W83977TF [WINBOND]

WINBOND I/O; WINBOND I / O
W83977TF
型号: W83977TF
厂家: WINBOND    WINBOND
描述:

WINBOND I/O
WINBOND I / O

文件: 总160页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W83977TF  
WINBOND I/O  
W83977TF Data Sheet Revision History  
Pages  
Dates  
Versi Version  
Main Contents  
on  
on Web  
1
2
n.a.  
05/20/97  
07/01/97  
0.50  
0.51  
First published.  
IV,V,6,7,14,49,5  
5,69-80,87-96,  
103,113, 117,  
118,122, 128,  
149  
Typo correction and data calibrated  
3
III,3,68,134,  
07/20/97  
0.60  
Explanation of OnNow/ security wake-up  
functions; Repagenating  
146,148; 64-67  
4
5
P101,101.1,102 11/18/97  
0.61  
0.62  
Register correction  
P1,3,49,62,64,  
67,71,73,74,  
100,117,119,  
120,129  
03/19/98  
Typo correction and data calibrated  
6
7
8
9
10  
Please note that all data and specifications are subject to change without notice. All  
the trade marks of products and companies mentioned in this data sheet belong to  
their respective owners.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or  
systems where malfunction of these products can reasonably be expected to result  
in personal injury. Winbond customers using or selling these products for use in such  
applications do so at their own risk and agree to fully indemnify Winbond for any  
damages resulting from such improper use or sales.  
W83977TF  
TABLE OF CONTENTS  
GENERAL DESCRIPTION ....................................................................................................... 1  
FEATURES.................................................................................................................................... 2  
PIN CONFIGURATION ............................................................................................................. 4  
1. PIN DESCRIPTION................................................................................................................ 5  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
HOST INTERFACE.....................................................................................................................................5  
GENERAL PURPOSE I/O PORT...............................................................................................................7  
SERIAL PORT INTERFACE......................................................................................................................8  
INFRARED INTERFACE...........................................................................................................................9  
MULTI-MODE PARALLEL PORT ...........................................................................................................9  
FDC INTERFACE......................................................................................................................................14  
KBC INTERFACE......................................................................................................................................15  
POWER PINS .............................................................................................................................................16  
ACPI INTERFACE.....................................................................................................................................16  
2. FDC FUNCTIONAL DESCRIPTION................................................................................17  
2.1  
W83977TF FDC .........................................................................................................................................17  
2.1.1 AT INTERFACE.............................................................................................................................17  
2.1.2 FIFO (DATA)..................................................................................................................................17  
2.1.3 DATA SEPARATOR.....................................................................................................................18  
2.1.4 WRITE PRECOMPENSATION ...................................................................................................18  
2.1.5 PERPENDICULAR RECORDING MODE.................................................................................18  
2.1.6 FDC CORE......................................................................................................................................19  
2.1.7 FDC COMMANDS ........................................................................................................................19  
REGISTER DESCRIPTIONS ...................................................................................................................29  
2.2.1 STATUS REGISTER A (SA REGISTER) (READ BASE ADDRESS + 0).............................29  
2.2.2 STATUS REGISTER B (SB REGISTER) (READ BASE ADDRESS + 1) .............................31  
2.2.3 DIGITAL OUTPUT REGISTER (DO REGISTER) (WRITE BASE ADDRESS + 2)............33  
2.2.4 TAPE DRIVE REGISTER (TD REGISTER) (READ BASE ADDRESS + 3) ........................33  
2.2.5 MAIN STATUS REGISTER (MS REGISTER) (READ BASE ADDRESS + 4)....................34  
2.2  
Publication Release Date: March 1998  
- I -  
Revision 0.62  
W83977TF  
2.2.6 DATA RATE REGISTER (DR REGISTER) (WRITE BASE ADDRESS + 4).......................34  
2.2.7 FIFO REGISTER (R/W BASE ADDRESS + 5)..........................................................................36  
2.2.8 DIGITAL INPUT REGISTER (DI REGISTER) (READ BASE ADDRESS + 7)....................38  
2.2.9 CONFIGURATION CONTROL REGISTER (CC REGISTER)  
(WRITE BASE ADDRESS + 7)...................................................................................................39  
3. UART PORT............................................................................................................................40  
3.1  
3.2  
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART A, UART B)..................40  
REGISTER ADDRESS..............................................................................................................................40  
3.2.1 UART CONTROL REGISTER (UCR) (READ/WRITE)...........................................................40  
3.2.2 UART STATUS REGISTER (USR) (READ/WRITE)...............................................................42  
3.2.3 HANDSHAKE CONTROL REGISTER (HCR) (READ/WRITE) ............................................43  
3.2.4 HANDSHAKE STATUS REGISTER (HSR) (READ/WRITE).................................................44  
3.2.5 UART FIFO CONTROL REGISTER (UFR) (WRITE ONLY).................................................45  
3.2.6 INTERRUPT STATUS REGISTER (ISR) (READ ONLY).......................................................46  
3.2.7 INTERRUPT CONTROL REGISTER (ICR) (READ/WRITE).................................................47  
3.2.8 PROGRAMMABLE BAUD GENERATOR (BLL/BHL) (READ/WRITE) .............................47  
3.2.9 USER-DEFINED REGISTER (UDR) (READ/WRITE).............................................................48  
4. INFRARED (IR) PORT.........................................................................................................49  
5. PARALLEL PORT ...............................................................................................................49  
5.1  
5.2  
PRINTER INTERFACE LOGIC...............................................................................................................49  
ENHANCED PARALLEL PORT (EPP)..................................................................................................50  
5.2.1 DATA SWAPPER ..........................................................................................................................51  
5.2.2 PRINTER STATUS BUFFER.......................................................................................................51  
5.2.3 PRINTER CONTROL LATCH AND PRINTER CONTROL SWAPPER...............................52  
5.2.4 EPP ADDRESS PORT...................................................................................................................52  
5.2.5 EPP DATA PORT 0-3....................................................................................................................53  
5.2.6 BIT MAP OF PARALLEL PORT AND EPP REGISTERS .......................................................53  
5.2.7 EPP PIN DESCRIPTIONS ............................................................................................................54  
5.2.8 EPP OPERATION..........................................................................................................................54  
EXTENDED CAPABILITIES PARALLEL (ECP) PORT.....................................................................55  
5.3.1 ECP REGISTER AND MODE DEFINITIONS...........................................................................55  
5.3.2 DATA AND ECPAFIFO PORT....................................................................................................56  
5.3.3 DEVICE STATUS REGISTER (DSR).........................................................................................56  
5.3.4 DEVICE CONTROL REGISTER (DCR) ....................................................................................57  
5.3  
Publication Release Date: March 1998  
- II -  
Revision 0.62  
W83977TF  
5.3.5 CFIFO (PARALLEL PORT DATA FIFO) MODE = 010...........................................................58  
5.3.6 ECPDFIFO (ECP DATA FIFO) MODE = 011............................................................................58  
5.3.7 TFIFO (TEST FIFO MODE) MODE = 110.................................................................................58  
5.3.8 CNFGA (CONFIGURATION REGISTER A) MODE = 111 ....................................................58  
5.3.9 CNFGB (CONFIGURATION REGISTER B) MODE = 111.....................................................58  
5.3.10 ECR (EXTENDED CONTROL REGISTER) MODE = ALL....................................................59  
5.3.11 BIT MAP OF ECP PORT REGISTERS.......................................................................................60  
5.3.12 ECP PIN DESCRIPTIONS............................................................................................................61  
5.3.13 ECP OPERATION..........................................................................................................................62  
5.3.14 FIFO OPERATION ........................................................................................................................62  
5.3.15 DMA TRANSFERS........................................................................................................................63  
5.3.16 PROGRAMMED I/O (NON-DMA) MODE................................................................................63  
EXTENSION FDD MODE (EXTFDD)...................................................................................................63  
EXTENSION 2FDD MODE (EXT2FDD) ..............................................................................................63  
5.4  
5.5  
6. KEYBOARD CONTROLLER.............................................................................................64  
6.1  
6.2  
6.3  
6.4  
6.5  
OUTPUT BUFFER ....................................................................................................................................64  
INPUT BUFFER.........................................................................................................................................64  
STATUS REGISTER.................................................................................................................................65  
COMMANDS .............................................................................................................................................65  
HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC .................................................67  
6.5.1 KB CONTROL REGISTER (LOGIC DEVICE 5, CR-F0).........................................................67  
6.5.2 PORT 92 CONTROL REGISTER (DEFAULT VALUE = 0X24)............................................67  
ONNOW / SECURITY KEYBOARD AND MOUSE WAKE-UP ......................................................68  
6.4  
7. GENERAL PURPOSE I/O....................................................................................................69  
7.1  
7.2  
BASIC I/O FUNCTIONS...........................................................................................................................71  
ALTERNATE I/O FUNCTIONS ..............................................................................................................73  
7.2.1 INTERRUPT STEERING..............................................................................................................73  
7.2.2 WATCH DOG TIMER OUTPUT.................................................................................................74  
7.2.3 POWER LED...................................................................................................................................74  
7.2.4 GENERAL PURPOSE ADDRESS DECODER..........................................................................74  
7.2.5 GENERAL PURPOSE WRITE STROBE....................................................................................74  
8. PLUG AND PLAY CONFIGURATION ............................................................................75  
8.1  
COMPATIBLE PNP...................................................................................................................................75  
8.1.1 EXTENDED FUNCTION REGISTERS......................................................................................75  
Publication Release Date: March 1998  
- III -  
Revision 0.62  
W83977TF  
8.1.2 EXTENDED FUNCTIONS ENABLE REGISTERS (EFERS) .................................................76  
8.1.3 EXTENDED FUNCTION INDEX REGISTERS (EFIRS), EXTENDED FUNCTION  
DATA REGISTERS(EFDRS) .......................................................................................................76  
9. ACPI REGISTERS FEATURES .........................................................................................77  
9.1  
9.2  
9.3  
SMI TO SCI/SCI TO SMI AND BUS MASTER ....................................................................................78  
POWER MANAGEMENT TIMER..........................................................................................................79  
ACPI REGISTERS (ACPIRS)...................................................................................................................80  
9.3.1 POWER MANAGEMENT 1 STATUS REGISTER 1 (PM1STS1)..........................................80  
9.3.2 POWER MANAGEMENT 1 STATUS REGISTER 2 (PM1STS2)..........................................81  
9.3.3 POWER MANAGEMENT 1 ENABLE REGISTER 1(PM1EN1) ............................................82  
9.3.4 POWER MANAGEMENT 1 ENABLE REGISTER 2 (PM1EN2) ...........................................82  
9.3.5 POWER MANAGEMENT 1 CONTROL REGISTER 1 (PM1CTL1)......................................83  
9.3.6 POWER MANAGEMENT 1 CONTROL REGISTER 2 (PM1CTL2)......................................83  
9.3.7 POWER MANAGEMENT 1 CONTROL REGISTER 3 (PM1CTL3)......................................84  
9.3.8 POWER MANAGEMENT 1 CONTROL REGISTER 4 (PM1CTL4)......................................84  
9.3.9 POWER MANAGEMENT 1 TIMER 1 (PM1TMR1) ................................................................85  
9.3.10 POWER MANAGEMENT 1 TIMER 2 (PM1TMR2) ................................................................85  
9.3.11 POWER MANAGEMENT 1 TIMER 3 (PM1TMR3) ................................................................86  
9.3.12 POWER MANAGEMENT 1 TIMER 4 (PM1TMR4) ................................................................87  
9.3.13 GENERAL PURPOSE EVENT 0 STATUS REGISTER 1 (GP0STS1)...................................87  
9.3.14 GENERAL PURPOSE EVENT 0 STATUS REGISTER 2 (GP0STS2)...................................88  
9.3.15 GENERAL PURPOSE EVENT 0 ENABLE REGISTER 1 (GP0EN1)....................................89  
9.3.16 GENERAL PURPOSE EVENT 0 ENABLE REGISTER 2 (GP0EN2)....................................89  
9.3.17 GENERAL PURPOSE EVENT 1 STATUS REGISTER 1 (GP1STS1)...................................90  
9.3.18 GENERAL PURPOSE EVENT 1 STATUS REGISTER 2 (GP1STS2)...................................90  
9.3.19 GENERAL PURPOSE EVENT 1 ENABLE REGISTER 1 (GP1EN1)....................................91  
9.3.20 GENERAL PURPOSE EVENT 1 ENABLE REGISTER 2 (GP1EN2)....................................91  
9.3.21 BIT MAP CONFIGURATION REGISTERS...............................................................................92  
10. SERIAL IRQ .........................................................................................................................93  
10.1 START FRAME .........................................................................................................................................94  
10.2 IRQ/DATA FRAME...................................................................................................................................94  
10.3 STOP FRAME ............................................................................................................................................94  
10.4 RESET AND INITIALIZATION..............................................................................................................95  
11. CONFIGURATION REGISTER.......................................................................................96  
Publication Release Date: March 1998  
- IV -  
Revision 0.62  
W83977TF  
11.1 CHIP (GLOBAL) CONTROL REGISTER..............................................................................................96  
11.2 LOGICAL DEVICE 0 (FDC)...................................................................................................................100  
11.3 LOGICAL DEVICE 1 (PARALLEL PORT)..........................................................................................103  
11.4 LOGICAL DEVICE 2 (UART A)¢) ........................................................................................................104  
11.5 LOGICAL DEVICE 3 (UART B) ...........................................................................................................104  
11.6 LOGICAL DEVICE 5 (KBC) ..................................................................................................................106  
11.7 LOGICAL DEVICE 7 (GP I/O PORT I).................................................................................................107  
11.8 LOGICAL DEVICE 8 (GP I/O PORT II) ...............................................................................................110  
11.9 LOGICAL DEVICE 9 (GP I/O PORT III)..............................................................................................114  
11.10 LOGICAL DEVICE A (ACPI) ................................................................................................................117  
12. SPECIFICATIONS............................................................................................................123  
12.1 ABSOLUTE MAXIMUM RATINGS ....................................................................................................123  
12.2 DC CHARACTERISTICS.......................................................................................................................123  
12.3 AC CHARACTERISTICS .......................................................................................................................127  
12.3.1 FDC: DATA RATE = 1 MB, 500 KB, 300 KB, 250 KB/SEC...............................................127  
12.3.2 UART/PARALLEL PORT........................................................................................................129  
12.3.3 PARALLEL PORT MODE PARAMETERS..........................................................................129  
12.3.4 EPP DATA OR ADDRESS READ CYCLE TIMING PARAMETERS..............................130  
12.3.5 EPP DATA OR ADDRESS WRITE CYCLE TIMING PARAMETERS ............................131  
12.3.6 PARALLEL PORT FIFO TIMING PARAMETERS..............................................................132  
12.3.7 ECP PARALLEL PORT FORWARD TIMING PARAMETERS.........................................132  
12.3.8 ECP PARALLEL PORT REVERSE TIMING PARAMETERS...........................................132  
12.3.9 KBC TIMING PARAMETERS................................................................................................133  
12.3.10 GPIO TIMING PARAMETERS................................................................................................134  
13. TIMING WAVEFORMS ..................................................................................................135  
13.1 FDC............................................................................................................................................................135  
13.2 UART/PARALLEL...................................................................................................................................136  
13.2.1 MODEM CONTROL TIMING ................................................................................................137  
13.3 PARALLEL PORT ...................................................................................................................................138  
13.3.1 PARALLEL PORT TIMING.....................................................................................................138  
13.3.2 EPP DATA OR ADDRESS READ CYCLE (EPP VERSION 1.9)......................................139  
13.3.3 EPP DATA OR ADDRESS WRITE CYCLE (EPP VERSION 1.9) ....................................140  
13.3.4 EPP DATA OR ADDRESS READ CYCLE (EPP VERSION 1.7)......................................141  
13.3.5 EPP DATA OR ADDRESS WRITE CYCLE (EPP VERSION 1.7) ....................................142  
13.3.6 PARALLEL PORT FIFO TIMING...........................................................................................142  
Publication Release Date: March 1998  
- V -  
Revision 0.62  
W83977TF  
13.3.7 ECP PARALLEL PORT FORWARD TIMING......................................................................143  
13.3.8 ECP PARALLEL PORT REVERSE TIMING........................................................................143  
13.4 KBC............................................................................................................................................................144  
13.4.1 WRITE CYCLE TIMING..........................................................................................................144  
13.4.2 READ CYCLE TIMING...........................................................................................................144  
13.4.3 SEND DATA TO K/B...............................................................................................................144  
13.4.4 RECEIVE DATA FROM K/B ..................................................................................................145  
13.4.5 INPUT CLOCK..........................................................................................................................145  
13.4.6 SEND DATA TO MOUSE.......................................................................................................145  
13.4.7 RECEIVE DATA FROM MOUSE ..........................................................................................145  
13.5 GPIO WRITE TIMING DIAGRAM .......................................................................................................146  
13.6 MASTER RESET (MR) TIMING...........................................................................................................146  
14. APPLICATION CIRCUITS.............................................................................................147  
14.1 PARALLEL PORT EXTENSION FDD.................................................................................................147  
14.2 PARALLEL PORT EXTENSION 2FDD...............................................................................................147  
14.3 FOUR FDD MODE..................................................................................................................................148  
15. ORDERING INFORMATION.........................................................................................148  
16. HOW TO READ THE TOP MARKING .......................................................................148  
17. PACKAGE DIMENSIONS...............................................................................................149  
Publication Release Date: March 1998  
- VI -  
Revision 0.62  
W83977TF  
WINBOND I/O  
GENERAL DESCRIPTION  
'
The W83977TF is an evolving product from Winbond s most popular I/O chip W83877F --- which  
integrates the disk drive adapter, serial port (UART), IrDA 1.0 SIR, parallel port, configurable plug-and-  
ACPI  
play registers for the whole chip --- plus additional powerful features:  
, 8042 keyboard controller  
with PS/2 mouse support, 23 general purpose I/O ports, full 16-bit address decoding, OnNow keyboard  
wake-up, OnNow mouse wake-up.  
The disk drive adapter functions of W83977TF include a floppy disk drive controller compatible with the  
industry standard 82077/ 765, data separator, write pre-compensation circuit, decode logic, data rate  
selection, clock generator, drive interface control logic, and interrupt and DMA logic. The wide range of  
functions integrated into the W83977TF greatly reduces the number of components required for  
interfacing with floppy disk drives. The W83977TF supports four 360K, 720K, 1.2M, 1.44M, or 2.88M  
disk drives and data transfer rates of 250 Kb/s, 300 Kb/s, 500 Kb/s,1 Mb/s, and 2 Mb/s.  
The W83977TF provides two high-speed serial communication ports (UARTs), one of which supports  
serial Infrared communication. Each UART includes a 16-byte send/receive FIFO, a programmable  
baud rate generator, complete modem control capability, and a processor interrupt system. Both  
UARTs provide legacy speed with baud rate up to 115.2k bps and also advanced speed with baud rates  
230k 460k  
, or  
921k bps  
which support higher speed modems.  
of  
,
The W83977TF supports one PC-compatible printer port (SPP), Bi-directional Printer port (BPP) and  
also Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP). Through the printer port  
interface pins, also available are: Extension FDD Mode and Extension 2FDD Mode allowing one or two  
external floppy disk drives to be connected.  
The configuration registers support mode selection, function enable/disable, and power down function  
selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature  
demand of Windows 95TM, which makes system resource allocation more efficient than ever.  
ACPI Advanced Configuration and Power Interface  
W83977TF provides functions that comply with  
(
),  
SMI  
SCI  
function pins.  
which includes support of legacy and ACPI power management through  
or  
W83977TF also has auto power management to reduce power consumption.  
The keyboard controller is based on 8042 compatible instruction set with a 2K Byte programmable ROM  
and a 256-Byte RAM bank. Keyboard BIOS firmware is available with optional AMIKEYTM 2, Phoenix  
-
MultiKey/42TM, or customer code.  
The W83977TF provides a set of flexible I/O control functions to the system designer through a set of  
General Purpose I/O ports. These GPIO ports may serve as simple I/O or may be individually  
configured to provide a predefined alternate function.  
Microsoft PC97 Hardware Design Guide  
. IRQs, DMAs, and  
W83977TF is made to fully comply with  
I/O space resource are flexible to adjust to meet ISA PnP requirement. Moreover W83977TF is made to  
'
ACPI  
DPM  
and (Device  
meet the specification of PC97 s requirement in the power management:  
Power Management).  
Another benifit is that W83977TF has the same pin assignment as W83977AF, W83977F, W83977ATF.  
This makes the design very flexible.  
Publication Release Date: April 1998  
-1-  
Preliminary Revision 0.62  
W83977TF  
PRELIMINARY  
FEATURES  
General  
·
Plug & Play 1.0A compatible  
· Support 13 IRQs, 4 DMA channels, full 16-bit address decoding  
·
·
·
Capable of ISA Bus IRQ Sharing  
Microsoft PC97  
Compliant with  
DPM  
Hardware Design Guide  
ACPI  
Support  
(Device Power Management),  
·
SCI  
signal issued from any of the 13 IQRs pins or GPIO xx  
Report ACPI status interrupt by  
· Programmable configuration settings  
·
Single 24/48 Mhz clock input  
FDC  
·
·
Compatible with IBM PC AT disk drive systems  
Variable write pre-compensation with track selectable capability  
· Support vertical recording format  
·
·
·
·
·
·
DMA enable logic  
16-byte data FIFOs  
Support floppy disk drives and tape drives  
Detects all overrun and underrun conditions  
Built-in address mark detection circuit to simplify the read electronics  
FDD anti-virus functions with software write protect and FDD write enable signal (write data signal was  
forced to be inactive)  
·
·
·
·
Support up to four 3.5-inch or 5.25-inch floppy disk drives  
Completely compatible with industry standard 82077  
360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate  
3-mode FDD, and its Win95 driver  
Support  
UART  
·
·
·
Two high-speed 16550 compatible UARTs with 16-byte send/receive FIFOs  
MIDI compatible  
Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop bits generation  
Internal diagnostic capabilities:  
·
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
Programmable baud generator allows division of 1.8461 Mhz and 24 Mhz by 1 to (216-1)  
·
921k bps  
Maximum baud rate up to  
for 14.769 Mhz and 1.5M bps for 24 Mhz  
Publication Release Date: April 1998  
Revision 0.62  
-2-  
W83977TF  
PRELIMINARY  
Infrared  
·
Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
·
Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
· Support S/W driver for Windows95TM and Windows98TM (MemphisTM  
)
Parallel Port  
·
·
·
·
·
Compatible with IBM parallel port  
Support PS/2 compatible bi-directional parallel port  
-
Support Enhanced Parallel Port (EPP) Compatible with IEEE 1284 specification  
-
Support Extended Capabilities Port (ECP) Compatible with IEEE 1284 specification  
Extension FDD mode supports disk drive B; and Extension 2FDD mode supports disk drives A and B  
through parallel port  
·
Enhanced printer port back-drive current protection  
Keyboard Controller  
8042 based with optional F/W from AMIKKEYTM-2, Phoenix MultiKey/42TM or customer code  
·
with 2K bytes of programmable ROM, and 256 bytes of RAM  
·
·
·
·
Asynchronous Access to Two Data Registers and One status Register  
Software compatibility with the 8042 and PC87911 microcontrollers  
Support PS/2 mouse  
Support port 92  
· Support both interrupt and polling modes  
·
·
·
Fast Gate A20 and Hardware Keyboard Reset  
8 Bit Timer/ Counter  
Support binary and BCD arithmetic  
· 6MHz, 8 MHz, 12 MHz, or 16 MHz operating frequency  
General Purpose I/O Ports  
·
·
23 programmable general purpose I/O ports; 3 dedicate, 20 optional  
General purpose I/O ports can serve as simple I/O ports, interrupt steering inputs, watching dog timer  
output, power LED output, infrared I/O pins, general purpose address decoder, KBC control I/O pins  
OnNow Funtions  
·
·
Keyboard wake-up by programmable keys  
Mouse wake-up by programmable buttons  
Package  
·
128-pin PQFP  
Publication Release Date: April 1998  
Revision 0.62  
-3 -  
W83977TF  
PRELIMINARY  
PIN CONFIGURATION  
/
/
P
A
N
P
A
N
S
S
W
O
U
/
W
I
,
S
M
N T  
,
I
,
I
I I  
R R R I  
I I I I I I I  
G
G
P
2
G
/
K
G
P
2
M
C
L
/
Q Q Q R R R R R R R R  
1 1 1 Q Q Q Q Q Q Q Q  
2 1 0 1 3 4 5 6 7 8 9  
A V A A A  
A
V
S
B
A
P P  
V
R
C
R
I
1
S 1 1 1  
1 A A A A A A A A A  
A
1 C  
S 4 3 2 1 C 0 9 8 7 6 5 4 3 2 1  
2
2
2
L I  
5
3
0
0
B
1
K
K
A
1
9 9  
9
8 8  
7 7  
7 7  
7 6  
6
6
1
1
9
9
8 8  
9 8  
8
7
8 8  
8 7 7  
7
7
6
6
5
9
9 9 9 9  
8
8
7
6
0
8 7  
1
6 5  
7 6  
4 3  
0 9  
0
0 9  
6 5 4 3 2  
0
3 2 1 0 9 8  
5
2 1  
8 7  
4
2 1 0  
64  
103  
104  
IRQ14/GP14  
IRQ15/GP15  
IOR  
VBAT  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
XTAL1  
VSS  
105  
106  
107  
108  
109  
110  
111  
112  
XTAL2  
IOW  
MDATA  
AEN  
KDATA  
IOCHRDY  
KBLOCK/GP13  
KBRST/GP12  
GA20/GP11  
VCC  
D0  
D1  
D2  
D3  
DCDB  
SOUTB/PEN48  
113  
D4  
D5  
114  
115  
116  
117  
118  
119  
120  
121  
122  
SINB  
VCC  
D6  
DTRB  
RTSB  
D7  
MR  
DSRB  
CTSB  
DACK0/GP16  
VSS  
DCDA  
SCI/DRQ0/GP17  
SOUTA/PENKBC  
SINA  
DACK1  
123  
124  
125  
126  
127  
DRQ1  
DTRA/PNPCSV  
RTSA/HEFRAS  
DSRA  
DACK2  
DRQ2  
CTSA  
DACK3  
DRQ3  
TC  
GP24  
128  
GP25  
2
3
1
1 1  
2 2  
2 2 2 2 2  
3 3  
3
3
1
1
1 1  
2
1
2
3
1
1 1  
3
3
8
3
7
4
/
7
3
1 2 3  
5
9 0  
8
6
8 9  
4 5 6 7 8  
2 3 4 5 6 7  
9 0 1 2  
5
4
6
0 1 2 3  
P
V
P
D
0
D
R
V
D
E
N
/
/
P
D
1
/
I
R
I
D
R
V
D
/
/
/
/
S
L
/
P P  
P
P P  
/
/ /  
/
/
/
V
C
L
K
I
/
/
/
W
/
/
B
U
S
Y
P
E
C
M
O
B
I
D
S I  
R
T
X
W
S D  
T I  
M
O
A
A D  
D D D D  
E A  
S
W
D
D
S
A
S
D H R  
T
D
S
B
N
D
E
X
L
E
C
T
C
C 7 6  
4
3 2  
N R F T R  
S 5  
S E P R  
D
E
R
I
I
K
K
R D B X  
A
A
K
0
A
T
A
T
N
N E  
N
P
C
H
G
D
1
0
,
G
P
1
0
,
/
S
C
I
Publication Release Date: April 1998  
Revision 0.62  
-4-  
W83977TF  
PRELIMINARY  
1. PIN DESCRIPTION  
Note: Please refer to Section 11.2 DC CHARACTERISTICS for details.  
