive has been installed  
A second drive has not been installed  
DSB# (Bit 6):  
This bit indicates the status of DSB# output pin.  
DSA# (Bit 5):  
This bit indicates the status of DSA# output pin.  
WD F/F(Bit 4):  
This bit indicates the complement of the latched WD# output pin at every rising edge of the WD#  
output pin.  
RDATA F/F(Bit 3):  
This bit indicates the complement of the latched RDATA# output pin .  
WE F/F (Bit 2):  
This bit indicates the complement of latched WE# output pin.  
DSD# (Bit 1):  
0
1
Drive D has been selected  
Drive D has not been selected  
DSC# (Bit 0):  
0
1
Drive C has been selected  
Drive C has not been selected  
Publication Release Date: March 1999  
Revision A1  
-36 -  
W83977EF/ CTF  
PRELIMINARY  
2.2.3 Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register controlling drive motors, drive selection, DRQ/IRQ  
enable, and FDC resetting. All the bits in this register are cleared by the MR pin. The bit definitions  
are as follows:  
7
6
3
1-0  
5
4
2
Drive Select: 00 select drive A  
01 select drive B  
10 select drive C  
11 select drive D  
Floppy Disk Controller Reset  
Active low resets FDC  
DMA and INT Enable  
Active high enable DRQ/IRQ  
Motor Enable A. Motor A on when active high  
Motor Enable B. Motor B on when active high  
Motor Enable C. Motor C on when active high  
Motor Enable D. Motor D on when active high  
2.2.4 Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information of the  
floppy disk drive. In normal floppy mode, this register includes only bit 0 and 1. The bit definitions are  
as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
X
Tape sel 0  
Tape sel 1  
If three mode FDD function is enabled (EN3MODE = 1 in CR9), the bit definitions are as follows:  
2
1
7
6
5
4
3
0
Tape Sel 0  
Tape Sel 1  
Floppy boot drive 0  
Floppy boot drive 1  
Drive type ID0  
Drive type ID1  
Media ID0  
Media ID1  
Publication Release Date: March 1999  
Revision A1  
-37 -  
W83977EF/ CTF  
PRELIMINARY  
Media ID1 Media ID0 (Bit 7, 6):  
These two bits are read only. These two bits reflect the value of CR8 bit 3, 2.  
Drive type ID1 Drive type ID0 (Bit 5, 4):  
These two bits reflect two of the bits of CR7. Which two bits are reflected depends on the last drive  
selected in the DO REGISTER.  
Floppy Boot drive 1, 0 (Bit 3, 2):  
These two bits reflect the value of CR8 bit 1, 0.  
Tape Sel 1, Tape Sel 0 (Bit 1, 0):  
These two bits assign a logical drive number to the tape drive. Drive 0 is not available as a tape drive  
and is reserved as the floppy disk boot drive.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
2.2.5 Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
6
4
0
7
5
3
2
1
FDD 0 Busy, (D0B = 1), FDD number 0 is in the SEEK mode.  
FDD 1 Busy, (D1B = 1), FDD number 1 is in the SEEK mode.  
FDD 2 Busy, (D2B = 1), FDD number 2 is in the SEEK mode.  
FDD 3 Busy, (D3B = 1), FDD number 3 is in the SEEK mode.  
FDC Busy, (CB). A read or write command is in the process when CB = HIGH.  
Non-DMA mode, the FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
Transition to LOW state indicates execution phase has ended.  
DATA INPUT/OUTPUT, (DIO). If DIO= HIGH then transfer is from Data Register to the processor.  
If DIO = LOW then transfer is from processor to Data Register.  
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or receive data to or from the processor.  
2.2.6 Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. The data rate of  
the FDC is programmed by the CC REGISTER for PC-AT and PS/2 Model 30 and PS/2 mode, and  
not by the DR REGISTER. The real data rate is determined by the most recent write to either of the  
DR REGISTER or CC REGISTER.  
Publication Release Date: March 1999  
-38 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
1
7
6
5
0
4
3
2
0
DRATE0  
DRATE1  
PRECOMP0  
PRECOMP1  
PRECOMP2  
POWER DOWN  
S/W RESET  
S/W RESET (Bit 7):  
This bit is the software reset bit.  
POWER-DOWN (Bit 6):  
0
1
FDC in normal mode  
FDC in power-down mode  
PRECOMP2 PRECOMP1 PRECOMP0 (Bit 4, 3, 2):  
These three bits select the value of write precompensation. The following tables show the  
precompensation values for the combination of these bits.  
PRECOMP  
PRECOMPENSATION DELAY  
2
1
0
250K - 1 Mbps  
Default Delays  
41.67 nS  
2 Mbps Tape drive  
Default Delays  
20.8 nS  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
83.34 nS  
41.17 nS  
125.00 nS  
62.5nS  
166.67 nS  
83.3 nS  
208.33 nS  
104.2 nS  
250.00 nS  
125.00 nS  
0.00 nS (disabled)  
0.00 nS (disabled)  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 nS  
125 nS  
125 nS  
41.67nS  
20.8 nS  
2 MB/S  
Publication Release Date: March 1999  
Revision A1  
-39 -  
W83977EF/ CTF  
PRELIMINARY  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC and reduced write current control.  
00 500 KB/S (MFM), 250 KB/S (FM), RWC#= 1  
01 300 KB/S (MFM), 150 KB/S (FM), RWC#= 0  
10 250 KB/S (MFM), 125 KB/S (FM), RWC#= 0  
11 1 MB/S (MFM), Illegal (FM), RWC#= 1  
The 2 MB/S data rate for Tape drive is only supported by setting 01 to DRATE1 and DRATE0 bits, as  
well as setting 10 to DRT1 and DRT0 bits, which are two of the Configure Register CRF4 or CRF5  
bits in logic device 0. Please refer to the function description of CRF4 or CRF5 and data rate table for  
individual data rates setting.  
2.2.7 FIFO Register (R/W base address + 5)  
The Data Register consists of four status registers in a stack, with only one register presented to the  
data bus at a time. This register stores data, commands, and parameters and provides diskette-drive  
status information. Data bytes are passed through the data register to program or obtain results after  
a command. In the W83977EF/CTF, this register defaults to FIFO disabled mode after reset. The  
FIFO can change its value and enable its operation through the CONFIGURE command.  
Status Register 0 (ST0)  
7-6  
5
3
2
1-0  
4
US1, US0 Drive Select:  
00 Drive A selected  
01 Drive B selected  
10 Drive C selected  
11 Drive D selected  
HD Head address:  
1 Head selected  
0 Head selected  
NR Not Ready:  
1 Drive is not ready  
0 Drive is ready  
EC Equipment Check:  
1 When a fault signal is received from the FDD or the track  
0 signal fails to occur after 77 step pulses  
0 No error  
SE Seek end:  
1 seek end  
0 seek error  
IC Interrupt Code:  
00 Normal termination of command  
01 Abnormal termination of command  
10 Invalid command issue  
11 Abnormal termination because the ready signal from FDD changed state during command executio  
Publication Release Date: March 1999  
-40 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Status Register 1 (ST1)  
7
6
5
4
3
2
1
0
Missing Address Mark. 1 When the FDC cannot detect the data address mark  
or the data address mark has been deleted.  
NW (Not Writable). 1 If a write Protect signal is detected from the diskette drive during  
execution of write data.  
ND (No DATA). 1 If specified sector cannot be found during execution of a read, write or verifly data.  
Not used. This bit is always 0.  
OR (Over Rum). 1 If the FDC is not serviced by the host system within a certain time interval during data transfer.  
DE (data Error).1 When the FDC detects a CRC error in either the ID field or the data field.  
Not used. This bit is always 0.  
EN (End of track). 1 When the FDC tries to access a sector beyond the final sector of a cylinder.  
Status Register 2 (ST2)  
7
1
0
4
3
2
6
5
MD (Missing Address Mark in Data Field).  
1 If the FDC cannot find a data address mark  
(or the address mark has been deleted)  
when reading data from the media  
0 No error  
BC (Bad Cylinder)  
1 Bad Cylinder  
0 No error  
SN (Scan Not satisfied)  
1 During execution of the Scan command  
0 No error  
SH (Scan Equal Hit)  
1 During execution of the Scan command, if the equal condition is satisfied  
0 No error  
WC (Wrong Cylinder)  
1 Indicates wrong Cylinder  
DD (Data error in the Data field)  
1 If the FDC detects a CRC error in the data field  
0 No error  
CM (Control Mark)  
1 During execution of the read data or scan command  
0 No error  
Not used. This bit is always 0  
Status Register 3 (ST3)  
6
4
2
1
0
7
5
3
US0 Unit Select 0  
US1 Unit Select 1  
HD Head Address  
TS Two-Side  
TO Track 0  
RY Ready  
WP Write Protected  
FT Fault  
Publication Release Date: March 1999  
Revision A1  
-41 -  
W83977EF/ CTF  
PRELIMINARY  
2.2.8 Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit read-only register used for diagnostic purposes. In a PC/XT or  
AT only Bit 7 is checked by the BIOS. When the register is read, Bit 7 shows the complement  
ofDSKCHG#, while other bits of the data bus remain in tri-state. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
x x x  
x x x  
x
Reserved for the hard disk controller  
x
During a read of this register, these bits are in tri-state  
DSKCHG  
In the PS/2 mode, the bit definitions are as follows:  
7
6
1
5
4
3
1
2
0
1
1
1
HIGH DENS#  
DRATE0  
DRATE1  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the complement of the DSKCHG# input.  
Bit 6-3: These bits are always a logic 1 during a read.  
DRATE1 DRATE0 (Bit 2, 1):  
These two bits select the data rate of the FDC. Refer to the DR register bits 1 and 0 for the settings  
corresponding to the individual data rates.  
HIGHDENS#(Bit 0):  
0
1
500 KB/S or 1 MB/S data rate (high density FDD)  
250 KB/S or 300 KB/S data rate  
Publication Release Date: March 1999  
Revision A1  
-42 -  
W83977EF/ CTF  
PRELIMINARY  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
7
6
0
5
0
4
3
2
0
1
0
DRATE0  
DRATE1  
NOPREC  
DMAEN  
DSKCHG#  
DSKCHG (Bit 7):  
This bit indicates the status of DSKCHG# input.  
Bit 6-4: These bits are always a logic 1 during a read.  
DMAEN (Bit 3):  
This bit indicates the value of DO REGISTER bit 3.  
NOPREC (Bit 2):  
This bit indicates the value of CC REGISTER NOPREC bit.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
2.2.9 Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In the PC/AT and PS/2 mode, the bit definitions are as  
follows:  
4
2
1
3
6
5
7
0
x
x
x
x
x
x
DRATE0  
DRATE1  
X: Reserved  
Bit 7-2: Reserved. These bits should be set to 0.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
Publication Release Date: March 1999  
Revision A1  
-43 -  
W83977EF/ CTF  
PRELIMINARY  
2
1
7
6
5
4
3
0
X
X
X
X
X
DRATE0  
DRATE1  
NOPREC  
X: Reserved  
Bit 7-3: Reserved. These bits should be set to 0.  
NOPREC (Bit 2):  
This bit indicates no precompensation. It has no function and can be set by software.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
Publication Release Date: March 1999  
Revision A1  
-44 -  
W83977EF/ CTF  
PRELIMINARY  
3.0 UART PORT  
3.1 Universal Asynchronous Receiver/Transmitter (UART A, UART B)  
The UARTs are used to convert parallel data into serial format on the transmit side, and convert serial  
data to parallel format on the receiver side. The serial format, in order of transmission and reception,  
is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half  
(five-bit format only) or two stop bits. The UARTs are capable of handling divisors of 1 to 65535 and  
producing a 16x clock for driving the internal transmitter logic. Provisions are also included to use  
this 16x clock to drive the receiver logic. The UARTs also support the MIDI data rate. Furthermore,  
the UARTs also include complete modem control capability, and a processor interrupt system that  
may be software trailed to the computing time required to handle the communication link. The  
UARTs have a FIFO mode to reduce the number of interrupts presented to the CPU. In each UART,  
there are 16-byte FIFOs for both receive and transmit mode.  
3.2 Register Address  
3.2.1 UART Control Register (UCR) (Read/Write)  
The UART Control Register controls and defines the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
5
4
2
6
7
3
0
1
Data length select bit 0 (DLS0)  
Data length select bit 1(DLS1)  
Multiple stop bits enable (MSBE)  
Parity bit enable (PBE)  
Even parity enable (EPE)  
Parity bit fixed enable (PBFE)  
Set silence enable (SSE)  
Baudrate divisor latch access bit (BDLAB)  
Bit 7: BDLAB. When this bit is set to a logical 1, designers can access the divisor (in 16-bit binary  
format) from the divisor latches of the baudrate generator during a read or write operation.  
When this bit is reset, the Receiver Buffer Register, the Transmitter Buffer Register, or the  
Interrupt Control Register can be accessed.  
Bit 6: SSE. A logical 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is  
affected by this bit; the transmitter is not affected.  
Bit 5: PBFE. When PBE and PBFE of UCR are both set to a logical 1,  
(1) if EPE is logical 1, the parity bit is fixed as logical 0 to transmit and check.  
(2) if EPE is logical 0, the parity bit is fixed as logical 1 to transmit and check.  
Publication Release Date: March 1999  
-45 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
TABLE 3-1 UART Register Bit Map  
Bit Number  
Register Address Base  
0
1
2
3
4
5
6
7
+ 0  
Receiver  
Buffer  
Register  
RBR  
TBR  
RX Data  
Bit 0  
RX Data  
Bit 1  
RX Data  
Bit 2  
RX Data  
Bit 3  
RX Data  
Bit 4  
RX Data  
Bit 5  
RX Data  
Bit 6  
RX Data  
Bit 7  
BDLAB = 0  
(Read Only)  
+ 0  
Transmitter  
Buffer Register  
(Write Only)  
TX Data  
Bit 0  
TX Data  
Bit 1  
TX Data  
Bit 2  
TX Data  
Bit 3  
TX Data  
Bit 4  
TX Data  
Bit 5  
TX Data  
Bit 6  
TX Data  
Bit 7  
BDLAB = 0  
+ 1  
Interrupt Control ICR  
Register  
RBR Data  
Ready  
Interrupt  
Enable  
TBR  
Empty  
Interrupt  
Enable  
USR  
Interrupt  
Enable  
HSR  
Interrupt  
Enable  
0
0
0
0
BDLAB = 0  
(EUSRI)  
(EHSRI)  
(ERDRI)  
(ETBREI)  
+ 2  
+ 2  
Interrupt Status  
Register  
(Read Only)  
ISR  
"0" if  
Interrupt  
Pending  
Interrupt  
Status  
Interrupt  
Status  
Interrupt  
Status  
0
0
FIFOs  
Enabled  
**  
FIFOs  
Enabled  
**  
Bit (0)  
Bit (1)  
Bit (2)**  
UART FIFO  
Control  
Register  
UFR  
FIFO  
Enable  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Reserved  
Reversed  
RX  
Interrupt  
Active Level Active Level  
RX  
Interrupt  
(Write Only)  
(LSB)  
(MSB)  
+ 3  
UART Control  
Register  
UCR  
Data  
Length  
Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Enable  
Even  
Parity  
Enable  
Parity  
Bit Fixed  
Enable  
Set  
Silence  
Enable  
Baudrate  
Divisor  
Latch  
Access Bit  
(BDLAB)  
(MSBE)  
(PBE)  
(EPE)  
PBFE)  
(SSE)  
(DLS0)  
(DLS1)  
+ 4  
+ 5  
Handshake  
Control  
Register  
HCR  
USR  
Data  
Terminal  
Ready  
Request  
to  
Send  
(RTS)  
Loopback  
RI  
Input  
IRQ  
Enable  
Internal  
Loopback  
Enable  
0
0
0
(DTR)  
UART Status  
Register  
RBR Data  
Ready  
Overrun  
Error  
Parity Bit  
Error  
No Stop  
Bit  
Silent  
Byte  
TBR  
Empty  
TSR  
Empty  
RX FIFO  
Error  
Error  
(NSER)  
Detected  
(SBD)  
Indication  
(RFEI) **  
(RDR)  
(OER)  
(PBER)  
(TBRE)  
(TSRE)  
+ 6  
+ 7  
Handshake  
Status Register  
HSR  
UDR  
CTS  
Toggling  
DSR  
Toggling  
RI Falling  
Edge  
DCD  
Toggling  
Clear  
to Send  
Data Set  
Ready  
Ring  
Indicator  
Data Carrier  
Detect  
(DCD)  
(TCTS)  
Bit 0  
(TDSR)  
Bit 1  
(FERI)  
Bit 2  
(TDCD)  
Bit 3  
(CTS)  
Bit 4  
(DSR)  
Bit 5  
(RI)  
User Defined  
Register  
Bit 6  
Bit 7  
Bit 7  
+ 0  
Baudrate Divisor BLL  
Latch Low  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
BDLAB = 1  
+ 1  
Baudrate  
Divisor Latch  
High  
BHL  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
BDLAB = 1  
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
Publication Release Date: March 1999  
Revision A1  
-46 -  
W83977EF/ CTF  
PRELIMINARY  
Bit 4: EPE. This bit describes the number of logic 1's in the data word bits and parity bit only when bit  
3 is programmed. When this bit is set, an even number of logic 1's are sent or checked. When  
the bit is reset, an odd number of logic 1's are sent or checked.  
Bit 3: PBE. When this bit is set, the position between the last data bit and the stop bit of the SOUT  
will be stuffed with the parity bit at the transmitter. For the receiver, the parity bit in the same  
position as the transmitter will be detected.  
Bit 2: MSBE. This bit defines the number of stop bits in each serial character that is transmitted or  
received.  
(1) If MSBE is set to a logical 0, one stop bit is sent and checked.  
(2) If MSBE is set to a logical 1, and data length is 5 bits, one and a half stop bits are sent and  
checked.  
(3) If MSBE is set to a logical 1, and data length is 6, 7, or 8 bits, two stop bits are sent and  
checked.  
Bits 0 and 1: DLS0, DLS1. These two bits define the number of data bits that are sent or checked in  
each serial character.  
TABLE 3-2 WORD LENGTH DEFINITION  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
Publication Release Date: March 1999  
Revision A1  
-47 -  
W83977EF/ CTF  
PRELIMINARY  
3.2.2 UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of the data transfer during communication.  
2
7
6
4
3
1
0
5
RBR Data ready (RDR)  
Overrun error (OER)  
Parity bit error (PBER)  
No stop bit error (NSER)  
Silent byte detected (SBD)  
Transmitter Buffer Register empty (TBRE)  
Transmitter Shift Register empty (TSRE)  
RX FIFO Error Indication (RFEI)  
Bit 7: RFEI. In 16450 mode, this bit is always set to a logic 0. In 16550 mode, this bit is set to a logic  
1 when there is at least one parity bit error, no stop bit error or silent byte detected in the FIFO.  
In 16550 mode, this bit is cleared by reading from the USR if there are no remaining errors left  
in the FIFO.  
Bit 6: TSRE. In 16450 mode, when TBR and TSR are both empty, this bit will be set to a logical 1. In  
16550 mode, if the transmit FIFO and TSR are both empty, it will be set to a logical 1. Other  
than in these two cases, this bit will be reset to a logical 0.  
Bit 5: TBRE. In 16450 mode, when a data character is transferred from TBR to TSR, this bit will be  
set to a logical 1. If ETREI of ICR is a logical 1, an interrupt will be generated to notify the CPU  
to write the next data. In 16550 mode, this bit will be set to a logical 1 when the transmit FIFO  
is empty. It will be reset to a logical 0 when the CPU writes data into TBR or FIFO.  
Bit 4: SBD. This bit is set to a logical 1 to indicate that received data are kept in silent state for a full  
word time, including start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the  