I/O - TTL level bi-directional pin with 6 mA source-sink capability  
6t  
I/O - TTL level bi-directional pin with 8 mA source-sink capability  
8t  
I/O - CMOS level bi-directional pin with 8 mA source-sink capability  
8
I/O  
- TTL level bi-directional pin with 12 mA source-sink capability  
12t  
I/O - CMOS level bi-directional pin with 12 mA source-sink capability  
12  
I/O  
- CMOS level bi-directional pin with 16 mA source-sink capability with internal pull-up resistor  
16u  
I/OD  
- CMOS level bi-directional pin open drain output with 16 mA sink capability with internal pull-up resistor  
16u  
I/O  
- TTL level bi-directional pin with 24 mA source-sink capability  
24t  
OUT - TTL level output pin with 8 mA source-sink capability  
8t  
OUT  
- TTL level output pin with 12 mA source-sink capability  
12t  
OD - Open-drain output pin with 12 mA sink capability  
12  
OD - Open-drain output pin with 24 mA sink capability  
24  
IN - TTL level input pin  
t
IN - CMOS level input pin  
c
IN - CMOS level input pin with internal pull-up resitor  
cu  
IN - CMOS level Schmitt-triggered input pin  
cs  
IN - TTL level Schmitt-triggered input pin  
ts  
IN  
- TTL level Schmitt-triggered input pin with internal pull-up resistor  
tsu  
1.1 Host Interface  
SYMBOL  
PIN  
74-84  
86-89  
91  
I/O  
INt  
FUNCTION  
System address bus bits 0-10  
-
A0 A10  
A11-A14  
A15  
INt  
System address bus bits 11-14  
System address bus bit 15  
System data bus bits 0-5  
INt  
109-  
114  
I/O12t  
-
D0 D5  
116-  
117  
I/O12t  
System data bus bits 6-7  
-
D6 D7  
105  
106  
INts  
INts  
CPU I/O read signal  
IOR  
CPU I/O write signal  
IOW  
AEN  
107  
108  
INts  
System address bus enable  
IOCHRDY  
OD24  
In EPP Mode, this pin is the IO Channel Ready output to extend  
the host read/write cycle.  
MR  
118  
INts  
Master Reset; Active high; MR is low during normal operations.  
Publication Release Date: April 1998  
-5 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
1.1 Host Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
119  
INtsu  
DMA Channel 0 Acknowledge signal. (CR2C bit 5_4 = 00, default)  
DACK0  
GP16  
(WDTO)  
I/O12t  
General purpose I/O port 1bit 6. (CR2C bit 5_4 = 01)  
Alternate function from GP16: Watch dog timer output  
KBC P15 I/O port. (CR2C bit 5_4 = 10)  
P15  
I/O12t  
DRQ0  
121  
OUT12t DMA Channel 0 request signal. (CR2C bit 7_6 = 00, default)  
GP17  
I/O12t  
General purpose I/O port 1bit 7. (CR2C bit 7_6 = 01)  
Alternate Function from GP17: Power LED output.  
KBC P14 I/O port (CR2C bit 7_6 = 10)  
(PLEDO)  
P14  
SCI  
I/O12t  
OUT12t System Control Interrupt (CR2C bit 7_6 = 11)  
INts DMA Channel 1 Acknowledge signal  
OUT12t DMA Channel 1 request signal  
INts DMA Channel 2 Acknowledge signal  
OUT12t DMA Channel 2 request signal  
INts DMA Channel 3 Acknowledge signal  
OUT12t DMA Channel 3 request signal  
INts Terminal Count. When active, this pin indicates termination of a  
122  
DACK1  
DRQ1  
123  
124  
DACK2  
DRQ2  
125  
126  
DACK3  
DRQ3  
TC  
127  
128  
DMA transfer.  
IRQ1  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
99  
98  
OUT12t Interrupt request 1  
OUT12t Interrupt request 3  
OUT12t Interrupt request 4  
OUT12t Interrupt request 5  
OUT12t Interrupt request 6  
OUT12t Interrupt request 7  
OUT12t Interrupt request 8  
OUT12t Interrupt request 9  
OUT12t Interrupt request 10  
OUT12t Interrupt request 11  
OUT12t Interrupt request 12  
97  
96  
95  
94  
93  
92  
100  
101  
102  
Publication Release Date: April 1998  
Revision 0.62  
-6-  
W83977TF  
PRELIMINARY  
1.1 Host Interface, continued  
SYMBOL  
IRQ14  
PIN  
I/O  
FUNCTION  
103  
OUT12t Interrupt request 14. (CR2C bit 1_0 = 00, default)  
GP14  
I/O12t  
General purpose I/O port 1 bit 4. (CR2C bit 1_0 = 01)  
Alternate Function 1 from GP14: General purpose address  
decode output.  
GPACS  
(
)
(P17)  
Alternate Function 2 from GP14: KBC P17 I/O port.  
PLEDO  
OUT12t Power LED output. (CR2C bit 1_0 = 10)  
IRQ15  
GP15  
104  
OUT12t Interrupt request 15.(CR2C bit 3_2 = 00, default)  
I/O12t  
General purpose I/O port 1 bit 5. (CR2C bit 3_2 = 01)  
GPAWE  
(
)
Alternate Function 1 from GP15: General purpose address write  
enable output.  
(P12)  
Alternate Function 2 from GP15: KBC P12 I/O port.  
WDT  
OUT12t Watch-Dog timer output. (CR2C bit 3_2 = 10)  
CLKIN  
1
INt  
24 or 48 MHz clock input, selectable through bit 5 of CR24.  
1.2 General Purpose I/O Port  
SYMBOL  
GP20  
PIN  
I/O  
FUNCTION  
69  
I/O12t  
General purpose I/O port 2 bit 0.  
(KBRST)  
Alternate Function from GP20: Keyboard reset (KBC P20)  
70  
OUT12t  
SMI  
SMI  
For the power management, the  
is active low by the power  
SCI  
management events, that generate and  
(CR2B bit 4_3 = 00, default)  
in ACPI mode.  
GP21  
(P13)  
P16  
I/O12t  
I/O12t  
General purpose I/O port 2 bit 1. (CR2B bit 4_3 = 01)  
Alternate Function from GP21: KBC P13 I/O port.  
KBC P16 I/O port. (CR2B bit 4_3 = 10)  
72  
73  
OUT12t Panel Switch output. (CR2B bit 5 = 0, default)  
PANSWOUT  
GP22  
I/O12t  
General purpose I/O port 2 bit 2. (CR2B bit 5 = 1)  
Alternate Function from GP22: KBC P14 I/O port.  
(P14)  
IN12t  
Panel Switch input. (CR2B bit 7_6 = 00, default)  
PANSWIN  
GP23  
I/O12t  
General purpose I/O port 2 bit 3. (CR2B bit 7_6 = 01)  
(P15)  
Alternate Function from GP23: KBC P15 I/O port  
GP24  
(P16)  
40  
39  
I/O12t  
General purpose I/O port 2 bit 4 (CR2A bit 5_4 = 01)  
Alternate Function from GP24: KBC P16 I/O port  
P13  
I/O12t  
I/O12  
KBC P13 I/O port. (CR2A bit 5_4 = 10)  
GP25  
General purpose I/O port 2 bit 5.  
(GA20)  
Alternate Function from GP25: GATE A20 (KBC P21)  
Publication Release Date: April 1998  
Revision 0.62  
-7 -  
W83977TF  
PRELIMINARY  
1.3 Serial Port Interface  
SYMBOL  
PIN  
41  
I/O  
FUNCTION  
INt  
Clear To Send is the modem control input.  
CTSA  
CTSB  
48  
The function of these pins can be tested by reading Bit 4 of the  
handshake status register.  
42  
49  
INt  
Data Set Ready. An active low signal indicates the modem or data  
set is ready to establish a communication link and transfer data to  
the UART.  
DSRA  
DSRB  
43  
I/O8t  
UART A Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
RTSA  
During power-on reset, this pin is pulled down internally and is  
defined as HEFRAS, which provides the power-on value for CR26  
HEFRAS  
W
bit 6 (HEFRAS). A 4.7 k is recommended if intends to pull up.  
(select 370H as configuration I/O port¢s address)  
50  
44  
I/O8t  
I/O8t  
UART B Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
RTSB  
UART A Data Terminal Ready. An active low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRA  
During power-on reset, this pin is pulled down internally and is  
PNPCSV  
PNPCSV  
defined as  
, which provides the power-on value for CR24  
PNPCSV  
bit 0 (  
). A 4.7 kW is recommended if intends to pull up.  
(clear the default value of FDC, UARTs, and PRT)  
51  
I/O8t  
UART B Data Terminal Ready. An active low signal informs the  
modem or data set that controller is ready to communicate.  
DTRB  
45, 52  
46  
INt  
SINA  
SINB  
Serial Input. Used to receive serial data through the  
communication link.  
I/O8t  
UART A Serial Output. Used to transmit serial data out to the  
communication link.  
SOUTA  
During power-on reset, this pin is pulled down internally and is  
defined as PENKBC, which provides the power-on value for CR24  
bit 2 (ENKBC). A 4.7 kW resistor is recommended if intends to pull  
up. (enable KBC)  
PENKBC  
SOUTB  
PEN48  
53  
I/O8t  
INt  
UART B Serial Output. During power-on reset, this pin is pulled  
down internally and is defined as PEN48, which provides the  
W
power-on value for CR24 bit 6 (EN48). A 4.7 k resistor is  
recommended if intends to pull up.  
47  
54  
Data Carrier Detect. An active low signal indicates the modem or  
data set has detected a data carrier.  
DCDA  
DCDB  
Publication Release Date: April 1998  
-8-  
Revision 0.62  
W83977TF  
PRELIMINARY  
1.3 Serial Port Interface, continued  
SYMBOL  
RIA  
RIB  
PIN  
65  
I/O  
FUNCTION  
INt  
Ring Indicator. An active low signal indicates that a ring signal is  
being received from the modem or data set.  
66  
1.4 Infrared Interface  
SYMBOL  
IRRX  
IRTX  
PIN  
37  
I/O  
FUNCTION  
INcs  
Infrared Receiver input.  
38  
OUT12t Infrared Transmitter Output.  
1.5 Multi-Mode Parallel Port  
The following pins have alternate functions, which are controlled by CR28 and L3-CRF0.  
SYMBOL  
SLCT  
PIN  
I/O  
FUNCTION  
PRINTER MODE: SLCT  
18  
INt  
An active high input on this pin indicates that the printer is selected.  
This pin is pulled high internally. Refer to description of the  
parallel port for definition of this pin in ECP and EPP mode.  
OD12  
OD12  
INt  
WE2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; its function is the same as the WE  
pin of FDC.  
WE2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; it function is the same as  
WE  
the  
pin of FDC.  
PRINTER MODE: PE  
PE  
19  
An active high input on this pin indicates that the printer has  
detected the end of the paper. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in  
ECP and EPP mode.  
OD12  
OD12  
WD2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; its function is the same as the  
WD  
pin of FDC.  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as  
WD2  
WD  
the  
pin of FDC.  
Publication Release Date: April 1998  
Revision 0.62  
-9 -  
W83977TF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
BUSY  
PIN  
I/O  
FUNCTION  
21  
INt  
PRINTER MODE: BUSY  
An active high input indicates that the printer is not ready to receive  
data. This pin is pulled high internally. Refer to description of the  
parallel port for definition of this pin in ECP and EPP mode.  
MOB2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
MOB  
OD12  
OD12  
as the  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; the function of this pin is the  
pin of FDC.  
MOB2  
MOB  
same as the  
pin of FDC.  
22  
INt  
ACK  
PRINTER MODE:  
ACK  
An active low input on this pin indicates that the printer has  
received data and is ready to accept more data. This pin is pulled  
high internally. Refer to description of the parallel port for  
definition of this pin in ECP and EPP mode.  
DSB2  
EXTENSION FDD MODE:  
This pin is for the Extension FDD B; its functions is the same as the  
DSB  
OD12  
OD12  
pin of FDC.  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; it functions is the same as  
DSB  
DSB2  
the  
pin of FDC.  
ERR  
34  
INt  
PRINTER MODE:  
ERR  
An active low input on this pin indicates that the printer has  
encountered an error condition. This pin is pulled high internally.  
Refer to description of the parallel port for definition of this pin in  
ECP and EPP mode.  
HEAD2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; its function is the same as the  
HEAD  
OD12  
OD12  
pin of FDC.  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as  
HEAD2  
HEAD  
the  
pin of FDC.  
Publication Release Date: April 1998  
Revision 0.62  
-10-  
W83977TF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
32  
OD12  
SLIN  
PRINTER MODE:  
SLIN  
Output line for detection of printer selection. This pin is pulled high  
internally. Refer to description of the parallel port for definition of  
this pin in ECP and EPP mode.  
STEP2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; its function is the same as the  
STEP  
OD12  
pin of FDC.  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as  
STEP  
STEP2  
OD12  
OD12  
the  
pin of FDC.  
INIT  
33  
PRINTER MODE:  
INIT  
Output line for the printer initialization. This pin is pulled high  
internally. Refer to description of the parallel port for definition of  
this pin in ECP and EPP mode.  
DIR2  
EXTENSION FDD MODE:  
OD12  
DIR  
This pin is for Extension FDD B; its function is the same as the  
pin of FDC.  
DIR2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as  
DIR  
OD12  
OD12  
the  
pin of FDC.  
AFD  
35  
PRINTER MODE:  
AFD  
An active low output from this pin causes the printer to auto feed a  
line after a line is printed. This pin is pulled high internally. Refer  
to description of the parallel port for definition of this pin in ECP and  
EPP mode.  
EXTENSION FDD MODE: DRVDEN0  
OD12  
OD12  
This pin is for Extension FDD B; its function is the same as the  
DRVDEN0 pin of FDC.  
EXTENSION 2FDD MODE: DRVDEN0  
This pin is for Extension FDD A and B; its function is the same as  
the DRVDEN0 pin of FDC.  
Publication Release Date: April 1998  
-11 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
STB  
PIN  
I/O  
FUNCTION  
36  
OD12  
STB  
PRINTER MODE:  
An active low output is used to latch the parallel data into the  
printer. This pin is pulled high internally. Refer to description of the  
parallel port for definition of this pin in ECP and EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
PRINTER MODE: PD0  
31  
30  
29  
I/O24t  
PD0  
PD1  
PD2  
Parallel port data bus bit 0. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
INt  
INt  
INDEX2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
INDEX  
as the  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; the function of this pin is the  
INDEX  
pin of FDC. It is pulled high internally.  
INDEX2  
same as the  
pin of FDC. It is pulled high internally.  
I/O24t  
INt  
PRINTER MODE: PD1  
Parallel port data bus bit 1. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
TRAK02  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
TRAK0  
as the  
EXTENSION. 2FDD MODE:  
This pin is for Extension FDD A and B; the function of this pin is the  
TRAK0  
pin of FDC. It is pulled high internally.  
INt  
TRAK02  
same as the  
pin of FDC. It is pulled high internally.  
I/O24t  
INt  
PRINTER MODE: PD2  
Parallel port data bus bit 2. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
WP2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
as the WP pin of FDC. It is pulled high internally.  
INt  
WP2  
EXTENSION. 2FDD MODE:  
This pin is for Extension FDD A and B; the function of this pin is the  
WP  
same as the  
pin of FDC. It is pulled high internally.  
Publication Release Date: April 1998  
Revision 0.62  
-12-  
W83977TF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PD3  
PIN  
I/O  
FUNCTION  
28  
I/O24t  
PRINTER MODE: PD3  
Parallel port data bus bit 3. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
INt  
INt  
RDATA2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
RDATA  
as the  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; this function of this pin is the  
RDATA  
pin of FDC. It is pulled high internally.  
RDATA2  
same as the  
pin of FDC. It is pulled high internally.  
27  
I/O24t  
INt  
PRINTER MODE: PD4  
PD4  
Parallel port data bus bit 4. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
DSKCHG2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same  
DSKCHG  
as the  
pin of FDC. It is pulled high internally.  
DSKCHG2  
EXTENSION 2FDD MODE:  
INt  
This pin is for Extension FDD A and B; this function of this pin is the  
same as the DSKCHG pin of FDC. It is pulled high internally.  
PRINTER MODE: PD5  
26  
24  
I/O24t  
PD5  
PD6  
Parallel port data bus bit 5. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
-
-
I/O24t  
PRINTER MODE: PD6  
Parallel port data bus bit 6. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
MOA2  
EXTENSION. 2FDD MODE:  
OD24  
This pin is for Extension FDD A; its function is the same as the  
MOA  
pin of FDC.  
Publication Release Date: April 1998  
Revision 0.62  
-13 -  
W83977TF  
PRELIMINARY  
1.5 Multi-Mode Parallel Port, continued  
SYMBOL  
PD7  
PIN  
I/O  
FUNCTION  
23  
I/O24t  
PRINTER MODE: PD7  
Parallel port data bus bit 7. Refer to description of the parallel port  
for definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
-
DSA2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A; its function is the same as the  
DSA  
OD24  
pin of FDC.  
1.6 FDC Interface  
SYMBOL  
DRVDEN0  
DRVDEN1  
GP10  
PIN  
2
I/O  
FUNCTION  
OD24  
OD24  
IO24t  
Drive Density Select bit 0.  
3
Drive Density Select bit 1. (CR2A bit 1_0 = 00, default)  
General purpose I/O port 1 bit 0. (CR2A bit 1_0 = 01)  
Alternate Function from GP10: Interrupt channel input.  
KBC P12 I/O port. (CR2A bit 1_0 = 10)  
(IRQIN1)  
P12  
IO24t  
OUT12t System Control Interrupt (CR2A bit 1_0 = 11)  
SCI  
5
OD24  
Head select. This open drain output determines which disk drive  
head is active.  
HEAD  
Logic 1 = side 0  
Logic 0 = side 1  
9
OD24  
OD24  
Write enable. An open drain output.  
WE  
WD  
10  
Write data. This logic low open drain writes pre-compensation  
serial data to the selected FDD. An open drain output.  
11  
12  
OD24  
OD24  
Step output pulses. This active low open drain output produces a  
pulse to move the head to another track.  
STEP  
DIR  
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion  
Logic 0 = inward motion  
13  
14  
15  
OD24  
OD24  
OD24  
Motor B On. When set to 0, this pin enables disk drive 1. This is  
an open drain output.  
MOB  
DSA  
DSB  
Drive Select A. When set to 0, this pin enables disk drive A. This  
is an open drain output.  
Drive Select B. When set to 0, this pin enables disk drive B. This  
is an open drain output.  
Publication Release Date: April 1998  
-14-  
Revision 0.62  
W83977TF  
PRELIMINARY  
1.6 FDC Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
16  
OD24  
Motor A On. When set to 0, this pin enables disk drive 0. This is  
an open drain output.  
MOA  
4
INcs  
Diskette change. This signal is active low at power on and  
whenever the diskette is removed. This input pin is pulled up  
DSKCHG  
W
internally by a 1 K resistor. The resistor can be disabled by bit 7  
of L0-CRF0 (FIPURDWN).  
6
7
INcs  
INcs  
The read data input signal from the FDD. This input pin is pulled  
RDATA  
WP  
W
up internally by a 1 K resistor. The resistor can be disabled by  
bit 7 of L0-CRF0 (FIPURDWN).  
Write protected. This active low Schmitt input from the disk drive  
indicates that the diskette is write-protected. This input pin is  
W
pulled up internally by a 1 K resistor. The resistor can be  
disabled by bit 7 of L0-CRF0 (FIPURDWN).  
8
INcs  
INcs  
Track 0. This Schmitt-triggered input from the disk drive is active  
TRAK0  
INDEX  
low when the head is positioned over the outermost track.  
This  
W
input pin is pulled up internally by a 1 K resistor. The resistor  
can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
17  
This Schmitt-triggered input from the disk drive is active low when  
the head is positioned over the beginning of a track marked by an  
W
index hole. This input pin is pulled up internally by a 1 K resistor.  
The resistor can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
1.7 KBC Interface  
SYMBOL  
KDATA  
MDATA  
KCLK  
PIN  
59  
I/O  
FUNCTION  
I/OD16u Keyboard Data  
I/OD16u PS2 Mouse Data  
I/OD16u Keyboard Clock  
I/OD16u PS2 Mouse Clock  
60  
67  
68  
56  
MCLK  
GA20  
I/O12t  
I/O12t  
KBC GATE A20 (P21) Output. (CR2A bit 6 = 0, default)  
GP11  
General purpose I/O port 1 bit 1. (CR2A bit 6 = 1)  
(IRQIN2)  
Alternate Function from GP11: Interrupt channel input.  
KBRST  
GP12  
57  
I/O12t  
I/O12t  
W83C45 Keyboard Reset (P20) Output. (CR2A bit 7 = 0, default)  
General purpose I/O port 1 bit 2. (CR2A bit 7 = 1)  
(WDTO)  
Alternate Function 1 from GP12 : Watchdog timer output.  
Publication Release Date: April 1998  
-15 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
1.7 KBC Interface, continued  
SYMBOL  
KBLOCK  
GP13  
PIN  
58  
I/O  
INts  
FUNCTION  
W83C45 KINH (P17) Input. (CR2B bit 0 = 0, default)  
General purpose I/O port 1 bit 3. (CR2B bit 0 = 1)  
I/O16t  
1.8 POWER PINS  
SYMBOL  
PIN  
FUNCTION  
VCC  
20, 55, 85,  
115  
+5V power supply for the digital circuitry  
VSB  
71  
+5V stand-by power supply for the digital circuitry  
Ground  
GND  
25, 62, 90,  
120  
1.9 ACPI Interface  
SYMBOL  
VBAT  
PIN  
64  
I/O  
NA  
INC  
O8t  
FUNCTION  
battery voltage input  
XTAL1  
XTAL2  
63  
32.768Khz Clock Input  
61  
32.768Khz Clock Output  
Publication Release Date: April 1998  
Revision 0.62  
-16-  
W83977TF  
PRELIMINARY  
2. FDC FUNCTIONAL DESCRIPTION  
2.1 W83977TF FDC  
The floppy disk controller of the W83977TF integrates all of the logic required for floppy disk control.  