same condition for the data on top of the FIFO. When the CPU reads USR, it will clear this bit  
to a logical 0.  
Bit 3: NSER. This bit is set to a logical 1 to indicate that the received data have no stop bit. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads  
USR, it will clear this bit to a logical 0.  
Bit 2: PBER. This bit is set to a logical 1 to indicate that the parity bit of received data is wrong. In  
16550 mode, it indicates the same condition for the data on top of the FIFO. When the CPU  
reads USR, it will clear this bit to a logical 0.  
Bit 1: OER. This bit is set to a logical 1 to indicate received data have been overwritten by the next  
received data before they were read by the CPU. In 16550 mode, it indicates the same  
condition instead of FIFO full. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 0: RDR. This bit is set to a logical 1 to indicate received data are ready to be read by the CPU in  
the RBR or FIFO. After no data are left in the RBR or FIFO, the bit will be reset to a logical 0.  
Publication Release Date: March 1999  
-48 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
3.2.3 Handshake Control Register (HCR) (Read/Write)  
This register controls the pins of the UART used for handshaking peripherals such as modem, and  
controls the diagnostic mode of the UART.  
2
7
0
5
0
4
3
1
0
6
0
Data terminal ready (DTR)  
Request to send (RTS)  
Loopback RI input  
IRQ enable  
Internal loopback enable  
Bit 4: When this bit is set to a logical 1, the UART enters diagnostic mode by an internal loopback, as  
follows:  
(1) SOUT is forced to logical 1, and SIN is isolated from the communication link instead of the  
TSR.  
(2) Modem output pins are set to their inactive state.  
(3) Modem input pins are isolated from the communication link and connect internally as DTR  
(bit 0 of HCR) ® DSR#, RTS ( bit 1 of HCR) ® CTS#, Loopback RI input ( bit 2 of HCR) ®  
RI#and IRQ enable ( bit 3 of HCR) ® DCD#.  
Aside from the above connections, the UART operates normally. This method allows the  
CPU to test the UART in a convenient way.  
Bit 3: The UART interrupt output is enabled by setting this bit to a logic 1. In the diagnostic mode this  
bit is internally connected to the modem control input DCD#.  
Bit 2: This bit is used only in the diagnostic mode. In the diagnostic mode this bit is internally  
connected to the modem control input RI#.  
Bit 1: This bit controls the RTS# output. The value of this bit is inverted and output to RTS#.  
Bit 0: This bit controls the DTR# output. The value of this bit is inverted and output to DTR#.  
3.2.4 Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins for handshake peripherals such as a modem,  
and records changes on these pins.  
Publication Release Date: March 1999  
-49 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
7
6
5
4
3
2
1
0
toggling (TCTS)  
CTS#  
DSR#  
toggling (TDSR)  
RI falling edge (FERI)  
toggling (TDCD)  
DCD#  
Clear to send (CTS)  
Data set ready (DSR)  
Ring indicator (RI)  
Data carrier detect (DCD)  
Bit 7: This bit is the opposite of the DCD# input. This bit is equivalent to bit 3 of HCR in loopback  
mode.  
Bit 6: This bit is the opposite of the RI # input. This bit is equivalent to bit 2 of HCR in loopback  
mode.  
Bit 5: This bit is the opposite of the DSR# input. This bit is equivalent to bit 0 of HCR in loopback  
mode.  
Bit 4: This bit is the opposite of the CTS# input. This bit is equivalent to bit 1 of HCR in loopback  
mode.  
Bit 3: TDCD. This bit indicates that the DCD# pin has changed state after HSR was read by the CPU.  
Bit 2: FERI. This bit indicates that the RI # pin has changed from low to high state after HSR was  
read by the CPU.  
Bit 1: TDSR. This bit indicates that the DSR# pin has changed state after HSR was read by the CPU.  
Bit 0: TCTS. This bit indicates that the CTS# pin has changed state after HSR was read.  
3.2.5 UART FIFO Control Register (UFR) (Write only)  
This register is used to control the FIFO functions of the UART.  
2
1
7
6
5
4
3
0
FIFO enable  
Receiver FIFO reset  
Transmitter FIFO reset  
DMA mode select  
Reserved  
Reserved  
RX interrupt active level (LSB)  
RX interrupt active level (MSB)  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes, once there are more than 4 data characters in the  
receiver FIFO, the interrupt will be activated to notify the CPU to read the data from the FIFO.  
Publication Release Date: March 1999  
-50 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
TABLE 3-3 FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 1: Setting this bit to a logical 1 resets the RX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the UART. This bit should be set to a logical 1  
before other bits of UFR are programmed.  
3.2.6 Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status, which is encoded by different interrupt sources into 3  
bits.  
7
6
5
0
4
3
2
1
0
0
0 if interrupt pending  
Interrupt Status bit 0  
Interrupt Status bit 1  
Interrupt Status bit 2  
FIFOs enabled  
FIFOs enabled  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logic 0.  
Bit 3: In 16450 mode, this bit is 0. In 16550 mode, both bit 3 and 2 are set to a logical 1 when a time-  
out interrupt is pending.  
Bit 2, 1: These two bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has  
occurred, this bit will be set to a logical 0.  
Publication Release Date: March 1999  
-51 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
TABLE 3-4 INTERRUPT CONTROL FUNCTION  
ISR INTERRUPT SET AND FUNCTION  
Bit  
3
Bit  
2
Bit  
1
Bit Interrupt  
Interrupt Type  
Interrupt Source  
Clear Interrupt  
0
priority  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
UART Receive  
Status  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
1. RBR data ready  
Read USR  
0
1
0
0
Second  
RBR Data Ready  
1. Read RBR  
2. FIFO interrupt active level  
reached  
2. Read RBR until FIFO  
data under active level  
1
0
1
0
0
1
0
0
Second  
Third  
FIFO Data Timeout  
TBR Empty  
Data present in RX FIFO for 4  
characters period of time since last  
access of RX FIFO.  
Read RBR  
TBR empty  
1. Write data into TBR  
2. Read ISR (if priority is  
third)  
0
0
0
0
Fourth  
Handshake status  
1. TCTS = 1 2. TDSR = 1  
3. FERI = 1 4. TDCD = 1  
Read HSR  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
3.2.7 Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register allows the five types of controller interrupts to activate the interrupt output signal  
separately. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt  
Control Register (ICR). A selected interrupt can be enabled by setting the appropriate bits of this  
register to a logical 1.  
5
3
6
0
4
0
2
0
7
0
1
0
RBR data ready interrupt enable (ERDRI)  
TBR empty interrupt enable (ETBREI)  
UART receive status interrupt enable (EUSRI)  
Handshake status interrupt enable (EHSRI)  
Bit 7-4: These four bits are always logic 0.  
Bit 3: EHSRI. Setting this bit to a logical 1 enables the handshake status register interrupt.  
Bit 2: EUSRI. Setting this bit to a logical 1 enables the UART status register interrupt.  
Bit 1: ETBREI. Setting this bit to a logical 1 enables the TBR empty interrupt.  
Bit 0: ERDRI. Setting this bit to a logical 1 enables the RBR data ready interrupt.  
Publication Release Date: March 1999  
Revision A1  
-52 -  
W83977EF/ CTF  
PRELIMINARY  
3.2.8 Programmable Baud Generator (BLL/BHL) (Read/Write)  
Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to  
16  
generate a 1.8461 MHz frequency and divides it by a divisor from 1 to 2 -1. The output frequency of  
the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter  
and receiver. The table in the next page illustrates the use of the baud generator with a frequency of  
1.8461 MHz. In high-speed UART mode (refer to CR0C bit7 and CR0C bit6), the programmable  
baud generator directly uses 24 MHz and the same divisor as the normal speed divisor. In high-  
speed mode, the data transmission rate can be as high as 1.5 Mbps.  
3.2.9 User-defined Register (UDR) (Read/Write)  
This is a temporary register that can be accessed and defined by the user.  
TABLE 3-5 BAUD RATE TABLE  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
Pre-Div: 13  
1.8461M Hz  
Pre-Div:1.625 Pre-Div: 1.0  
Decimal divisor used Error Percentage between  
to generate 16X  
clock  
desired and actual  
14.769M Hz  
24M Hz  
50  
75  
400  
600  
650  
975  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
0.53%  
**  
58  
48  
**  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Note. Pre-Divisor is determined by CRF0 of UART A and B.  
Publication Release Date: March 1999  
Revision A1  
-53 -  
W83977EF/ CTF  
PRELIMINARY  
4.0 INFRARED (IR) PORTS  
4.1 IR PORT  
The Infrared (IR) function provides point-to-point (or multi-point to multi-point) wireless  
communication which can operate under various transmission protocols including IrDA 1.0 SIR,  
SHARP ASK-IR. IR port shares the same port with UART B port in W83977EF/CTF. Please refer to  
section 11.5 for configuration information.  
4.2 CIR PORT(For W83977CTF only)  
The CIR port of the W83977CTF is an independent device, and supports an T-period mode, Over-  
sampling mode and Over-sampling mode with re-sync for demodulation of cir signal. Refer to the  
configuration registers for more information on disabling, address selecting and IRQ selectiing .The  
function of each CIR register is described below.  
4.2.1 Bank0.Reg0 - Receiver Buffer Registers (RBR) (Read)  
Receiver Buffer Register is read only. When the CIR pulse train has been detected and passed by the  
internal signal filter, the data samped and shifted into shifter register will write into Receiver Buffer  
Register. In the CIR, this port only supports PIO mode and the address port is defined in the PnP.  
4.2.2 Bank0.Reg1 - Interrupt Control Register (ICR)  
Power on default <7:0> = 00000000 binary  
Bit  
Name  
EN_GLBI  
Read/Write  
Description  
7
Read/Write Enable Global Interrupt. Write 1, enable interrupt. Write  
0, disable global interrupt.  
6-3 Reserved  
-
Reserved  
2
1
0
EN_TMR_I  
En_LSR_I  
EN_RX_I  
Read/Write Enable Timer Interrupt.  
Read/Write Enable Line-Status-Register interrupt.  
Read/Write Receiver Thershold-Level Interrupt Enable.  
Publication Release Date: March 1999  
Revision A1  
-54 -  
W83977EF/ CTF  
PRELIMINARY  
4.2.3 Bank0.Reg2 - Interrupt Status Register (ISR)  
Power on default <7:0> = 00000000 binary  
Bit  
Name  
Read/Write  
-
Description  
7-3 Reserved  
Reserved  
2
TMR_I  
Read Only  
Timer Interrupt. Set to 1 when timer count to 0. This bit  
will be affected by (1) the timer registers are defined in  
Bank4.Reg0 and Bank1.Reg0~1, (2) EN_TMR(Enable  
Timer, in Bank0.Reg3.Bit2) should be set to 1, (3)  
ENTMR_I (Enable Timer Interrupt, in Bank0.Reg1.Bit2)  
should be set to 1.  
1
0
LSR_I  
Read Only  
Read Only  
Line-Status-Register interrupt. Set to 1 when overrun,  
or time out, or RBR Ready in the Line Status Register  
(LSR) sets to 1. Clear to 0 when LSR is read.  
RXTH_I  
Receiver Thershold-Level Interrupt. Set to 1 when (1)  
the Receiver Buffer Register (RBR) is equal or larger  
than the threshold level, (2) RBR occurs time-out if the  
receiver buffer register has valid data and below the  
threshold level. Clear to 0 when RBR is less than  
threshold level from reading RBR.  
Publication Release Date: March 1999  
-55 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
4.2.4 Bank0~3.Reg3 - CIR Control Register 0/Bank Select Register (CTR0/BSR)  
(BANK0~3)  
Power on default <7:0> = 00000000 binary  
Bit  
Name  
Read/Write  
Description  
7-6 BNK_SEL<1:0>  
Read/Write Bank Select Register. These two bits share the same  
address so that Bank Select Register (BSR) can be  
programmed to desired Bank in any Bank.  
BNK_SEL<1:0> = 00 Select Bank 0.  
BNK_SEL<1:0> = 01 Select Bank 1.  
BNK_SEL<1:0> = Reserved.  
BNK_SEL<1:0> = Reserved.  
5-4 RXFTL1/0  
Read/Write Receiver FIFO Threshold Level. It sets the RXTH_I to  
become 1 when the Receiver FIFO Threshold Level is  
equal or larger than the defined value shown as follows.  
RXFTL<1:0> = 00 -- 1 byte  
RXFTL<1:0> = 01 -- 4 bytes  
RXFTL<1:0> = 10 -- 8 bytes  
RXFTL<1:0> = 11 -- 14 bytes  
3
TMR_TST  
Read/Write Timer Test. Write to 1, then reading the TMRL/TMRH  
will return the programmed values of TMRL/TMRH, that  
is, it does not return down count counter value. This bit  
is for test timer register.  
2
1
EN_TMR  
Read/Write Enable timer. Write to 1, enable the timer  
RXF_RST  
Read/Write Setting this bit to a logical 1 resets the RX FIFO  
counter logic to initial state. This bit will clear to a  
logical 0 by itself after being set to a logical 1.  
0
TMR_CLK  
Read/Write Timer input clock.  
TMR_CLK = 0, input clock set to 1K Hz.  
TMR_CLK = 1, input clock set to 24M Hz. This clock is  
tested by Winbond. Do not publish.  
Publication Release Date: March 1999  
-56 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
4.2.5 Bank0.Reg4 - CIR Control Register (CTR)  
Power on default <7:0> = 0010,1001 binary  
Bit  
Name  
Read/Write  
Description  
7-5 RX_FR<2:0>  
Read/Write Receiver Frequency Range 2~0. These bits select the  
input frequency of the receiver ranges. For the input  
signal, that is through a band pass filter, i.e., if the  
frequency of the input signal is located at this defined  
range then the signal will be received.  
4-0 RX_FSL<4:0>  
Read/Write Receiver Frequency Select 4~0. Select the receiver  
operation frequency.  
Table: Low Frequency range select of receiver.  
RX_FR2~0 (Low Frequency)  
010  
001  
011  
RX_FSL4~0  
Min.  
26.1  
28.2  
29.4  
30.0  
31.4  
32.1  
32.8  
33.6*  
34.4  
36.2  
37.2  
38.2  
40.3  
41.5  
42.8  
44.1  
45.5  
48.7  
50.4  
54.3  
Max.  
29.6  
32.0  
33.3  
34.0  
35.6  
36.4  
37.2  
38.1*  
39.0  
41.0  
42.1  
43.2  
45.7  
47.1  
48.5  
50.0  
51.6  
55.2  
57.1  
61.5  
Min.  
24.7  
26.7  
27.8  
28.4  
29.6  
30.3  
31.0  
31.7  
32.5  
34.2  
35.1  
36.0  
38.1  
39.2  
40.4  
41.7  
43.0  
46.0  
47.6  
51.3  
Max.  
31.7  
34.3  
35.7  
36.5  
38.1  
39.0  
39.8  
40.8  
41.8  
44.0  
45.1  
46.3  
49.0  
50.4  
51.9  
53.6  
55.3  
59.1  
61.2  
65.9  
Min.  
23.4  
25.3  
26.3  
26.9  
28.1  
28.7  
29.4  
30.1  
30.8  
32.4  
33.2  
34.1  
36.1  
37.2  
38.3  
39.5  
40.7  
43.6  
45.1  
48.6  
Max.  
34.2  
36.9  
38.4  
39.3  
41.0  
42.0  
42.9  
44.0  
45.0  
47.3  
48.6  
49.9  
52.7  
54.3  
56.0  
57.7  
59.6  
63.7  
65.9  
71.0  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01011  
01100  
01101  
01111  
10000  
10010  
10011  
10101  
10111  
11010  
11011  
11101  
Note that the other non-defined values are reserved.  
Publication Release Date: March 1999  
Revision A1  
-57 -  
W83977EF/ CTF  
PRELIMINARY  
4.2.6 Bank0.Reg5 - UART Line Status Register (USR)  
Power on default <7:0> = 0000,0000 binary  
Bit  
Name  
Read/Write  
Description  
7-3 Reserved  
-
-
2
RX_TO  
Read/Write Set to 1 when receiver FIFO or frame status FIFO  
occurs time-out. Read this bit to clear.  
1
0
OV_ERR  
RDR  
Read/Write Received FIFO overrun. Read to clear.  
Read/Write This bit is set to a logical 1 to indicate received data are  
ready to be read by the CPU in the RBR or FIFO. After  
no data are left in the RBR or FIFO, the bit will be reset  
to a logical 0.  
4.2.7 Bank0.Reg6 - Remote Infrared Config Register (RIR_CFG)  
Power on default <7:0> = 0000,0000 binary  
Bit  
Name  
Read/Write  
Description  
Sampling Mode Select. Select internal decoder  
methodology from the internal filter. Selected decoder  
mode will determine the receive data format. The  
sampling mode is shown bellow:  
7-6 SMPSEL<1:0>  
Read/Write  
SMPSEL<1:0> = 00 T-Period Sample Mode.  
SMPSEL<1:0> = 01 Over-Sampling Mode.  
SMPSEL<1:0> = 10 Over-Sampling with re-sync.  
SMPSEL<1:0> = 11 FIFO Test Mode.  
The T-period code format is defined as follows.  
(Number of bits) - 1  
B7 B6 B5 B4 B3 B2 B1 B0  
Bit value  
The Bit value is set to 0, when the low signal will be  
received. The Bit value is set to 1, when the high signal  
will be received. The opposite results will be generated  
when the bit RXINV (Bank0.Reg6.Bit0) is set to 1.  
Publication Release Date: March 1999  
-58 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
4.2.7 Bank0.Reg6 - Remote Infrared Config Register (RIR_CFG), continued  
Bit  
Name  
Read/Write  
Description  
Low pass filter source selcetion.  
5-4 LP_SL<1:0>  
Read/Write  
LP_SL<1:0> = 00 Select raw IRRX signal.  
LP_SL<1:0> = 01 Select R.B.P. signal  
LP_SL<1:0> = 10 Select D.B.P. signal.  
LP_SL<1:0> = 11 Reserved.  
Receiver Demodulation Source Selection.  
RXDMSL<1:0> = 00 select B.P. and L.P. filter.  
RXDMSL<1:0> = 01 select B.P. but not L.P.  
RXDMSL<1:0> = 10 Reserved.  
3-2 RXDMSL<1:0>  
Read/Write  
RXDMSL<1:0> = 11 do not pass demodulation.  
Baud Rate Pre-divisor. Set to 0, the baud rate  
generator input clock is set to 1.8432M Hz which is set  
to pre-divisor into 13. When set to 0, the pre-divisor is  
set to 1, that is, the input clock of baud rate generator is  
set to 24M Hz.  
1
0
PRE_DIV  
RXINV  
Read/Write  
Read/Write  
Receiving Signal Invert. Write to 1, Invert the receiving  
signal.  
4.2.8 Bank0.Reg7 - User Defined Register (UDR/AUDR)  
Power on default <7:0> = 0000,0000 binary  
Bit  
Name  
RXACT  
Read/Write  
Description  
7
Read/Write Receive Active. Set to 1 whenever a pulse or pulse-  
train is detected by the receiver. If a 1 is written into the  
bit position, the bit is cleared and the receiver is de-  
actived. When this bit is set, the receiver samples the  
IR input continuously at the programmed baud rate and  
transfers the data to the receiver FIFO.  
6
5
RX_PD  
Read Only  
Set to 1 whenever a pulse or pulse-train (modulated  
pulse) is detected by the receiver. Can be used by the  
sofware to detect idle condition. Cleared Upon Read.  
Reserved  
-
-
4-0 FOLVAL  
Read Only  
FIFO Level Value. Indicates how many bytes there are  
in the current received FIFO. Can read these bits then  
get the FIFO level value and successively read RBR by  
the prior value.  
Publication Release Date: March 1999  
-59 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
4.2.9 Bank1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL)  
The two registers of BLL and BHL are baud rate divisor and are the same as for the legacy UART  