The FDC implements a PC/AT or PS/2 solution. All programmable options default to compatible  
values. The FIFO provides better system performance in multi-master systems. The digital data  
separator supports up to 2 M bits/sec data rate.  
The FDC includes the following blocks: AT interface, Precompensation, Data Rate Selection, Digital  
Data Separator, FIFO, and FDC Core.  
2.1.1 AT interface  
RD WR  
, A0-A3, IRQ, DMA control, and  
The interface consists of the standard asynchronous signals:  
,
a data bus. The address lines select between the configuration registers, the FIFO and control/status  
registers. This interface can be switched between PC/AT, Model 30, or PS/2 normal modes. The PS/2  
register sets are a superset of the registers found in a PC/AT.  
2.1.2 FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM and  
DIO bits in the Main Status Register.  
The FIFO defaults to disabled mode after any form of reset. This maintains PC/AT hardware  
compatibility. The default values can be changed through the CONFIGURE command. The advantage  
of the FIFO is that it allows the system a larger DMA latency without causing disk errors. The following  
tables give several examples of the delays with a FIFO. The data are based upon the following formula:  
´
m
THRESHOLD # (1/DATA/RATE) *8 - 1.5 S = DELAY  
FIFO THRESHOLD MAXIMUM DELAY TO SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
´
´
´
m m m  
16 S - 1.5 S = 14.5 S  
1
2
8
m
m
m
16 S - 1.5 S = 30.5 S  
m
m
m
16 S - 1.5 S = 6.5 S  
´
m
m
m
15 16 S - 1.5 S = 238.5 S  
MAXIMUM DELAY TO SERVICING AT 1M BPS  
Data Rate  
FIFO THRESHOLD  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
´
´
´
m m m  
8 S - 1.5 S = 6.5 S  
1
2
8
m
m
m
8 S - 1.5 S = 14.5 S  
m
m
m
8 S - 1.5 S = 62.5 S  
´
m
m
m
15 8 S - 1.5 S = 118.5 S  
Publication Release Date: April 1998  
Revision 0.62  
-17 -  
W83977TF  
PRELIMINARY  
At the start of a command the FIFO is always disabled and command parameters must be sent based  
upon the RQM and DIO bit settings in the main status register. When the FDC enters the command  
execution phase, it clears the FIFO of any data to ensure that invalid data are not transferred.  
An overrun and underrun will terminate the current command and the data transfer. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to  
remove the remaining data so that the result phase may be entered.  
DMA transfers are enabled with the SPECIFY command and are initiated by the FDC by activating the  
DACK  
DRQ pin during a data transfer command. The FIFO is enabled directly by asserting  
addresses need not be valid.  
and  
Note that if the DMA controller is programmed to function in verify mode a pseudo read is performed by  
DACK  
the FDC based only on  
. This mode is only available when the FDC has been configured into byte  
mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled the above operation is  
performed by using the new VERIFY command. No DMA operation is needed.  
2.1.3 Data Separator  
The function of the data separator is to lock onto the incoming serial read data. When a lock is achieved  
the serial front end logic of the chip is provided with a clock which is synchronized to the read data. The  
synchronized clock, called the Data Window, is used to internally sample the serial data portion of the  
bit cell, and the alternate state samples the clock portion. Serial to parallel conversion logic separates  
the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
The DDS circuit cycles once every 12 clock cycles ideally. Any data pulse input will be synchronized and  
then adjusted by immediate error adjustment. The control logic will generate RDD and RWD for every  
pulse input. During any cycle where no data pulse is present, the DDS cycles are based on speed. A  
digital integrator is used to keep track of the speed changes in the input data stream.  
2.1.4 Write Precompensation  
The write precompensation logic is used to minimize bit shifts in the RDDATA stream from the disk  
drive. Shifting of bits is a known phenomenon in magnetic media and is dependent on the disk media  
and the floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known. Depending upon the pattern, the bit is shifted either early or late  
relative to the surrounding bits.  
2.1.5 Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented vertically.  
This scheme packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks and can read and write  
perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. The perpendicular mode requires a 1 Mbps data rate for the FDC. At this data rate the  
FIFO eases the host interface bottleneck due to the speed of data transfer to or from the disk.  
Publication Release Date: April 1998  
-18-  
Revision 0.62  
W83977TF  
PRELIMINARY  
2.1.6 FDC Core  
The W83977TF FDC is capable of performing twenty commands. Each command is initiated by a multi-  
byte transfer from the microprocessor. The result can also be a multi-byte transfer back to the  
microprocessor. Each command consists of three phases: command, execution, and result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information is provided to  
the microprocessor.  
2.1.7 FDC Commands  
Command Symbol Descriptions:  
C:  
D:  
Cylinder number 0 - 256  
Data Pattern  
DIR:  
Step Direction  
DIR = 0, step out  
DIR = 1, step in  
Disk Drive Select 0  
Disk Drive Select 1  
Data Length  
DS0:  
DS1:  
DTL:  
EC:  
Enable Count  
EOT:  
EFIFO:  
EIS:  
End of Track  
Enable FIFO  
Enable Implied Seek  
End of track  
EOT:  
FIFOTHR: FIFO Threshold  
GAP:  
GPL:  
H:  
Gap length selection  
Gap Length  
Head number  
HDS:  
HLT:  
HUT:  
LOCK:  
MFM:  
MT:  
Head number select  
Head Load Time  
Head Unload Time  
Lock EFIFO, FIFOTHR, PTRTRK bits prevent affected by software reset  
MFM or FM Mode  
Multitrack  
N:  
NCN:  
ND:  
The number of data bytes written in a sector  
New Cylinder Number  
Non-DMA Mode  
OW:  
PCN:  
POLL:  
Overwritten  
Present Cylinder Number  
Polling Disable  
PRETRK: Precompensation Start Track Number  
Publication Release Date: April 1998  
Revision 0.62  
-19 -  
W83977TF  
PRELIMINARY  
R:  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sector/per cylinder  
Skip deleted data address mark  
Step Rate Time  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
SK:  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Write gate alters timing of WE  
(1) Read Data  
PHASE  
R/W  
W
D7  
D6 D5 D4  
D3  
D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
1
0
Command codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
R
Sector ID information after  
command execution  
Publication Release Date: April 1998  
Revision 0.62  
-20-  
W83977TF  
PRELIMINARY  
(2) Read Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
0
1
0
0
Command codes  
W
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: April 1998  
Revision 0.62  
-21 -  
W83977TF  
PRELIMINARY  
(3) Read A Track  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
W
W
W
W
W
W
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior to  
command execution  
Execution  
Result  
Data transfer between the  
FDD and system; FDD reads  
contents of all cylinders from  
index hole to EOT  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: April 1998  
Revision 0.62  
-22-  
W83977TF  
PRELIMINARY  
(4) Read ID  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
0
1
0
Command codes  
W
HDS DS1 DS0  
Execution  
Result  
The first correct ID  
information on the cylinder  
is stored in Data Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
Disk status after the  
command has been  
completed  
R
R
(5) Verify  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
Execution  
Result  
No data transfer takes  
place  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: April 1998  
Revision 0.62  
-23 -  
W83977TF  
PRELIMINARY  
(6) Version  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
Command code  
R
Enhanced controller  
(7) Write Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
MT MFM  
REMARKS  
Command  
0
0
0
1
0
1
Command codes  
W
0
0
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to Command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
Command execution  
Sector ID information after  
Command execution  
Publication Release Date: April 1998  
Revision 0.62  
-24-  
W83977TF  
PRELIMINARY  
(8) Write Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
1
0
0
0
1
Command codes  
W
0
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: April 1998  
Revision 0.62  
-25 -  
W83977TF  
PRELIMINARY  
(9) Format A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
Command codes  
HDS DS1 DS0  
---------------------- N ------------------------  
--------------------- SC -----------------------  
--------------------- GPL ---------------------  
---------------------- D ------------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector  
Input Sector Parameters  
Repeat:  
Result  
Status information after  
command execution  
R
R
R
R
R
R
(10) Recalibrate  
PHASE  
R/W D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
0
0
0
0
1
1
1
Command codes  
0
0
DS1 DS0  
Execution  
Head retracted to Track 0  
Interrupt  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
R
0
0
0
0
1
0
0
0
Command code  
---------------- ST0 -------------------------  
---------------- PCN -------------------------  
Status information at the end  
of each seek operation  
R
Publication Release Date: April 1998  
Revision 0.62  
-26-  
W83977TF  
PRELIMINARY  
(12) Specify  
PHASE  
R/W D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
W
0
0
0
0
0
0
1
1
Command codes  
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
(13) Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
1
0
1
1
1
Command codes  
W
HDS DS1 DS0  
W
-------------------- NCN -----------------------  
Execution  
R
Head positioned over proper  
cylinder on diskette  
(14) Configure  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
W
0
W
0
EIS EFIFO POLL | ------ FIFOTHR ----|  
W
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
(15) Relative Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
1
0
DIR  
0
0
0
0
0
1
0
1
1
1
Command codes  
W
HDS DS1 DS0  
W
| -------------------- RCN ---------------------------- |  
Publication Release Date: April 1998  
Revision 0.62  
-27 -  
W83977TF  
PRELIMINARY  
(16) Dumpreg  
PHASE  
Command  
Result  
R/W  
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
1
1
0
Registers placed in FIFO  
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
R
R
R
R
R
R
R
R
R
(17) Perpendicular Mode  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
1
0
0
1
0
Command Code  
W
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
LOCK 0  
0
0
1
0
0
1
0
0
0
0
Command Code  
R
0
0
LOCK  
0
(19) Sense Drive Status  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
0
1
0
0
Command Code  
W
0
HDS DS1 DS0  
Result  
R
---------------- ST3 -------------------------  
Status information about  
disk drive  
(20) Invalid  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
------------- Invalid Codes -----------------  
Invalid codes (no operation-  
FDC goes to standby state)  
Result  
R
-------------------- ST0 ----------------------  
ST0 = 80H  
Publication Release Date: April 1998  
Revision 0.62  
-28-  
W83977TF  
PRELIMINARY  
2.2 Register Descriptions  
There are several status, data, and control registers in W83977TF. These registers are defined below:  
ADDRESS  
REGISTER  
OFFSET  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
2.2.1 Status Register A (SA Register) (Read base address + 0)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2 mode,  
the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP  
DRV2  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRV2  
(Bit 6):  
0
1
A second drive has been installed  
A second drive has not been installed  
STEP (Bit 5):  
STEP  
This bit indicates the complement of  
output.  
TRAK0  
(Bit 4):  
TRAK0  
This bit indicates the value of  
HEAD (Bit 3):  
input.  
Publication Release Date: April 1998  
Revision 0.62  
-29 -  
W83977TF  
PRELIMINARY  
HEAD  
output.  
This bit indicates the complement of  
output.  
0
1
side 0  
side 1  
INDEX  
(Bit 2):  
INDEX  
This bit indicates the value of  
WP  
(Bit 1):  
0disk is write-protected  
1disk is not write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
outward direction  
inward direction  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP F/F  
DRQ  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRQ (Bit 6):  
This bit indicates the value of DRQ output pin.  
STEP F/F (Bit 5):  
STEP  
This bit indicates the complement of latched  
output.  
TRAK0 (Bit 4):  
TRAK0  
output.  
This bit indicates the complement of  
input.  
HEAD  
(Bit 3):  
HEAD  
This bit indicates the value of  
0
1
side 1  
side 0  
Publication Release Date: April 1998  
Revision 0.62  
-30-  
W83977TF  
PRELIMINARY  
INDEX (Bit 2):  
INDEX  
This bit indicates the complement of  
output.  
WP (Bit 1):  
0
1
disk is not write-protected  
disk is write-protected  
DIR  
(Bit 0)  
This bit indicates the direction of head movement.  
0
1
inward direction  
outward direction  
2.2.2 Status Register B (SB Register) (Read base address + 1)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2 mode,  
the bit definitions for this register are as follows:  
2
1
7
1
6
5
4
3
0
1
MOT EN A  
MOT EN B  
WE  
RDATA Toggle  
WDATA Toggle  
Drive SEL0  
Drive SEL0 (Bit 5):  
This bit indicates the status of DO REGISTER bit 0 (drive select bit 0).  
WDATA Toggle (Bit 4):  
WD  
This bit changes state at every rising edge of the  
output pin.  
RDATA Toggle (Bit 3):  
RDATA  
This bit changes state at every rising edge of the  
output pin.  
WE (Bit 2):  
WE  
This bit indicates the complement of the  
output pin.  
MOT EN B (Bit 1)  
MOB  
MOA  
This bit indicates the complement of the  
output pin.  
output pin.  
MOT EN A (Bit 0)  
This bit indicates the complement of the  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
Publication Release Date: April 1998  
Revision 0.62  
-31 -  
W83977TF  
PRELIMINARY  
2
1
7
6
5
4
3
0
DSC  
DSD  
WE F/F  
RDATA F/F  
WD F/F  
DSA  
DSB  
DRV2  
DRV2  
(Bit 7):  
0
1
A second drive has been installed  
A second drive has not been installed  
DSB  
(Bit 6):  
DSB  
DSA  
This bit indicates the status of  
output pin.  
output pin.  
DSA  
(Bit 5):  
This bit indicates the status of  
WD F/F(Bit 4):  
WD  
WD  
output  
This bit indicates the complement of the latched  
pin.  
output pin at every rising edge of the  
RDATA F/F(Bit 3):  
RDATA  
This bit indicates the complement of the latched  
output pin .  
WE F/F (Bit 2):  
WE  
This bit indicates the complement of latched  
output pin.  
DSD  
(Bit 1):  
0
1
Drive D has been selected  
Drive D has not been selected  
DSC  
(Bit 0):  
0
1
Drive C has been selected  
Drive C has not been selected  
Publication Release Date: April 1998  
Revision 0.62  
-32-  
W83977TF  
PRELIMINARY  
2.2.3 Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register controlling drive motors, drive selection, DRQ/IRQ  
enable, and FDC resetting. All the bits in this register are cleared by the MR pin. The bit definitions are  
as follows:  
7
6
3
1-0  
5
4
2
Drive Select: 00 select drive A  
01 select drive B  
10 select drive C  
11 select drive D  
Floppy Disk Controller Reset  
Active low resets FDC  
DMA and INT Enable  
Active high enable DRQ/IRQ  
Motor Enable A. Motor A on when active high  
Motor Enable B. Motor B on when active high  
Motor Enable C. Motor C on when active high  
Motor Enable D. Motor D on when active high  
2.2.4 Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information of the  
floppy disk drive. In normal floppy mode, this register includes only bit 0 and 1. The bit definitions are as  
follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
X
Tape sel 0  
Tape sel 1  
If three mode FDD function is enabled (EN3MODE = 1 in Logical Device 0 CRF0 bit:0), the bit definitions  
are as follows:  
2
1
7
6
5
4
3
0
Tape Sel 0  
Tape Sel 1  
Floppy boot drive 0  
Floppy boot drive 1  
Drive type ID0  
Drive type ID1  
Media ID0  
Media ID1  
Publication Release Date: April 1998  
Revision 0.62  
-33 -  
W83977TF  
PRELIMINARY  
Media ID1 Media ID0 (Bit 7, 6):  
These two bits are read only. These two bits reflect the value of Logical Device 0 CRF1 bit 4,5.  
Drive type ID1 Drive type ID0 (Bit 5, 4):  
These two bits reflect two of the bits of Logical Device 0 CRF2. Which two bits are reflected depends on  
the last drive selected in the DO REGISTER.  
Floppy Boot drive 1, 0 (Bit 3, 2):  
These two bits reflect the value of Logical Device 0 CRF1 bit 7,6.  
Tape Sel 1, Tape Sel 0 (Bit 1, 0):  
These two bits assign a logical drive number to the tape drive. Drive 0 is not available as a tape drive  
and is reserved as the floppy disk boot drive.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
2.2.5 Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
6
0
7
5
4
3
2
1
FDD 0 Busy, (D0B = 1), FDD number 0 is in the SEEK mode.  
FDD 1 Busy, (D1B = 1), FDD number 1 is in the SEEK mode.  
FDD 2 Busy, (D2B = 1), FDD number 2 is in the SEEK mode.  
FDD 3 Busy, (D3B = 1), FDD number 3 is in the SEEK mode.  
FDC Busy, (CB). A read or write command is in the process when CB = HIGH.  
Non-DMA mode, the FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
Transition to LOW state indicates execution phase has ended.  
DATA INPUT/OUTPUT, (DIO). If DIO= HIGH then transfer is from Data Register to the processor.  
If DIO = LOW then transfer is from processor to Data Register.  
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or receive data to or from the processor.  
2.2.6 Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. The data rate of the  
FDC is programmed by the CC REGISTER for PC-AT and PS/2 Model 30 and PS/2 mode, and not by  
the DR REGISTER. The real data rate is determined by the most recent write to either of the DR  
REGISTER or CC REGISTER.  
Publication Release Date: April 1998  
-34-  
Revision 0.62  
W83977TF  
PRELIMINARY  
1
7
6
5
0
4
3
2
0
DRATE0  
DRATE1  
PRECOMP0  
PRECOMP1  
PRECOMP2  
POWER DOWN  
S/W RESET  
S/W RESET (Bit 7):  
This bit is the software reset bit.  
POWER-DOWN (Bit 6):  
0
1
FDC in normal mode  
FDC in power-down mode  
PRECOMP2 PRECOMP1 PRECOMP0 (Bit 4, 3, 2):  
These three bits select the value of write precompensation. The following tables show the  
precompensation values for the combination of these bits.  
PRECOMP  
PRECOMPENSATION DELAY  
2
1
0
250K - 1 Mbps  
Default Delays  
41.67 nS  
2 Mbps Tape drive  
Default Delays  
20.8 nS  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
83.34 nS  
41.17 nS  
125.00 nS  
62.5nS  
166.67 nS  
83.3 nS  
208.33 nS  
104.2 nS  
250.00 nS  
125.00 nS  
0.00 nS (disabled)  
0.00 nS (disabled)  
Publication Release Date: April 1998  
Revision 0.62  
-35 -  
W83977TF  
PRELIMINARY  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 nS  
125 nS  
125 nS  
41.67nS  
20.8 nS  
2 MB/S  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC and reduced write current control.  
RWC  
RWC  
RWC  
= 1  
00 500 KB/S (MFM), 250 KB/S (FM),  
01 300 KB/S (MFM), 150 KB/S (FM),  
10 250 KB/S (MFM), 125 KB/S (FM),  
= 1  
= 0  
= 0  
RWC  
11 1 MB/S (MFM), Illegal (FM),  
The 2 MB/S data rate for Tape drive is only supported by setting 01 to DRATE1 and DRATE0 bits, as  
well as setting 10 to DRT1 and DRT0 bits which are two of the Configure Register CRF4 or CRF5 bits in  
logic device 0. Please refer to the function description of CRF4 or CRF5 and data rate table for  
individual data rates setting.  
2.2.7 FIFO Register (R/W base address + 5)  
The Data Register consists of four status registers in a stack with only one register presented to the data  
bus at a time. This register stores data, commands, and parameters and provides diskette-drive status  
information. Data bytes are passed through the data register to program or obtain results after a  
command. In the W83977TF, this register defaults to FIFO disabled mode after reset. The FIFO can  
change its value and enable its operation through the CONFIGURE command.  
Status Register 0 (ST0)  
7-6  
5
3
2
1-0  
4
US1, US0 Drive Select:  
00 Drive A selected  
01 Drive B selected  
10 Drive C selected  
11 Drive D selected  
HD Head address:  
1 Head selected  
0 Head selected  
NR Not Ready:  
1 Drive is not ready  
0 Drive is ready  
EC Equipment Check:  
1 When a fault signal is received from the FDD or the track  
0 signal fails to occur after 77 step pulses  
0 No error  
SE Seek end:  
1 seek end  
0 seek error  
IC Interrupt Code:  
00 Normal termination of command  
01 Abnormal termination of command  
10 Invalid command issue  
11 Abnormal termination because the ready signal from FDD changed state during command execution  
Publication Release Date: April 1998  
-36-  
Revision 0.62  
W83977TF  
PRELIMINARY  
Status Register 1 (ST1)  
7
6
5
4
3
2
1
0
Missing Address Mark. 1 When the FDC cannot detect the data address mark  
or the data address mark has been deleted.  
NW (Not Writable). 1 If a write Protect signal is detected from the diskette drive during  
execution of write data.  
ND (No DATA). 1 If specified sector cannot be found during execution of a read, write or verifly data.  
Not used. This bit is always 0.  
OR (Over Rum). 1 If the FDC is not serviced by the host system within a certain time interval during data transfer.  
DE (data Error).1 When the FDC detects a CRC error in either the ID field or the data field.  
Not used. This bit is always 0.  
EN (End of track). 1 When the FDC tries to access a sector beyond the final sector of a cylinder.  
Status Register 2 (ST2)  
7
1
0
4
3
2
6
5
MD (Missing Address Mark in Data Field).  
1 If the FDC cannot find a data address mark  
(or the address mark has been deleted)  
when reading data from the media  
0 No error  
BC (Bad Cylinder)  
1 Bad Cylinder  
0 No error  
SN (Scan Not satisfied)  
1 During execution of the Scan command  
0 No error  
SH (Scan Equal Hit)  
1 During execution of the Scan command, if the equal condition is satisfied  
0 No error  
WC (Wrong Cylinder)  
1 Indicates wrong Cylinder  
DD (Data error in the Data field)  
1 If the FDC detects a CRC error in the data field  
0 No error  
CM (Control Mark)  
1 During execution of the read data or scan command  
0 No error  
Not used. This bit is always 0  
Status Register 3 (ST3)  
6
4
2
1
0
7
5
3
US0 Unit Select 0  
US1 Unit Select 1  
HD Head Address  
TS Two-Side  
TO Track 0  
RY Ready  
WP Write Protected  
FT Fault  
Publication Release Date: April 1998  
Revision 0.62  
-37 -  
W83977TF  
PRELIMINARY  
2.2.8 Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit read-only register used for diagnostic purposes. In a PC/XT or AT  
,
DSKCHG  
only Bit 7 is checked by the BIOS. When the register is read, Bit 7 shows the complement of  
while other bits of the data bus remain in tri-state. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
x x x  
x x x  
x
Reserved for the hard disk controller  
x
During a read of this register, these bits are in tri-state  
DSKCHG  
In the PS/2 mode, the bit definitions are as follows:  
7
6
1
5
4
3
1
2
0
1
1
1
HIGH DENS  
DRATE0  
DRATE1  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the complement of the  
DSKCHG  
input.  
Bit 6-3: These bits are always a logic 1 during a read.  
DRATE1 DRATE0 (Bit 2, 1):  
These two bits select the data rate of the FDC. Refer to the DR register bits 1 and 0 for the settings  
corresponding to the individual data rates.  
HIGH DENS  
(Bit 0):  
0
1
500 KB/S or 1 MB/S data rate (high density FDD)  
250 KB/S or 300 KB/S data rate  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
7
6
0
5
0
4
3
2
0
1
0
DRATE0  
DRATE1  
NOPREC  
DMAEN  
DSKCHG  
DSKCHG (Bit 7):  
Publication Release Date: April 1998  
Revision 0.62  
-38-  
W83977TF  
PRELIMINARY  
DSKCHG  
This bit indicates the status of  
input.  
Bit 6-4: These bits are always a logic 1 during a read.  
DMAEN (Bit 3):  
This bit indicates the value of DO REGISTER bit 3.  
NOPREC (Bit 2):  
This bit indicates the value of CC REGISTER NOPREC bit.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
2.2.9 Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In the PC/AT and PS/2 mode, the bit definitions are as  
follows:  
4
2
3
1
6
5
0
7
x
x
x
x
x
x
DRATE0  
DRATE1  
X: Reserved  
Bit 7-2: Reserved. These bits should be set to 0.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
DRATE0  
DRATE1  
NOPREC  
:
X Reserved  
Bit 7-3: Reserved. These bits should be set to 0.  
NOPREC (Bit 2):  
This bit indicates no precompensation. It has no function and can be set by software.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
Publication Release Date: April 1998  
Revision 0.62  
-39 -  
W83977TF  
PRELIMINARY  
3. UART PORT  
3.1 Universal Asynchronous Receiver/Transmitter (UART A, UART B)  
The UARTs are used to convert parallel data into serial format on the transmit side and convert serial  
data to parallel format on the receiver side. The serial format, in order of transmission and reception, is  
a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half (five-bit  
format only) or two stop bits. The UARTs are capable of handling divisors of 1 to 65535 and producing  
a 16x clock for driving the internal transmitter logic. Provisions are also included to use this 16x clock to  
drive the receiver logic. The UARTs also support the MIDI data rate. Furthermore, the UARTs also  
include complete modem control capability and a processor interrupt system that may be software  
trailed to the computing time required to handle the communication link. The UARTs have a FIFO  
mode to reduce the number of interrupts presented to the CPU. In each UART, there are 16-byte FIFOs  
for both receive and transmit mode.  
3.2 Register Address  
3.2.1 UART Control Register (UCR) (Read/Write)  
The UART Control Register controls and defines the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
5
4
2
6
7
3
0
1
Data length select bit 0 (DLS0)  
Data length select bit 1(DLS1)  
Multiple stop bits enable (MSBE)  
Parity bit enable (PBE)  
Even parity enable (EPE)  
Parity bit fixed enable (PBFE)  
Set silence enable (SSE)  
Baudrate divisor latch access bit (BDLAB)  
Bit 7: BDLAB. When this bit is set to a logical 1, designers can access the divisor (in 16-bit binary format)  
from the divisor latches of the baudrate generator during a read or write operation. When this bit  
is reset, the Receiver Buffer Register, the Transmitter Buffer Register, or the Interrupt Control  
Register can be accessed.  
Bit 6: SSE. A logical 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is  
affected by this bit; the transmitter is not affected.  
Bit 5: PBFE. When PBE and PBFE of UCR are both set to a logical 1,  
(1) if EPE is logical 1, the parity bit is fixed as logical 0 to transmit and check.  
(2) if EPE is logical 0, the parity bit is fixed as logical 1 to transmit and check.  
Publication Release Date: March 1998  
40  
-
-
Revision 0.62  
W83977TF  
PRELIMINARY  
TABLE 3-1 UART Register Bit Map  
Bit Number  
Register Address Base  
0
1
2
3
4
5
6
7
RX Data  
Bit 0  
RX Data  
Bit 1  
RX Data  
Bit 2  
RX Data  
Bit 3  
RX Data  
Bit 4  
RX Data  
Bit 5  
RX Data  
Bit 6  
RX Data  
Bit 7  
+ 0  
Receiver  
Buffer  
Register  
(Read Only)  
RBR  
BDLAB = 0  
TX Data  
Bit 0  
TX Data  
Bit 1  
TX Data  
Bit 2  
TX Data  
Bit 3  
TX Data  
Bit 4  
TX Data  
Bit 5  
TX Data  
Bit 6  
TX Data  
Bit 7  
+ 0  
Transmitter  
Buffer Register  
(Write Only)  
TBR  
ICR  
BDLAB = 0  
RBR Data  
Ready  
Interrupt  
Enable  
TBR  
Empty  
Interrupt  
Enable  
USR  
Interrupt  
Enable  
HSR  
Interrupt  
Enable  
0
0
0
0
+ 1  
Interrupt  
Control  
Register  
BDLAB = 0  
(EUSRI)  
(EHSRI)  
(ERDRI)  
(ETBREI)  
"0" if Interrupt  
Pending  
Interrupt  
Status  
Interrupt  
Status  
Interrupt  
Status  
0
0
FIFOs  
Enabled  
**  
FIFOs  
Enabled  
**  
+ 2  
+ 2  
Interrupt Status ISR  
Register  
(Read Only)  
Bit (0)  
Bit (1)  
Bit (2)**  
FIFO  
Enable  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Reserved  
Reversed  
RX  
Interrupt  
Active Level Active Level  
(LSB)  
RX  
Interrupt  
UART FIFO  
Control  
Register  
UFR  
UCR  
(MSB)  
(Write Only)  
Data  
Length  
Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Enable  
Even  
Parity  
Enable  
Parity  
Bit Fixed  
Enable  
Set  
Silence  
Enable  
Baudrate  
Divisor  
Latch  
Access Bit  
(BDLAB)  
+ 3  
UART Control  
Register  
(MSBE)  
(PBE)  
(EPE)  
PBFE)  
(SSE)  
(DLS0)  
(DLS1)  
Data  
Terminal  
Ready  
Request  
to  
Send  
(RTS)  
Loopback  
RI  
Input  
IRQ  
Enable  
Internal  
Loopback  
Enable  
0
0
0
+ 4  
+ 5  
Handshake  
Control  
Register  
HCR  
USR  
HSR  
(DTR)  
RBR Data  
Ready  
Overrun  
Error  
Parity Bit  
Error  
No Stop  
Bit  
Error  
Silent  
Byte  
Detected  
(SBD)  
TBR  
Empty  
TSR  
Empty  
RX FIFO  
Error  
Indication  
(RFEI) **  
UART Status  
Register  
(RDR)  
(OER)  
(PBER)  
(TBRE)  
(TSRE)  
(NSER)  
CTS  
Toggling  
DSR  
Toggling  
RI Falling  
Edge  
DCD  
Toggling  
Clear  
to Send  
Data Set  
Ready  
Ring  
Indicator  
Data Carrier  
Detect  
(DCD)  
+ 6  
+ 7  
Handshake  
Status Register  
(TCTS)  
Bit 0  
(TDSR)  
Bit 1  
(FERI)  
Bit 2  
(TDCD)  
Bit 3  
(CTS)  
Bit 4  
(DSR)  
Bit 5  
(RI)  
Bit 6  
Bit 7  
Bit 7  
User Defined  
Register  
UDR  
BLL  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
+ 0  
Baudrate  
Divisor Latch  
Low  
BDLAB = 1  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
+ 1  
Baudrate  
Divisor Latch  
High  
BHL  
BDLAB = 1  
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
Publication Release Date: March 1998  
Revision 0.62  
41  
-
-
W83977TF  
PRELIMINARY  
Bit 4: EPE. This bit describes the number of logic 1's in the data word bits and parity bit only when bit 3 is  
programmed. When this bit is set, an even number of logic 1's are sent or checked. When the bit  
is reset, an odd number of logic 1's are sent or checked.  
Bit 3: PBE. When this bit is set, the position between the last data bit and the stop bit of the SOUT will be  
stuffed with the parity bit at the transmitter. For the receiver, the parity bit in the same position as  
the transmitter will be detected.  
Bit 2: MSBE. This bit defines the number of stop bits in each serial character that is transmitted or  
received.  
(1) If MSBE is set to a logical 0, one stop bit is sent and checked.  
(2) If MSBE is set to a logical 1, and data length is 5 bits, one and a half stop bits are sent and  
checked.  
(3) If MSBE is set to a logical 1, and data length is 6, 7, or 8 bits, two stop bits are sent and  
checked.  
Bits 0 and 1: DLS0, DLS1. These two bits define the number of data bits that are sent or checked in  
each serial character.  
TABLE 3-2 WORD LENGTH DEFINITION  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
3.2.2 UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of the data transfer during communication.  
2
7
6
4
3
1
0
5
RBR Data ready (RDR)  
Overrun error (OER)  
Parity bit error (PBER)  
No stop bit error (NSER)  
Silent byte detected (SBD)  
Transmitter Buffer Register empty (TBRE)  
Transmitter Shift Register empty (TSRE)  
RX FIFO Error Indication (RFEI)  
Bit 7: RFEI. In 16450 mode, this bit is always set to a logic 0. In 16550 mode, this bit is set to a logic 1  
when there is at least one parity bit error, no stop bit error or silent byte detected in the FIFO. In  
16550 mode, this bit is cleared by reading from the USR if there are no remaining errors left in  
the FIFO.  
Publication Release Date: March 1998  
42  
-
-
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 6: TSRE. In 16450 mode, when TBR and TSR are both empty, this bit will be set to a logical 1. In  
16550 mode, if the transmit FIFO and TSR are both empty, it will be set to a logical 1. Other  
thanthese two cases, this bit will be reset to a logical 0.  
Bit 5: TBRE. In 16450 mode, when a data character is transferred from TBR to TSR, this bit will be set to  
a logical 1. If ETREI of ICR is a logical 1, an interrupt will be generated to notify the CPU to write  
the next data. In 16550 mode, this bit will be set to a logical 1 when the transmit FIFO is empty. It  
will be reset to a logical 0 when the CPU writes data into TBR or FIFO.  
Bit 4: SBD. This bit is set to a logical 1 to indicate that received data are kept in silent state for a full word  
time, including start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the same  
condition for the data on top of the FIFO. When the CPU reads USR, it will clear this bit to a  
logical 0.  
Bit 3: NSER. This bit is set to a logical 1 to indicate that the received data have no stop bit. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads USR,  
it will clear this bit to a logical 0.  
Bit 2: PBER. This bit is set to a logical 1 to indicate that the parity bit of received data is wrong. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads USR,  
it will clear this bit to a logical 0.  
Bit 1: OER. This bit is set to a logical 1 to indicate received data have been overwritten by the next  
received data before they were read by the CPU. In 16550 mode, it indicates the same condition  
instead of FIFO full. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 0: RDR. This bit is set to a logical 1 to indicate received data are ready to be read by the CPU in the  
RBR or FIFO. After no data are left in the RBR or FIFO, the bit will be reset to a logical 0.  
3.2.3 Handshake Control Register (HCR) (Read/Write)  
This register controls the pins of the UART used for handshaking peripherals such as modem, and  
controls the diagnostic mode of the UART.  
2
7
0
5
0
4
3
1
0
6
0
Data terminal ready (DTR)  
Request to send (RTS)  
Loopback RI input  
IRQ enable  
Internal loopback enable  
Publication Release Date: March 1998  
Revision 0.62  
43  
-
-
W83977TF  
PRELIMINARY  
Bit 4: When this bit is set to a logical 1, the UART enters diagnostic mode by an internal loopback, as  
follows:  
(1) SOUT is forced to logical 1, and SIN is isolated from the communication link instead of the  
TSR.  
(2) Modem output pins are set to their inactive state.  
(3) Modem input pins are isolated from the communication link and connect internally as DTR  
® DSR  
® CTS  
®
, Loopback RI input ( bit 2 of HCR)  
(bit 0 of HCR)  
, RTS ( bit 1 of HCR)  
RI  
® DCD  
.
and IRQ enable ( bit 3 of HCR)  
Aside from the above connections, the UART operates normally. This method allows the  
CPU to test the UART in a convenient way.  
Bit 3: The UART interrupt output is enabled by setting this bit to a logic 1. In the diagnostic mode this bit  
DCD  
is internally connected to the modem control input  
Bit 2: This bit is used only in the diagnostic mode. In the diagnostic mode this bit is internally connected  
RI  
.
to the modem control input  
.
RTS  
DTR  
RTS  
DTR  
Bit 1: This bit controls the  
Bit 0: This bit controls the  
output. The value of this bit is inverted and output to  
output. The value of this bit is inverted and output to  
.
.
3.2.4 Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins for handshake peripherals such as a modem  
and records changes on these pins.  
7
6
5
4
3
2
1
0
toggling (TCTS)  
toggling (TDSR)  
CTS  
DSR  
RI falling edge (FERI)  
toggling (TDCD)  
DCD  
Clear to send (CTS)  
Data set ready (DSR)  
Ring indicator (RI)  
Data carrier detect (DCD)  
DCD  
Bit 7: This bit is the opposite of the  
input. This bit is equivalent to bit 3 of HCR in loopback mode.  
RI  
Bit 6: This bit is the opposite of the  
Bit 5: This bit is the opposite of the  
Bit 4: This bit is the opposite of the  
Bit 3: TDCD. This bit indicates that the  
input. This bit is equivalent to bit 2 of HCR in loopback mode.  
DSR  
CTS  
input. This bit is equivalent to bit 0 of HCR in loopback mode.  
input. This bit is equivalent to bit 1 of HCR in loopback mode.  
DCD  
pin has changed state after HSR was read by the CPU.  
Publication Release Date: March 1998  
44  
-
-
Revision 0.62  
W83977TF  
PRELIMINARY  
RI  
Bit 2: FERI. This bit indicates that the  
by the CPU.  
pin has changed from low to high state after HSR was read  
DSR  
Bit 1: TDSR. This bit indicates that the  
pin has changed state after HSR was read by the CPU.  
pin has changed state after HSR was read.  
CTS  
Bit 0: TCTS. This bit indicates that the  
3.2.5 UART FIFO Control Register (UFR) (Write only)  
This register is used to control the FIFO functions of the UART.  
2
1
7
6
5
4
3
0
FIFO enable  
Receiver FIFO reset  
Transmitter FIFO reset  
DMA mode select  
Reserved  
Reserved  
RX interrupt active level (LSB)  
RX interrupt active level (MSB)  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if the  
interrupt active level is set as 4 bytes, once there are more than 4 data characters in the receiver  
FIFO, the interrupt will be activated to notify the CPU to read the data from the FIFO.  
TABLE 3-3 FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to initial state. This bit will clear to a  
logical 0 by itself after being set to a logical 1.  
Bit 1: Setting this bit to a logical 1 resets the RX FIFO counter logic to initial state. This bit will clear to a  
logical 0 by itself after being set to a logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the UART. This bit should be set to a logical 1 before  
other bits of UFR are programmed.  
Publication Release Date: March 1998  
45  
-
-
Revision 0.62  
W83977TF  
PRELIMINARY  
Publication Release Date: March 1998  
Revision 0.62  
46  
-
-
W83977TF  
PRELIMINARY  
3.2.6 Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status, which is encoded by different interrupt sources into 3  
bits.  
7
6
5
0
4
3
2
1
0
0
0 if interrupt pending  
Interrupt Status bit 0  
Interrupt Status bit 1  
Interrupt Status bit 2  
FIFOs enabled  
FIFOs enabled  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logic 0.  
Bit 3: In 16450 mode, this bit is 0. In 16550 mode, both bit 3 and 2 are set to a logical 1 when a time-out  
interrupt is pending.  
Bit 2, 1: These two bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to a logical 0.  
TABLE 3-4 INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Bit  
3
Bit Bit  
Bit Interrupt  
Interrupt Type  
Interrupt Source  
Clear Interrupt  
2
1
0
priority  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
UART Receive  
Status  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
1. RBR data ready  
Read USR  
0
1
0
0
Second  
RBR Data Ready  
1. Read RBR  
2. FIFO interrupt active level  
reached  
2. Read RBR until FIFO  
data under active level  
1
0
1
0
0
1
0
0
Second  
Third  
FIFO Data Timeout  
TBR Empty  
Data present in RX FIFO for 4  
characters period of time since last  
access of RX FIFO.  
Read RBR  
TBR empty  
1. Write data into TBR  
2. Read ISR (if priority is  
third)  
0
0
0
0
Fourth  
Handshake status  
1. TCTS = 1 2. TDSR = 1  
3. FERI = 1 4. TDCD = 1  
Read HSR  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
Publication Release Date: March 1998  
Revision 0.62  
47  
-
-
W83977TF  
PRELIMINARY  
3.2.7 Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register allows the five types of controller interrupts to activate the interrupt output signal  
separately. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt  
Control Register (ICR). A selected interrupt can be enabled by setting the appropriate bits of this  
register to a logical 1.  
5
3
6
0
0
4
0
2
7
0
1
0
RBR data ready interrupt enable (ERDRI)  
TBR empty interrupt enable (ETBREI)  
UART receive status interrupt enable (EUSRI)  
Handshake status interrupt enable (EHSRI)  
Bit 7-4: These four bits are always logic 0.  
Bit 3: EHSRI. Setting this bit to a logical 1 enables the handshake status register interrupt.  
Bit 2: EUSRI. Setting this bit to a logical 1 enables the UART status register interrupt.  
Bit 1: ETBREI. Setting this bit to a logical 1 enables the TBR empty interrupt.  
Bit 0: ERDRI. Setting this bit to a logical 1 enables the RBR data ready interrupt.  
3.2.8 Programmable Baud Generator (BLL/BHL) (Read/Write)  
Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to  
16  
generate a 1.8461 MHz frequency and divides it by a divisor from 1 to 2 -1. The output frequency of  
the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter  
and receiver. The table in the next page illustrates the use of the baud generator with a frequency of  
1.8461 MHz. In high-speed UART mode (refer to CR0C bit7 and CR0C bit6), the programmable baud  
generator directly uses 24 MHz and the same divisor as the normal speed divisor. In high-speed mode,  
the data transmission rate can be as high as 1.5M bps.  
Publication Release Date: March 1998  
48  
-
-
Revision 0.62  
W83977TF  
PRELIMINARY  
3.2.9 User-defined Register (UDR) (Read/Write)  
This is a temporary register that can be accessed and defined by the user.  
TABLE 3-5 BAUD RATE TABLE  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
Pre-Div: 13  
1.8461M Hz  
50  
Pre-Div:1.625  
14.769M Hz  
400  
Pre-Div: 1.0  
24M Hz  
650  
Decimal divisor used  
to generate 16X clock  
Error Percentage between  
desired and actual  
2304  
1536  
1047  
857  
768  
384  
192  
96  
**  
75  
600  
975  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
1800  
2000  
2400  
3600  
4800  
7200  
9600  
19200  
38400  
57600  
115200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
64  
**  
58  
0.53%  
**  
48  
32  
**  
24  
**  
16  
**  
12  
**  
6
**  
3
**  
2
**  
1
**  
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Note. Pre-Divisor is determined by CRF0 of UART A and B.  
Publication Release Date: March 1998  
Revision 0.62  
49  
-
-
W83977TF  
PRELIMINARY  
4. INFRARED (IR) PORT  
The Infrared (IR) function provides point-to-point (or multi-point to multi-point) wireless  
communication which can operate under various transmission protocols including IrDA 1.0 SIR,  
SHARP ASK-IR. IR port shares the same port with UART B port in W83977TF. Please refer to  
section 11.5 for configuration information.  
5. PARALLEL PORT  
5.1 Printer Interface Logic  
The parallel port of the W83977TF makes possible the attachment of various devices that accept  
eight bits of parallel data at standard TTL level. The W83977TF supports an IBM XT/AT compatible  
parallel port (SPP), bi-directional parallel port (BPP), Enhanced Parallel Port (EPP), Extended  
Capabilities Parallel Port (ECP), Extension FDD mode (EXTFDD), Extension 2FDD mode  
(EXT2FDD) on the parallel port. Refer to the configuration registers for more information on  
disabling, power-down, and on selecting the mode of operation.  
Table 5-1 shows the pin definitions for different modes of the parallel port.  
PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
TABLE 5-1-1  
HOST  
CONNECTOR  
PIN NUMBER  
OF W83977TF  
PIN  
ATTRIBUTE  
SPP  
EPP  
ECP  
2
1
36  
O
I/O  
I
nSTB  
PD<0:7>  
nACK  
BUSY  
PE  
nWrite  
PD<0:7>  
Intr  
nSTB, HostClk  
2-9  
10  
11  
12  
13  
14  
15  
16  
17  
31-26, 24-23  
PD<0:7>  
2
22  
21  
19  
18  
35  
34  
33  
32  
nACK, PeriphClk  
2
I
nWait  
PE  
BUSY, PeriphAck  
2
I
PEerror, nAckReverse  
2
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
Select  
nDStrb  
nError  
nInit  
SLCT, Xflag  
2
O
I
nAFD, HostAck  
1
2
nFault , nPeriphRequest  
1
2
O
O
nINIT , nReverseRqst  
1
2
nAStrb  
nSLIN , ECPMode  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
Publication Release Date: March 1998  
Revision 0.62  
- 49 -  
W83977TF  
PRELIMINARY  
PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
TABLE 5-1-2  
HOST  
CONNECTOR  
PIN NUMBER OF  
W83977TF  
PIN  
ATTRIBUTE  
SPP  
PIN  
ATTRIBUTE  
EXT2FDD  
PIN  
ATTRIBUTE  
EXTFDD  
1
2
36  
31  
O
nSTB  
PD0  
---  
I
---  
---  
I
---  
I/O  
INDEX2  
TRAK02  
WP2  
INDEX2  
TRAK02  
WP2  
3
4
5
6
30  
29  
28  
27  
I/O  
I/O  
I/O  
I/O  
PD1  
PD2  
PD3  
PD4  
I
I
I
I
I
I
I
I
RDATA2  
RDATA2  
DSKCHG2  
---  
DSKCHG2  
---  
7
8
26  
24  
I/O  
I/O  
PD5  
PD6  
---  
---  
---  
OD  
---  
---  
MOA2  
DSA2  
DSB2  
MOB2  
WD2  
9
23  
22  
21  
19  
18  
35  
34  
33  
32  
I/O  
I
PD7  
nACK  
BUSY  
PE  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
---  
10  
11  
12  
13  
14  
15  
16  
17  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
DSB2  
MOB2  
WD2  
I
I
I
SLCT  
nAFD  
nERR  
nINIT  
nSLIN  
WE2  
WE2  
O
I
RWC2  
HEAD2  
DIR2  
RWC2  
HEAD2  
DIR2  
O
O
STEP2  
STEP2  
5.2 Enhanced Parallel Port (EPP)  
TABLE 5-2  
PRINTER MODE AND EPP REGISTER ADDRESS  
A2  
A1  
0
A0  
0
REGISTER  
NOTE  
0
Data port (R/W)  
1
1
1
1
2
2
2
2
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
Printer control swapper (Read)  
EPP address port (R/W)  
EPP data port 0 (R/W)  
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
EPP data port 1 (R/W)  
1
1
1
0
EPP data port 2 (R/W)  
1
1
EPP data port 2 (R/W)  
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
Publication Release Date: March 1998  
Revision 0.62  
- 50 -  
W83977TF  
PRELIMINARY  
5.2.1 Data Swapper  
The system microprocessor can read the contents of the printer's data latch by reading the data  
swapper.  
5.2.2 Printer Status Buffer  
The system microprocessor can read the printer status by reading the address of the printer status  
buffer. The bit definitions are as follows:  
7
6
5
4
3
2
1
1
1
0
TMOUT  
ERROR  
SLCT  
PE  
ACK  
BUSY  
Bit 7: This signal is active during data entry, when the printer is off-line during printing, when the print  
head is changing position, or during an error state. When this signal is active, the printer is  
busy and cannot accept data.  
Bit 6: This bit represents the current state of the printer's ACK signal. A 0 means the printer has  
received a character and is ready to accept another. Normally, this signal will be active for  
BUSY  
approximately 5 microseconds before  
stops.  
Bit 5: Logical 1 means the printer has detected the end of paper.  
Bit 4: Logical 1 means the printer is selected.  
Bit 3: Logical 0 means the printer has encountered an error condition.  
Bit 1, 2: These two bits are not implemented and are logic one during a read of the status register.  
m
Bit 0: This bit is valid in EPP mode only. It indicates that a 10 S time-out has occurred on the EPP  
bus. A logic 0 means that no time-out error has occurred; a logic 1 means that a time-out error  
has been detected. Writing a logic 1 to this bit will clear the time-out status bit; writing a logic 0  
has no effect.  
Publication Release Date: March 1998  
- 51 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
5.2.3 Printer Control Latch and Printer Control Swapper  
The system microprocessor can read the contents of the printer control latch by reading the printer  
control swapper. Bit definitions are as follows:  
7
1
6
1
5
4
3
2
1
0
STROBE  
AUTO FD  
INIT  
SLCT IN  
IRQ ENABLE  
DIR  
Bit 7, 6: These two bits are a logic one during a read. They can be written.  
Bit 5: Direction control bit  
When this bit is a logic 1, the parallel port is in input mode (read); when it is a logic 0, the  
parallel port is in output mode (write). This bit can be read and written. In SPP mode, this bit  
is invalid and fixed at zero.  
ACK  
Bit 4: A 1 in this position allows an interrupt to occur when  
Bit 3: A 1 in this bit position selects the printer.  
changes from low to high.  
Bit 2: A 0 starts the printer (50 microsecond pulse, minimum).  
Bit 1: A 1 causes the printer to line-feed after a line is printed.  
Bit 0: A 0.5 microsecond minimum high active pulse clocks data into the printer. Valid data must be  
present for a minimum of 0.5 microseconds before and after the strobe pulse.  
5.2.4 EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Publication Release Date: March 1998  
Revision 0.62  
- 52 -  
W83977TF  
PRELIMINARY  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
IOW  
c
operation. The leading edge of  
auses an EPP address write cycle to be performed, and the  
IOW  
trailing edge of  
latches the data for the duration of the EPP write cycle.  