port. The table below illustrates the use of the baud generator with a frequency of 18,461 Mhz. The  
output frequency of the baud generator is the baud rate multiplied by 16. In high-speed UART mode  
(relies to Bank 0, Reg 6, Bit 1) the programmable baud generator directly uses 24 Mhz and the same  
divisor. In high-speed mode, the baud rate can be as high as 1.5 M bps.  
TABLE 3-5 BAUD RATE TABLE  
BAUD RATE USING 24 MHZ TO GENERATE 1.8461 MHZ  
Desired Baud Rate  
Decimal divisor used to  
generate 16X clock  
Percent error difference between  
desired and actual  
50  
75  
2304  
1536  
1047  
857  
768  
384  
192  
96  
**  
**  
110  
0.18%  
134.5  
150  
0.099%  
**  
**  
300  
600  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
1.5M  
**  
64  
**  
58  
0.53%  
**  
48  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
**  
1 Note 1  
0%  
Note 1: Only use in high speed mode, when Bank0.Reg6.Bit1 is set.  
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%  
Publication Release Date: March 1999  
Revision A1  
-60 -  
W83977EF/ CTF  
PRELIMINARY  
4.2.10 Bank1.Reg2 - Version ID Regiister I (VID)  
Power on default <7:0> = 0001,0000 binary  
Bit  
Name  
Read/Write  
Description  
Version ID, default is set to 0x10.  
7-0 VID  
Read Only  
4.2.11 Bank0~3.Reg3 - CIR Control Register 0/Bank Select Register (CTR0/BSR)  
(BANK0~3)  
This register is defined same as in Bank0.Reg3.  
4.2.12 Bank1.Reg4 - Timer Low Byte Register (TMRL)  
Power on default <7:0> = 0000,0000 binary  
Bit  
Name  
Read/Write  
Description  
7-0 TMRL  
Read/Write Timer Low Byte Register. This is a 12-bit timer (another  
4-bit is defined in Bank1.Reg5) for which resolution is 1  
ms, that is, the programmed maximum time is 212-1  
ms. The timer is a down-counter. The timer starts down  
count when the bit EN_TMR (Enable Timer) of  
Bank0.Reg2. is set to 1. When the timer down counts to  
zero and EN_TMR=1, the TMR_I is set to 1. When the  
counter down counts to zero, a new initial value will be  
re-loaded into the timer counter.  
4.2.13 Bank1.Reg5 - Timer High Byte Register (TMRH)  
Power on default <7:0> = 0000,0000 binary  
Bit  
Name  
Read/Write  
Description  
7-4 Reserved  
3-0 TMRH  
Reserved.  
Read/Write Timer High Byte Register. See Bank1.Reg4.  
Publication Release Date: March 1999  
Revision A1  
-61 -  
W83977EF/ CTF  
PRELIMINARY  
4.3 Demodulation Block Diagram  
Low Pass  
Filter  
Selection  
LP_SL<1:0>  
Demodulation  
Source  
Selection  
RXDMSL<1:0>  
00  
01  
MUX  
Low  
Pass  
Filter  
Band  
00  
CIRRX  
Pass  
Demod.  
Block  
10  
Filter  
(B.P.)  
Sampling  
&
Hold  
Shifter  
&
RX  
01  
MUX  
10  
FIFO  
11  
Baud Rate  
Generator  
Sampling Clock  
Publication Release Date: March 1999  
Revision A1  
-62 -  
W83977EF/ CTF  
PRELIMINARY  
5.0 PARALLEL PORT  
5.1 Printer Interface Logic  
The parallel port of the W83977EF/CTF makes possible the attachment of various devices that  
accept eight bits of parallel data at standard TTL level. The W83977EF/CTF supports an IBM XT/AT  
compatible parallel port (SPP), bi-directional parallel port (BPP), Enhanced Parallel Port (EPP),  
Extended Capabilities Parallel Port (ECP), Extension FDD mode (EXTFDD). and Extension 2FDD  
mode (EXT2FDD) on the parallel port. Refer to the configuration registers for more information on  
disabling, power-down, and on selecting the mode of operation.  
Table 5-1 shows the pin definitions for different modes of the parallel port.  
TABLE 5-1-1 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
PIN NUMBER  
HOST  
CONNECTOR  
PIN  
ATTRIBUTE  
OF  
SPP  
EPP  
ECP  
W83977EF/CTF  
2
1
36  
O
I/O  
I
nSTB  
PD<0:7>  
nACK  
BUSY  
PE  
nWrite  
PD<0:7>  
Intr  
nSTB, HostClk  
2-9  
10  
11  
12  
13  
14  
15  
16  
17  
31-26, 24-23  
PD<0:7>  
2
22  
21  
19  
18  
35  
34  
33  
32  
nACK, PeriphClk  
2
I
nWait  
PE  
BUSY, PeriphAck  
2
I
PEerror, nAckReverse  
2
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
Select  
nDStrb  
nError  
nInit  
SLCT, Xflag  
2
O
I
nAFD, HostAck  
1
2
nFault , nPeriphRequest  
1
2
O
O
nINIT , nReverseRqst  
1
2
nAStrb  
nSLIN , ECPMode  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
Publication Release Date: March 1999  
Revision A1  
-63 -  
W83977EF/ CTF  
PRELIMINARY  
TABLE 5-1-2 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
CONNECTOR  
PIN NUMBER OF  
W83977EF/CTF  
PIN  
ATTRIBUTE  
SPP  
PIN  
ATTRIBUTE  
EXT2FDD  
PIN  
ATTRIBUTE  
EXTFDD  
1
2
36  
31  
30  
29  
28  
27  
26  
24  
23  
22  
21  
19  
18  
35  
34  
33  
32  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
nSTB  
PD0  
---  
I
---  
INDEX2#  
TRAK02#  
WP2#  
---  
I
---  
INDEX2#  
TRAK02#  
WP2#  
3
PD1  
I
I
4
PD2  
I
I
5
PD3  
I
RDATA2#  
DSKCHG2#  
---  
I
RDATA2#  
DSKCHG2#  
---  
6
PD4  
I
I
7
PD5  
---  
---  
---  
---  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
8
PD6  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
MOA2#  
DSA2#  
DSB2#  
MOB2#  
WD2#  
---  
9
PD7  
---  
10  
11  
12  
13  
14  
15  
16  
17  
nACK  
BUSY  
PE  
DSB2#  
MOB2#  
WD2#  
I
I
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
WE2#  
WE2#  
O
RWC2#  
HEAD2#  
DIR2#  
RWC2#  
HEAD2#  
DIR2#  
I
O
O
STEP2#  
STEP2#  
5.2 Enhanced Parallel Port (EPP)  
TABLE 5-2 PRINTER MODE AND EPP REGISTER ADDRESS  
A2  
0
A1  
0
A0  
0
REGISTER  
NOTE  
Data port (R/W)  
1
1
1
1
2
2
2
2
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
Printer control swapper (Read)  
EPP address port (R/W)  
EPP data port 0 (R/W)  
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
EPP data port 1 (R/W)  
1
1
0
EPP data port 2 (R/W)  
1
1
1
EPP data port 2 (R/W)  
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
Publication Release Date: March 1999  
Revision A1  
-64 -  
W83977EF/ CTF  
PRELIMINARY  
5.2.1 Data Swapper  
The system microprocessor can read the contents of the printer's data latch by reading the data  
swapper.  
5.2.2 Printer Status Buffer  
The system microprocessor can read the printer status by reading the address of the printer status  
buffer. The bit definitions are as follows:  
7
6
5
4
3
2
1
1
1
0
TMOUT  
ERROR#  
SLCT  
PE  
ACK#  
BUSY#  
Bit 7: This signal is active during data entry, when the printer is off-line during printing, when the print  
head is changing position, or during an error state. When this signal is active, the printer is  
busy and cannot accept data.  
Bit 6: This bit represents the current state of the printer's ACK# signal. A 0 means the printer has  
received a character and is ready to accept another. Normally, this signal will be active for  
approximately 5 microseconds before BUSY# stops.  
Bit 5: Logical 1 means the printer has detected the end of paper.  
Bit 4: Logical 1 means the printer is selected.  
Bit 3: Logical 0 means the printer has encountered an error condition.  
Bit 1, 2: These two bits are not implemented and are logic one during a read of the status register.  
Bit 0: This bit is valid in EPP mode only. It indicates that a 10 mS time-out has occurred on the EPP  
bus. A logic 0 means that no time-out error has occurred; a logic 1 means that a time-out error  
has been detected. Writing a logic 1 to this bit will clear the time-out status bit; writing a logic 0  
has no effect.  
Publication Release Date: March 1999  
-65 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
5.2.3 Printer Control Latch and Printer Control Swapper  
The system microprocessor can read the contents of the printer control latch by reading the printer  
control swapper. Bit definitions are as follows:  
7
1
6
1
5
4
3
2
1
0
STROBE  
AUTO FD  
INIT#  
SLCT IN  
IRQ ENABLE  
DIR  
Bit 7, 6: These two bits are a logic one during a read. They can be written.  
Bit 5: Direction control bit  
When this bit is a logic 1, the parallel port is in input mode (read); when it is a logic 0, the  
parallel port is in output mode (write). This bit can be read and written. In SPP mode, this bit  
is invalid and fixed at zero.  
Bit 4: A 1 in this position allows an interrupt to occur when ACK# changes from low to high.  
Bit 3: A 1 in this bit position selects the printer.  
Bit 2: A 0 starts the printer (50 microsecond pulse, minimum).  
Bit 1: A 1 causes the printer to line-feed after a line is printed.  
Bit 0: A 0.5 microsecond minimum high active pulse clocks data into the printer. Valid data must be  
present for a minimum of 0.5 microseconds before and after the strobe pulse.  
5.2.4 EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Publication Release Date: March 1999  
Revision A1  
-66 -  
W83977EF/ CTF  
PRELIMINARY  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
operation. The leading edge of IOW# causes an EPP address write cycle to be performed, and the  
trailing edge of IOW# latches the data for the duration of the EPP write cycle.  
PD0-PD7 ports are read during a read operation. The leading edge of IOR# causes an EPP address  
read cycle to be performed and the data to be output to the host CPU.  
5.2.5 EPP Data Port 0-3  
These four registers are available only in EPP mode. Bit definitions of each data port are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
When accesses are made to any EPP data port, the contents of DB0-DB7 are buffered (non-  
inverting) and output to the ports PD0-PD7 during a write operation. The leading edge of IOW#  
causes an EPP data write cycle to be performed, and the trailing edge of IOW# latches the data for  
the duration of the EPP write cycle.  
During a read operation, ports PD0-PD7 are read, and the leading edge of IOR# causes an EPP read  
cycle to be performed and the data to be output to the host CPU.  
5.2.6 Bit Map of Parallel Port and EPP Registers  
REGISTER  
7
6
5
4
3
PD3  
2
1
PD1  
0
PD0  
Data Port (R/W)  
PD7  
PD6  
PD5  
PE  
PD4  
SLCT  
IRQEN  
IRQ  
PD2  
1
Status Buffer (Read)  
Control Swapper (Read)  
Control Latch (Write)  
EPP Address Port R/W)  
EPP Data Port 0 (R/W)  
EPP Data Port 1 (R/W)  
EPP Data Port 2 (R/W)  
EPP Data Port 3 (R/W)  
BUSY# ACK#  
ERROR#  
SLIN  
SLIN  
PD3  
1
TMOUT  
STROBE#  
STROBE#  
PD0  
1
1
1
INIT#  
INIT#  
PD2  
PD2  
PD2  
PD2  
PD2  
AUTOFD#  
AUTOFD#  
PD1  
1
1
DIR  
PD5  
PD5  
PD5  
PD5  
PD5  
PD7  
PD7  
PD7  
PD7  
PD7  
PD6  
PD6  
PD6  
PD6  
PD6  
PD4  
PD4  
PD4  
PD4  
PD4  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
Publication Release Date: March 1999  
Revision A1  
-67 -  
W83977EF/ CTF  
PRELIMINARY  
5.2.7 EPP Pin Descriptions  
EPP NAME  
nWrite  
TYPE  
EPP DESCRIPTION  
O
I/O  
I
Denotes an address or data read or write operation.  
Bi-directional EPP address and data bus.  
PD<0:7>  
Intr  
Used by peripheral device to interrupt the host.  
nWait  
I
Inactive to acknowledge that data transfer is completed. Active to  
indicate that the device is ready for the next transfer.  
PE  
I
I
Paper end; same as SPP mode.  
Select  
nDStrb  
nError  
nInits  
Printer selected status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
O
This signal is active low. When it is active, the EPP device is reset to its  
initial operating mode.  
nAStrb  
O
This signal is active low. It denotes an address read or write operation.  
5.2.8 EPP Operation  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes  
are also available. The PDx bus is in the standard or bi-directional mode when no EPP read, write, or  
address cycle is currently being executed. In this condition all output signals are set by the SPP  
Control Port, and the direction is controlled by DIR of the Control Port.  
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 mS  
have elapsed from the start of the EPP cycle to the time WAIT# is deasserted. The current EPP  
cycle is aborted when a time-out occurs. The time-out condition is indicated in Status bit 0.  
5.2.8.1 EPP Operation  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
5.2.8.2 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If the nWait is active low, when the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or  
write cycle (nWrite active low, nDStrb/nAStrb active low) starts, the read/write cycle proceeds  
normally and will be completed when nWait goes inactive high.  
b. If nWait is inactive high, the read/write cycle will not start. It must wait until nWait changes to  
active low, at which time it will start as described above.  
5.2.8.3 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it will not terminate until nWait changes from active low to inactive  
high.  
Publication Release Date: March 1999  
-68 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
5.3 Extended Capabilities Parallel (ECP) Port  
This port is software and hardware compatible with existing parallel ports, so it may be used as a  
standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel  
that supports DMA for ECP in both the forward (host to peripheral) and reverse (peripheral to host)  
directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for  
the standard parallel port to improve compatibility mode transfer speed.  
The ECP port supports run-length-encoded (RLE) decompression (required) in hardware.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. Hardware support for compression is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and  
ISA Interface Standard.  
5.3.1 ECP Register and Mode Definitions  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
FUNCTION  
Data Register  
000-001  
011  
All  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
010  
011  
110  
111  
111  
All  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
ecpDFifo  
tFifo  
cnfgA  
cnfgB  
ecr  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
Note: The base addresses are specified by CR60 and 61, which are determined by configuration register or hardware setting.  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CRF0 to select ECP/EPP mode)  
Reserved  
Test mode  
Configuration mode  
Note: The mode selection bits are bit 7-5 of the Extended Control Register.  
Publication Release Date: March 1999  
Revision A1  
-69 -  
W83977EF/ CTF  
PRELIMINARY  
5.3.2 Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input. The contents of this register are output to the PD0-PD7 ports. During a read operation,  
ports PD0-PD7 are read and output to the host. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this  
register is defined only for the forward direction. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
Address or RLE  
Address/RLE  
5.3.3 Device Status Register (DSR)  
These bits are at low level during a read of the Printer Status Register. The bits of this status register  
are defined as follows:  
7
6
5
4
3
2
1
0
1
1
1
nFault  
Select  
PError  
nAck  
nBusy  
Publication Release Date: March 1999  
Revision A1  
-70 -  
W83977EF/ CTF  
PRELIMINARY  
Bit 7: This bit reflects the complement of the Busy input.  
Bit 6: This bit reflects the nAck input.  
Bit 5: This bit reflects the PError input.  
Bit 4: This bit reflects the Select input.  
Bit 3: This bit reflects the nFault input.  
Bit 2-0: These three bits are not implemented and are always logic one during a read.  
5.3.4 Device Control Register (DCR)  
The bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
strobe  
autofd  
nInit  
SelectIn  
ackIntEn  
Direction  
Bit 6, 7: These two bits are logic one during a read and cannot be written.  
Bit 5: This bit has no effect and the direction is always out if mode = 000 or mode = 010. Direction is  
valid in all other modes.  
0
1
the parallel port is in output mode.  
the parallel port is in input mode.  
Bit 4: Interrupt request enable. When this bit is set to a high level, it may be used to enable interrupt  
requests from the parallel port to the CPU due to a low to high transition on the ACK# input.  
Bit 3: This bit is inverted and output to the SLIN# output.  
0
1
The printer is not selected.  
The printer is selected.  
Bit 2: This bit is output to the INIT# output.  
Bit 1: This bit is inverted and output to the AFD# output.  
Bit 0: This bit is inverted and output to the STB# output.  
Publication Release Date: March 1999  
Revision A1  
-71 -  
W83977EF/ CTF  
PRELIMINARY  
5.3.5 cFifo (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. The standard parallel port protocol is used by a  
hardware handshake to the peripheral to transmit bytes written or DMAed from the system to this  
FIFO. Transfers to the FIFO are byte aligned.  
5.3.6 ecpDFifo (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed from the system to this FIFO are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are  
byte aligned.  
When the direction bit is 1, data bytes from the peripheral are read under automatic hardware  
handshake from ECP into this FIFO. Reads or DMAs from the FIFO will return bytes of ECP data to  
the system.  
5.3.7 tFifo (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data  
in the tFIFO will not be transmitted to the parallel port lines. However, data in the tFIFO may be  
displayed on the parallel port data lines.  
5.3.8 cnfgA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates to the system that  
this is an 8-bit implementation.  
5.3.9 cnfgB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
7
6
5
4
3
2
1
1
0
1
1
IRQx 0  
IRQx 1  
IRQx 2  
intrValue  
compress  
Bit 7: This bit is read-only. It is at low level during a read. This means that this chip does not support  
hardware RLE compression.  
Bit 6: Returns the value on the ISA IRQ line to determine possible conflicts.  
Publication Release Date: March 1999  
-72 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 5-3: Reflect the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
000  
IRQ resource  
reflect other IRQ resources selected by PnP register (default)  
001  
IRQ7  
010  
IRQ9  
011  
100  
101  
110  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
111  
Bit 2-0: These five bits are at high level during a read and can be written.  
5.3.10 ecr (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
7
6
5
4
3
2
1
0
empty  
full  
service Intr  
dmaEn  
nErrIntrEn  
MODE  
MODE  
MODE  
Bit 7-5: These bits are read/write and select the mode.  
000  
001  
Standard Parallel Port mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as 000 except that direction may be  
used to tri-state the data lines, and reading the data register returns the value on  
the data lines and not the value in the data register.  
010  
011  
Parallel Port FIFO mode. This is the same as 000 except that bytes are written or  
DMAed to the FIFO. FIFO data are automatically transmitted using the standard  
parallel port protocol. This mode is useful only when direction is 0.  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed  
into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and  
auto transmitted to the peripheral using ECP Protocol. When the direction is 1  
(reverse direction), bytes are moved from the ECP parallel port and packed into  
bytes in the ecpDFifo.  
100  
101  
110  
Selects EPP Mode. In this mode, EPP is activated if the EPP mode is selected.  
Reserved.  
Test Mode. The FIFO may be written and read in this mode, but the data will not be  
transmitted on the parallel port.  
Publication Release Date: March 1999  
-73 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
111  
Configuration Mode. The confgA and confgB registers are accessible at 0x400 and  
0x401 in this mode.  
Bit 4: Read/Write (Valid only in ECP Mode)  
1
0
Disables the interrupt generated on the asserting edge of nFault.  
Enables an interrupt pulse on the high to low edge of nFault. If nFault is asserted  
(interrupt) an interrupt will be generated and this bit is written from a 1 to 0.  
Bit 3: Read/Write  
1
Enables DMA.  
0
Disables DMA unconditionally.  
Bit 2: Read/Write  
1
0
Disables DMA and all of the service interrupts.  
Enables one of the following cases of interrupts. When one of the service interrupts  
has occurred, the serviceIntr bit is set to a 1 by hardware. This bit must be reset to  
0 to re-enable the interrupts. Writing a 1 to this bit will not cause an interrupt.  
(a) dmaEn = 1: During DMA this bit is set to a 1 when terminal count is reached.  
(b) dmaEn = 0 direction = 0: This bit is set to 1 whenever there are writeIntr  
Threshold or more bytes free in the FIFO.  
(c) dmaEn = 0 direction = 1: This bit is set to 1 whenever there are readIntr  
Threshold or more valid bytes to be read from the FIFO.  
Bit 1: Read only  
0
The FIFO has at least 1 free byte.  
1
The FIFO cannot accept another byte or the FIFO is completely full.  
Bit 0: Read only  
0
1
The FIFO contains at least 1 byte of data.  
The FIFO is completely empty.  
5.3.11 Bit Map of ECP Port Registers  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
data  
Addr/RLE  
nBusy  
1
Address or RLE field  
2
1
1
2
2
2
ecpAFifo  
dsr  
nAck  
1
PError  
Select  
nFault  
1
1
1
Directio  
ackIntEn  
SelectIn  
nInit  
autofd  
strobe  
dcr  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
cFifo  
ecpDFifo  
tFifo  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
cnfgA  
cnfgB  
ecr  
compress  
intrValue  
MODE  
nErrIntrEn  
dmaEn  
serviceIntr  
full  
empty  
Notes:  
1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
Publication Release Date: March 1999  
Revision A1  
-74 -  
W83977EF/ CTF  
PRELIMINARY  
5.3.12 ECP Pin Descriptions  
NAME  
TYPE DESCRIPTION  
nStrobe (HostClk)  
O
The nStrobe registers data or address into the slave on the  
asserting edge during write operations. This signal handshakes  
with Busy.  
PD<7:0>  
I/O  
I
These signals contain address or data or RLE data.  
nAck (PeriphClk)  
This signal indicates valid data driven by the peripheral when  
asserted. This signal handshakes with nAutoFd in reverse.  
Busy (PeriphAck)  
I
This signal deasserts to indicate that the peripheral can accept  
data. It indicates whether the data lines contain ECP command  
information or data in the reverse direction. When in reverse  
direction, normal data are transferred when Busy (PeriphAck)  
is high and an 8-bit command is transferred when it is low.  
PError (nAckReverse)  
I
This signal is used to acknowledge a change in the direction of  
the transfer (asserted = forward). The peripheral drives this  
signal low to acknowledge nReverseRequest. The host relies  
upon nAckReverse to determine when it is permitted to drive  
the data bus.  
Select (Xflag)  
I
Indicates printer on line.  
nAutoFd (HostAck)  
O
Requests a byte of data from the peripheral when it is asserted.  
This signal indicates whether the data lines contain ECP  
address or data in the forward direction. When in forward  
direction, normal data are transferred when nAutoFd (HostAck)  
is high and an 8-bit command is transferred when it is low.  
nFault (nPeriphRequest)  
I
Generates an error interrupt when it is asserted. This signal is  
valid only in the forward direction. The peripheral is permitted  
(but not required) to drive this pin low to request a reverse  
transfer during ECP Mode.  
nInit (nReverseRequest)  
nSelectIn (ECPMode)  
O
O
This signal sets the transfer direction (asserted = reverse,  
deasserted = forward). This pin is driven low to place the  
channel in the reverse direction.  
This signal is always deasserted in ECP mode.  
Publication Release Date: March 1999  
-75 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
5.3.13 ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits. The  
following are required:  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
5.3.13.1 Mode Switching  
Software will execute P1284 negotiation and all operations prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001  
it can only be switched into mode 000 or 001. The direction can be changed only in mode 001.  
When in extended forward mode, the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In ECP reverse mode the software waits for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
5.3.13.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction,  
normal data are transferred when HostAck is high and an 8-bit command is transferred when HostAck  
is low. The most significant bits of the command indicate whether it is a run-length count (for  
compression) or a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
5.3.13.3 Data Compression  
The W83977EF/CTF supports run length encoded (RLE) decompression in hardware and can transfer  
compressed data to a peripheral. Note that the odd (RLE) compression in hardware is not supported.  
In order to transfer data in ECP mode, the compression count is written to the ecpAFifo and the data  
byte is written to the ecpDFifo.  
5.3.14 FIFO Operation  
The FIFO threshold is set in configuration register 5. All data transfers to or from the parallel port can  
proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO  
is disabled.  
Publication Release Date: March 1999  
-76 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
5.3.15 DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. The DMA uses the standard PC  
DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
will empty or fill the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated and serviceIntr is asserted, which will disable the  
DMA.  
5.3.16 Programmed I/O (NON-DMA) Mode  
The ECP or parallel port FIFOs can also be operated using interrupt driven programmed I/O.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo  
located at 400H, or to/from the tFifo at 400H. The host must set the direction, state, dmaEn = 0 and  
serviceIntr = 0 in the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O will empty or fill the FIFO using the appropriate direction and mode.  
5.4  
Extension FDD Mode (EXTFDD)  
In this mode, the W83977EF/CTF changes the printer interface pins to FDC input/output pins,  
allowing the user to install a second floppy disk drive (FDD B) through the DB-25 printer connector.  
The pin assignments for the FDC input/output pins are shown in Table 5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOB# and DSB# will be forced to inactive state.  
(2) PinsDSKCHG#, RDATA#, WP#, TRAK0#, INDEX# will be logically ORed with pins PD4-PD0 to  
serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXTFDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
5.5  
Extension 2FDD Mode (EXT2FDD)  
In this mode, the W83977EF/CTF changes the printer interface pins to FDC input/output pins,  
allowing the user to install two external floppy disk drives through the DB-25 printer connector to  
replace internal floppy disk drives A and B. The pin assignments for the FDC input/output pins are  
shown in Table5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOA#, DSA#, MOB#, and DSB# will be forced to inactive state.  
(2) Pins DSKCHG#, RDATA#, WP#, TRAK0#, and INDEX# will be logically ORed with pins PD4-PD0  
to serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXT2FDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
Publication Release Date: March 1999  
-77 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
6. KEYBOARD CONTROLLER  
The KBC (8042 with licensed KB BIOS) circuit of W83977EF/CTF is designed to provide the  
functions needed to interface a CPU with a keyboard and/or a PS/2 mouse, and can be used with IBM  
Ò-  
compatible personal computers or PS/2-based systems. The controller receives serial data from  
the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a  
byte of data in its output buffer. The controller will then assert an interrupt to the system when data  
are placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data  
transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an acknowledge  
is received for the previous data byte.  
P24  
P25  
P21  
P20  
KIRQ  
MIRQ  
GATEA20  
KBRST  
KINH  
P17  
KDAT  
KCLK  
P27  
P10  
P26  
8042  
T0  
GP I/O PINS  
Multiplex I/O PINS  
MCLK  
MDAT  
P23  
T1  
P12~P16  
P22  
P11  
Keyboard and Mouse Interface  
6.1 Output Buffer  
The output buffer is an 8-bit read-only register at I/O address 60H (Default, PnP programmable I/O  
address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan  
code received from the keyboard and data bytes required by commands to the system. The output  
buffer can only be read when the output buffer full bit in the register is "1".  
6.2 Input Buffer  
The input buffer is an 8-bit write-only register at I/O address 60H or 64H (Default, PnP programmable  
I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60H sets a flag  
to indicate a data write; writing to address 64H sets a flag to indicate a command write. Data written  
to I/O address 60H is sent to keyboard (unless the keyboard controller is expecting a data byte)  
through the controller's input buffer only if the input buffer full bit in the status register is "0".  
”.  
Publication Release Date: March 1999  
-78 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
6.3 Status Register  
The status register is an 8-bit read-only register at I/O address 64H (Default, PnP programmable I/O  
address LD5-CR62 and LD5-CR63), that holds information about the status of the keyboard controller  
and interface. It may be read at any time.  
BIT  
BIT FUNCTION  
DESCRIPTION  
0: Output buffer empty  
0
Output Buffer Full  
1: Output buffer full  
1
2
Input Buffer Full  
System Flag  
0: Input buffer empty  
1: Input buffer full  
This bit may be set to 0 or 1 by writing to the system flag  
bit in the command byte of the keyboard controller. It  
defaults to 0 after a power-on reset.  
3
4
5
6
7
Command/Data  
Inhibit Switch  
0: Data byte  
1: Command byte  
0: Keyboard is inhibited  
1: Keyboard is not inhibited  
Auxiliary Device Output 0: Auxiliary device output buffer empty  
Buffer  
1: Auxiliary device output buffer full  
General Purpose Time-  
out  
0: No time-out error  
1: Time-out error  
Parity Error  
0: Odd parity  
1: Even parity (error)  
Publication Release Date: March 1999  
Revision A1  
-79 -  
W83977EF/ CTF  
PRELIMINARY  
6.4 Commands  
COMMAND  
20h  
FUNCTION  
Read Command Byte of Keyboard Controller  
Write Command Byte of Keyboard Controller  
60h  
BIT  
BIT DEFINITION  
7
6
Reserved  
IBM Keyboard Translate Mode  
Disable Auxiliary Device  
5
4
3
2
1
Disable Keyboard  
Reserve  
System Flag  
Enable Auxiliary Interrupt  
Enable Keyboard Interrupt  
0
A4h  
Test Password  
Returns 0Fah if Password is loaded  
Returns 0F1h if Password is not loaded  
Load Password  
Load Password until a "0" is received from the system  
Enable Password  
A5h  
A6h  
Enable the checking of keystrokes for a match with the password  
Disable Auxiliary Device Interface  
A7h  
A8h  
A9h  
Enable Auxiliary Device Interface  
Interface Test  
BIT  
BIT DEFINITION  
No Error Detected  
00  
01  
Auxiliary Device "Clock" line is stuck low  
Auxiliary Device "Clock" line is stuck high  
Auxiliary Device "Data" line is stuck low  
02  
03  
04  
Auxiliary Device "Data" line is stuck low  
AAh  
Self-test  
Returns 055h if self test succeeds  
Publication Release Date: March 1999  
Revision A1  
-80 -  
W83977EF/ CTF  
PRELIMINARY  
6.4 Commands, continued  
COMMAND  
FUNCTION  
ABh  
Interface Test  
BIT DEFINITION  
No Error Detected  
BIT  
00  
01  
Keyboard "Clock" line is stuck low  
02  
03  
04  
Keyboard "Clock" line is stuck high  
Keyboard "Data" line is stuck low  
Keyboard "Data" line is stuck high  
ADh  
AEh  
C0h  
C1h  
C2h  
D0h  
D1h  
D2h  
D3h  
D4h  
E0h  
FXh  
Disable Keyboard Interface  
Enable Keyboard Interface  
Read Input Port(P1) and send data to the system  
Continuously puts the lower four bits of Port1 into STATUS register  
Continuously puts the upper four bits of Port1 into STATUS register  
Send Port2 value to the system  
Only set/reset GateA20 line based on the system data bit 1  
Send data back to the system as if it came from Keyboard  
Send data back to the system as if it came from Auxiliary Device  
Output next received byte of data from system to Auxiliary Device  
Reports the status of the test inputs  
Pulse only RC(the reset line) low for 6mS if Command byte is even  
6.5 Hardware GATEA20/Keyboard Reset Control Logic  
The KBC implements a hardware control logic to speed-up GATEA20 and KBRESET. This control  
logic is controlled by LD5-CRF0 as follows:  
Publication Release Date: March 1999  
-81 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
6.5.1 KB Control Register (Logic Device 5, CR-F0)  
BIT  
7
6
5
4
3
2
1
0
KCLKS1 KCLKS0 Reserved Reserved Reserved P92EN  
HGA20 HKBRST  
NAME  
KCLKS1, KCLKS0  
This 2 bits are for the KBC clock rate selection.  
= 0 0  
= 0 1  
= 1 0  
= 1 1  
KBC clock input is 6 Mhz  
KBC clock input is 8 Mhz  
KBC clock input is 12 Mhz  
KBC clock input is 16 Mhz  
P92EN (Port 92 Enable)  
A "1" on this bit enables Port 92 to control GATEA20 and KBRESET.  
A "0" on this bit disables Port 92 functions.  
HGA20 (Hardware GATE A20)  
A "1" on this bit selects hardware GATEA20 control logic to control GATE A20 signal.  
A "0" on this bit disables hardware GATEA20 control logic function.  
HKBRST (Hardware Keyboard Reset)  
A "1" on this bit selects hardware KB RESET control logic to control KBRESET signal.  
A "0" on this bit disables hardware KB RESET control logic function.  
When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears  
GATE A20 according to the received data bit 1. Similarly, the hardware control logic sets or clears  
KBRESET depending on the received data bit 0. When the KBC receives a "FE" command, the  
KBRESET is pulse low for 6mS(Min.) with 14mS(Min.) delay.  
GATEA20 and KBRESET are controlled by either the software control or the hardware control logic  
and they are mutually exclusive. Then, GATEA20 and KBRESET are merged along with Port92  
when P92EN bit is set.  
6.5.2 Port 92 Control Register (Default Value = 0x24)  
BIT  
7
6
5
4
3
2
1
0
NAME  
Res. (0) Res. (0) Res. (1) Res. (0)  
Res. (0) Res. (1)  
SGA20 PLKBRST  
SGA20 (Special GATE A20 Control)  
A "1" on this bit drives GATE A20 signal to high.  
A "0" on this bit drives GATE A20 signal to low.  
PLKBRST (Pull-Low KBRESET)  
A "1" on this bit causes KBRESET to drive low for 6mS(Min.) with 14mS(Min.) delay. Before issuing  
another keyboard reset command, the bit must be cleared.  
Publication Release Date: March 1999  
-82 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
6.6  
OnNow / Security Keyboard and Mouse Wake-Up  
---- Programmable Keyboard / Mouse Wake-Up Functions  
Winbond's unique programmable keyboard/ mouse Wake-Up functions provide the system with  
diversified methods for either OnNow Wake-Up application, or security control application. The  
keyboard or mouse can Wake-Up the system by producing a panel switch low pulse on PANSWOT#  
pin, and connect it to chipset (for example IntelTM chipset TX, LX PIIX4) panel switch input. The  
Wake-Up conditions can be programmed as pre-determined or any keys/buttons. To implement this  
function, a 32.768KHz crystal must be installed between XTAL1 and XTAL2, or a 32.768KHz clock to  
be connected to XTAL1 and leave XTAL2 open. The VSB pin must be connected to +5V VSB of ATX  
power supply, and an external battery should be installed on VBAT pin to store the data (the  
passwords and Wake-Up status which had been set already) when power fails.  
6.6.1 Keyboard Wake-Up Function  
The keyboard Wake-Up function is enabled by setting LD-0A CR-E0 bit 6. The pre-determined keys  
data are stored in registers, and they can be accessed by an indirect method. First, write their index  
address to LD-0A CR-E1, then access them by reading/writing LD-0A CR-E2. A zero data is written  
to the register means the comparison of this register will be ignored. The pre-programmed keys may  
be 1 to 5 keys with various combinations. If LD-0A CR-E0 bit 0 is set, the system will be woken up  
after any key is struck.  
6.6.2 Keyboard Password Wake-Up Function  
To implement this function, the bit 7 of LD-0A CR-E0 must be set, and panel switch input is  
connected to PANSWIN# pin. Thus PANSWIN# is blocked to PANSWOUT#, by setting LD-0A CR-  
E0 properly so that only the keyboard can Wake-Up the system with preset keys (password).  
6.6.3 Mouse Wake-Up Function  
The mouse Wake-Up function is activated by setting bit 5 of LD-0A CR-E0. If bit 1 of LD-0A CR-E0 is  
set, any movement or button clicking will make up the system. Otherwise, the mouse can Wake-Up  
the system only by clicking its button twice successively with the mouse unmoved. The bit 4 of LD-  
0A CR-E0 determines which button (left or right) is to perform Wake-Up function.  
Publication Release Date: March 1999  
-83 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
7.0 GENERAL PURPOSE I/O  
W83977EF/CTF provides 14 Input/Output ports that can be individually configured to perform a  
simple basic I/O function or a pre-defined alternate function. These 14 GP I/O ports are divided into  