IOR  
PD0-PD7 ports are read during a read operation. The leading edge of  
read cycle to be performed and the data to be output to the host CPU.  
causes an EPP address  
5.2.5 EPP Data Port 0-3  
These four registers are available only in EPP mode. Bit definitions of each data port are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
When accesses are made to any EPP data port, the contents of DB0-DB7 are buffered (non-  
IOW  
inverting) and output to the ports PD0-PD7 during a write operation. The leading edge of  
causes  
IOW  
an EPP data write cycle to be performed, and the trailing edge of  
duration of the EPP write cycle.  
latches the data for the  
IOR  
During a read operation, ports PD0-PD7 are read, and the leading edge of  
cycle to be performed and the data to be output to the host CPU.  
causes an EPP read  
5.2.6 Bit Map of Parallel Port and EPP Registers  
REGISTER  
7
6
5
4
3
2
1
0
Data Port (R/W)  
PD7  
PD6  
PD  
5
PD4  
PD3  
PD2  
PD1  
PD0  
Status Buffer (Read)  
PE  
SLCT  
1
1
TMOUT  
BUSY  
ACK  
1
ERROR  
SLIN  
Control Swapper (Read)  
Control Latch (Write)  
1
1
1
IRQEN  
IRQ  
INIT  
AUTOFD  
STROBE  
1
DIR  
SLIN  
INIT  
PD2  
AUTOFD  
PD1  
STROBE  
PD0  
EPP Address Port R/W)  
PD7  
PD6  
PD  
5
PD4  
PD3  
EPP Data Port 0 (R/W)  
EPP Data Port 1 (R/W)  
PD7  
PD7  
PD6  
PD6  
PD  
5
PD4  
PD4  
PD3  
PD3  
PD2  
PD2  
PD1  
PD1  
PD0  
PD0  
PD  
5
Publication Release Date: March 1998  
Revision 0.62  
- 53 -  
W83977TF  
PRELIMINARY  
EPP Data Port 2 (R/W)  
EPP Data Port 3 (R/W)  
PD7  
PD7  
PD6  
PD6  
PD  
5
PD4  
PD4  
PD3  
PD3  
PD2  
PD2  
PD1  
PD1  
PD0  
PD0  
PD  
5
Publication Release Date: March 1998  
Revision 0.62  
- 54 -  
W83977TF  
PRELIMINARY  
5.2.7 EPP Pin Descriptions  
EPP NAME  
nWrite  
TYPE  
EPP DESCRIPTION  
Denotes an address or data read or write operation.  
Bi-directional EPP address and data bus.  
O
I/O  
I
PD<0:7>  
Intr  
Used by peripheral device to interrupt the host.  
nWait  
I
Inactive to acknowledge that data transfer is completed. Active to  
indicate that the device is ready for the next transfer.  
PE  
I
I
Paper end; same as SPP mode.  
Select  
nDStrb  
nError  
nInits  
Printer selected status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
O
This signal is active low. When it is active, the EPP device is reset to its  
initial operating mode.  
nAStrb  
O
This signal is active low. It denotes an address read or write operation.  
5.2.8 EPP Operation  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes  
are also available. The PDx bus is in the standard or bi-directional mode when no EPP read, write, or  
address cycle is currently being executed. In this condition all output signals are set by the SPP  
Control Port and the direction is controlled by DIR of the Control Port.  
m
S
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10  
have elapsed from the start of the EPP cycle to the time WAIT is deasserted. The current EPP cycle  
is aborted when a time-out occurs. The time-out condition is indicated in Status bit 0.  
5.2.8.1 EPP Operation  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
5.2.8.2 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If the nWait is active low, when the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or  
write cycle (nWrite active low, nDStrb/nAStrb active low) starts, the read/write cycle proceeds  
normally and will be completed when nWait goes inactive high.  
b. If nWait is inactive high, the read/write cycle will not start. It must wait until nWait changes to  
active low, at which time it will start as described above.  
5.2.8.3 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it will not terminate until nWait changes from active low to inactive  
high.  
Publication Release Date: March 1998  
- 55 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
5.3 Extended Capabilities Parallel (ECP) Port  
This  
port is software and hardware compatible with existing parallel ports, so it may be used as a  
standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel  
that supports DMA for ECP in both the forward (host to peripheral) and reverse (peripheral to host)  
directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for  
the standard parallel port to improve compatibility mode transfer speed.  
The ECP port supports run-length-encoded (RLE) decompression (required) in hardware.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. Hardware support for compression is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and  
ISA Interface Standard.  
5.3.1 ECP Register and Mode Definitions  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
FUNCTION  
Data Register  
000-001  
011  
All  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
ecpDFifo  
tFifo  
010  
011  
110  
111  
111  
All  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
cnfgA  
cnfgB  
ecr  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
Note: The base addresses are specified by CR60 and 61, which are determined by configuration register or hardware setting.  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CRF0 to select ECP/EPP mode)  
Reserved  
Test mode  
Configuration mode  
Note: The mode selection bits are bit 7-5 of the Extended Control Register.  
Publication Release Date: March 1998  
Revision 0.62  
- 56 -  
W83977TF  
PRELIMINARY  
5.3.2 Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input. The contents of this register are output to the PD0-PD7 ports. During a read operation,  
ports PD0-PD7 are read and output to the host. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this  
register is defined only for the forward direction. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
Address or RLE  
Address/RLE  
5.3.3 Device Status Register (DSR)  
These bits are at low level during a read of the Printer Status Register. The bits of this status register  
are defined as follows:  
7
6
5
4
3
2
1
0
1
1
1
nFault  
Select  
PError  
nAck  
nBusy  
Publication Release Date: March 1998  
Revision 0.62  
- 57 -  
W83977TF  
PRELIMINARY  
Bit 7: This bit reflects the complement of the Busy input.  
Bit 6: This bit reflects the nAck input.  
Bit 5: This bit reflects the PError input.  
Bit 4: This bit reflects the Select input.  
Bit 3: This bit reflects the nFault input.  
Bit 2-0: These three bits are not implemented and are always logic one during a read.  
5.3.4 Device Control Register (DCR)  
The bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
strobe  
autofd  
nInit  
SelectIn  
ackIntEn  
Direction  
Bit 6, 7: These two bits are logic one during a read and cannot be written.  
Bit 5: This bit has no effect and the direction is always out if mode = 000 or mode = 010. Direction is  
valid in all other modes.  
0
1
the parallel port is in output mode.  
the parallel port is in input mode.  
Bit 4: Interrupt request enable. When this bit is set to a high level, it may be used to enable interrupt  
ACK  
requests from the parallel port to the CPU due to a low to high transition on the  
input.  
SLIN  
Bit 3: This bit is inverted and output to the  
output.  
0
1
The printer is not selected.  
The printer is selected.  
INIT  
Bit 2: This bit is output to the  
output.  
AFD  
STB  
Bit 1: This bit is inverted and output to the  
Bit 0: This bit is inverted and output to the  
output.  
output.  
Publication Release Date: March 1998  
Revision 0.62  
- 58 -  
W83977TF  
PRELIMINARY  
5.3.5 cFifo (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. The standard parallel port protocol is used by a  
hardware handshake to the peripheral to transmit bytes written or DMAed from the system to this  
FIFO. Transfers to the FIFO are byte aligned.  
5.3.6 ecpDFifo (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed from the system to this FIFO are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are  
byte aligned.  
When the direction bit is 1, data bytes from the peripheral are read under automatic hardware  
handshake from ECP into this FIFO. Reads or DMAs from the FIFO will return bytes of ECP data to  
the system.  
5.3.7 tFifo (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data  
in the tFIFO will not be transmitted to the parallel port lines. However, data in the tFIFO may be  
displayed on the parallel port data lines.  
5.3.8 cnfgA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates to the system that  
this is an 8-bit implementation.  
5.3.9 cnfgB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
7
6
5
4
3
2
1
1
0
1
1
IRQx 0  
IRQx 1  
IRQx 2  
intrValue  
compress  
Bit 7: This bit is read-only. It is at low level during a read. This means that this chip does not support  
hardware RLE compression.  
Bit 6: Returns the value on the ISA IRQ line to determine possible conflicts.  
Publication Release Date: March 1998  
- 59 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 5-3: Reflect the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
000  
IRQ resource  
reflect other IRQ resources selected by PnP register (default)  
001  
IRQ7  
010  
IRQ9  
011  
100  
101  
110  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
111  
.
Bit 2-0: These five bits are at high level during a read and can be written  
5.3.10 ecr (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
7
6
5
4
3
2
1
0
empty  
full  
service Intr  
dmaEn  
nErrIntrEn  
MODE  
MODE  
MODE  
Bit 7-5: These bits are read/write and select the mode.  
000  
001  
Standard Parallel Port mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as 000 except that direction may be  
used to tri-state the data lines and reading the data register returns the value on the  
data lines and not the value in the data register.  
010  
011  
Parallel Port FIFO mode. This is the same as 000 except that bytes are written or  
DMAed to the FIFO. FIFO data are automatically transmitted using the standard  
parallel port protocol. This mode is useful only when direction is 0.  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed  
into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and  
auto transmitted to the peripheral using ECP Protocol. When the direction is 1  
(reverse direction), bytes are moved from the ECP parallel port and packed into  
bytes in the ecpDFifo.  
100  
101  
110  
Selects EPP Mode. In this mode, EPP is activated if the EPP mode is selected.  
Reserved.  
Test Mode. The FIFO may be written and read in this mode, but the data will not be  
transmitted on the parallel port.  
111  
Configuration Mode. The confgA and confgB registers are accessible at 0x400 and  
0x401 in this mode.  
Publication Release Date: March 1998  
- 60 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 4: Read/Write (Valid only in ECP Mode)  
1
0
Disables the interrupt generated on the asserting edge of nFault.  
Enables an interrupt pulse on the high to low edge of nFault. If nFault is asserted  
(interrupt) an interrupt will be generated and this bit is written from a 1 to 0.  
Bit 3: Read/Write  
1
0
Enables DMA.  
Disables DMA unconditionally.  
Bit 2: Read/Write  
1
0
Disables DMA and all of the service interrupts.  
Enables one of the following cases of interrupts. When one of the service interrupts  
has occurred, the serviceIntr bit is set to a 1 by hardware. This bit must be reset to  
0 to re-enable the interrupts. Writing a 1 to this bit will not cause an interrupt.  
(a) dmaEn = 1: During DMA this bit is set to a 1 when terminal count is reached.  
(b) dmaEn = 0 direction = 0: This bit is set to 1 whenever there are writeIntr  
Threshold or more bytes free in the FIFO.  
(c) dmaEn = 0 direction = 1: This bit is set to 1 whenever there are readIntr  
Threshold or more valid bytes to be read from the FIFO.  
Bit 1: Read only  
0
1
The FIFO has at least 1 free byte.  
The FIFO cannot accept another byte or the FIFO is completely full.  
Bit 0: Read only  
0
1
The FIFO contains at least 1 byte of data.  
The FIFO is completely empty.  
5.3.11 Bit Map of ECP Port Registers  
D7  
PD7  
D6  
PD6  
D5  
PD5  
D4  
PD4  
D3  
PD3  
D2  
PD2  
D1  
PD1  
D0  
PD0  
NOTE  
data  
Addr/RLE  
nBusy  
1
Address or RLE field  
2
1
1
2
2
2
ecpAFifo  
dsr  
nAck  
1
PError  
Select  
nFault  
1
1
1
Directio  
ackIntEn  
SelectIn  
nInit  
autofd  
strobe  
dcr  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
cFifo  
ecpDFifo  
tFifo  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
cnfgA  
cnfgB  
ecr  
compress  
intrValue  
MODE  
nErrIntrEn  
dmaEn  
serviceIntr  
full  
empty  
Notes:  
1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
Publication Release Date: March 1998  
Revision 0.62  
- 61 -  
W83977TF  
PRELIMINARY  
5.3.12  
ECP Pin Descriptions  
NAME TYPE DESCRIPTION  
nStrobe (HostClk)  
O
The nStrobe registers data or address into the slave on the  
asserting edge during write operations. This signal handshakes  
with Busy.  
PD<7:0>  
I/O  
I
These signals contains address or data or RLE data.  
nAck (PeriphClk)  
This signal indicates valid data driven by the peripheral when  
asserted. This signal handshakes with nAutoFd in reverse.  
Busy (PeriphAck)  
I
This signal deasserts to indicate that the peripheral can accept  
data. It indicates whether the data lines contain ECP command  
information or data in the reverse direction. When in reverse  
direction, normal data are transferred when Busy (PeriphAck)  
is high and an 8-bit command is transferred when it is low.  
PError (nAckReverse)  
I
This signal is used to acknowledge a change in the direction of  
the transfer (asserted = forward). The peripheral drives this  
signal low to acknowledge nReverseRequest. The host relies  
upon nAckReverse to determine when it is permitted to drive  
the data bus.  
Select (Xflag)  
I
Indicates printer on line.  
nAutoFd (HostAck)  
O
Requests a byte of data from the peripheral when it is asserted.  
This signal indicates whether the data lines contain ECP  
address or data in the forward direction. When in forward  
direction, normal data are transferred when nAutoFd (HostAck)  
is high and an 8-bit command is transferred when it is low.  
nFault (nPeriphRequest)  
I
Generates an error interrupt when it is asserted. This signal is  
valid only in the forward direction. The peripheral is permitted  
(but not required) to drive this pin low to request a reverse  
transfer during ECP Mode.  
nInit (nReverseRequest)  
nSelectIn (ECPMode)  
O
O
This signal sets the transfer direction (asserted = reverse,  
deasserted = forward). This pin is driven low to place the  
channel in the reverse direction.  
This signal is always deasserted in ECP mode.  
Publication Release Date: March 1998  
- 62 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
5.3.13  
ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits. The  
following are required:  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
5.3.13.1 Mode Switching  
Software will execute P1284 negotiation and all operations prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001  
it can only be switched into mode 000 or 001. The direction can be changed only in mode 001.  
When in extended forward mode, the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In ECP reverse mode the software waits for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
5.3.13.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction,  
normal data are transferred when HostAck is high and an 8-bit command is transferred when HostAck  
is low. The most significant bits of the command indicate whether it is a run-length count (for  
compression) or a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
5.3.13.3 Data Compression  
The W83977TF supports run length encoded (RLE) decompression in hardware and can transfer  
compressed data to a peripheral. Note that the odd (RLE) compression in hardware is not supported.  
In order to transfer data in ECP mode, the compression count is written to the ecpAFifo and the data  
byte is written to the ecpDFifo.  
5.3.14 FIFO Operation  
The FIFO threshold is set in configuration register 5. All data transfers to or from the parallel port can  
proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO  
is disabled.  
Publication Release Date: March 1998  
- 63 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
5.3.15  
DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. The DMA uses the standard PC  
DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
will empty or fill the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated and serviceIntr is asserted, which will disable the  
DMA.  
5.3.16 Programmed I/O (NON-DMA) Mode  
The ECP or parallel port FIFOs can also be operated using interrupt driven programmed I/O.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo  
located at 400H, or to/from the tFifo at 400H. The host must set the direction, state, dmaEn = 0 and  
serviceIntr = 0 in the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O will empty or fill the FIFO using the appropriate direction and mode.  
5.4 Extension FDD Mode (EXTFDD)  
In this mode, the W83977TF changes the printer interface pins to FDC input/output pins, allowing the  
user to install a second floppy disk drive (FDD B) through the DB-25 printer connector. The pin  
assignments for the FDC input/output pins are shown in Table 5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
MOB  
DSB  
(1) Pins  
(2) Pins  
and  
will be forced to inactive state.  
DSKCHG RDATA WP TRAK0 INDEX  
,
,
,
,
will be logically ORed with pins PD4-PD0 to serve  
as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXTFDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
5.5 Extension 2FDD Mode (EXT2FDD)  
In this mode, the W83977TF changes the printer interface pins to FDC input/output pins, allowing the  
user to install two external floppy disk drives through the DB-25 printer connector to replace internal  
floppy disk drives A and B. The pin assignments for the FDC input/output pins are shown in Table5-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
MOA DSA MOB  
DSB  
(1) Pins  
,
,
, and  
will be forced to inactive state.  
INDEX  
will be logically ORed with pins PD4-PD0 to  
DSKCHG RDATA WP TRAK0  
(2) Pins  
,
,
,
, and  
serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXT2FDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
Publication Release Date: March 1998  
- 64 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
6. KEYBOARD CONTROLLER  
The KBC (8042 with licensed KB BIOS) circuit of W83977TF is designed to provide the functions  
needed to interface a CPU with a keyboard and/or a PS/2 mouse, and can be used with IBMÒ-  
compatible personal computers or PS/2-based systems. The controller receives serial data from the  
keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a byte  
of data in its output buffer. Then, the controller will assert an interrupt to the system when data are  
placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data  
transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an acknowledge  
is received for the previous data byte.  
P24  
P25  
P21  
P20  
KIRQ  
MIRQ  
GATEA20  
KBRST  
KINH  
P17  
KDAT  
KCLK  
P27  
P10  
P26  
8042  
T0  
GP I/O PINS  
Multiplex I/O PINS  
MCLK  
MDAT  
P23  
T1  
P12~P16  
P22  
P11  
Keyboard and Mouse Interface  
6.1 Output Buffer  
The output buffer is an 8-bit read-only register at I/O address 60H (Default, PnP programmable I/O  
address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan  
code received from the keyboard and data bytes required by commands to the system. The output  
buffer can only be read when the output buffer full bit in the register is "1".  
6.2 Input Buffer  
The input buffer is an 8-bit write-only register at I/O address 60H or 64H (Default, PnP programmable  
I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60H sets a flag  
to indicate a data write; writing to address 64H sets a flag to indicate a command write. Data written  
to I/O address 60H is sent to keyboard (unless the keyboard controller is expecting a data byte)  
through the controller's input buffer only if the input buffer full bit in the status register is 0 .  
Publication Release Date: March 1998  
- 65 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
6.3 Status Register  
The status register is an 8-bit read-only register at I/O address 64H (Default, PnP programmable I/O  
address LD5-CR62 and LD5-CR63), that holds information about the status of the keyboard controller  
and interface. It may be read at any time.  
BIT  
0
BIT FUNCTION  
DESCRIPTION  
0: Output buffer empty  
Output Buffer Full  
1: Output buffer full  
1
2
Input Buffer Full  
System Flag  
0: Input buffer empty  
1: Input buffer full  
This bit may be set to 0 or 1 by writing to the system flag  
bit in the command byte of the keyboard controller. It  
defaults to 0 after a power-on reset.  
3
4
5
6
7
Command/Data  
Inhibit Switch  
0: Data byte  
1: Command byte  
0: Keyboard is inhibited  
1: Keyboard is not inhibited  
Auxiliary Device Output 0: Auxiliary device output buffer empty  
Buffer  
1: Auxiliary device output buffer full  
General Purpose Time-  
out  
0: No time-out error  
1: Time-out error  
Parity Error  
0: Odd parity  
1: Even parity (error)  
6.4 Commands  
COMMAND  
20h  
FUNCTION  
Read Command Byte of Keyboard Controller  
Write Command Byte of Keyboard Controller  
60h  
BIT  
BIT DEFINITION  
Reserved  
7
6
IBM Keyboard Translate Mode  
Disable Auxiliary Device  
Disable Keyboard  
5
4
3
2
1
Reserve  
System Flag  
Enable Auxiliary Interrupt  
Enable Keyboard Interrupt  
0
A4h  
Test Password  
Returns 0Fah if Password is loaded  
Returns 0F1h if Password is not loaded  
Publication Release Date: March 1998  
Revision 0.62  
- 66 -  
W83977TF  
PRELIMINARY  
6.4 Commands, continued  
COMMAND  
A5h  
FUNCTION  
Load Password  
Load Password until a "0" is received from the system  
Enable Password  
A6h  
Enable the checking of keystrokes for a match with the password  
Disable Auxiliary Device Interface  
Enable Auxiliary Device Interface  
Interface Test  
A7h  
A8h  
A9h  
BIT  
BIT DEFINITION  
No Error Detected  
00  
01  
Auxiliary Device "Clock" line is stuck low  
Auxiliary Device "Clock" line is stuck high  
Auxiliary Device "Data" line is stuck low  
02  
03  
04  
Auxiliary Device "Data" line is stuck low  
AAh  
ABh  
Self-test  
Returns 055h if self test succeeds  
Interface Test  
BIT DEFINITION  
BIT  
00  
No Error Detected  
01  
Keyboard "Clock" line is stuck low  
02  
03  
04  
Keyboard "Clock" line is stuck high  
Keyboard "Data" line is stuck low  
Keyboard "Data" line is stuck high  
ADh  
AEh  
C0h  
C1h  
C2h  
D0h  
D1h  
D2h  
D3h  
D4h  
E0h  
FXh  
Disable Keyboard Interface  
Enable Keyboard Interface  
Read Input Port(P1) and send data to the system  
Continuously puts the lower four bits of Port1 into STATUS register  
Continuously puts the upper four bits of Port1 into STATUS register  
Send Port2 value to the system  
Only set/reset GateA20 line based on the system data bit 1  
Send data back to the system as if it came from Keyboard  
Send data back to the system as if it came from Auxiliary Device  
Output next received byte of data from system to Auxiliary Device  
Reports the status of the test inputs  
m
Pulse only RC(the reset line) low for 6 S if Command byte is even  
Publication Release Date: March 1998  
- 67 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
6.5 Hardware GATEA20/Keyboard Reset Control Logic  
The KBC implements a hardware control logic to speed-up GATEA20 and KBRESET. This control  
logic is controlled by LD5-CRF0 as follows:  
6.5.1 KB Control Register (Logic Device 5, CR-F0)  
BIT  
7
6
5
4
3
2
1
0
NAME  
KCLKS1 KCLKS0 Reserved Reserved Reserved P92EN  
HGA20 HKBRST  
KCLKS1, KCLKS0  
This 2 bits are for the KBC clock rate selection.  
= 0 0 KBC clock input is 6 Mhz  
= 0 1 KBC clock input is 8 Mhz  
= 1 0 KBC clock input is 12 Mhz  
= 1 1 KBC clock input is 16 Mhz  
P92EN  
(Port 92 Enable)  
A "1" on this bit enables Port 92 to control GATEA20 and KBRESET.  
A "0" on this bit disables Port 92 functions.  
HGA20  
(Hardware GATE A20)  
A "1" on this bit selects hardware GATEA20 control logic to control GATE A20 signal.  
A "0" on this bit disables hardware GATEA20 control logic function.  
HKBRST  
(Hardware Keyboard Reset)  
A "1" on this bit selects hardware KB RESET control logic to control KBRESET signal.  
A "0" on this bit disables hardware KB RESET control logic function.  
When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears  
GATE A20 according to the received data bit 1. Similarly, the hardware control logic sets or clears  
KBRESET depending on the received data bit 0. When the KBC receives a "FE" command, the  
m
m
KBRESET is pulse low for 6 S(Min.) with 14 S(Min.) delay.  
GATEA20 and KBRESET are controlled by either the software control or the hardware control logic  
and they are mutually exclusive. Then, GATEA20 and KBRESET are merged along with Port92  
when P92EN bit is set.  
6.5.2 Port 92 Control Register (Default Value = 0x24)  
BIT  
7
6
5
4
3
2
1
0
NAME  
Res. (0) Res. (0)  
Res. (1) Res. (0)  
Res. (0)  
Res. (1)  
SGA20 PLKBRST  
SGA20  
(Special GATE A20 Control)  
A "1" on this bit drives GATE A20 signal to high.  
A "0" on this bit drives GATE A20 signal to low.  
PLKBRST  
(Pull-Low KBRESET)  
m
m
A "1" on this bit causes KBRESET to drive low for 6 S(Min.) with 14 S(Min.) delay. Before issuing  
another keyboard reset command, the bit must be cleared.  
Publication Release Date: March 1998  
- 68 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
6.6 OnNow / Security Keyboard and Mouse Wake-Up  
---- Programmable Keyboard / Mouse Wake-Up Functions  
Winbond's unique programmable keyboard/ mouse wake-up functions provide the system diversified  
methods for either OnNow wake-up application, or security control application. The keyboard or  
mouse can wake up the system by producing a panel switch low pulse on PANSWOUT pin, and connect  
it to chipset (for example IntelTM chipset TX, LX PIIX4) panel switch input. The wake-up conditions  
can be programmed as pre-determined or any keys/buttons. To implement this function, a  
32.768KHz crystal must be installed between XTAL1 and XTAL2, or a 32.768KHz clock to be  
SB  
SB  
connected to XTAL1 and leave XTAL2 open. The V pin must be connected to +5V V of ATX  
BAT  
power supply, and an external battery should be installed on V  
pin to store the data (the  
passwords and wake-up status which had been set already) when power fails.  
6.6.1 Keyboard Wake-Up Function  
The keyboard wake-up function is enable by setting LD-0A CR-E0 bit 6. The pre-determined keys  
data are stored in registers, and they can be access by an indirection method. At first, write their  
index address to LD-0A CR-E1, then access them by reading/writing LD-0A CR-E2. A zero data is  
written to the register means the comparison of this register will be ignored. The pre-programmed  
keys may be 1 to 5 keys with various combinations. If LD-0A CR-E0 bit 0 is set, the system will be  
waken up after any key struck.  
6.6.2 Keyboard Password Wake-Up Function  
To implement this function, the bit 7 of LD-0A CR-E0 must be set, and panel switch input is  
connected to  
pin. Thus  
is blocked to PANSWOUT , by setting LD-0A CR-E0 properly  
PANSWIN  
PANSWIN  
and make only keyboard can wake up the system with preset keys (password).  
6.6.3 Mouse Wake-Up Function  
The mouse wake-up function is activated by setting bit 5 of LD-0A CR-E0. If bit 1 of LD-0A CR-E0 is  
set, any movement or button clicking will make up the system. Otherwise, the mouse can wake up  
the system only by clicking its button twice successively with the mouse unmoved. The bit 4 of LD-  
0A CR-E0 determines which button (left or right) to perform wake-up function.  