three groups, the first group contains 8 ports, and the second group contains only 6 ports. Each port  
in the first group corresponds to a configuration register in logical device 7, and those in the second  
group to one in logical device 8. Users can select the I/O ports' functions by independently  
programming these configuration registers. Figures 7.1, 7.2, and 7.3 respectively show the GP I/O  
port structure of logical device 7 and 8. Right after Power-on reset, these ports default to perform  
basic I/O functions.  
Figure 7.1  
Publication Release Date: March 1999  
-84 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Figure 7.2  
Figure 7.3  
Publication Release Date: March 1999  
Revision A1  
-85 -  
W83977EF/ CTF  
PRELIMINARY  
7.1  
Basic I/O functions  
The Basic I/O functions of W83977EF/CTF provide several I/O operations including driving a logic  
value to output port, latching a logic value from input port, inverting the input/output logic value, and  
steering Common Interrupt (only available in the second group of GP I/O ports). Common Interrupt is  
the ORed function of all interrupt channels in the second group of GP I/O ports, and it also connects  
to a 1ms debounce filter which can reject a noise of 1 ms pulse width or less. There are two 8-bit  
registers (GP1 and GP2) which are directly connected to these GP I/O ports. Each GP I/O port is  
represented as a bit in one of three 8-bit registers. Only 6 bits of GP2 are implemented. Table 7.1.1  
shows their combinations of Basic I/O functions, and Table 7.1.2 shows the register bit assignments  
of GP1 and GP2.  
Table 7.1.1  
I/O BIT  
ENABLE INT BIT  
POLARITY BIT  
BASIC I/O OPERATIONS  
0 = OUTPUT  
0 = DISABLE  
0 = NON INVERT  
1 = INPUT  
1 = ENABLE  
1 = INVERT  
0
0
0
0
0
1
0
1
0
Basic non-inverting output  
Basic inverting output  
Non-inverted output bit value of GP2  
drive to Common Interrupt  
0
1
1
Inverted output bit value of GP2 drive  
to Common Interrupt  
1
1
1
0
0
1
0
1
0
Basic non-inverting input  
Basic inverting input  
Non-inverted input drive to Common  
Interrupt  
1
1
1
Inverted input drive to Common  
Interrupt  
Publication Release Date: March 1999  
Revision A1  
-86 -  
W83977EF/ CTF  
PRELIMINARY  
Table 7.1.2  
GP I/O PORT ACCESSED  
REGISTER  
REGISTER BIT  
ASSIGNMENT  
GP I/O PORT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
GP1  
GP2  
Publication Release Date: March 1999  
Revision A1  
-87 -  
W83977EF/ CTF  
PRELIMINARY  
7.2  
Alternate I/O Functions  
W83977EF/CTF provides several alternate functions which are divided among the GP I/O ports.  
Table 7.2.1 shows their assignments. Polarity bit can also be set to alter their polarity.  
Table 7.2.1  
GP I/O PORT  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
ALTERNATE FUNCTION  
Interrupt Steering  
Interrupt Steering  
Watch Dog Timer Output/IRRX input  
Power LED output/IRTX output  
General Purpose Address Decoder/Keyboard Inhibit(P17)  
General Purpose Write Strobe/ 8042 P12  
Watch Dog Timer Output  
Power LED output  
Keyboard Reset (8042 P20)  
8042 P13  
8042 P14  
8042 P15  
8042 P16  
GATE A20 (8042 P21)  
7.2.1 Interrupt Steering  
GP10, and GP11can be programmed to map their own interrupt channels. The selection of IRQ  
channel can be performed in configuration registers CR70 and CR72 of logical device 7 and logical  
device 9. Each interrupt channel also has its own 1 ms debounce filter that is used to reject any noise  
whose width is equal to or less than 1 ms.  
Publication Release Date: March 1999  
-88 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
7.2.2 Watch Dog Timer Output  
Watch Dog Timer contains a one second/minute resolution down counter, CRF2 of Logical Device 8,  
and two Watch-Dog control registers, WDT_CTRL0 and WDT_CTRL1 of Logical Device 8. The down  
counter can be programmed within the range from 1 to 255 seconds/minutes. Writing any new non-  
zero value to CRF2 or reset signal coming from a Mouse interrupt or Keyboard interrupt (CRF2 also  
contains non-zero value) will cause the Watch Dog Timer to reload and start to count down from the  
new value. As the counter reaches zero, (1) Watch Dog Timer time-out occurs and the bit 0 of  
WDT_CTRL1 will be set to logic 1; (2) Watch Dog interrupt output is asserted if the interrupt is  
enabled in CR72 of logical device 8; and (3) Power LED starts to toggle output if the bit 3 of  
WDT_CTRL0 is enabled. WDT_CTRL1 also can be accessed through GP2 I/O base address + 1.  
7.2.3 Power LED  
The Power LED function provides 1~1/8 Hertz rate toggle pulse output with 50 percent duty cycle.  
Table 7.2.2 shows how to enable Power LED.  
Table 7.2.2  
WDT_CTRL1 BIT[1]  
WDT_CTRL0 BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
1
Continuous high or low *  
Continuous high or low *  
Toggle pulse  
* Note: Continuous high or low depends on the polarity bit of GP13 or GP17 configuration registers.  
7.2.4 General Purpose Address Decoder  
General Purpose Address Decoder provides two address decode as AEN equal to logic 0. The  
address base is stored at CR62, CR63, CR64, and CR65 of logical device 7 for GP14 and GP15. The  
decoding range can be programmed to 1~8 byte boundary. The decoding output is normally active  
low. Users can alter its polarity through the polarity bit of the GP14 and GP15 configuration register.  
Publication Release Date: March 1999  
-89 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
8.0  
PLUG AND PLAY CONFIGURATION  
The W83977EF/CTF uses Compatible PNP protocol to access configuration registers for setting up  
different types of configurations. In W83977EF/CTF, there are nine Logical Devices (from Logical  
Device 0 to Logical Device A, with the exception of logical device 4 and 6 for compatibility) which  
correspond to nine individual functions: FDC (logical device 0), PRT (logical device 1), UART1  
(logical device 2), UART2 (logical device 3), KBC (logical device 5), CIR (logical device 6)(For  
W83977CTF only), GPIO1 (logical device 7), GPIO2 (logical device 8), and ACPI ((logical device A).  
Each Logical Device has its own configuration registers (above CR30). Host can access these  
registers by writing an appropriate logical device number into logical device select register at CR7.  
8.1  
Compatible PnP  
8.1.1 Extended Function Registers  
In Compatible PnP, there are two ways to enter Extended Function and read or write the configuration  
registers. HEFRAS (CR26 bit 6) can be used to select one out of these two methods of entering the  
Extended Function mode as follows:  
HEFRAS  
address and value  
write 87h to the location 3F0h twice  
write 87h to the location 370h twice  
0
1
Publication Release Date: March 1999  
Revision A1  
-90 -  
W83977EF/ CTF  
PRELIMINARY  
After Power-on reset, the value on RTSA (pin 43) is latched by HEFRAS of CR26. In Compatible  
PnP, a specific value (87h) must be written twice to the Extended Functions Enable Register (I/O port  
address 3F0h or 370h). Secondly, an index value (02h, 07h-FFh) must be written to the Extended  
Functions Index Register (I/O port address 3F0h or 370h, the same as the Extended Functions  
Enable Register) to identify which configuration register is to be accessed. The designer can then  
access the desired configuration register through the Extended Functions Data Register (I/O port  
address 3F1h or 371h).  
After programming of the configuration register is finished, an additional value (AAh) should be  
written to EFERs to exit the Extended Function mode, to prevent unintentional access to these  
configuration registers. The designer can also set bit 5 of CR26 (LOCKREG) to high to protect the  
configuration registers against accidental accesses.  
The configuration registers can be reset to their default or hardware settings only by a cold reset (pin  
MR = 1). A warm reset will not affect the configuration registers.  
8.1.2 Extended Functions Enable Registers (EFERs)  
After a power-on reset, the W83977EF/CTF enters the default operating mode. Before the  
W83977EF/CTF enters the extended function mode, a specific value must be programmed into the  
Extended Function Enable Register (EFER) so that the extended function register can be accessed.  
The Extended Function Enable Registers are write-only registers. On a PC/AT system, their port  
addresses are 3F0h or 370h (as described in previous section).  
8.1.3 Extended Function Index Registers (EFIRs), Extended Function Data  
Registers(EFDRs)  
After the extended function mode is entered, the Extended Function Index Register (EFIR) must be  
loaded with an index value (02h, 07h-FEh) to access Configuration Register 0 (CR0), Configuration  
Register 7 (CR07) to Configuration Register FE (CRFE), and so forth through the Extended Function  
Data Register (EFDR). The EFIRs are write-only registers with port address 3F0h or 370h (as  
described in section 8.1.1) on PC/AT systems; the EFDRs are read/write registers with port address  
3F1h or 371h (as described in section 8.1.1) on PC/AT systems.  
8.2 Configuration Sequence  
To program W83977ATF configuration registers, the following configuration sequence must be  
followed:  
(1). Enter the extended function mode  
(2). Configure the configuration registers  
(3). Exit the extended function mode  
8.2.1 Enter the extended function mode  
To place the chip into the extended function mode, two successive writes of 0x87 must be applied to  
Extended Function Enable Registers (EFERs, i.e. 3F0h or 370h).  
Publication Release Date: March 1999  
-91 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
8.2.2 Configurate the configuration registers  
The chip selects the logical device and activates the desired logical devices through Extended  
Function Index Register (EFIR) and Extended Function Data Register (EFDR). EFIR is located at the  
same address as EFER, and EFDR is located at address (EFIR+1).  
First, write the Logical Device Number (i.e., 0x07) to the EFIR, and then write the number of the  
desired logical device to the EFDR. If accessing the Chip(Global) Control Registers, this step is not  
required.  
Secondly, write the address of the desired configuration register within the logical device to the EFIR  
and then write (or read) the desired configuration register through EFDR.  
8.2.3 Exit the extended function mode  
To exit the extended function mode, one write of 0xAA to EFER is required. Once the chip exits the  
extended function mode, it is in the normal running mode, and is ready to enter the configuration  
mode.  
8.2.4 Software programming example  
The following example is written in Intel 8086 assembly language. It assumes that the EFER is  
located at 3F0h, so EFIR is located at 3F0h and EFDR is located at 3F1h. If HEFRAS (CR26 bit 6) is  
set, 3F0h can be directly replaced by 370h and 3F1h replaced by 371h.  
;-----------------------------------------------------------------------------------  
; Enter the extended function mode ,interruptible double-write  
;-----------------------------------------------------------------------------------  
MOV DX,3F0H  
|
MOV AL,87H  
OUT DX,AL  
OUT DX,AL  
;-----------------------------------------------------------------------------  
; Configurate logical device 1, configuration register CRF0 |  
;-----------------------------------------------------------------------------  
MOV DX,3F0H  
MOV AL,07H  
OUT DX,AL  
MOV DX,3F1H  
MOV AL,01H  
OUT DX,AL  
;
; point to Logical Device Number Reg.  
; select logical device 1  
MOV DX,3F0H  
MOV AL,F0H  
OUT DX,AL  
MOV DX,3F1H  
MOV AL,3CH  
OUT DX,AL  
; select CRF0  
; update CRF0 with value 3CH  
;------------------------------------------  
; Exit extended function mode  
;------------------------------------------  
MOV DX,3F0H  
|
MOV AL,AAH  
OUT DX,AL  
Publication Release Date: March 1999  
Revision A1  
-92 -  
W83977EF/ CTF  
PRELIMINARY  
9.0  
ACPI REGISTERS FEATURES  
W83977EF/CTF supports both ACPI and legacy power managements. The switch logic of the power  
management block generates an SMI# interrupt in the legacy mode and an SCI# interrupt in the ACPI  
mode. The new ACPI feature routes SMI#/SCI# logic output either to SMI# or toSCI#. The SMI#/SCI#  
logic routes to SMI# only when both SCI_EN = 0 and SMISCI_OE = 1. Similarly, the SMI#/SCI# logic  
routes to SCI# only when both SCI_EN = 1 and SMISCI_OE = 1.  
SCI_EN  
SMISCI_OE  
IRQ events  
Logic  
SCI#  
SMI# /  
SMI#  
SCI#  
0
1
SMISCI_OE  
Device Idle  
Timers  
WAK_STS  
Clock  
Control  
IRQs  
Sleep/Wake  
State machine  
Device Trap  
Global STBY  
Timer  
Publication Release Date: March 1999  
Revision A1  
-93 -  
W83977EF/ CTF  
PRELIMINARY  
10.0 CONFIGURATION REGISTER  
10.1 Chip (Global) Control Register  
CR02 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: SWRST --> Soft Reset.  
CR07  
Bit 7 - 0: LDNB7 - LDNB0 --> Logical Device Number Bit 7 - 0  
CR20  
Bit 7 - 0: DEVIDB7 - DEBIDB0 --> Device ID Bit 7 - Bit 0 = 0x52 (read only).  
CR21  
Bit 7 - 0: DEVREVB7 - DEBREVB0 --> Device Rev Bit 7-  
Bit 0 = 0x7x (read only for W83977CTF).  
0xFx (read only for W83977EF).  
CR22 (Default 0xff)  
Bit 7 - 6: Reserved.  
Bit 5: URBPWD  
= 0 Power down  
= 1 No Power down  
Bit 4: URAPWD  
= 0 Power down  
= 1 No Power down  
Bit 3: PRTPWD  
= 0 Power down  
= 1 No Power down  
Bit 2, 1: Reserved.  
Bit 0: FDCPWD  
= 0 Power down  
= 1 No Power down  
CR23 (Default 0xFE)  
Bit 7 - 1: Reserved.  
Bit 0: IPD (Immediate Power Down). When set to 1, it will put the whole chip into power down  
mode immediately.  
Publication Release Date: March 1999  
-94 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CR24 (Default 0b1s000s0s)  
Bit 7: EN16SA  
= 0 12 bit Address Qualification  
= 1 16 bit Address Qualification  
Bit 6: EN48  
= 0 The clock input on Pin 1 should be 24 Mhz.  
= 1 The clock input on Pin 1 should be 48 Mhz.  
The corresponding power-on setting pin is SOUTB (pin 53).  
Bit 5 - 3: Reserved.  
Bit 2: ENKBC  
= 0 KBC is disabled after hardware reset.  
= 1 KBC is enabled after hardware reset.  
This bit is read only, and set/reset by power-on setting pin. The corresponding power-on  
setting pin is SOUTA (pin 46).  
Bit 1: Reserved  
Bit 0: PNPCSV#  
= 0 The Compatible PnP address select registers have default values.  
= 1 The Compatible PnP address select registers have no default value.  
When trying to make a change to this bit, the new value of PNPCSV# must be  
complementary to the old one to make an effective change. For example, the user must set  
PNPCSV# to 0 first and then reset it to 1 to reset these PnP registers if the present value of  
PNPCSV# is 1. The corresponding power-on setting pin is NDTRA (pin 44).  
CR25 (Default 0x00)  
Bit 7 - 6: Reserved  
Bit 5: URBTRI  
Bit 4: URATRI  
Bit 3: PRTTRI  
Bit 2 - 1 : Reserved  
Bit 0: FDCTRI.  
Publication Release Date: March 1999  
Revision A1  
-95 -  
W83977EF/ CTF  
PRELIMINARY  
CR26 (Default 0b0s000000)  
Bit 7: SEL4FDD  
= 0 Select two FDD mode.  
= 1 Select four FDD mode.  
Bit 6: HEFRAS  
These two bits define how to enable Configuration mode. The corresponding power-on  
setting pin is NRTSA (pin 43).  
HEFRAS Address and Value  
= 0 Write 87h to the location 3F0h twice.  
= 1 Write 87h to the location 370h twice.  
Bit 5: LOCKREG  
= 0 Enable R/W Configuration Registers.  
= 1 Disable R/W Configuration Registers.  
Bit 4: Reserved.  
Bit 3: DSFDLGRQ  
= 0 Enable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is effective  
on selecting IRQ  
= 1 Disable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is not  
effective on selecting IRQ  
Bit 2: DSPRLGRQ  
= 0 Enable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is effective on  
selecting IRQ  
= 1 Disable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is not effective  
on selecting IRQ  
Bit 1: DSUALGRQ  
= 0 Enable UART A legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART A legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
Bit 0: DSUBLGRQ  
= 0 Enable UART B legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART B legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
Publication Release Date: March 1999  
-96 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CR28 (Default 0x00)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Sharing selection.  
= 0  
= 1  
Disable IRQ Sharing  
Enable IRQ Sharing  
Bit 3:Reserved  
Bit 2 - 0: PRTMODS2 - PRTMODS0  
= 0xx Parallel Port Mode  
= 100 Reserved  
= 101 External FDC Mode  
= 110 Reserved  
= 111 External two FDC Mode  
CR2A (Default 0x00)  
Bit 7: PIN57S  
= 0 KBRST  
= 1 GP12  
Bit 6: PIN56S  
= 0 GA20  
= 1 GP11  
Bit 5 - 4: PIN40S1, PIN40S0  
= 00 CIRRX  
= 01 GP24  
= 10 8042 P13  
= 11 Reserved  
Bit 3 - 2: PIN39S1, PIN39S0  
= 00 SUSCIN#  
= 01 Reserved  
= 10 GP25  
= 11 Reserved  
Bit 1 - 0: PIN3S1, PIN3S0  
= 00 DRVDEN1  
= 01 GP10  
= 10 8042 P12  
= 11 SCI#  
Publication Release Date: March 1999  
Revision A1  
-97 -  
W83977EF/ CTF  
PRELIMINARY  
CR2B (Default 0x00)  
Bit 7 - 6: PIN73S1, PIN73S0  
= 00 PANSWIN#  
= 01 GP23  
= 10 Reserved  
= 11 Reserved  
Bit 5: PIN72S  
= 0 PANSWOUT#  
= 1 GP22  
Bit 4 - 3: PIN70S1, PIN70S0  
= 00 SMI#  
= 01 GP21  
= 10 8042 P16  
= 11 Reserved  
Bit 2 - 1: PIN69S1, PIN69S0  
= 00 PWRCTL#  
= 01 GP20  
= 10 Reserved  
= 11 Reserved  
Bit 0: PIN58S  
= 0 KBLOCK  
= 1 GP13  
CR2C (Default 0x00)  
Bit 7 - 6: PIN121S1, PIN121S0  
= 00 DRQ0  
= 01 GP17  
= 10 8042 P14  
= 11 SCI#  
Bit 5 - 4: PIN119S1, PIN119S0  
= 00 NDACK0  
= 01 GP16  
= 10 8042 P15  
= 11 Reserved  
Bit 3 - 2: PIN104S1, PIN104S0  
Publication Release Date: March 1999  
Revision A1  
-98 -  
W83977EF/ CTF  
PRELIMINARY  
= 00 IRQ15  
= 01 GP15  
= 10 WDTO  
= 11 Reserved  
Bit 1 - 0: PIN103S1, PIN103S0  
= 00 IRQ14  
= 01 GP14  
= 10 PLEDO  
= 11 Reserved  
CR2D (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2E (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2F (Default 0x00)  
Test Modes: Reserved for Winbond.  
Publication Release Date: March 1999  
Revision A1  
-99 -  
W83977EF/ CTF  
PRELIMINARY  
10.2  
Logical Device 0 (FDC)  
CR30 (Default 0x01 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xf0 if PNPCSV# = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select FDC I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x06 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for FDC.  
CR74 (Default 0x02 if PNPCSV# = 0 during POR, default 0x04 otherwise)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for FDC.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04 - 0x07 No DMA active  
CRF0 (Default 0x0E)  
FDD Mode Register  
Bit 7: FIPURDWN  
This bit controls the internal pull-up resistors of the FDC input pins RDATA, INDEX, TRAK0,  
DSKCHG, and WP.  
= 0 The internal pull-up resistors of FDC are turned on.(Default)  
= 1 The internal pull-up resistors of FDC are turned off.  
Bit 6: INTVERTZ  
This bit determines the polarity of all FDD interface signals.  
= 0 FDD interface signals are active low.  
= 1 FDD interface signals are active high.  
Bit 5: DRV2EN (PS2 mode only)  
When this bit is a logic 0, this indicates that a second drive is installed and is reflected in status  
register A.  
Bit 4: Swap Drive 0, 1 Mode  
= 0 No Swap (Default)  
= 1 Drive and Motor sel 0 and 1 are swapped.  
Publication Release Date: March 1999  
-100 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 3 - 2 Interface Mode  
= 11 AT Mode (Default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
Bit 1: FDC DMA Mode  
= 0 Burst Mode is enabled  
= 1 Non-Burst Mode (Default)  
Bit 0: Floppy Mode  
= 0 Normal Floppy Mode (Default)  
= 1 Enhanced 3-mode FDD  
CRF1 (Default 0x00)  
Bit 7 - 6: Boot Floppy  
= 00 FDD A  
= 01 FDD B  
= 10 FDD C  
= 11 FDD D  
Bit 5, 4: Media ID1, Media ID0. These bits will be reflected on FDC's Tape Drive Register bit 7, 6.  
Bit 3 - 2: Density Select  
= 00 Normal (Default)  
= 01 Normal  
= 10 1 ( Forced to logic 1)  
= 11 0 ( Forced to logic 0)  
Bit 1: DISFDDWR  
= 0 Enable FDD write.  
= 1 Disable FDD write(forces pins WE, WD stay high).  
Bit 0: SWWP  
= 0 Normal, use WP to determine whether the FDD is write protected or not.  
= 1 FDD is always write-protected.  
Publication Release Date: March 1999  
-101 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CRF2 (Default 0xFF)  
Bit 7 - 6: FDD D Drive Type  
Bit 5 - 4: FDD C Drive Type  
Bit 3 - 2: FDD B Drive Type  
Bit 1:0: FDD A Drive Type  
When FDD is in enhanced 3-mode(CRF0.bit0=1), these bits determine SELDEN value in TABLE  
A of CRF4 and CRF5 as follows.  
DTYPE1  
DPYTE0  
DRATE1  
DRATE0  
SELDEN  
0
0
0
0
0
1
1
0
0
0
0
1
0
1
1
0
0
1
X
X
0
1
0
1
0
X
X
1
1
1
0
0
0
1
0
Note: X means don't care.  
CRF4 (Default 0x00)  
FDD0 Selection:  
Bit 7: Reserved.  
Bit 6: Precomp. Disable.  
= 1 Disable FDC Precompensation.  
= 0 Enable FDC Precompensation.  
Bit 5: Reserved.  
Bit 4 - 3: DRTS1, DRTS0: Data Rate Table select (Refer to TABLE A).  
= 00 Select Regular drives and 2.88 format  
= 01 Specifical application  
= 10 2 Meg Tape  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1:0: DMOD0, DMOD1 : Drive Model select (Refer to TABLE B).  
Publication Release Date: March 1999  
Revision A1  
-102 -  
W83977EF/ CTF  
PRELIMINARY  
CRF5 (Default 0x00)  
FDD1 Selection: Same as FDD0 of CRF4.  
TABLE A  
Drive Rate Table  
Select  
Data Rate  
Selected Data Rate  
SELDEN  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
CRF0 bit 0=0  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
250K  
150K  
125K  
---  
0
1
1
0
250K  
250K  
125K  
---  
250K  
---  
125K  
Note:Refer to CRF2 for SELDEN value in the cases when CRF0, bit0=1.  
TABLE B  
DMOD0  
DMOD1  
DRVDEN0(pin 2)  
DRVDEN1(pin 3)  
DRIVE TYPE  
”“  
4/2/1 MB 3.5  
0
0
SELDEN  
DRATE0  
2/1 MB 5.25”  
2/1.6/1 MB 3.5 (3-MODE)  
0
1
1
0
DRATE1  
DRATE0  
DRATE0  
SELDEN  
DRATE0  
1
1
DRATE1  
Publication Release Date: March 1999  
Revision A1  
-103 -  
W83977EF/ CTF  
PRELIMINARY  
10.3  
Logical Device 1 (Parallel Port)  
CR30 (Default 0x01 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0x78 if PNPCSV# = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Parallel Port I/O base address.  
[0x100:0xFFC] on 4 byte boundary (EPP not supported) or  
[0x100:0xFF8] on 8 byte boundary (all modes supported, EPP is only available when the base  
address is on 8 byte boundary).  
CR70 (Default 0x07 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for Parallel Port.  
CR74 (Default 0x04)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for Parallel Port.  
0x00=DMA0  
0x01=DMA1  
0x02=DMA2  
0x03=DMA3  
0x04 - 0x07= No DMA active  
CRF0 (Default 0x3F)  
Bit 7: PP Interrupt Type:  
Not valid when the parallel port is in the printer Mode (100) or the standard & Bi-directional  
Mode (000).  
= 1 Pulsed Low, released to high-Z .  
= 0 IRQ follows nACK when parallel port in EPP Mode or [Printer, SPP, EPP] under ECP.  
Bit [6:3]: ECP FIFO Threshold.  
Bit 2 - 0 Parallel Port Mode  
= 100 Printer Mode (Default)  
= 000 Standard and Bi-direction (SPP) mode  
= 001 EPP - 1.9 and SPP mode  
= 101 EPP - 1.7 and SPP mode  
= 010 ECP mode  
= 011 ECP and EPP - 1.9 mode  
= 111 ECP and EPP - 1.7 mode.  
Publication Release Date: March 1999  
-104 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
¢)  
Logical Device 2 (UART A)  
10.4  
CR30 (Default 0x01 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xF8 if PNPCSV# = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 1 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x04 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Serial Port 1.  
CRF0 (Default 0x00)  
Bit 7 - 2: Reserved.  
Bit 1 - 0: SUACLKB1, SUACLKB0  
= 00 UART A clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART A clock source is 2 Mhz (24MHz/12)  
= 10 UART A clock source is 24 Mhz (24MHz/1)  
= 11 UART A clock source is 14.769 Mhz (24MHz/1.625)  
10.5 Logical Device 3 (UART B)  
CR30 (Default 0x01 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x02, 0xF8 if PNPCSV# = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 2 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x03 if PNPCSV# = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for Serial Port 2.  
Publication Release Date: March 1999  
-105 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CRF0 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3: RXW4C  
= 0  
= 1  
No reception delay when SIR is changed from TX mode to RX mode.  
Reception delays 4 characters-time (40 bit-time) when SIR is changed from TX mode  
to RX mode.  
Bit 2: TXW4C  
= 0  
= 1  
No transmission delay when SIR is changed from RX mode to TX mode.  
Transmission delays 4 characters-time (40 bit-time) when SIR is changed from RX  
mode to TX mode.  
Bit 1 - 0: SUBCLKB1, SUBCLKB0  
= 00 UART B clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART B clock source is 2 Mhz (24MHz/12)  
= 10 UART B clock source is 24 Mhz (24MHz/1)  
= 11 UART B clock source is 14.769 Mhz (24MHz/1.625)  
CRF1 (Default 0x00)  
Bit 7: Reserved.  
Bit 6: IRLOCSEL. IR I/O pins' location select.  
= 0  
= 1  
Through SINB/SOUTB.  
Through IRRX/IRTX.  
Bit 5: IRMODE2. IR function mode selection bit 2.  
Bit 4: IRMODE1. IR function mode selection bit 1.  
Bit 3: IRMODE0. IR function mode selection bit 0.  
IR MODE IR FUNCTION  
IRTX  
IRRX  
00X  
010*  
011*  
100  
Disable  
IrDA  
tri-state  
high  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
routed to SINB/IRRX  
Active pulse 1.6 mS  
IrDA  
Active pulse 3/16 bit time  
Inverting IRTX/SOUTB pin  
ASK-IR  
ASK-IR  
101  
Inverting IRTX/SOUTB & 500  
KHZ clock  
routed to SINB/IRRX  
110  
ASK-IR  
ASK-IR  
Inverting IRTX/SOUTB  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
111*  
Inverting IRTX/SOUTB & 500  
KHZ clock  
Note: The notation is normal mode in the IR function.  
Publication Release Date: March 1999  
Revision A1  
-106 -  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: HDUPLX. IR half/full duplex function select.  
= 0  
= 1  
The IR function is Full Duplex.  
The IR function is Half Duplex.  
Bit 1: TX2INV.  
= 0  
= 1  
the SOUTB pin of UART B function or IRTX pin of IR function in normal condition.  
inverts the SOUTB pin of UART B function or IRTX pin of IR function.  
Bit 0: RX2INV.  
= 0  
= 1  
the SINB pin of UART B function or IRRX pin of IR function in normal condition.  
inverts the SINB pin of UART B function or IRRX pin of IR function  
Publication Release Date: March 1999  
Revision A1  
-107 -  
W83977EF/ CTF  
PRELIMINARY  
10.6 Logical Device 5 (KBC)  
CR30 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x60 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the first KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x64 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the second KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR70 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for KINT (keyboard).  
CR72 (Default 0x0C if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for MINT (PS2 Mouse)  
CRF0 (Default 0x83)  
Bit 7 - 6: KBC clock rate selection  
= 00 Select 6MHz as KBC clock input.  
= 01 Select 8MHz as KBC clock input.  
= 10 Select 12Mhz as KBC clock input.  
= 11 Select 16Mhz as KBC clock input.  
Bit 5 - 3: Reserved.  
Bit 2: = 0 Port 92 disable.  
= 1 Port 92 enable.  
Bit 1: = 0 Gate20 software control.  
= 1 Gate20 hardware speed up.  
Bit 0: = 0 KBRST software control.  
= 1 KBRST hardware speed up.  
Publication Release Date: March 1999  
-108 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
10.7 Logical Device 6 (CIR)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00)  
These two registers select CIR I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for CIR.  
10.8 Logical Device 7 (GP I/O Port I)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP1 I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP14 alternate function Primary I/O base address [0x100:0xFFx] on  
1~8 byte boundary, they are available as you set GP14 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP15 alternate function Primary I/O base address [0x100:0xFFx] on  
1~8  
byte boundary, they are available as you set GP15 to be an alternate function (General  
Purpose Address Decode).  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP10 as you set GP10 to be an alternate function  
(Interrupt Steering).  
CR72 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP11 as you set GP11 to be an alternate function  
(Interrupt Steering).  
Publication Release Date: March 1999  
-109 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CRE0 (GP10, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE1 (GP11, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
Publication Release Date: March 1999  
Revision A1  
-110 -  
W83977EF/ CTF  
PRELIMINARY  
CRE2 (GP12, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 10 Reserved  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE3 (GP13, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output.  
= 10 Reserved  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE4 (GP14, Default 0x01)  
Bit 7 - 6:  
= 00 Address decoder is 1-Byte boundary.  
= 01 Address decoder is 2-Byte boundary.  
= 10 Address decoder is 4-Byte boundary.  
= 11 Address decoder is 8-Byte boundary.  
Bit 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: General Purpose Address Decoder(Active Low when  
Bit 1 = 0, Decode two byte address).  
= 10 Select 2nd alternate function: Keyboard Inhibit(P17).  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1999  
Revision A1  
-111 -  
W83977EF/ CTF  
PRELIMINARY  
CRE5 (GP15, Default 0x01)  
Bit 7 - 6:  
= 00 Address decoder is 1-Byte boundary.  
= 01 Address decoder is 2-Byte boundary.  
= 10 Address decoder is 4-Byte boundary.  
= 11 Address decoder is 8-Byte boundary.  
Bit 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 General Purpose Write Strobe (Active Low when Bit 1 = 0).  
= 10 8042 P12.  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE6 (GP16, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 1x Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE7 (GP17, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output. Please refer to TABLE C  
= 1x Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1999  
Revision A1  
-112 -  
W83977EF/ CTF  
PRELIMINARY  
TABLE C  
WDT_CTRL1* BIT[1]*  
WDT_CTRL0* BIT[3] WDT_CTRL1 BIT[0] POWER LED STATE  
1
0
0
0
X
0
1
1
X
X
0
1
1 Hertz Toggle pulse  
Continuous high or low*  
Continuous high or low*  
1 Hertz Toggle pulse  
*Note: 1). Regarding to the contents of WDT_CTR1 and WDT_CTRL0, please refer to CRF3 and CRF4 in Logic Device 8.  
2). Continuous high or low depends on the polarity bit of GP13 or GP17 configure registers.  
CRF1 ( Default 0x00)  
General Purpose Read/Write Enable*  
Bit 7 - 2: Reserved  
Bit 1:  
= 1 Enable GP15 General Purpose Address Decode  
= 0 Disable GP15 General Purpose Address Decode  
Bit 0:  
= 1 Enable GP14 General Purpose Address Decode  
= 0 Disable GP14 General Purpose Address Decode  
*Note: If the logical device's activate bit is not set then bit 0 and 1 have no effect.  
10.9 Logical Device 8 (GP I/O Port II)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP2 & Watch Dog I/O base address [0x100:0xFFE] on 2 byte  
boundary. I/O base address + 1: Watch Dog I/O base address.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Common IRQ of GP20~GP26 at Logic Device 8.  
CR72 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Watch Dog.  
Publication Release Date: March 1999  
-113 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CRE8 (GP20, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select basic I/O function  
= 01 Reserved  
= 10 Select alternate function: Keyboard Reset (connected to KBC P20)  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE9 (GP21, Default 0x01)  
Bit 7 - 5: Reserved  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P13 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CREA (GP22, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P14 I/O.  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
¡ @¡ @  
Bit 0: In/Out: 1: Input, 0: Output  
CREB (GP23, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
Publication Release Date: March 1999  
Revision A1  
-114 -  
W83977EF/ CTF  
PRELIMINARY  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P15 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
¡ @  
Bit 0: In/Out: 1: Input, 0: Output  
CREC (GP24, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P16 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRED (GP25, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 3: Select Function.  
= 1 Select alternate function: GATE A20(Connect to KBC P21).  
= 0 Select basic I/O function  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1999  
Revision A1  
-115 -  
W83977EF/ CTF  
PRELIMINARY  
CRF0 (Default 0x00)  
Debounce Filter Enable or Disable for General Purpose I/O Combined Interrupt. The Debounce Filter  
can reject a pulse with 1ms width or less.  
Bit 7 - 4: Reserved  
Bit 3: GP Common IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 2 - 0: Reserved  
CRF1 (Reserved)  
CRF2 (Default 0x00)  
Watch Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to load  
the value to Watch Dog Counter and start to count down. If the Bit2 and Bit 1 are set, any Mouse  
Interrupt or Keyboard Interrupt happen will also cause reloading of the non-zero value to Watch Dog  
Counter and count down. If this register is read, Watch Dog Timer Time-out value can not be  
accessed but the current value in Watch Dog Counter can be accessed.  
Bit 7 - 0:  
= 0x00 Time-out Disable  
= 0x01 Time-out occurs after 1 minute/second  
= 0x02 Time-out occurs after 2 minutes/seconds  
= 0x03 Time-out occurs after 3 minutes/seconds  
................................................  
= 0xFF Time-out occurs after 255 minutes  
CRF3 (WDT_CTRL0, Default 0x00)  
Watch Dog Timer Control Register #0  
Bit 7 - 4: Reserved  
Bit 3: When Time-out occurs, Enable or Disable Power LED with 1 Hz and 50% duty cycle output.  
= 1 Enable  
= 0 Disable  
Publication Release Date: March 1999  
-116 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: Mouse interrupt reset Enable or Disable  
= 1 Watch Dog Timer is reset upon a Mouse interrupt  
= 0 Watch Dog Timer is not affected by Mouse interrupt  
Bit 1: Keyboard interrupt reset Enable or Disable  
= 1 Watch Dog Timer is reset upon a Keyboard interrupt  
= 0 Watch Dog Timer is not affected by Keyboard interrupt  
Bit 0: Reserved.  
CRF4 (WDT_CTRL1, Default 0x00)  
Watch Dog Timer Control Register #1  
Bit 7: Reserved  
Bit 6:  
= 1 Watch Dog counter counts in seconds.  
= 0 Watch Dog counter counts in minutes.  
Bit 5-4: Power LED toggle pulse frequency select  
= 00 Power LED toggle pulse frequency is 1Hz  
= 01 Power LED toggle pulse frequency is 1/2Hz  
= 10 Power LED toggle pulse frequency is 1/4Hz  
= 11 Power LED toggle pulse frequency is 1/8Hz  
Bit 3: Enable the rising edge of Keyboard Reset(P20) to force Time-out event, R/W*  
= 1 Enable  
= 0 Disable  
Bit 2: Force Watch Dog Timer Time-out, Write only*  
= 1 Force Watch Dog Timer time-out event; this bit is self-clearing.  
Bit 1: Enable Power LED toggle pulse with 50% duty cycle , R/W  
= 1 Enable  
= 0 Disable  
Bit 0: Watch Dog Timer Status, R/W  
= 1 Watch Dog Timer time-out occurred.  
= 0 Watch Dog Timer counting  
*Note: 1). Internal logic provides an 1us Debounce Filter to reject the width of P20 pulse less than 1us.  
2). The P20 signal coming from Debounce Filter is ORed with the signal generated by the Force Time-out bit, and then  
connects to set the Bit 0(Watch Dog Timer Status). The ORed signal is self-clearing.  
Publication Release Date: March 1999  
-117 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
10.10 Logical Device A (ACPI)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resources for SCI#.  
CRE0 (Default 0x00)  
Bit 7: DIS-PANSWIN. Disable panel switch input to turn system power supply on.  
= 0  
= 1  
PANSWIN# is wire-ANDed and connected to PANSWOUT#.  
PANSWIN# is blocked and can not affect PANSWOUT#.  
Bit 6: ENKBWAKEUP. Enable Keyboard to Wake-Up system via PANSWOUT#.  
= 0  
= 1  
Disable Keyboard Wake-Up function.  
Enable Keyboard Wake-Up function.  
Bit 5: ENMSWAKEUP. Enable Mouse to Wake-Up system via PANSWOUT#.  
= 0  
= 1  
Disable Mouse Wake-Up function.  
Enable Mouse Wake-Up function.  
Bit 4: MSRKEY. Select Mouse Left/Right Botton to Wake-Up system via PANSWOUT#.  
= 0  
= 1  
Select click on Mouse Left-botton to Wake the system up.  
Select click on Mouse right-botton to Wake the system up.  
Bit 3: ENCIRWAKEUP. Enable CIR to Wake-Up system via PANSWOUT#. (for W83977CTF only)  
= 0  
= 1  
Disable CIR Wake-Up function.  
Enable CIR Wake-Up function.  