Publication Release Date: March 1998  
- 69 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
7. GENERAL PURPOSE I/O  
W83977TF provides 23 Input/Output ports that can be individually configured to perform a simple  
basic I/O function or a pre-defined alternate function. Those 23 GP I/O ports are divided into three  
groups, the first group contains 8 ports, the second group contains only 7 ports, and the third group  
contains 8 ports. Each port in first group corresponds to a configuration register in logical device 7,  
the second group in logical device 8, and the third group in logical device 9. Users can select those  
I/O ports functions by independently programming those configuration registers. Figure 7.1, 7.2, and  
7.3 respectively show the GP I/O port's structure of logical device 7, 8, and 9. Right after Power-on  
reset, those ports default to perform basic I/O functions.  
Figure 7.1  
Publication Release Date:March 1998  
-69 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Figure 7.2  
Figure 7.3  
Publication Release Date:March 1998  
Revision 0.62  
-70 -  
W83977TF  
PRELIMINARY  
7.1 Basic I/O functions  
The Basic I/O functions of W83977TF provide several I/O operations including driving a logic value to  
output port, latching a logic value from input port, inverting the input/output logic value, and steering  
Common Interrupt (only available in the second group of the GP I/O port). Common Interrupt is the  
ORed function of all interrupt channels in the second group of the GP I/O ports, and it also connects  
to a 1ms debounce filter which can reject a noise of 1 ms pulse width or less. There are three 8-bit  
registers (GP1, GP2, and GP3) which are directly connected to those GP I/O ports. Each GP I/O port  
is represented as a bit in one of three 8-bit registers. Only 6 bits of GP2 are implemented. Table  
7.1.1 shows their combinations of Basic I/O functions, and Table 7.1.2 shows the register bit  
assignments of GP1, GP2, and GP3.  
Table 7.1.1  
I/O BIT  
ENABLE INT BIT  
POLARITY BIT  
BASIC I/O OPERATIONS  
0 = OUTPUT  
0 = DISABLE  
0 = NON INVERT  
1 = INPUT  
1 = ENABLE  
1 = INVERT  
0
0
0
0
0
1
0
1
0
Basic non-inverting output  
Basic inverting output  
Non-inverted output bit value of GP2  
drive to Common Interrupt  
0
1
1
Inverted output bit value of GP2 drive  
to Common Interrupt  
1
1
1
0
0
1
0
1
0
Basic non-inverting input  
Basic inverting input  
Non-inverted input drive to Common  
Interrupt  
1
1
1
Inverted input drive to Common  
Interrupt  
Publication Release Date:March 1998  
Revision 0.62  
-71 -  
W83977TF  
PRELIMINARY  
Table 7.1.2  
GP I/O PORT ACCESSED  
REGISTER  
REGISTER BIT  
ASSIGNMENT  
GP I/O PORT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
GP26  
GP30  
GP31  
GP32  
GP33  
GP34  
GP35  
GP36  
GP37  
GP1  
GP2  
GP3  
Publication Release Date:March 1998  
Revision 0.62  
-72 -  
W83977TF  
PRELIMINARY  
7.2 Alternate I/O Functions  
W83977TF provides several alternate functions which are scattered among the GP I/O ports. Table  
7.2.1 shows their assignments. Polarity bit can also be set to alter their polarity.  
Table 7.2.1  
GP I/O PORT  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
GP30  
GP31  
GP32  
GP33  
GP34  
ALTERNATE FUNCTION  
Interrupt Steering  
Interrupt Steering  
Watch Dog Timer Output/IRRX input  
Power LED output/IRTX output  
General Purpose Address Decoder/Keyboard Inhibit(P17)  
General Purpose Write Strobe/ 8042 P12  
Watch Dog Timer Output  
Power LED output  
Keyboard Reset (8042 P20)  
8042 P13  
8042 P14  
8042 P15  
8042 P16  
GATE A20 (8042 P21)  
Interrupt Steering  
Interrupt Steering  
General Purpose Address Decoder  
General Purpose Address Decoder  
Watch Dog Timer Output  
7.2.1 Interrupt Steering  
GP10, GP11, GP30, and GP31 can be programmed to map their own interrupt channels. The  
selection of IRQ channel can be done in configuration registers CR70 and CR72 of logical device 7  
and logical device 9. Each interrupt channel also has its own 1 ms debounce filter that is used to  
reject any noise whose width is equal to or less than 1 ms.  
Publication Release Date:March 1998  
-73 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
7.2.2 Watch Dog Timer Output  
Watch Dog Timer contains a one minute resolution down counter, CRF2 of Logical Device 8, and two  
watch Dog control registers, WDT_CTRL0 and WDT_CTRL1 of Logical Device 8. The down counter  
can be programmed within the range from 1 to 255 minutes. Writing any new non-zero value to  
CRF2 or reset signal coming from a Mouse interrupt or Keyboard interrupt (CRF2 also contains non-  
zero value) will cause the Watch Dog Timer to reload and start to count down from the new value. As  
the counter reaches zero, (1) Watch Dog Timer time-out occurs and the bit 0 of WDT_CTRL1 will be  
set to logic 1; (2) Watch Dog interrupt output is asserted if the interrupt is enable in CR72 of logical  
device 8; and (3) Power LED starts to toggle output if the bit 3 of WDT_CTRL0 is enabled.  
WDT_CTRL1 also can be accessed through GP2 I/O base address + 1.  
7.2.3 Power LED  
The Power LED function provides 1 Hertz rate toggle pulse output with 50 percent duty cycle. Table  
7.2.2 shows how to enable Power LED.  
Table 7.2.2  
WDT_CTRL1 BIT[1]  
WDT_CTRL0 BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
1 Hertz Toggle pulse  
Continuous high or low *  
Continuous high or low *  
1 Hertz Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
1
* Note: Continuous high or low depends on the polarity bit of GP13 or GP17 configuration registers.  
7.2.4 General Purpose Address Decoder  
General Purpose Address Decoder provides two address decode as AEN equal to logic 0. The  
address base is stored at CR62, CR63 of logical device 7 for GP14 and at CR62-65 of logical device  
9 for GP32 and GP33. The decoding output is normally active low. Users can alter its polarity  
through the polarity bit of the GP14, GP32, and GP33's configuration register.  
7.2.5 General Purpose Write Strobe  
General Purpose Write Strobe is an address decoder that performs like General Purpose Address  
IOW  
Decoder, but it has to be qualified by  
and AEN. Its output is normally active low. Users can  
alter its polarity through the polarity bit of the GP15's configuration register.  
Publication Release Date:March 1998  
Revision 0.62  
-74 -  
W83977TF  
PRELIMINARY  
8. PLUG AND PLAY CONFIGURATION  
The W83977TF uses Compatible PNP protocol to access configuration registers for setting up  
different types of configurations. In W83977TF, there are nine Logical Devices (from Logical Device  
0 to Logical Device A with the exception of logical device 4 and 6 for compatibility) which correspond  
to nine individual functions: FDC (logical device 0), PRT (logical device 1), UART1 (logical device 2),  
UART2 (logical device 3), KBC (logical device 5), GPIO1 (logical device 7), GPIO2 (logical device 8),  
GPIO3 (logical device 9), and ACPI ((logical device A). Each Logical Device has its own  
configuration registers (above CR30). Host can access those registers by writing an appropriate  
logical device number into logical device select register at CR7.  
8.1 Compatible PnP  
8.1.1 Extended Function Registers  
In Compatible PnP, there are two ways to enter Extended Function and read or write the configuration  
registers. HEFRAS (CR26 bit 6) can be used to select one out of these two methods of entering the  
Extended Function mode as follows:  
HEFRAS  
address and value  
write 87h to the location 3F0h twice  
write 87h to the location 370h twice  
0
1
Publication Release Date:March 1998  
Revision 0.62  
-75 -  
W83977TF  
PRELIMINARY  
RTSA  
After Power-on reset, the value on  
(pin 43) is latched by HEFRAS of CR26. In Compatible  
PnP, a specific value (87h) must be written twice to the Extended Functions Enable Register (I/O port  
address 3F0h or 370h). Secondly, an index value (02h, 07h-FFh) must be written to the Extended  
Functions Index Register (I/O port address 3F0h or 370h same as Extended Functions Enable  
Register) to identify which configuration register is to be accessed. The designer can then access the  
desired configuration register through the Extended Functions Data Register (I/O port address 3F1h  
or 371h).  
After programming of the configuration register is finished, an additional value (AAh) should be  
written to EFERs to exit the Extended Function mode to prevent unintentional access to those  
configuration registers. The designer can also set bit 5 of CR26 (LOCKREG) to high to protect the  
configuration registers against accidental accesses.  
The configuration registers can be reset to their default or hardware settings only by a cold reset (pin  
MR = 1). A warm reset will not affect the configuration registers.  
8.1.2 Extended Functions Enable Registers (EFERs)  
After a power-on reset, the W83977TF enters the default operating mode. Before the W83977TF  
enters the extended function mode, a specific value must be programmed into the Extended Function  
Enable Register (EFER) so that the extended function register can be accessed. The Extended  
Function Enable Registers are write-only registers. On a PC/AT system, their port addresses are  
3F0h or 370h (as described in previous section).  
8.1.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers(EFDRs)  
After the extended function mode is entered, the Extended Function Index Register (EFIR) must be  
loaded with an index value (02h, 07h-FEh) to access Configuration Register 0 (CR0), Configuration  
Register 7 (CR07) to Configuration Register FE (CRFE), and so forth through the Extended Function  
Data Register (EFDR). The EFIRs are write-only registers with port address 3F0h or 370h (as  
described in section 8.1.1) on PC/AT systems; the EFDRs are read/write registers with port address  
3F1h or 371h (as described in section 8.1.1) on PC/AT systems.  
Publication Release Date:March 1998  
-76 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
9. ACPI REGISTERS FEATURES  
W83977TF supports both ACPI and legacy power managements. The switch logic of the power  
SMI SCI  
managment block generates an  
mode. For the legacy mode, the SMI_EN bit is used. If it is set, it routes the power management  
SMI  
interrupt in the legacy mode and an  
interrupt in the ACPI  
events to the  
interrupt logic. For the ACPI mode, the SCI_EN bit is used. If it is set, it route the  
SCI  
power management events to the  
interrupt logic. The SMI_EN bit is located in the configuration  
register block of Device A and the SCI_EN bit is located in the PM1 register block. See the following  
figure for illustration.  
SMI_EN  
IRQs  
from SCI to SMI  
SMI Logic  
SMI output  
SMI  
Logic  
0
IRQs  
PM Timer  
1
SCI output  
Logic  
SCI  
SCI_EN  
from SMI to SCI  
Bus Master SCI  
SCI Logic  
WAK_STS  
IRQs  
Sleep/Wake  
State machine  
Clock  
Control  
Device Idle  
Timers  
Device Trap  
Global STBY  
Timer  
SMI  
SMI  
SMI  
, which is dedicated for the interrupt output. Another way  
The  
interrupt is routed to pin  
SMI  
to output the  
interrupt is to route to pin IRQSER, which is the signal pin in the Serial IRQ mode.  
SCI  
SCI  
SCI  
, which is dedicated for the function. Or it can be  
The  
interrupt can be routed to pin  
routed to one interrupt request pin, which is selected through CR70.bit3 - 0 of logical device 9.  
SCI  
Another way is to output the  
interrupt to pin IRQSER if serial IRQ mode is enabled.  
Publication Release Date:March 1998  
Revision 0.62  
-77 -  
W83977TF  
PRELIMINARY  
9.1 SMI to SCI/SCI to SMI and Bus Master  
SMI  
SCI  
SCI  
or from to  
The following figure illustrates the process of generating an interrupt from  
to  
SMI  
.
clear  
set  
GBL_STS  
from SMI to SCI  
BIOS_RLS  
To SCI Logic  
GBL_EN  
clear  
set  
BIOS_STS  
from SCI to SMI  
GBL_RLS  
BIOS_EN  
To SMI Logic  
clear  
set  
BM_STS  
BUS Master SCI  
BM_CNTPL  
BM_RLD  
To SCI Logic  
: Status bit  
: Enable bit  
For the BIOS software to raise an event to the ACPI software, BIOS_RLS, GBL_EN, and GBL_STS  
bits are involved. GBL_EN is the enable bit and the GBL_STS is the status bit. Both are controlled  
by the ACPI software. If BIOS_RLS is set by the BIOS software and GBL_EN is set by the ACPI  
SCI  
software, an  
interrupt is raised. Writing a 1 to BIOS_RLS sets it to logic 1 and also sets  
GBL_STS to logic 1. Writing a 0 to BIOS_RLS has no effect. Wrinting a 1 to GBL_STS clears it to  
logic 0 and also clears BIOS_RLS to logic 0. Writing a 0 to GBL_STS has no effect.  
Publication Release Date:March 1998  
-78 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
For the ACPI software to raise an event to the BIOS software, GBL_RLS, BIOS_EN, and BIOS_STS  
bits are involved. BIOS_EN is the enable bit and the BIOS_STS is the status bit. Both are controlled  
by the BIOS software. If GBL_RLS is set by the ACPI software and BIOS_EN is set by the BIOS  
SMI  
software, an  
is raised. Writing a 1 to GBL_RLS sets it to logic 1 and also sets BIOS_STS to  
logic 1. Writing a 0 to GBL_RLS has no effect. Wrinting a 1 to BIOS_STS clears it to logic 0 and  
also clears GBL_RLS to logic 0. Writing a 0 to BIOS_STS has no effect.  
For the bus master to raise an event to the ACPI software, BM_CNTRL, BM_RLD, and BM_STS bits  
are involved. Both BM_RLD and BM_STS are controlled by the ACPI software. If BM_CNTRL is set  
SCI  
by the BIOS software and BM_RLD is set by the ACPI software, an  
interrupt is raised. Writing a  
1 to BM_CNTRL sets it to logic 1 and also sets BM_STS to logic 1. Writing a 0 to BM_CNTRL has no  
effect. Wrinting a 1 to BM_STS clears it to logic 0 and also clears BM_CNTRL to logic 0. Writing a 0  
to BM_STS has no effect.  
9.2 Power Management Timer  
In the ACPI specification, it requires a power management timer. The power management timer is a  
24-bit fixed rate free running up-count timer that runs off a 3.579545MHZ clock. The power  
management timer corresponds to status bit (TMR_STS) and enable bit (TMR_EN). The TMR_STS  
bit is set any time the last bit of the timer (bit 23) goes from 0 to 1 or from 1 to 0. If the TMR_EN bit  
SCI  
is set, the setting of the TMR_STS bit will generate an  
interrupt. Three registers are used to  
read the timer value which are located in the PM1 register block. The power management timer has  
one enabel bit (TMR_ON) to turn ii on or off. The TMR_ON is located in GPE register block. If it is  
cleared to 0, the power management timer function would not work. There are no timer reset  
requirements, except that the timer should function after power-up. See the following figure for  
illustration.  
TMR_STS  
TMR_EN  
TMR_ON  
24 bit  
counter  
To SCI Logic  
Bits (23-0)  
3.579545 MHz  
24  
TMR_VAL  
Publication Release Date:March 1998  
Revision 0.62  
-79 -  
W83977TF  
PRELIMINARY  
9.3 ACPI Registers (ACPIRs)  
The ACPI register model consists of the fixed register blocks that perform the ACPI functuions. A  
register block may be a event register block which deals with ACPI events or a control register block  
which deals with control features. The order in the event register block is a status register followed by  
an enable register.  
Each event register, if implemented, contains two two register: a status register and an enable  
register, of 16 bits wide each. The status register indicates which event triggers the ACPI System  
SCI  
Control Interrupt (  
However, the corresponding enable bit is also required to be set before an  
raised. If the enable bit is not set, the software can examine the state of the hardware event by  
SCI  
). When the hardware event occurs, the corresponding status bit will be set.  
SCI  
interrupt could be  
reading the status bit without generating an  
interrupt.  
Any status bit, unless otherwise noted, can only be set by specific hardware event. It is cleared by  
writing a 1 to its bit position and writing a 0 has no effect. Except some special status bits, every  
status bit has the corresponding enable bit on the same bit position in the enable register. Those  
status bits which have no corresponding enable bit are read for special purpose. Reverved or  
unimplemented enable bits always return zero, and writing to these bits should has no effect.  
The control bit in the control register provides some special control function over the hardware event,  
SCI  
or some special control over  
event. Reserved or unimplemented control bits always return zero,  
and writing to those bits should has no effect.  
Table 9-1 (sec. 9.3.21) lists the PM1 register block and its registers. The base address of PM1  
register block is named as PM1a_EVT_BLK in the ACPI specification and is specified in CR60, 61 of  
logical device A.  
Table 9-2 (sec. 9.3.21) lists the GPE register block and its registers. The base address of general-  
purpose event block GPE0 is named as GPE0_BLK in the ACPI specification and is specified in  
CR62, 63 of logical device A. The base address of general-purpose event block GPE1 is named as  
GPE1_BLK in the ACPI specification and is specified in CR64, 65 of logical device A.  
9.3.1 Power Management 1 Status Register 1 (PM1STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
TMR_STS  
Reserved  
Reserved  
Reserved  
BM_STS  
GBL_STS  
Reserved  
Reserved  
Publication Release Date:March 1998  
Revision 0.62  
-80 -  
W83977TF  
PRELIMINARY  
Bit  
Name  
Description  
0
TMR_STS  
This bit is the timer carry status bit. This bit is set anytime the bit 23 of the  
24-bit counter changes (whenever the MSB changes from low to high or high  
to low). When TMR_EN and TMR_STS are set, a power magement event is  
raised. This bit is only set by hardware and can only be cleared by writing a  
1 to this bit position. Writing a 0 has no effect.  
1-3  
4
Reserved  
BM_STS  
Reserved.  
This is the bus master status bit. Writing a 1 to BM_CNTRL also sets  
BM_STS. Writing a 1 clears this bit and also clears BM_CNTRL. Writing a  
0 has no effect.  
5
GBL_STS  
Reserved  
This is the global status bit. This bit is set when the BIOS wants the  
SCI  
attention of the  
handler. BIOS sets this bit by setting BIOS_RLS and  
can only be cleared by writing a 1 to this bit position. Writing a 1 to this bit  
position also clears BIOS_RLS. Writing a 0 has no effect.  
6-7  
Reserved. These bits always return zeros.  
9.3.2 Power Management 1 Status Register 2 (PM1STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 1H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
WAK_STS  
Bit  
0-6  
7
Name  
Reserved  
WAK_STS  
Description  
Reserved.  
This bit is set when the system is in the sleeping state and an enabled resume  
event occurs. Upon setting this bit, the sleeping/working state machine will  
transition the system to the working state. This bit is only set by hardware and  
is cleared by writing a 1 to this bit position or by the sleeping/working state  
machine automatically when the global standby timer expires. Writing a 0 has  
no effect. When the WAK_STS is cleared and all devices are in sleeping  
state, the whole chip enters the sleeping state.  
Publication Release Date:March 1998  
-81 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
9.3.3 Power Management 1 Enable Register 1(PM1EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 2H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
TMR_EN  
Reserved  
Reserved  
Reserved  
GBL_EN  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0
TMR_EN  
SCI  
This is the timer carry interrupt enable bit. When this bit is set then an  
event is generated whenever the TMR_STS bit is set. When this bit is reset  
then no interrupt is generated even when the TMR_STS bit is set.  
1-4  
5
Reserved  
GBL_EN  
Reserved. These bits always return a value of zero.  
The global enable bit. When both the GBL_EN bit and the GBL_STS bit are  
SCI  
set, an  
interrupt is raised.  
6-7  
Reserved  
Reserved.  
9.3.4 Power Management 1 Enable Register 2 (PM1EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 3H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0-7  
Reserved  
Reserved. These bits always return zeros.  
Publication Release Date:March 1998  
Revision 0.62  
-82 -  
W83977TF  
PRELIMINARY  
9.3.5 Power Management 1 Control Register 1 (PM1CTL1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 4H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
SCI_EN  
BM_RLD  
GBL_RLD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0
SCI_EN  
SCI  
SMI  
or an  
Select whether the power management event triggers an  
interrupt. When this bit is set, then the power management events will  
SCI  
generate an  
the power management events will generate an  
This is the bus master reload enable bit. If this bit is set and BM_CNTRL is  
SCI  
interrupt. When this bit is reset and SMI_EN bit is set, then  
SMI  
interrupt.  
1
2
BM_RLD  
set, an  
interrupt is raised.  
GBL_RLS  
The global release bit. This bit is used by the ACPI software to raise an event  
to the BIOS software. The BIOS software has a corresponding enable and  
status bit to control its ability to receive the ACPI event. Setting GBL_RLS  
SMI  
sets BIOS_STS, and it generates an  
interrupt if BIOS_EN is also set.  
3-7  
Reserved  
Reserved. These bits always return zeros.  
9.3.6 Power Management 1 Control Register 2 (PM1CTL2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 5H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0-7  
Reserved  
Reserved. These bits always return zeros.  
Publication Release Date:March 1998  
Revision 0.62  
-83 -  
W83977TF  
PRELIMINARY  
9.3.7 Power Management 1 Control Register 3 (PM1CTL3)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 6H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0-7  
Reserved  
Reserved. These bits always return zeros.  
9.3.8 Power Management 1 Control Register 4 (PM1CTL4)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 7H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0-7  
Reserved  
Reserved. These bits always return zeros.  
Publication Release Date:March 1998  
Revision 0.62  
-84 -  
W83977TF  
PRELIMINARY  
9.3.9 Power Management 1 Timer 1 (PM1TMR1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 8H System I/O Space  
00h  
Read only  
Size:  
8 bits  
2
1
7
6
5
4
3
0
TMR_VAL0  
TMR_VAL1  
TMR_VAL2  
TMR_VAL3  
TMR_VAL4  
TMR_VAL5  
TMR_VAL6  
TMR_VAL7  
Bit  
Name  
Description  
0-7  
TMR_VAL  
This read-only field returns the running count of the power management timer.  
This is a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in  
the working state. The timer is reset and then continues counting until the  
CLKIN input the the chip is stopped. If the clock is restarted without a MR  
reset, then the counter will resume counting from where it stopped. The  
TMR_STS bit is set any time the last bit of the timer (bit 23) goes from 0 to 1  
or from 1 to 0. If the TMR_EN bit is set, the setting of the TMR_STS bit will  
SCI  
generate an  
interrupt.  
9.3.10 Power Management 1 Timer 2 (PM1TMR2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 9H System I/O Space  
00h  
Read only  
Size:  
8 bits  
2
1
7
6
5
4
3
0
TMR_VAL8  
TMR_VAL9  
TMR_VAL10  
TMR_VAL11  
TMR_VAL12  
TMR_VAL13  
TMR_VAL14  
TMR_VAL15  
Publication Release Date:March 1998  
Revision 0.62  
-85 -  
W83977TF  
PRELIMINARY  
Bit  
0-7  
Name  
Description  
TMR_VAL  
This read-only field returns the running count of the power management timer.  
This is a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in  
the working state. The timer is reset and then continues counting until the  
CLKIN input the the chip is stopped. If the clock is restarted without a MR  
reset, then the counter will resume counting from where it stopped. The  
TMR_STS bit is set any time the last bit of the timer (bit 23) goes from 0 to 1  
or from 1 to 0. If the TMR_EN bit is set, the setting of the TMR_STS bit will  
SCI  
generate an  
interrupt.  
9.3.11 Power Management 1 Timer 3 (PM1TMR3)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + AH System I/O Space  
00h  
Read only  
Size:  
8 bits  
2
1
7
6
5
4
3
0
TMR_VAL16  
TMR_VAL17  
TMR_VAL18  
TMR_VAL19  
TMR_VAL20  
TMR_VAL21  
TMR_VAL22  
TMR_VAL23  
Bit  
Name  
Description  
0-7  
TMR_VAL  
This read-only field returns the running count of the power management timer.  
This is a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in  
the working state. The timer is reset and then continues counting until the  
CLKIN input the the chip is stopped. If the clock is restarted without a MR  
reset, then the counter will resume counting from where it stopped. The  
TMR_STS bit is set any time the last bit of the timer (bit 23) goes from 0 to 1  
or from 1 to 0. If the TMR_EN bit is set, the setting of the TMR_STS bit will  
SCI  
generate an  
interrupt.  
Publication Release Date:March 1998  
Revision 0.62  
-86 -  
W83977TF  
PRELIMINARY  
9.3.12 Power Management 1 Timer 4 (PM1TMR4)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + BH System I/O Space  
00h  
Read only  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
Reserved. These bits always return zeros.  