Bit 2: KB/MS Swap. Enable Keyboard/Mouse port-swap.  
= 0  
= 1  
Keyboard/Mouse ports are not swapped.  
Keyboard/Mouse ports are swapped.  
Bit 1: MSXKEY. Enable any character received from Mouse to Wake-Up the system.  
= 0  
= 1  
Just clicking Mouse left/right-botton twice can Wake-Up the system.  
Just clicking Mouse left/right-botton once can Wake-Up the system.  
Bit 0: KBXKEY. Enable any character received from Keyboard to Wake-Up the system.  
= 0  
= 1  
Only predetermined specific key combination can Wake-Up the system.  
Any character received from Keyboard can Wake-Up the system.  
Publication Release Date: March 1999  
Revision A1  
-118 -  
W83977EF/ CTF  
PRELIMINARY  
CRE1 (Default 0x00) Keyboard Wake-Up Index Register  
This register is used to indicate which Keyboard Wake-Up Shift register or Predetermined key  
Register is to be read/written via CRE2. The range of Keyboard Wake-Up index register is 0x00 -  
0x0E, and the range of CIR Wake-Up index register is 0x20 - 0x2F.  
CRE2 Keyboard Wake-Up Data Register  
This register holds the value of wake-up key register indicated by CRE1. This register can  
be  
read/written.  
CRE3 (Read only) Keyboard/Mouse Wake-Up Status Register  
Bit 7-5: Reserved.  
Bit 4: PWRLOSS_STS: This bit is set when power loss occurs.  
Bit 3: CIR_STS. The Panel switch event is caused by CIR wake-up event. This bit is cleared by  
reading this register.  
Bit 2: PANSW_STS. The Panel switch event is caused by PANSW_IN. This bit is cleared by  
reading this register.  
Bit 1: Mouse_STS. The Panel switch event is caused by Mouse wake-up event. This bit is  
cleared by reading this register.  
Bit 0: Keyboard_STS. The Panel switch event is caused by Keyboard wake-up event. This bit is  
cleared by reading this register.  
CRE4 (Default 0x00)  
Bit 7: Power loss control bit 2.  
0 = Disable ACPI resume.  
1 = Enable ACPI resume.  
Bit 6-5: Power loss control bit <1:0>  
00 = System always turns off when recovering from power loss state.  
01 = System always turns on when recovering from power loss state.  
10 = System turns on/off when recovering from power loss state, depending on the  
state before power loss.  
11 = Reserved.  
Bit 4: Suspend clock source select  
0 = Use internal clock source.  
1 = Use external suspend clock source(32.768KHz).  
Bit 3: Keyboard wake-up type select for wake-up the system from S1/S2.  
0 = Password or Hot keys programmed in the registers.  
1 =Any key.  
Publication Release Date: March 1999  
-119 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: Enable all wake-up event set in CRE0 can wake-up the system from S1/S2 state.  
This bit is cleared when wake-up event occurs.  
0 = Disable.  
1 = Enable.  
Bit 1 - 0: Reserved.  
CRE5 (Default 0x00)  
Bit 7: Reserved.  
Bit 6 - 0: Compared Code Length. When the compared codes are stored in the data register,  
these data lengths should be written to this register.  
CRE6 (Default 0x00)  
Bit 7 - 6: Reserved.  
Bit 5 - 0: CIR Baud Rate Divisor. The clock base of CIR is 32khz, so that the baud rate is 32khz  
divided by ( CIR Baud Rate Divisor + 1).  
CRE7 (Default 0x00)  
Bit 7 - 3: Reserved.  
Bit 2: Reset CIR Power-On function. After using CIR power-on, the software should write logical  
1 to restart CIR power-on function.  
Bit 1: Invert RX Data.  
= 1 Inverting RX Data.  
= 0 Not inverting RX Data.  
Bit 0: Enable Demodulation.  
= 1 Enable received signal to demodulate.  
= 0 Disable received signal to demodulate.  
CRF0 (Default 0x00)  
Bit 7: CHIPPME. Chip level auto power management enable.  
= 0  
= 1  
disable the auto power management functions  
enable the auto power management functions.  
Bit 6: URCPME. UART C auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 5 - 4: Reserved. Return zero when read.  
Bit 3: PRTPME. Printer port auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Publication Release Date: March 1999  
Revision A1  
-120 -  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: FDCPME. FDC auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 1: URAPME. UART A auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
Bit 0: URBPME. UART B auto power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions.  
CRF1 (Default 0x00)  
Bit 7: WAK_STS. This bit is set when the chip is in the sleeping state and an enabled resume  
event occurs. Upon setting this bit, the sleeping/working state machine will transition the  
system to the working state. This bit is only set by hardware, and is cleared by writing a 1 to  
this bit position, or by the sleeping/working state machine automatically when the global  
standby timer expires.  
= 0  
= 1  
the chip is in the sleeping state.  
the chip is in the working state.  
Bit 6: Device's trap status.  
Bit 5 - 4: Reserved. Return zero when read.  
Bit 3 - 0: Devices' trap status.  
These bits of trap status indicate that the individual device Wakes-Up due to any I/O access,  
IRQ, and external input to the device. The device's idle timer reloads the preset expiry  
depending on which device wakes up. These 5 bits are controlled by the UART C, printer  
port, FDC, UART A and UART B power down machines respectively . Writing a 1 clears this  
bit and writing a 0 has no effect. Note that: the user is not supposed to change the status  
while power management function is enabled.  
Bit 6: URCTRAPSTS. UART C trap status.  
= 0  
= 1  
UART C is now in the sleeping state.  
UART C is now in the working state due to any UART C access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins transmitting a  
start bit, or any transition on MODEM control input lines.  
Bit 3: PRTTRAPSTS. Printer port trap status.  
= 0  
= 1  
the printer port is now in the sleeping state.  
the printer port is now in the workinging state due to any printer port access, any IRQ,  
any DMA acknowledge, or any transition on BUSY, ACK#, PE, SLCT, and ERR#  
pins.  
Publication Release Date: March 1999  
-121 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: FDCTRAPSTS. FDC trap status.  
= 0  
= 1  
FDC is now in the sleeping state.  
FDC is now in the working state due to any FDC access, any IRQ, any DMA  
acknowledge, or any enabling of the motor enable bits in the DOR register.  
Bit 1: URATRAPSTS. UART A trap status.  
= 0  
= 1  
UART A is now in the sleeping state.  
UART A is now in the working state due to any UART A access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins transmitting a  
start bit, or any transition on MODEM control input lines.  
Bit 0: URBTRAPSTS. UART B trap status.  
= 0  
= 1  
UART B is now in the sleeping state.  
UART B is now in the workinging state due to any UART B access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins transmitting a  
start bit, or any transition on MODEM control input lines.  
CRF3 (Default 0x00)  
Bit 7: Reserved. Return zero when read.  
Bit 6 - 0: Device's IRQ status.  
These bits indicate the IRQ status of the individual device respectively. The device's IRQ status  
bit  
is set by their source device and is cleared by writing a 1. Writing a 0 has no effect.  
Bit 6: URCIRQSTS. UART C IRQ status.  
Bit 5: MOUIRQSTS. MOUSE IRQ status.  
Bit 4: KBCIRQSTS. KBC IRQ status.  
Bit 3: PRTIRQSTS. printer port IRQ status.  
Bit 2: FDCIRQSTS. FDC IRQ status.  
Bit 1: URAIRQSTS. UART A IRQ status.  
Bit 0: URBIRQSTS. UART B IRQ status.  
CRF4 (Default 0x00)  
Bit 7 - 5: Reserved. Return zero when read.  
Bit 3: Reserved. Return zero when read.  
Bit 4 and Bit 2 - 0:These bits indicate the status of the individual GPIO function respectively. The  
status is set by their source function and is cleared by writing a 1. Writing a 0 has no effect.  
Bit 4: WDTIRQSTS. Watch dog timer IRQ status at logical device 8.  
Bit 2: COMIRQSTS. Common IRQ status of GP20 - GP25 at logical device 8.  
Bit 1: GP11IRQSTS. GP11 interrupt steering status at logical device 7.  
Bit 0: GP10IRQSTS. GP10 interrupt steering status at logical device 7.  
Publication Release Date: March 1999  
-122 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
CRF6 (Default 0x00)  
Bit 7: Reserved. Return zero when read.  
Bit 6 - 0: Enable bits of the SMI#/SCI# generation due to the device's IRQ.  
These bits enable the generation of an SMI#/SCI# interrupt due to any IRQ of the devices.  
SMI#/SCI# logic output = (URBIRQEN and URBIRQSTS) or (URAIRQEN and URAIRQSTS) or  
(FDCIRQEN and FDCIRQSTS) or (PRTIRQEN and PRTIRQSTS) or (KBCIRQEN and  
KBCIRQSTS) or (MOUIRQEN and MOUIRQSTS) or (URCIRQEN and URCIRQSTS) or  
(WDTIRQEN and WDTIRQSTS) or (COMIRQEN and COMIRQSTS) or (GP11IRQEN and  
GP11IRQSTS) or (GP10IRQEN and GP10IRQSTS)  
Bit 6: URCIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to UART C's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to UART C's IRQ.  
Bit 5: MOUIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to MOUSE's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to MOUSE's IRQ.  
Bit 4: KBCIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to KBC's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to KBC's IRQ.  
Bit 3: PRTIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to printer port's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to printer port's IRQ.  
Bit 2: FDCIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to FDC's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to FDC's IRQ.  
Bit 1: URAIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to UART A's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to UART A's IRQ.  
Bit 0: URBIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to UART B's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to UART B's IRQ.  
CRF7 (Default 0x00)  
Bit 7 - 5: Reserved. Return zero when read.  
Bit 3: Reserved. Return zero when read.  
Bit 4 and Bit 2 - 0:Enable bits of the SMI#/SCI# generation due to the individual GPIO IRQ  
functions.  
Bit 4: WDTIRQEN.  
= 0  
= 1  
disable the generation of an SMI#/SCI# interrupt due to watch dog timer's IRQ.  
enable the generation of an SMI#/SCI# interrupt due to watch dog timer's IRQ.  
Publication Release Date: March 1999  
-123 -  
Revision A1  
W83977EF/ CTF  
PRELIMINARY  
Bit 2: COMIRQEN.  
= 0 disable the generation of an SMI#/SCI# interrupt due to common IRQ function's IRQ.  
= 1 enable the generation of an SMI#/SCI# interrupt due to common IRQ function's IRQ.  
Bit 1: GP11IRQEN.  
= 0 disable the generation of an SMI#/SCI# interrupt due to GP11 interrupt steering's IRQ.  
= 1 enable the generation of an SMI#/SCI# interrupt due to GP11 interrupt steering's IRQ.  
Bit 0: GP10IRQEN.  
= 0 disable the generation of an SMI#/SCI# interrupt due to GP10 interrupt steering's IRQ.  
= 1  
enable the generation of an SMI#/SCI# interrupt due to GP10 interrupt steering's IRQ.  
CRF9 (Default 0x00)  
Bit 7 - 3: Reserved. Return zero when read.  
Bit 2: SCI_EN: Select the power management events to be either an SCI# OR SMII# interrupt for  
the IRQ events. Note that: this bit is valid only when SMISCI_OE = 1.  
= 0  
= 1  
the power management events will generate an SMI# event.  
the power management events will generate an SCI# event.  
Bit 1: FSLEEP: This bit selects the fast expiry time of individual devices  
= 0  
= 1  
1 second.  
8 milli-seconds.  
Bit 0: SMISCI_OE: This is the SMI# and SCI# enable bit.  
= 0  
= 1  
neither SMI# nor SCI# will be generated. Only the IRQ status bit is set.  
an SMI# or SCI# event will be generated.  
CRFE, FF (Default 0x00)  
Reserved for Winbond test.  
Publication Release Date: March 1999  
Revision A1  
-124 -  
W83977EF/ CTF  
PRELIMINARY  
11.0 SPECIFICATIONS  
11.1 Absolute Maximum Ratings  
PARAMETER  
Power Supply Voltage  
Input Voltage  
RATING  
-0.5 to 7.0  
-0.5 to VDD+0.5  
4.0 to 1.8  
UNIT  
V
V
Battery Voltage VBAT  
5V Standby VSB  
V
4.5 to 5.5  
V
Operating Temperature  
Storage Temperature  
0 to +70  
° C  
° C  
-55 to +150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the  
device.  
11.2 DC CHARACTERISTICS  
(Ta = 0° C to 70° C, VDD = 5V ± 10%, VSS = 0V)  
PARAMETER  
SYM. MIN.  
IBAT  
TYP.  
MAX.  
£1  
UNIT  
uA  
CONDITIONS  
VBAT = 2.5 V  
Battery Quiescent Current  
Stand-by Power Supply  
Quiescent Current  
IVSB  
2.0  
mA  
VSB = 5.0 V, All ACPI  
pins are not connected.  
I/O8t - TTL level bi-directional pin with source-sink capability of 8 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
V
V
2.0  
2.4  
0.4  
V
IOL = 8 mA  
IOH = - 8 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
mA  
mA  
I/O6t - TTL level bi-directional pin with source-sink capability of 6 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
V
V
2.0  
2.4  
0.4  
V
IOL = 6 mA  
IOH = - 6 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
mA  
mA  
Publication Release Date: March 1999  
Revision A1  
-125 -  
W83977EF/ CTF  
PRELIMINARY  
11.2 DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O8 - CMOS level bi-directional pin with source-sink capability of 8 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.3xVDD  
0.4  
V
V
0.7xVDD  
3.5  
V
IOL = 8 mA  
V
IOH = - 8 mA  
VIN = VDD  
VIN = 0V  
+ 10  
- 10  
mA  
mA  
I/O12 - CMOS level bi-directional pin with source-sink capability of 12 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.3xVDD  
V
V
0.7xVDD  
3.5  
0.4  
V
IOL = 12 mA  
IOH = - 12 mA  
VIN = VDD  
V
+ 10  
- 10  
mA  
mA  
VIN = 0V  
I/O16u - CMOS level bi-directional pin with source-sink capability of 16 mA, with internal  
pull-up resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.3xVDD  
V
V
0.7xVDD  
3.5  
0.4  
V
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
V
+ 10  
- 10  
mA  
mA  
VIN = 0V  
I/OD16u - CMOS level Open-Drain pin with source-sink capability of 16 mA, with internal pull-  
up resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.3xVDD  
V
V
0.7xVDD  
3.5  
0.4  
V
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
V
+ 10  
- 10  
mA  
mA  
VIN = 0V  
Publication Release Date: March 1999  
Revision A1  
-126 -  
W83977EF/ CTF  
PRELIMINARY  
11.2 DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O12t - TTL level bi-directional pin with source-sink capability of 12 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
0.4  
V
V
2.0  
2.4  
V
IOL = 12 mA  
V
IOH = - 12 mA  
VIN = VDD  
VIN = 0V  
+ 10  
- 10  
mA  
mA  
I/O24t - TTL level bi-directional pin with source-sink capability of 24 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
V
V
2.0  
2.4  
0.4  
V
IOL = 24 mA  
IOH = - 24 mA  
VIN = VDD  
V
+ 10  
- 10  
mA  
mA  
VIN = 0V  
OUT8t - TTL level output pin with source-sink capability of 8 mA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 8 mA  
2.4  
IOH = - 8 mA  
OUT12t - TTL level output pin with source-sink capability of 12 mA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 12 mA  
IOH = -12 mA  
2.4  
OD12 - Open-drain output pin with sink capability of 12 mA  
Output Low Voltage 0.4  
OD24 - Open-drain output pin with sink capability of 24 mA  
VOL  
V
V
IOL = 12 mA  
IOL = 24 mA  
Output Low Voltage  
VOL  
0.4  
INt - TTL level input pin  
Input Low Voltage  
VIL  
VIH  
ILIH  
ILIL  
0.8  
V
V
Input High Voltage  
Input High Leakage  
Input Low Leakage  
2.0  
+10  
-10  
VIN = VDD  
VIN = 0 V  
mA  
mA  
Publication Release Date: March 1999  
Revision A1  
-127 -  
W83977EF/ CTF  
PRELIMINARY  
11.2 DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
INc  
- CMOS level input pin  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
V
V
0.3´ VDD  
0.7´ VDD  
+10  
-10  
VIN = VDD  
VIN = 0 V  
mA  
mA  
INcs  
- CMOS level Schmitt-triggered input pin  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
1.3  
3.2  
1.5  
1.5  
3.5  
2
1.7  
3.8  
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
VTH  
ILIH  
ILIL  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
mA  
mA  
INcu - CMOS level input pin with internal pull-up resistor  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
0.7xVDD  
V
V
0.7xVDD  
+10  
-10  
VIN = VDD  
VIN = 0 V  
mA  
mA  
INts  
- TTL level Schmitt-triggered input pin  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
VTH  
ILIH  
ILIL  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
mA  
mA  
INtsu - TTL level Schmitt-triggered input pin with internal pull-up resistor  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
VTH  
ILIH  
ILIL  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
mA  
mA  
Publication Release Date: March 1999  
Revision A1  
-128 -  
W83977EF/ CTF  
PRELIMINARY  
11.3 AC Characteristics  
11.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec.  
PARAMETER  
SYM.  
TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
nS  
SA9-SA0, AEN, DACK#,  
CS#, setup time to IOR#  
TAR  
25  
¡ õ  
SA9-SA0, AEN, DACK#,  
hold time for IOR#  
TAR  
0
nS  
¡ ô  
TRR  
TFD  
80  
nS  
nS  
IOR width  
CL = 100 pf  
Data access time from  
¡ õ  
80  
50  
IOR#  
¡ õ  
CL = 100 pf  
CL = 100 pf  
Data hold from IOR#  
TDH  
TDF  
TRI  
10  
10  
nS  
nS  
nS  
¡ ô  
SD to from IOR#  
¡ ô  
IRQ delay from IOR#  
360/570  
/675  
SA9-SA0, AEN, DACK#,  
¡ õ  
TAW  
TWA  
25  
0
nS  
nS  
setup time to IOW#  
SA9-SA0, AEN, DACK#,  
¡ ô  
hold time for IOW#  
IOW# width  
TWW  
TDW  
TWD  
60  
60  
0
nS  
nS  
nS  
¡ ô  
Data setup time to IOW#  
Data hold time from  
¡ ô  
IOW#  
¡ ô  
IRQ delay from IOW#  
TWI  
360/570  
/675  
nS  
DRQ cycle time  
TMCY  
TAM  
TMA  
TAA  
27  
0
mS  
nS  
nS  
nS  
¡ õ  
DRQ delay time DACK#  
DRQ to DACK# delay  
DACK# width  
50  
260/430  
/510  
TMR  
0
0
nS  
nS  
IOR# delay from DRQ  
IOW# delay from DRQ  
TMW  
Publication Release Date: March 1999  
Revision A1  
-129 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.1 AC Characteristics, FDC continued  
PARAMETER  
SYM.  
TEST  
MIN.  
TYP.  
MAX.  
UNIT  
(NOTE 1)  
CONDITIONS  
IOW# or IOR# response  
time from DRQ  
TMRW  
TTC  
6/12  
/20/24  
mS  
nS  
mS  
mS  
mS  
TC width  
135/220  
/260  
RESET width  
TRST  
TIDX  
1.8/3/3.  
5
INDEX# width  
0.5/0.9  
/1.0  
DIR# setup time to STEP#  
TDST  
1.0/1.6  
/2.0  
DIR# hold time from STEP#  
STEP# pulse width  
TSTD  
TSTP  
24/40/48  
mS  
mS  
6.8/11.5  
/13.8  
7/11.7  
/14  
7.2/11.9  
/14.2  
STEP# cycle width  
WD# pulse width  
TSC  
Note 2  
Note 2  
Note 2  
mS  
mS  
TWDD  
100/185  
/225  
125/210  
/250  
150/235  
/275  
Write precompensation  
TWPC  
100/138  
/225  
125/210  
/250  
150/235  
/275  
mS  
Notes:  
1. Typical values for T = 25° C and normal supply voltage.  
2. Programmable from 2 mS through 32 mS in 2 mS increments.  
Publication Release Date: March 1999  
Revision A1  
-130 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.2 UART/Parallel Port  
PARAMETER  
SYMBOL  
TEST  
MIN.  
MAX.  
UNIT  
CONDITIONS  
Delay from Stop to Set Interrupt  
Delay from IOR# Reset Interrupt  
TSINT  
9/16  
Baud  
Rate  
TRINT  
TIRS  
100 pf Loading  
100 pf Loading  
1
mS  
Delay from Initial IRQ Reset to  
Transmit Start  
1/16  
9/16  
8/16  
Baud  
Rate  
Delay from IOW# to Reset interrupt  
Delay from Initial IOW# to interrupt  
THR  
TSI  
175  
nS  
16/16  
Baud  
Rate  
Delay from Stop to Set Interrupt  
TSTI  
1/2  
Baud  
Rate  
Delay from IOR# to Reset Interrupt  
Delay from IOR# to Output  
TIR  
TMWO  
TSIM  
100 pF Loading  
100 pF Loading  
250  
200  
250  
nS  
nS  
nS  
Set Interrupt Delay from Modem  
Input  
Reset Interrupt Delay from IOR#  
Interrupt Active Delay  
Interrupt Inactive Delay  
Baud Divisor  
TRIM  
TIAD  
250  
25  
nS  
nS  
nS  
100 pF Loading  
100 pF Loading  
100 pF Loading  
TIID  
N
30  
216-1  
11.3.3 Parallel Port Mode Parameters  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
PD0-7, INDEX#, STROBE#, AUTOFD# Delay  
from IOW#  
t1  
100  
nS  
IRQ Delay from ACK#, nFAULT  
IRQ Delay from IOW#  
t2  
t3  
t4  
t5  
60  
nS  
nS  
nS  
nS  
105  
300  
105  
IRQ Active Low in ECP and EPP Modes  
ERROR# Active to IRQ Active  
200  
Publication Release Date: March 1999  
Revision A1  
-131 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.4 EPP Data or Address Read Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOR# Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
t2  
40  
0
nS  
nS  
nS  
IOCHRDY Deasserted to IOR# Deasserted  
IOR# Deasserted to Ax Valid  
t3  
10  
40  
0
10  
IOR# Deasserted to IOW# or IOR# Asserted  
IOR# Asserted to IOCHRDY Asserted  
PD Valid to SD Valid  
t4  
t5  
24  
75  
nS  
nS  
mS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
mS  
t6  
0
IOR# Deasserted to SD Hi-Z (Hold Time)  
SD Valid to IOCHRDY Deasserted  
WAIT# Deasserted to IOCHRDY Deasserted  
PD Hi-Z to PDBIR Set  
t7  
0
40  
t8  
0
85  
t9  
60  
0
160  
t10  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
WRITE# Deasserted to IOR# Asserted  
WAIT# Asserted to WRITE# Deasserted  
Deasserted to WRITE# Modified  
IOR# Asserted to PD Hi-Z  
0
0
185  
190  
50  
60  
0
WAIT# Asserted to PD Hi-Z  
60  
0
180  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
WAIT# Deasserted to PD Drive  
WRITE# Deasserted to Command  
PBDIR Set to Command  
0
60  
1
190  
0
20  
30  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
WAIT# Deasserted to Command Deasserted  
Time out  
0
0
195  
180  
12  
60  
10  
0
PD Valid to WAIT# Deasserted  
PD Hi-Z to WAIT# Deasserted  
0
Publication Release Date: March 1999  
Revision A1  
-132 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.5 EPP Data or Address Write Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOW# Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
t2  
40  
10  
10  
0
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
mS  
mS  
nS  
nS  
SD Valid to Asserted  
IOW# Deasserted to Ax Invalid  
t3  
WAIT# Deasserted to IOCHRDY Deasserted  
Command Asserted to WAIT# Deasserted  
IOW# Deasserted to IOW# or IOR# Asserted  
IOCHRDY Deasserted to IOW# Deasserted  
WAIT# Asserted to Command Asserted  
IOW# Asserted to WAIT# Asserted  
PBDIR Low to WRITE# Asserted  
WAIT# Asserted to WARIT# Asserted  
WAIT# Asserted to WRITE# Change  
IOW# Asserted to PD Valid  
t4  
t5  
10  
40  
0
t6  
t7  
24  
160  
70  
t8  
60  
0
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
0
60  
60  
0
185  
185  
50  
WAIT# Asserted to PD Invalid  
0
PD Invalid to Command Asserted  
IOW# to Command Asserted  
10  
5
35  
210  
190  
10  
WAIT# Asserted to Command Asserted  
WAIT# Deasserted to Command Deasserted  
Command Asserted to WAIT# Deasserted  
Time out  
60  
60  
0
10  
0
12  
Command Deasserted to WAIT# Asserted  
IOW# Deasserted to WRITE# Deasserted and PD  
invalid  
0
Publication Release Date: March 1999  
Revision A1  
-133 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.6 Parallel Port FIFO Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
DATA Valid to nSTROBE Active  
nSTROBE Active Pulse Width  
DATA Hold from nSTROBE Inactive  
BUSY Inactive to PD Inactive  
t1  
t2  
t3  
t4  
t5  
t6  
600  
600  
450  
80  
nS  
nS  
nS  
nS  
nS  
nS  
BUSY Inactive to nSTROBE Active  
nSTROBE Active to BUSY Active  
680  
500  
11.3.7 ECP Parallel Port Forward Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
nAUTOFD Valid to nSTROBE Asserted  
PD Valid to nSTROBE Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
60  
60  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
BUSY Deasserted to nAUTOFD Changed  
BUSY Deasserted to PD Changed  
80  
80  
0
180  
180  
nSTROBE Deasserted to BUSY Deasserted  
BUSY Deasserted to nSTROBE Asserted  
nSTROBE Asserted to BUSY Asserted  
BUSY Asserted to nSTROBE Deasserted  
80  
0
200  
180  
80  
11.3.8 ECP Parallel Port Reverse Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
PD Valid to nACK Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
0
0
nS  
nS  
nS  
nS  
nS  
nS  
nAUTOFD Deasserted to PD Changed  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
nACK Deasserted to nAUTOFD Asserted  
PD Changed to nAUTOFD Deasserted  
0
0
80  
80  
200  
200  
Publication Release Date: March 1999  
Revision A1  
-134 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.9 KBC Timing Parameters  
NO.  
T1  
DESCRIPTION  
MIN.  
0
MAX.  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
mS  
mS  
mS  
mS  
mS  
mS  
mS  
mS  
mS  
nS  
mS  
mS  
mS  
Address Setup Time from WRB  
Address Setup Time from RDB  
WRB Strobe Width  
T2  
0
T3  
20  
20  
0
T4  
RDB Strobe Width  
T5  
Address Hold Time from WRB  
Address Hold Time from RDB  
Data Setup Time  
T6  
0
T7  
50  
0
T8  
Data Hold Time  
T9  
Gate Delay Time from WRB  
RDB to Drive Data Delay  
RDB to Floating Data Delay  
Data Valid After Clock Falling (SEND)  
K/B Clock Period  
10  
30  
40  
20  
4
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
0
20  
10  
4
K/B Clock Pulse Width  
Data Valid Before Clock Falling (RECEIVE)  
K/B ACK After Finish Receiving  
RC Fast Reset Pulse Delay (8 Mhz)  
RC Pulse Width (8 Mhz)  
Transmit Timeout  
20  
2
3
2
6
Data Valid Hold Time  
0
83  
30  
30  
5
167  
50  
Input Clock Period (6- 12 Mhz)  
Duration of CLK inactive  
Duration of CLK active  
50  
Time from inactive CLK transition, used to time when  
the auxiliary device samples DATA  
25  
T25  
T26  
T27  
T28  
T29  
Time of inhibit mode  
100  
5
300  
T28-5  
50  
mS  
mS  
mS  
mS  
mS  
Time from rising edge of CLK to DATA transition  
Duration of CLK inactive  
30  
30  
5
Duration of CLK active  
50  
Time from DATA transition to falling edge of CLK  
25  
Publication Release Date: March 1999  
Revision A1  
-135 -  
W83977EF/ CTF  
PRELIMINARY  
11.3.10 GPIO Timing Parameters  
SYMBOL  
PARAMETER  
Write data to GPIO update  
MIN.  
MAX.  
UNIT  
tWGO  
300(Note 1)  
ns  
Note : Refer to Microprocessor Interface Timing for Read Timing.  
11.3.11 Keyboard/Mouse Timing Parameters  
SYMBOL  
tSWL  
PARAMETER  
MIN.  
MAX.  
20  
UNIT  
ns  
PANSWIN# falling edge to PANSWOUT# falling edge  
tSWH  
50  
ns  
PANSWIN# falling edge to PANSWOUT# Hi-Z  
tWKUPD  
KCLK/MCLK falling edge to PANSWOUT# falling  
edge delay  
200  
ns  
tWKUPW  
0.5  
1
sec  
PANSWOUT# active pulse width  
Publication Release Date: March 1999  
Revision A1  
-136 -  
W83977EF/ CTF  
PRELIMINARY  
12.0 TIMING WAVEFORMS  
12.1 FDC  
Write Date  
Processor Read Operation  
WD#  
SA0-SA9  
AEN  
TWDD  
CS#  
TAR  
TRA  
DACK#  
TRR  
IOR#  
TDH  
Index  
TFD  
TDF  
D0-D7  
IRQ  
INDEX#  
TR  
TIDX  
TIDX  
Processor Write Operation  
Terminal Count  
SA0-SA9  
AEN  
TC  
TAW  
TWA  
DACK#  
IOW#  
TTC  
TWW  
TWD  
Reset  
TDW  
D0-D7  
IRQ  
RESET  
TWI  
TRST  
DMA Operation  
Drive Seek operation  
TAM  
DRQ  
DIR#  
TMCY  
TAA  
DACK#  
TMA  
TSTP  
TSTD  
TDST  
TMRW  
IOW# or  
IOR#  
STEP  
TMW (IOW#)  
TMR (IOR#)  
TSC  
Publication Release Date: March 1999  
Revision A1  
-137 -  
W83977EF/ CTF  
PRELIMINARY  
12.2 UART/Parallel  
Receiver Timing  
SIN  
(RECEIVER  
STAR  
INPUT DATA)  
DATA BITS  
(5-8)  
PARITY  
STOP  
TSINT  
IRQ3 or IRQ4  
IOR  
TRINT  
(READ RECEIVER  
BUFFER REGISTER)  
Transmitter Timing  
SERIAL OUT  
(SOUT)  
STAR  
STAR  
DATA  
(5-8)  
PARITY  
STOP  
(1-2)  
THRS  
THR  
TSTI  
IRQ3 or IRQ4  
THR  
IOW  
TSI  
(WRITE THR)  
TIR  
IOR  
(READ TIR)  
Publication Release Date: March 1999  
Revision A1  
-138 -  
W83977EF/ CTF  
PRELIMINARY  
12.2.1 Modem Control Timing  
MODEM Control Timing  
IOW#  
(WRITE MCR)  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
TMWO  
¢x  
¡ ÷  
TMWO  
¡ ÷  
¡ ö  
¢¡x ö  
¢x  
RTS#,DTR#  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢
¢x  
¢x  
¢x  
¢x  
¢x  
CTS#,DSR#  
DCD#  
¢x  
¢x  
¡ ÷  
TSIM  
TSIM  
¢¡x ö  
¡ ö  
¡ ÷  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¡ ö  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
IRQ3 or  
IRQ4  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
TRIM  
¡ öTRIM  
¡ ÷  
¡ ÷  
¢x  
¢x  
¢x  
¢x  
IOR#  
(READ MSR)  
TSIM  
¡ ÷  
¡ ö  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢
RI#  
Printer Interrupt Timing  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
ACK#  
¢x  
¢x  
¢x  
¢x  
¢x  
TLAD  
TLID  
¡ ÷  
¡ ö  
¢x  
¢x  
¢x  
¢x  
¢x  
¡ ÷  
¡ ö  
IRQ7  
Publication Release Date: March 1999  
Revision A1  
-139 -  
W83977EF/ CTF  
PRELIMINARY  
12.3 Parallel Port  
12.3.1 Parallel Port Timing  
IOW#  
t1  
INIT#, STROBE#  
AUTOFD, SLCTIN#  
PD<0:7>  
ACK#  
t2  
IRQ (SPP)  
IRQ  
t3  
t4  
(EPP or ECP)  
nFAULT  
(ECP)  
ERROR#  
(ECP)  
t5  
t2  
t4  
IRQ  
Publication Release Date: March 1999  
Revision A1  
-140 -  
W83977EF/ CTF  
PRELIMINARY  
12.3.2 EPP Data or Address Read Cycle (EPP Version 1.9)  
t3  
A<0:10>  
t1  
t2  
t4  
IOR  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE#  
PD<0:7>  
t16  
t18  
t19  
t20  
t17  
t21  
t22  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
t26  
WAIT#  
Publication Release Date: March 1999  
Revision A1  
-141 -  
W83977EF/ CTF  
PRELIMINARY  
12.3.3 EPP Data or Address Write Cycle (EPP Version 1.9)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t2  
t6  
IOW#  
IOCHRDY  
t7  
t8  
t9  
t10  
t11  
t12  
t14  
WRITE#  
PD<0:7>  
t13  
t15  
t16  
t17  
t18  
DATAST#  
ADDRSTB#  
t19  
t21  
t20  
WAIT#  
PBDIR  
t22  
Publication Release Date: March 1999  
Revision A1  
-142 -  
W83977EF/ CTF  
PRELIMINARY  
12.3.4 EPP Data or Address Read Cycle (EPP Version 1.7)  
t3  
A<0:10>  
t1  
t2  
t4  
IOR  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE#  
PD<0:7>  
t16  
t18  
t19  
t20  
t17  
t21  
t22  
t23  
t25  
ADDRSTB  
DATASTB  
t24  
t26  
t28  
t27  
WAIT#  
Publication Release Date: March 1999  
Revision A1  
-143 -  
W83977EF/ CTF  
PRELIMINARY  
12.3.5 EPP Data or Address Write Cycle (EPP Version 1.7)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t2  
t6  
IOW#  
t7  
t8  
IOCHRDY  
t9  
t10  
t11  
t22  
t22  
WRITE#  
PD<0:7>  
t13  
t15  
t16  
t17  
t18  
DATAST#  
ADDRSTB#  
t19  
t20  
WAIT#  
12.3.6 Parallel Port FIFO Timing  
t4  
>|  
t3  
>|  
PD<0:7>  
t1  
t2  
t5  
>|  
>
>|  
nSTROBE  
t6  
>|  
BUSY  
Publication Release Date: March 1999  
Revision A1  
-144 -  
W83977EF/ CTF  
PRELIMINARY  
12.3.7 ECP Parallel Port Forward Timing  
t3  
t4  
nAUTOFD  
PD<0:7>  
t1  
t2  
t6  
t8  
nSTROBE  
BUSY  
t5  
t5  
t7  
12.3.8 ECP Parallel Port Reverse Timing  
t2  
PD<0:7>  
t1  
t3  
t4  
nACK  
t5  
t5  
t6  
nAUTOFD  
Publication Release Date: March 1999  
Revision A1  
-145 -  
W83977EF/ CTF  
PRELIMINARY  
12.4 KBC  
12.4.1 Write Cycle Timing  
A2, CSB  
WRB  
T1  
T5  
T3  
ACTIVE  
T7  
T8  
D0~D7  
DATA IN  
T9  
GA20  
OUTPUT PORT  
T17  
T18  
FAST RESET PULSE RC  
FE COMMAND  
12.4.2 Read Cycle Timing  
A2,CSB  
AEN  
T2  
T6  
T4  
RDB  
ACTIVE  
T10  
T11  
D0-D7  
DATA OUT  
12.4.3 Send Data to K/B  
CLOCK  
(KCLK)  
T12  
T13  
D4  
T16  
T14  
SERIAL DATA  
D5  
D1  
START  
D2  
D3  
D0  
D6  
D7  
P
STOP  
(KDAT)  
T19  
Publication Release Date: March 1999  
Revision A1  
-146 -  
W83977EF/ CTF  
PRELIMINARY  
12.4.4 Receive Data from K/B  
CLOCK  
(KCLK)  
T14  
T13  
T15  
SERIAL DATA  
D5  
START  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
(T1)  
T20  
12.4.5 Input Clock  
CLCOLCOKCK  
T21  
12.4.6 Send Data to Mouse  
MCLK  
T25  
T23  
T24  
T22  
MDAT  
START  
Bit  
D5  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
12.4.7 Receive Data from Mouse  
MCLK  
T29  
T26  
T27  
T28  
D3  
MDAT  
D5  
START  
D1  
D2  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
Publication Release Date: March 1999  
Revision A1  
-147 -  
W83977EF/ CTF  
PRELIMINARY  
12.5 GPIO Write Timing Diagram  
VALID  
VALID  
A0-A15  
IOW#  
D0-7  
GPIO10-17  
GPIO20-25  
PREVIOUS STATE  
VALID  
tWGO  
12.6 Master Reset (MR) Timing  
Vcc  
MR  
tVMR  
12.7 Keyboard/Mouse Wake-up Timing  
KCLK  
MCLK  
PANSWIN#  
tWKUPW  
PANSWOUT#  
HI-Z  
tWKUPD  
tSWZ  
tSWL  
Publication Release Date: March 1999  
Revision A1  
-148 -  
W83977EF/ CTF  
PRELIMINARY  
13.0 APPLICATION CIRCUITS  
13.1 Parallel Port Extension FDD  
JP13  
13  
WE2#/SLCT  
25  
JP 13A  
12  
WD2#/PE  
24  
11  
23  
10  
DCH2#  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2#/BUSY  
HEAD2#  
RDD2#  
WP2#  
DSB2#/ACK  
22  
TRK02#  
WE2#  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
15  
2
14  
1
PD7  
WD2#  
PD6  
STEP2#  
DIR2#  
PD5  
MOB2#  
DSB2#  
IDX2#  
DCH2#/PD4  
RDD2#/PD3  
7
5
3
1
STEP2#/SLIN#  
WP2#/PD2  
6
4
2
RWC2#  
DIR2#/INIT#  
TRK02#/PD1  
EXT FDC  
HEAD2#/ERR#  
IDX2#/PD0  
RWC2#/AFD#  
STB#  
PRINTER PORT  
Parallel Port Extension FDD Mode Connection Diagram  
Publication Release Date: March 1999  
Revision A1  
-149 -  
W83977EF/ CTF  
PRELIMINARY  
13.2 Parallel Port Extension 2FDD  
JP13  
13  
25  
12  
WE2#/SLCT  
JP 13A  
WD2#/PE  
DCH2#  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2#/BUSY  
HEAD2#  
RDD2#  
WP2#  
DSB2#/ACK  
TRK02#  
WE2#  
DSA2#/PD7  
MOA2#/PD6  
WD2#  
STEP2#  
DIR2#  
PD5  
MOB2#  
DSA2#  
DCH2#/PD4  
RDD2#/PD3  
DSB2#  
MOA2#  
IDX2#  
7
5
3
1
STEP2#/SLIN#  
WP2#/PD2  
6
4
2
RWC2#  
DIR2#/INIT#  
TRK02#/PD1#  
15  
2
14  
1
EXT FDC  
HEAD2#/ERR#  
IDX2#/PD0  
RWC2#/AFD#  
STB#  
PRINTER PORT  
Parallel Port Extension 2FDD Connection Diagram  
Publication Release Date: March 1999  
Revision A1  
-150 -  
W83977EF/ CTF  
PRELIMINARY  
13.3 Four FDD Mode  
74LS139  
G1  
7407(2)  
W83977EF  
1Y0  
1Y1  
DSA#  
DSB#  
DSC#  
DSD#  
MOA#  
DSA#  
DSB#  
A1  
B1  
1Y2  
1Y3  
2Y0  
2Y1  
2Y2  
2Y3  
MOA#  
MOB#  
MOB#  
MOC#  
MOD#  
G2  
A2  
B2  
14.0 ORDERING INFORMATION  
PART NO.  
KBC FIRMWARE  
REMARKS  
W83977EF-PW  
W83977EF-AW  
W83977CTF-PW  
W83977CTF-AW  
Phoenix MultiKey/42TM  
AMIKEYTM-2  
with OnNow / security keyboard Wake-Up  
with OnNow / security keyboard Wake-Up  
with OnNow / security keyboard Wake-Up  
with OnNow / security keyboard Wake-Up  
Phoenix MultiKey/42TM  
AMIKEYTM-2  
15.0 HOW TO READ THE TOP MARKING  
Example: The top marking of W83977EF-AW  
inbond  
W83977EF-AW  
AM. MEGA. 87-96  
ã
821A2B282012345  
1st line: Winbond logo  
2nd line: the type number: W83977EF-AW  
3rd line: the source of KBC F/W -- American Megatrends IncorporatedTM  
4th line: the tracking code  
821 A 2 C 282012345  
821: packages made in '98, week 21  
A: assembly house ID; A means ASE, S means SPIL.... etc.  
2: Winbond internal use.  
B: IC revision; A means version A, B means version B  
282012345: wafer production series lot number  
Publication Release Date: March 1999  
Revision A1  
-151 -  
W83977EF/ CTF  
PRELIMINARY  
16.0 PACKAGE DIMENSIONS  
(128-pin PQFP)  
Dimension in mm  
Dimension in inch  
H E  
E
Symbol  
Min  
0.25  
2.57  
Nom  
0.35  
Max  
0.45  
2.87  
Min Nom Max  
65  
102  
0.010  
0.101  
0.014  
0.107  
0.018  
0.113  
1
A
2.72  
A2  
64  
103  
0.004  
0.004  
0.547  
0.008  
0.006  
0.551  
0.012  
0.008  
0.555  
0.791  
0.10  
0.10  
0.20  
0.15  
0.30  
0.20  
b
c
13.90  
14.00  
14.10  
20.10  
D
E
e
19.90  
20.00  
0.50  
0.783 0.787  
0.020  
HD  
D
H
D
17.20  
23.20  
0.669  
0.905  
0.677  
0.913  
0.685  
0.921  
17.40  
23.40  
0.95  
17.00  
23.00  
HE  
L
0.80  
1.60  
0.025  
0.031  
0.063  
0.037  
0.65  
39  
128  
1
L
0.08  
7
y
0.003  
7
1
38  
e
b
0
0
0
c
Note:  
A
1.Dimension D & E do not include interlead  
flash.  
2
1
A
2.Dimension b does not include dambar  
protrusion/intrusion  
.
3.Controlling dimension : Millimeter  
4.General appearance spec. should be based  
on final visual inspection spec.  
See Detail F  
Seating Plane  
A
L
y
L 1  
Detail F  
5. PCB layout please use the "mm".  
Winbond Electronics (H.K.) Ltd.  
Winbond Electronics North America Corp.  
Winbond Memory Lab.  
Winbond Microelectronics Corp.  
Winbond Systems Lab.  
2727 N. First Street, San Jose,  
CA 95134, U.S.A.  
Headquarters  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 886-3-5770066  
Rm. 803, World Trade Square, Tower II,  
123 Hoi Bun Rd., Kwun Tong,  
Kowloon, Hong Kong  
TEL: 852-27513100  
FAX: 852-27552064  
FAX: 886-3-5792646  
http://www.winbond.com.tw/  
TEL: 408-9436666  
FAX: 408-5441798  
Voice & Fax-on-demand: 886-2-27197006  
Taipei Office  
11F, No. 115, Sec. 3, Min-Sheng East Rd.,  
Taipei, Taiwan  
TEL: 886-2-27190505  
FAX: 886-2-27197502  
Note: All data and specifications are subject to change without notice.  
Please note that all data and specifications are subject to change without notice. All the  
trade marks of products and companies mentioned in this data sheet belong to their original  
owners.  
Publication Release Date: March 1999  
-152 -  
Revision A1  

相关型号:

W83977EF

WINBOND I/O
WINBOND

W83977EF-AW

WINBOND I/O
WINBOND

W83977EF-PW

WINBOND I/O
WINBOND

W83977EG

WINBOND ISA I/O
WINBOND

W83977EG-AW

These products are not designed for use in life support appliances
NUVOTEM TALEM

W83977F

PLUG & PLAY 1.0A COMPLIANT
WINBOND

W83977F-A

WINBOND I/O
WINBOND

W83977F-P

WINBOND I/O
WINBOND

W83977G-A

WINBOND I/O
WINBOND

W83977TF

WINBOND I/O
WINBOND

W83977TF(EOL)

W83877TF plus KBC. CIR. RTC
ETC

W83977TF-A

I/O chip disk drive adapter
WINBOND