0-7  
Reserved  
9.3.13 General Purpose Event 0 Status Register 1 (GP0STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
URBSCISTS  
URASCISTS  
FDCSCISTS  
PRTSCISTS  
KBCSCISTS  
MOUSCISTS  
Reserved  
Reserved  
SCI  
These bits indicate the status of the  
SCI  
input, which is set when the device's IRQ is raised. If the  
SCI  
interrupt is  
corresponding enable bit in the  
interrupt enable register (in GP0EN1) is set, an  
raised and routed to the output pin. Wrinting a 1 clears the bit, and wrinting a 0 has no effect. If the  
SCI  
SCI  
interrupt will be raised.  
bit is not cleared, new IRQ to the  
logic input is ignored and no  
Publication Release Date:March 1998  
Revision 0.62  
-87 -  
W83977TF  
PRELIMINARY  
Bit  
Name  
Description  
0
URBSCISTS  
SCI  
SCI  
UART B  
UART A  
status, which is set by the UART B IRQ.  
status, which is set by the UART A IRQ.  
1
URASCISTS  
FDCSCISTS  
PRTSCISTS  
KBCSCISTS  
MOUSCISTS  
Reserved  
2
SCI  
FDC  
PRT  
KBC  
status, which is set by the FDC IRQ.  
status, which is set by the printer port IRQ.  
status, which is set by the KBC IRQ.  
3
SCI  
SCI  
4
5
SCI  
MOUSE  
status, which is set by the MOUSE IRQ.  
6-7  
Reserved.  
9.3.14 General Purpose Event 0 Status Register 2 (GP0STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 1H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0-7  
Reserved  
Reserved. These bits always return zeros.  
Publication Release Date:March 1998  
Revision 0.62  
-88 -  
W83977TF  
PRELIMINARY  
9.3.15 General Purpose Event 0 Enable Register 1 (GP0EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 2H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
URBSCIEN  
URASCIEN  
FDCSCIEN  
PRTSCIEN  
KBCSCIEN  
MOUSCIEN  
Reserved  
Reserved  
SCI  
SCI  
logic output for  
These bits are used to enable the device's IRQ sources into the  
the IRQs is as follows:  
logic. The  
SCI logic output = (URBSCIEN and URBSCISTS) or (URASCIEN and URASCISTS) or (FDCSCIEN  
and FDCSCISTS) or (PRTSCIEN and PRTSCISTS) or (KBCSCIEN and KBCSCISTS) or  
(MOUSCIEN and MOUSCISTS)  
Bit  
Name  
Description  
0
URBSCIEN  
SCI  
SCI  
UART B  
UART A  
enable, which controls the UART B IRQ.  
enable, which controls the UART A IRQ.  
1
URASCIEN  
FDCSCIEN  
PRTSCIEN  
KBCSCIEN  
MOUSCIEN  
Reserved  
2
SCI  
FDC  
enable, which controls the FDC IRQ.  
SCI  
3
printer port  
enable, which controls the printer port IRQ.  
4
SCI  
KBC  
enable, which controls the KBC IRQ.  
5
SCI  
MOUSE  
enable, which controls the MOUSE IRQ.  
6-7  
Reserved.  
9.3.16 General Purpose Event 0 Enable Register 2 (GP0EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 3H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
Publication Release Date:March 1998  
Revision 0.62  
-89 -  
W83977TF  
PRELIMINARY  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
0-7  
Name  
Description  
Reserved. These bits always return zeros.  
Reserved  
9.3.17 General Purpose Event 1 Status Register 1 (GP1STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
BIOS_STS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0
BIOS_STS  
The BIOS status bit. This bit is set when GBL_RLS is set. If BIOS_EN is set,  
SMI  
setting GBL_RLS will raise an  
event. Writing a 1 to its bit location clears  
BIOS_STS and also clears GBL_RLS. Writing a 0 has no effect.  
1-7  
Reserved  
Reserved.  
9.3.18 General Purpose Event 1 Status Register 2 (GP1STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 1H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
Publication Release Date:March 1998  
Revision 0.62  
-90 -  
W83977TF  
PRELIMINARY  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
0-7  
Name  
Description  
Reserved. These bits always return zeros.  
Reserved  
9.3.19 General Purpose Event 1 Enable Register 1 (GP1EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 2H System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
BIOS_EN  
TMR_ON  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
event. When this bit is set and the ACPI software  
0
BIOS_EN  
SMI  
This bit is raise the  
SMI  
SMI  
logic  
writes a 1 to the GBL_RLS bit, an  
output.  
event is raised on the  
1
TMR_ON  
Reserved  
This bit is used to turn on the power management timer.  
1 = timer on; 0 = timer off.  
Reserved.  
2-7  
9.3.20 General Purpose Event 1 Enable Register 2 (GP1EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 3H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
Publication Release Date:March 1998  
Revision 0.62  
-91 -  
W83977TF  
PRELIMINARY  
2
1
7
6
5
4
3
0
BIOS_RLS  
BM_CNTRL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit  
Name  
Description  
0
BIOS_RLS  
The BIOS release bit. This bit is used by the BIOS software to raise an event  
to the ACPI software. The ACPI software has a corresponding enable and  
status bit to control its ability to receive the ACPI event. Setting BIOS_RLS  
SCI  
sets GBL_STS, and it generates an  
interrupt if GBL_EN is also set.  
Writing a 1 to its bit position sets this bit and also sets the BM_STS bit.  
Writing a 0 has no effect. This bit is cleared by writing a 1 to the GBL_STS  
bit.  
1
BM_CNTRL  
This bit is used to set the BM_STS bit and if the BM_RLD bit is also set, then  
an SCI interrupt is generated. Writing a 1 sets BM_CNTRL to 1 and also sets  
BM_STS. Writing a 0 has no effect. Wrinting a 1 to BM_STS clears  
BM_STS and also clears BM_CNTRL.  
2-7 Reserved  
Reserved.  
9.3.21 Bit Map Configuration Registers  
Table 9-1: Bit Map of PM1 Register Block  
Register  
Address  
Power-On  
Reset  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Value  
PM1STS1 <CR60,61>  
PM1STS2 <CR60,61>  
+1H  
0000 0000  
0000 0000  
0
0
0
GBL_STS  
0
BM_STS  
0
0
0
0
0
0
0
TMR_STS  
0
WAK_STS  
PM1EN1  
<CR60,61>  
+2H  
<CR60,61>  
+3H  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0
0
GBL_EN  
0
0
0
0
TMR_EN  
PM1EN2  
0
0
0
0
0
0
0
0
PM1CTL1 <CR60,61>  
0
0
0
0
0
GBL_RLS  
BM_RLD  
SCI_EN  
+4H  
PM1CTL2 <CR60,61>  
0
0
0
0
0
0
0
0
+5H  
PM1CTL3 <CR60,61>  
0
0
0
0
0
0
0
0
0
+6H  
PM1CTL4 <CR60,61>  
0
0
0
0
0
0
0
+7H  
PM1TMR1 <CR60,61>  
TMR_VAL7  
TMR_VAL6  
TMR_VAL5  
TMR_VAL4  
TMR_VAL3  
TMR_VAL2  
TMR_VAL1  
TMR_VAL9  
TMR_VAL0  
TMR_VAL8  
TMR_VAL16  
0
+8H  
PM1TMR2 <CR60,61>  
+9H  
PM1TMR3 <CR60,61>  
+AH  
TMR_VAL15 TMR_VAL14 TMR_VAL13 TMR_VAL12 TMR_VAL11 TMR_VAL10  
TMR_VAL23 TMR_VAL22 TMR_VAL21 TMR_VAL20 TMR_VAL19 TMR_VAL18 TMR_VAL17  
PM1TMR4 <CR60,61>  
+BH  
0
0
0
0
0
0
Publication Release Date:March 1998  
Revision 0.62  
-92 -  
W83977TF  
PRELIMINARY  
Table 9-2: Bit Map of GPE Register Block  
Register  
Address  
Power-On  
Reset Value  
0000 0000  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
GP0STS1 <CR62,63>  
0
0
0
0
MOUSCISTS  
0
KBCSCISTS  
0
PRTSCISTS  
0
FDCSCISTS  
0
URASCISTS  
0
URBSCISTS  
0
GP0STS2 <CR62,63>  
+1H  
0000 0000  
GP0EN1  
<CR62,63>  
+2H  
0000 0000  
0000 0000  
0
0
0
0
MOUSCIEN  
0
KBCSCIEN  
0
PRTSCIEN  
0
FDCSCIEN  
0
URASCIEN  
0
URBSCIEN  
0
GP0EN2  
<CR62,63>  
+3H  
GP1STS1 <CR64,65>  
0000 0000  
0000 0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIOS_STS  
0
GP1STS2 <CR64,65>  
+1H  
GP1EN1  
<CR64,65>  
+2H  
0000 0000  
0000 0000  
0
0
0
0
0
0
0
0
0
0
0
0
TMR_ON  
BIOS_EN  
GP1EN2  
<CR64,65>  
+3H  
BM_CNTRL  
BIOS_RLS  
10. SERIAL IRQ  
W83977TF supports a serial IRQ scheme. This allow a signal line to be used to report the legacy ISA  
interrupt rerquests. Because more than one device may need to share the signal serial IRQ signal  
line, an open drain signal scheme is used. The clock source is the PCI clock. The serial interrupt is  
transfered on the IRQSER signal, one cycle consisting of three frames types: a start frame, several  
Serial IRQ  
IRQ/Data frame, and one Stop frame. The serial interrupt scheme adheres to the  
Specification for PCI System, Version 6.0.  
Timing Diagrams For IRQSER Cycle  
Start Frame timing with source sampled a low pulse on IRQ1  
START FRAME  
IRQ0 FRAME  
IRQ1 FRAME  
IRQ2 FRAME  
R T  
SL  
or  
H
H
R
T
S
R
T
S
R
T
S
PCICLK  
IRQSER  
1
START  
Drive Source  
Host Controller  
SL=Slave Control  
None  
IRQ1  
T=Turn-around  
None  
IRQ1  
H=Host Control  
R=Recovery  
S=Sample  
1. Start Frame pulse can be 4-8 clocks wide.  
Publication Release Date:March 1998  
Revision 0.62  
-93 -  
W83977TF  
PRELIMINARY  
Stop Frame Timing with Host using 17 IRQSER sampling period  
IRQ14  
FRAME  
IRQ15  
FRAME  
IOCHCK  
FRAME  
STOP FRAME  
H
NEXT CYCLE  
2
S
R
T
S
R
T
S
R
T
I
R
T
PCICLK  
IRQSER  
1
3
STOP  
START  
Drive  
None  
IRQ15  
None  
Host Controller  
S=Sample  
H=Host Control  
R=Recovery  
T=Turn-around  
I=Idle  
1. Stop pulse is 2 clocks wide for Quiet mode, 3 clocks wide for Continuous mode.  
2. There may be none, one or more Idle states during the Stop Frame.  
3. The next IRQSER cycle's Start Frame pulse may or may not start immediately after the turn-around clock of the Stip Frame.  
10.1 Start Frame  
There are two modes of operation for the IRQSER Start frame: Quiet mode and Continuous mode.  
In the Quiet mode, the peripheral drives the SERIRQ signal active low for one clock, and then tri-  
states it. This brings all the states machines of the peripherals from idle to active states. The host  
controller will then take over driving IRQSER signal low in the next clock and will continue driving the  
IRQSER low for programmable 3 to 7 clock periods. This makes the total number of clocks low for 4  
to 8 clock periods. After these clocks, the host controller will drive the IRQSER high for one clock  
and then tri-states it.  
In the Continuous mode, only the host controller initiates the START frame to update IRQ/Data line  
information. The host controller drives the IRQSER signal low for 4 to 8 clock periods. Upon a reset,  
the IRQSER signal is defaulted to the Continuous mode for the host controller to initiate the first Start  
frame.  
10.2 IRQ/Data Frame  
Once the start frame has been initiated, all the peripherals must start counting frames based on the  
rsing edge of the start pulse. Each IRQ/Data Frame is three clocks: Sample phase, Recovery phase,  
and Turn-around phase.  
During the Sample phase, the peripheral drives SERIRQ low if the corresponding IRQ is active. If the  
corresponding IRQ is inactive, then IRQSER must be left tri-stated. During the Recovery phase, the  
peripheral device drives the IRQSER high. During the Turn-around phase, the peripheral device left  
the IRQSER tri-stated.  
The IRQ/Data Frame has a number of specific order, as shown in Table 10-1.  
10.3 Stop Frame  
After all IRQ/Data Frames have completed, the host controller will terminate IRQSER by a Stop  
frame. Only the host controller can initiate the Stop frame by driving IRQSER low for 2 or 3 clocks. If  
the Stop Frame is low for 2 clocks, the next IRQSER cycle's Sample mode is the Quiet mode. If the  
Stop Frame is low for 3 clocks, the next IRQSER cycle's Sample mode is the Continuous mode.  
Publication Release Date:March 1998  
-94 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Table 10-1 IRQSER Sampling periods  
IRQ/Data Frame  
Signal Sampled  
# of clocks past Start  
1
2
3
IRQ0  
IRQ1  
2
5
8
SMI  
IRQ3  
4
5
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
IRQ4  
6
IRQ5  
7
IRQ6  
8
IRQ7  
9
IRQ8  
10  
11  
12  
13  
14  
15  
16  
17  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IOCHCK  
INTA  
18  
19  
53  
56  
59  
62  
95  
INTB  
20  
INTC  
21  
INTD  
32:22  
Unassigned  
10.4 Reset and Initialization  
After MR reset, IRQSER Slaves are put into the Continuous(Idle) mode. The Host Controller is  
responsible for starting the initial IRQSER Cycle to collect system's IRQ/Data default values. The  
system then follows with the Continuous/Quiet mode protocol (Stop Frame pulse width) for  
subsequent IRQSER cycles. It's the Host Controller's responsibility to provide the default values to  
8259's and other system logic before the first IRQSER cycle is performed. For IRQSER system  
suspend, insertion, or removal application, the Host controller should be programmed into  
Continuous(Idle) mode first. This is to guarantee IRQSER bus in the Idle state before the system  
configuration changes.  
Publication Release Date:March 1998  
-95 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
11. CONFIGURATION REGISTER  
11.1 Chip (Global) Control Register  
CR02 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: SWRST --> Soft Reset.  
CR07  
Bit 7 - 0: LDNB7 - LDNB0 --> Logical Device Number Bit 7 - 0  
CR20  
Bit 7 - 0: DEVIDB7 - DEBIDB0 --> Device ID Bit 7 - Bit 0 = 0x97 (read only).  
CR21  
Bit 7 - 0: DEVREVB7 - DEBREVB0 --> Device Rev Bit 7 - Bit 0 = 0x73 (read only).  
CR22 (Default 0xff)  
Bit 7 - 6: Reserved.  
Bit 5: URBPWD  
= 0 Power down  
= 1 No Power down  
Bit 4: URAPWD  
= 0 Power down  
= 1 No Power down  
Bit 3: PRTPWD  
= 0 Power down  
= 1 No Power down  
Bit 2, 1: Reserved.  
Bit 0: FDCPWD  
= 0 Power down  
= 1 No Power down  
CR23 (Default 0xFE)  
Bit 7 - 1: Reserved.  
Bit 0: IPD (Immediate Power Down). When set to 1, it will put the whole chip into power down  
mode immediately.  
CR24 (Default 0b1s000s0s)  
Bit 7: EN16SA  
= 0 12 bit Address Qualification  
= 1 16 bit Address Qualification  
Bit 6: EN48  
= 0 The clock input on Pin 1 should be 24 Mhz.  
= 1 The clock input on Pin 1 should be 48 Mhz.  
The corresponding power-on setting pin is SOUTB (pin 53).  
Publication Release Date: March 1998  
-96 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 5 - 3: Reserved.  
Bit 2: ENKBC  
= 0 KBC is disabled after hardware reset.  
= 1 KBC is enabled after hardware reset.  
This bit is read only, and set/reset by power-on setting pin. The corresponding power-on  
setting pin is SOUTA (pin 46).  
Bit 1: Reserved  
PNPCSV  
Bit 0:  
= 0 The Compatible PnP address select registers have default values.  
= 1 The Compatible PnP address select registers have no default value.  
PNPCSV  
When trying to make a change to this bit, new value of  
must be complementary  
PNPCSV  
PNPCSV  
to the old one to make an effective change. For example, the user must set  
to 0  
is 1.  
first and then reset it to 1 to reset these PnP registers if the present value of  
The corresponding power-on setting pin is NDTRA (pin 44).  
CR25 (Default 0x00)  
Bit 7 - 6: Reserved  
Bit 5: URBTRI  
Bit 4: URATRI  
Bit 3: PRTTRI  
Bit 2 - 1 : Reserved  
Bit 0: FDCTRI.  
CR26 (Default 0b0s000000)  
Bit 7: SEL4FDD  
= 0 Select two FDD mode.  
= 1 Select four FDD mode.  
Bit 6: HEFRAS  
These two bits define how to enable Configuration mode. The corresponding power-on  
setting pin is NRTSA (pin 43).  
HEFRAS Address and Value  
= 0 Write 87h to the location 3F0h twice.  
= 1 Write 87h to the location 370h twice.  
Bit 5: LOCKREG  
= 0 Enable R/W Configuration Registers.  
= 1 Disable R/W Configuration Registers.  
Bit 4: Reserved.  
Bit 3: DSFDLGRQ  
= 0 Enable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is effective  
on selecting IRQ  
= 1 Disable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is not  
effective on selecting IRQ  
Publication Release Date: March 1998  
-97 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 2: DSPRLGRQ  
= 0 Enable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is effective on  
selecting IRQ  
= 1 Disable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is not effective  
on selecting IRQ  
Bit 1: DSUALGRQ  
= 0 Enable UART A legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART A legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
Bit 0: DSUBLGRQ  
= 0 Enable UART B legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1 Disable UART B legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
CR28 (Default 0x00)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Sharing selection.  
= 0  
= 1  
Disable IRQ Sharing  
Enable IRQ Sharing  
Bit 3:Reserved  
Bit 2 - 0: PRTMODS2 - PRTMODS0  
= 0xx Parallel Port Mode  
= 100 Reserved  
= 101 External FDC Mode  
= 110 Reserved  
= 111 External two FDC Mode  
CR2A (Default 0x00)  
Bit 7: PIN57S  
= 0 KBRST  
= 1 GP12  
Bit 6: PIN56S  
= 0 GA20  
= 1 GP11  
Bit 5 - 4: PIN40S1, PIN40S0  
= 00 Reserved  
= 01 GP24  
= 10 8042 P13  
= 11 Reserved  
Bit 3 - 2: Reserved.  
Bit 1 - 0: PIN3S1, PIN3S0  
= 00 DRVDEN1  
= 01 GP10  
= 10 8042 P12  
SCI  
= 11  
Publication Release Date: March 1998  
Revision 0.62  
-98 -  
W83977TF  
PRELIMINARY  
CR2B (Default 0x00)  
Bit 7 - 6: PIN73S1, PIN73S0  
PANSWIN  
= 00  
= 01 GP23  
= 10 Reserved  
= 11 Reserved  
Bit 5: PIN72S  
PANSWOUT  
= 0  
= 1 GP22  
Bit 4 - 3: PIN70S1, PIN70S0  
SMI  
= 00  
= 01 GP21  
= 10 8042 P16  
= 11 Reserved  
Bit 2 - 1: Reserved.  
Bit 0: PIN58S  
= 0 KBLOCK  
= 1 GP13  
CR2C (Default 0x00)  
Bit 7 - 6: PIN121S1, PIN121S0  
= 00 DRQ0  
= 01 GP17  
= 10 8042 P14  
SCI  
= 11  
Bit 5 - 4: PIN119S1, PIN119S0  
= 00 NDACK0  
= 01 GP16  
= 10 8042 P15  
= 11 Reserved  
Bit 3 - 2: PIN104S1, PIN104S0  
= 00 IRQ15  
= 01 GP15  
= 10 WDTO  
= 11 Reserved  
Bit 1 - 0: PIN103S1, PIN103S0  
= 00 IRQ14  
= 01 GP14  
= 10 PLEDO  
= 11 Reserved  
CR2D (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2E (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2F (Default 0x00)  
Test Modes: Reserved for Winbond.  
Publication Release Date: March 1998  
Revision 0.62  
-99 -  
W83977TF  
PRELIMINARY  
11.2 Logical Device 0 (FDC)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
PNPCSV  
CR60, CR 61 (Default 0x03, 0xf0 if  
= 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select FDC I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x06 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for FDC.  
CR74 (Default 0x02 if PNPCSV = 0 during POR, default 0x04 otherwise)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for FDC.  
= 0x00 DMA0  
= 0x01 DMA1  
= 0x02 DMA2  
= 0x03 DMA3  
= 0x04 - 0x07 No DMA active  
CRF0 (Default 0x0E)  
FDD Mode Register  
Bit 7: FIPURDWN  
This bit controls the internal pull-up resistors of the FDC input pins RDATA, INDEX, TRAK0,  
DSKCHG, and WP.  
= 0 The internal pull-up resistors of FDC are turned on.(Default)  
= 1 The internal pull-up resistors of FDC are turned off.  
Bit 6: INTVERTZ  
This bit determines the polarity of all FDD interface signals.  
= 0 FDD interface signals are active low.  
= 1 FDD interface signals are active high.  
Bit 5: DRV2EN (PS2 mode only)  
When this bit is a logic 0, this indicates that a second drive is installed and is reflected in status  
register A.  
Bit 4: Swap Drive 0, 1 Mode  
= 0 No Swap (Default)  
= 1 Drive and Motor sel 0 and 1 are swapped.  
Bit 3 - 2 Interface Mode  
= 11 AT Mode (Default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
Bit 1: FDC DMA Mode  
= 0 Burst Mode is enabled  
= 1 Non-Burst Mode (Default)  
Publication Release Date: March 1998  
-100 -  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 0: Floppy Mode  
= 0 Normal Floppy Mode (Default)  
= 1 Enhanced 3-mode FDD  
CRF1 (Default 0x00)  
Bit 7 - 6: Boot Floppy  
= 00 FDD A  
= 01 FDD B  
= 10 FDD C  
= 11 FDD D  
Bit 5, 4: Media ID1, Media ID0. These bits will be reflected on FDC's Tape Drive Register bit 7, 6.  
Bit 3 - 2: Density Select  
= 00 Normal (Default)  
= 01 Normal  
= 10 1 ( Forced to logic 1)  
= 11 0 ( Forced to logic 0)  
Bit 1: DISFDDWR  
= 0 Enable FDD write.  
= 1 Disable FDD write(forces pins WE, WD stay high).  
Bit 0: SWWP  
= 0 Normal, use WP to determine whether the FDD is write protected or not.  
= 1 FDD is always write-protected.  
CRF2 (Default 0xFF)  
Bit 7 - 6: FDD D Drive Type  
Bit 5 - 4: FDD C Drive Type  
Bit 3 - 2: FDD B Drive Type  
Bit 1:0: FDD A Drive Type  
When FDD is in enhanced 3-mode(CRF0.bit0=1),these bits determine SELDEN value in TABLE A  
of CRF4 and CRF5 as follows.  
DTYPE1  
DPYTE0  
DRATE1  
DRATE0  
SELDEN  
0
0
0
0
0
1
1
0
0
0
0
1
0
1
1
0
0
1
X
X
0
1
0
1
0
X
X
1
1
1
0
0
0
1
0
Note: X means don't care.  
Publication Release Date: March 1998  
Revision 0.62  
-101 -  
W83977TF  
PRELIMINARY  
CRF4 (Default 0x00)  
FDD0 Selection:  
Bit 7: Reserved.  
Bit 6: Precomp. Disable.  
= 1 Disable FDC Precompensation.  
= 0 Enable FDC Precompensation.  
Bit 5: Reserved.  
Bit 4 - 3: DRTS1, DRTS0: Data Rate Table select (Refer to TABLE A).  
= 00 Select Regular drives and 2.88 format  
= 01 Specifical application  
= 10 2 Meg Tape  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1:0: DMOD0, DMOD1 : Drive Model select (Refer to TABLE B).  
CRF5 (Default 0x00)  
FDD1 Selection: Same as FDD0 of CRF4.  
Publication Release Date: July 1997  
Revision 0.61  
-101.1 -  
W83977TF  
PRELIMINARY  
TABLE A  
Drive Rate Table  
Data Rate  
Selected Data Rate  
SELDEN  
Select  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
CRF0 bit 0=0  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
250K  
150K  
125K  
---  
1
0
250K  
250K  
125K  
---  
250K  
---  
125K  
Note:Refer to CRF2 for SELDEN value in the cases when CRF0, bit0=1.  
TABLE B  
DMOD0  
DMOD1  
DRVDEN0(pin 2)  
DRVDEN1(pin 3)  
DRIVE TYPE  
0
0
SELDEN  
DRATE0  
4/2/1 MB 3.5” “  
2/1 MB 5.25”  
2/1.6/1 MB 3.5” (3-MODE)  
0
1
1
0
DRATE1  
DRATE0  
DRATE0  
SELDEN  
DRATE0  
1
1
DRATE1  
Publication Release Date: March 1998  
Revision 0.62  
-102-  
W83977TF  
PRELIMINARY  
11.3 Logical Device 1 (Parallel Port)  
PNPCSV  
CR30 (Default 0x01 if  
Bit 7 - 1: Reserved.  
Bit 0:  
= 0 during POR, default 0x00 otherwise)  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
PNPCSV  
CR60, CR 61 (Default 0x03, 0x78 if  
= 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Parallel Port I/O base address.  
[0x100:0xFFC] on 4 byte boundary (EPP not supported) or  
[0x100:0xFF8] on 8 byte boundary (all modes supported, EPP is only available when the base  
address is on 8 byte boundary).  
PNPCSV  
CR70 (Default 0x07 if  
= 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for Parallel Port.  
CR74 (Default 0x04)  
Bit 7 - 3: Reserved.  
Bit 2 - 0: These bits select DRQ resource for Parallel Port.  
0x00=DMA0  
0x01=DMA1  
0x02=DMA2  
0x03=DMA3  
0x04 - 0x07= No DMA active  
CRF0 (Default 0x3F)  
Bit 7: PP Interrupt Type:  
Not valid when the parallel port is in the printer Mode (100) or the standard & Bi-directional  
Mode (000).  
= 1 Pulsed Low, released to high-Z .  
= 0 IRQ follows nACK when parallel port in EPP Mode or [Printer, SPP, EPP] under ECP.  
Bit [6:3]: ECP FIFO Threshold.  
Bit 2 - 0 Parallel Port Mode  
= 100 Printer Mode (Default)  
= 000 Standard and Bi-direction (SPP) mode  
= 001 EPP - 1.9 and SPP mode  
= 101 EPP - 1.7 and SPP mode  
= 010 ECP mode  
= 011 ECP and EPP - 1.9 mode  
= 111 ECP and EPP - 1.7 mode.  
Publication Release Date: March 1998  
-103-  
Revision 0.62  
W83977TF  
PRELIMINARY  
11.4  
Logical Device 2 (UART A)¢ )  
PNPCSV  
CR30 (Default 0x01 if  
Bit 7 - 1: Reserved.  
Bit 0:  
= 0 during POR, default 0x00 otherwise)  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xF8 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 1 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x04 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Serial Port 1.  
CRF0 (Default 0x00)  
Bit 7 - 2: Reserved.  
Bit 1 - 0: SUACLKB1, SUACLKB0  
= 00 UART A clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART A clock source is 2 Mhz (24MHz/12)  
= 10 UART A clock source is 24 Mhz (24MHz/1)  
= 11 UART A clock source is 14.769 Mhz (24MHz/1.625)  
11.5 Logical Device 3 (UART B)  
PNPCSV  
CR30 (Default 0x01 if  
Bit 7 - 1: Reserved.  
Bit 0:  
= 0 during POR, default 0x00 otherwise)  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x02, 0xF8 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 2 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x03 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for Serial Port 2.  
Publication Release Date: March 1998  
-104-  
Revision 0.62  
W83977TF  
PRELIMINARY  
CRF0 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3: RXW4C  
= 0  
= 1  
No reception delay when SIR is changed from TX mode to RX mode.  
Reception delays 4 characters-time (40 bit-time) when SIR is changed from TX mode  
to RX mode.  
Bit 2: TXW4C  
= 0  
= 1  
No transmission delay when SIR is changed from RX mode to TX mode.  
Transmission delays 4 characters-time (40 bit-time) when SIR is changed from RX  
mode to TX mode.  
Bit 1 - 0: SUBCLKB1, SUBCLKB0  
= 00 UART B clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART B clock source is 2 Mhz (24MHz/12)  
= 10 UART B clock source is 24 Mhz (24MHz/1)  
= 11 UART B clock source is 14.769 Mhz (24MHz/1.625)  
CRF1 (Default 0x00)  
Bit 7: Reserved.  
Bit 6: IRLOCSEL. IR I/O pins' location select.  
= 0  
= 1  
Through SINB/SOUTB.  
Through IRRX/IRTX.  
Bit 5: IRMODE2. IR function mode selection bit 2.  
Bit 4: IRMODE1. IR function mode selection bit 1.  
Bit 3: IRMODE0. IR function mode selection bit 0.  
IR MODE IR FUNCTION  
IRTX  
IRRX  
00X  
010*  
011*  
100  
Disable  
IrDA  
tri-state  
high  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
routed to SINB/IRRX  
m
Active pulse 1.6 S  
IrDA  
Active pulse 3/16 bit time  
Inverting IRTX/SOUTB pin  
ASK-IR  
ASK-IR  
101  
Inverting IRTX/SOUTB & 500  
KHZ clock  
routed to SINB/IRRX  
110  
ASK-IR  
ASK-IR  
Inverting IRTX/SOUTB  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
111*  
Inverting IRTX/SOUTB & 500  
KHZ clock  
Note: The notation is normal mode in the IR function.  
Publication Release Date: March 1998  
Revision 0.62  
-105-  
W83977TF  
PRELIMINARY  
Bit 2: HDUPLX. IR half/full duplex function select.  
= 0  
= 1  
The IR function is Full Duplex.  
The IR function is Half Duplex.  
Bit 1: TX2INV.  
= 0  
= 1  
the SOUTB pin of UART B function or IRTX pin of IR function in normal condition.  
inverse the SOUTB pin of UART B function or IRTX pin of IR function.  
Bit 0: RX2INV.  
= 0  
= 1  
the SINB pin of UART B function or IRRX pin of IR function in normal condition.  
inverse the SINB pin of UART B function or IRRX pin of IR function  
11.6 Logical Device 5 (KBC)  
CR30 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 1: Reserved.  
Bit 0:  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x60 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the first KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x64 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the second KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR70 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for KINT (keyboard).  
CR72 (Default 0x0C if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4: Reserved.  
Bit [3:0]: These bits select IRQ resource for MINT (PS2 Mouse)  
CRF0 (Default 0x83)  
Bit 7 - 6: KBC clock rate selection  
= 00 Select 6MHz as KBC clock input.  
= 01 Select 8MHz as KBC clock input.  
= 10 Select 12Mhz as KBC clock input.  
= 11 Select 16Mhz as KBC clock input.  
Bit 5 - 3: Reserved.  
Bit 2: = 0 Port 92 disable.  
= 1 Port 92 enable.  
Publication Release Date: March 1998  
-106-  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 1: = 0 Gate20 software control.  
= 1 Gate20 hardware speed up.  
Bit 0: = 0 KBRST software control.  
= 1 KBRST hardware speed up.  
11.7 Logical Device 7 (GP I/O Port I)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP1 I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP14 alternate function Primary I/O base address [0x100:0xFFE] on 2  
byte boundary; They are available as you setting GP14 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP15 alternate function Primary I/O base address [0x100:0xFFF] on 1  
byte boundary; They are available as you setting GP15 to be an alternate function (General  
Purpose Write Decode).  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP10 as you setting GP10 to be an alternate function  
(Interrupt Steering).  
CR72 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP11 as you setting GP11 to be an alternate function  
(Interrupt Steering).  
CRE0 (GP10, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Publication Release Date: March 1998  
-107-  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE1 (GP11, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE2 (GP12, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 10 Reserved  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE3 (GP13, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output.  
= 10 Reserved  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1998  
Revision 0.62  
-108-  
W83977TF  
PRELIMINARY  
CRE4 (GP14, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: General Purpose Address Decoder(Active Low when  
Bit 1 = 0, Decode two byte address).  
= 10 Select 2nd alternate function: Keyboard Inhibit(P17).  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE5 (GP15, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 General Purpose Write Strobe(Active Low when Bit 1 = 0).  
= 10 8042 P12.  
= 11 Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE6 (GP16, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 1x Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE7 (GP17, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output. Please refer to TABLE C  
= 1x Reserved  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1998  
Revision 0.62  
-109-  
W83977TF  
PRELIMINARY  
TABLE C  
WDT_CTRL1* BIT[1]*  
WDT_CTRL0* BIT[3] WDT_CTRL1 BIT[0] POWER LED STATE  
1
0
0
0
X
0
1
1
X
X
0
1
1 Hertz Toggle pulse  
Continuous high or low*  
Continuous high or low*  
1 Hertz Toggle pulse  
*Note: 1). Regarding to the contents of WDT_CTR1 and WDT_CTRL0, please refer to CRF3 and CRF4 in Logic Device 8.  
2). Continuous high or low depends on the polarity bit of GP13 or GP17 configure registers.  
CRF1 ( Default 0x00)  
General Purpose Read/Write Enable*  
Bit 7 - 2: Reserved  
Bit 1:  
= 1 Enable General Purpose Write Strobe  
= 0 Disable General Purpose Write Strobe  
Bit 0:  
= 1 Enable General Purpose Address Decode  
= 0 Disable General Purpose Address Decode  
*Note: If the logical device's activate bit is not set then bit 0 and 1 have no effect.  
11.8 Logical Device 8 (GP I/O Port II)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP2 & Watch Dog I/O base address [0x100:0xFFE] on 2 byte  
boundary. I/O base address + 1: Watch Dog I/O base address.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Common IRQ of GP20~GP26 at Logic Device 8.  
CR72 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for Watch Dog.  
Publication Release Date: March 1998  
-110-  
Revision 0.62  
W83977TF  
PRELIMINARY  
CRE8 (GP20, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select basic I/O function  
= 01 Reserved  
= 10 Select alternate function: Keyboard Reset (connected to KBC P20)  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE9 (GP21, Default 0x01)  
Bit 7 - 5: Reserved  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P13 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CREA (GP22, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function.  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P14 I/O.  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output¡ @¡ @  
Publication Release Date: March 1998  
Revision 0.62  
-111-  
W83977TF  
PRELIMINARY  
CREB (GP23, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P15 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output¡ @  
CREC (GP24, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4 - 3: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P16 I/O  
= 11 Reserved  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRED (GP25, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 3: Select Function.  
= 1 Select alternate function: GATE A20(Connect to KBC P21).  
= 0 Select basic I/O function  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
Publication Release Date: March 1998  
Revision 0.62  
-112-  
W83977TF  
PRELIMINARY  
CREE (GP26, Default 0x01)  
Bit 7 - 3: Reserved.  
Bit 2: Int En  
= 1 Enable Common IRQ  
= 0 Disable Common IRQ  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRF0 (Default 0x00)  
Debounce Filter Enable or Disable for General Purpose I/O Combined Interrupt. The Debounce Filter  
can reject a pulse with 1ms width or less.  
Bit 7 - 4: Reserved  
Bit 3: GP Common IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 2 - 0: Reserved  
CRF1 (Reserved)  
CRF2 (Default 0x00)  
Watch Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to load  
the value to Watch Dog Counter and start to count down. If the Bit2 and Bit 1 are set, any Mouse  
Interrupt or Keyboard Interrupt happen will also cause to reload the non-zero value to Watch Dog  
Counter and count down. Read this register can not access Watch Dog Timer Time-out value, but  
can access the current value in Watch Dog Counter.  
Bit 7 - 0:  
= 0x00 Time-out Disable  
= 0x01 Time-out occurs after 1 minute  
= 0x02 Time-out occurs after 2 minutes  
= 0x03 Time-out occurs after 3 minutes  
................................................  
= 0xFF Time-out occurs after 255 minutes  
CRF3 (WDT_CTRL0, Default 0x00)  
Watch Dog Timer Control Register #0  
Bit 7 - 4: Reserved  
Bit 3: When Time-out occurs, Enable or Disable Power LED with 1 Hz and 50% duty cycle output.  
= 1 Enable  
= 0 Disable  
Bit 2: Mouse interrupt reset Enable or Disable  
= 1 Watch Dog Timer is reset upon a Mouse interrupt  
= 0 Watch Dog Timer is not affected by Mouse interrupt  
Bit 1: Keyboard interrupt reset Enable or Disable  
= 1 Watch Dog Timer is reset upon a Keyboard interrupt  
= 0 Watch Dog Timer is not affected by Keyboard interrupt  
Bit 0: Reserved.  
Publication Release Date: March 1998  
-113-  
Revision 0.62  
W83977TF  
PRELIMINARY  
CRF4 (WDT_CTRL1, Default 0x00)  
Watch Dog Timer Control Register #1  
Bit 7 - 4: Reserved  
Bit 3: Enable the rising edge of Keyboard Reset(P20) to force Time-out event, R/W*  
= 1 Enable  
= 0 Disable  
Bit 2: Force Watch Dog Timer Time-out, Write only*  
= 1 Force Watch Dog Timer time-out event; this bit is self-clearing.  
Bit 1: Enable Power LED 1Hz rate toggle pulse with 50% duty cycle , R/W  
= 1 Enable  
= 0 Disable  
Bit 0: Watch Dog Timer Status, R/W  
= 1 Watch Dog Timer time-out occurred.  
= 0 Watch Dog Timer counting  
*Note: 1). Internal logic provides an 1us Debounce Filter to reject the width of P20 pulse less than 1us.  
2). The P20 signal that coming from Debounce Filter is ORed with the signal generated by the Force Time-out bit and then  
connect to set the Bit 0(Watch Dog Timer Status). The ORed signal is self-clearing.  
11.9 Logical Device 9 (GP I/O Port III)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP3 I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP32 alternate function Primary I/O base address [0x100:0xFFE] on 2-  
byte boundary; They are available as you setting GP32 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP33 alternate function Primary I/O base address [0x100:0xFFF] on 2-  
byte boundary; They are available as you setting GP33 to be an alternate function (General  
Purpose Address Decode).  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP30 as you setting GP30 to be an alternate function  
(Interrupt Steering).  
CR72 (Default 0x00)  
Bit 7 - 4: Reserved.  
Bit 3 - 0: These bits select IRQ resource for GP31 as you setting GP31 to be an alternate function  
(Interrupt Steering).  
Publication Release Date: March 1998  
-114-  
Revision 0.62  
W83977TF  
PRELIMINARY  
CRE0 (GP30, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled.  
= 0 Debounce Filter Bypassed.  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE1 (GP31, Default 0x01)  
Bit 7 - 5: Reserved.  
Bit 4: IRQ Filter Select  
= 1 Debounce Filter Enabled  
= 0 Debounce Filter Bypassed  
Bit 3: Select Function.  
= 1 Select Alternate Function: Interrupt Steering.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity.  
= 1 Invert.  
= 0 No Invert.  
Bit 0: In/Out selection.  
= 1 Input.  
= 0 Output.  
CRE2 (GP32, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 3: Select Function.  
= 1 Select Alternate Function: General Purpose Address Decode.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE3 (GP33, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 3: Select Function.  
= 1 Select Alternate Function: General Purpose Address Decode.  
= 0 Select Basic I/O Function.  
Publication Release Date: March 1998  
Revision 0.62  
-115-  
W83977TF  
PRELIMINARY  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE4 (GP34, Default 0x01)  
Bit 7 - 4: Reserved.  
Bit 3: Select Function.  
= 1 Select Alternate Function: Watch Dog Timer output.  
= 0 Select Basic I/O Function.  
Bit 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE5 (GP35, Default 0x01)  
Bit 7 - 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE6 (GP36, Default 0x01)  
Bit 7 - 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRE7 (GP37, Default 0x01)  
Bit 7 - 2: Reserved.  
Bit 1: Polarity: 1: Invert, 0: No Invert  
Bit 0: In/Out: 1: Input, 0: Output  
CRF1 ( Default 0x00)  
Bit 7 - 3: Reserved  
Bit 2: SERIRQ  
= 0 The IRQ system is in normal mode.  
= 1 The IRQ system is in serial IRQ mode.  
Bit 1:  
= 1 Enable GP33 General Purpose Address Decode.  
= 0 Disable GP33 General Purpose Address Decode.  
Bit 0:  
= 1 Enable GP32 General Purpose Address Decode.  
= 0 Disable GP32 General Purpose Address Decode.  
*Note: If the logical device's activate bit is not set then bit 0 and 1 have no effect.  
Publication Release Date: March 1998  
Revision 0.62  
-116-  
W83977TF  
PRELIMINARY  
11.10 Logical Device A (ACPI)  
CR30 (Default 0x00)  
Bit 7 - 1: Reserved.  
Bit 0: = 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select PM1 register block base address [0x100:0xFF0] on 16-byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GPE0 register block base address [0x100:0xFFC] on 4-byte boundary.  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GPE1 register block base address [0x100:0xFFC] on 4-byte boundary.  
CR70 (Default 0x00)  
Bit 7 - 4: Reserved.  
SCI  
Bit 3 - 0: These bits select IRQ resource for  
.
CRE0 (Default 0x00)  
Bit 7: DIS-PANSWIN. Disable panel switch input to turn system power supply on.  
PANSWIN  
PANSWIN  
PANSWOUT  
.
= 0  
= 1  
is wire-ANDed and connected to  
is blocked and can not affect  
PANSWOUT  
.
PANSWOUT  
Bit 6: ENKBWAKEUP. Enable Keyboard to wake-up system via  
.
= 0  
= 1  
Disable Keyboard wake-up function.  
Enable Keyboard wake-up function.  
PANSWOUT  
Bit 5: ENMSWAKEUP. Enable Mouse to wake-up system via  
.
= 0  
= 1  
Disable Mouse wake-up function.  
Enable Mouse wake-up function.  
PANSWOUT  
Bit 4: MSRKEY. Select Mouse Left/Right Botton to wake-up system via  
.
= 0  
= 1  
Select click on Mouse Left-botton twice to wake the system up.  
Select click on Mouse right-botton twice to wake the system up.  
Bit 3: Reserved.  
Bit 2: KB/MS Swap. Enable Keyboard/Mouse port-swap.  
= 0  
= 1  
Keyboard/Mouse ports are not swapped.  
Keyboard/Mouse ports are swapped.  
Bit 1: MSXKEY. Enable any character received from Mouse to wake-up the system.  
= 0  
= 1  
Just clicking Mouse left/right-botton twice can wake the system up.  
Any character received from Mouse can wake the system up (the setting of Bit 4 is  
ignored).  
Publication Release Date: March 1998  
-117-  
Revision 0.62  
W83977TF  
PRELIMINARY  
Bit 0: KBXKEY. Enable any character received from Keyboard to wake-up the system.  
= 0  
= 1  
Only predetermined specific key combination can wake up the system.  
Any character received from Keyboard can wake up the system.  
CRE1 (Default 0x00) Keyboard Wake-up Index Register  
This register is used to indicate which Keyboard Wake-up Shift register or Predetermined key  
Register is to be read/written via CRE2.  
CRE2 Keyboard Wake-up Data Register  
CRE3 (Read only) Keyboard/Mouse Wake-up Status Register  
Bit 7-3: Reserved.  
PANSWIN  
Bit 2: PANSW_STS. The Panel switch event is caused by  
reading this register.  
. This bit is cleared by  
Bit 1: Mouse_STS. The Panel switch event is caused by Mouse wake-up event. This bit is  
cleared by reading this register.  
Bit 0: Keyboard_STS. The Panel switch event is caused by Keyboard wake-up event. This bit is  
cleared by reading this register.  
CRE4 This Register is reserved for test.  
CRF0 (Default 0x00)  
Bit 7: CHIPPME. Chip level power management enable.  
= 0  
= 1  
disable the ACPI/Legacy and the auto power management functions  
enable the ACPI/Legacy and the auto power management functions.  
Bit 6 - 4: Reserved. Return zero when read.  
Bit 3: PRTPME. Printer port power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions provided  
CRF0.bit7 (CHIPPME) is also set to 1.  
Bit 2: FDCPME. FDC power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions provided  
CRF0.bit7 (CHIPPME) is also set to 1.  
Bit 1: URAPME. UART A power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions provided  
CRF0.bit7 (CHIPPME) is also set to 1.  
Bit 0: URBPME. UART B power management enable.  
= 0  
= 1  
disable the auto power management functions.  
enable the auto power management functions provided  
CRF0.bit7 (CHIPPME) is also set to 1.  
Publication Release Date: March 1998  
Revision 0.62  
-118-  
W83977TF  
PRELIMINARY  
CRF1 (Default 0x00)  
Bit 7 - 4: Reserved. Return zero when read.  
Bit 3 - 0: Devices' idle status.  
These bits indicate that the individual device's idle timer expires due to no I/O access, no IRQ,  
and no external input to the device. These 4 bits are controlled by the printer port, FDC, UART A,  
and UART B power down machines individually. Writing a 1 clears this bit, and writing a 0 has no  
effect. Note that: the user is not supposed to change the status while the power management  
function is enabled.  
Bit 3: PRTIDLSTS. Printer port idle status.  
= 0  
= 1  
printer port is now in the working state.  
printer port is now in the sleeping state due to no printer port access, no IRQ, no DMA  
ACK  
ERR  
pins in a  
acknowledge, and no transition on BUSY,  
preset expiry time period.  
, PE, SLCT, and  
Bit 2: FDCIDLSTS. FDC idle status.  
= 0  
= 1  
FDC is now in the working state.  
FDC is now in the sleeping state due to no FDC access, no IRQ, no DMA  
acknowledge, and no enabling of the motor enable bits in the DOR register in a  
preset expiry time period.  
Bit 1: URAIDLSTS. UART A idle status.  
= 0  
= 1  
UART A is now in the working state.  
UART A is now in the sleeping state due to no UART A access, no IRQ, the receiver  
is now waiting for a start bit, the transmitter shift register is now empty, and no  
transition on MODEM control input lines in a preset expiry time period.  
Bit 0: URBIDLSTS. UART B idle status.  
= 0  
= 1  
UART B is now in the working state.  
UART B is now in the sleeping state due to no UART A access, no IRQ, the receiver  
is now waiting for a start bit, the transmitter shift register is now empty, and no  
transition on MODEM control input lines in a preset expiry time period.  
CRF2 (Default 0x00)  
Bit 7 - 4: Reserved. Return zero when read.  
Bit 3 - 0: Devices' trap status.  
These bits indicate that the individual device wakes up due to any I/O access, IRQ, and external  
input to the device. The device's idle timer reloads the preset expiry depending on which device  
wakes up. These 4 bits are controlled by the printer port, FDC, UART A, and UART B power down  
machines respectively. Writing a 1 clears this bit, and writing a 0 has no effect. Note that: the  
user is not supposed to change the status while power management function is enabled.  
Bit 3: PRTTRAPSTS. Printer port trap status.  
= 0  
= 1  
the printer port is now in the sleeping state.  
the printer port is now in the working state due to any printer port access, any IRQ,  
ACK  
ERR  
, PE, SLCT, and  
any DMA acknowledge, and any transition on BUSY,  
pins.  
Publication Release Date: March 1998  
Revision 0.62  
-119-  
W83977TF  
PRELIMINARY  
Bit 2: FDCTRAPSTS. FDC trap status.  
= 0  
= 1  
FDC is now in the sleeping state.  
FDC is now in the working state due to any FDC access, any IRQ, any DMA  
acknowledge, and any enabling of the motor enable bits in the DOR register.  
Bit 1: URATRAPSTS. UART A trap status.  
= 0  
= 1  
UART A is now in the sleeping state.  
UART A is now in the working state due to any UART A access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins transmitting a  
start bit, and any transition on MODEM control input lines.  
Bit 0: URBTRAPSTS. UART B trap status.  
= 0  
= 1  
UART B is now in the sleeping state.  
UART B is now in the working state due to any UART B access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins transmitting  
a start bit, and any transition on MODEM control input lines.  
CRF3 (Default 0x00)  
Bit 7 - 6: Reserved. Return zero when read.  
Bit 5 - 0: Device's IRQ status.  
These bits indicate the IRQ status of the individual device. The device's IRQ status  
by their source device and is cleared by writing a 1. Writing a 0 has no effect.  
bit is set  
Bit 5: MOUIRQSTS. MOUSE IRQ status.  
Bit 4: KBCIRQSTS. KBC IRQ status.  
Bit 3: PRTIRQSTS. printer port IRQ status.  
Bit 2: FDCIRQSTS. FDC IRQ status.  
Bit 1: URAIRQSTS. UART A IRQ status.  
Bit 0: URBIRQSTS. UART B IRQ status.  
CRF4 (Default 0x00)  
Bit 7 - 4: Reserved. Return zero when read.  
SMI  
Bit 3 - 0: Enable bits of the  
generation due to the device's idleness.  
SMI  
These bits enable the generation of an  
interrupt due to the expiration of the device's idle  
SMI  
timer. These 4 bits control the printer port, FDC, UART A, and UART B  
Bit 3: PRTIDLEN.  
logics respectively.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to printer port's idleness.  
interrupt due to printer port's idleness.  
Bit 2: FDCIDLEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to FDC's idleness.  
interrupt due to FDC's idleness.  
Publication Release Date: March 1998  
Revision 0.62  
-120-  
W83977TF  
PRELIMINARY  
Bit 1: URAIDLEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART A's idleness.  
interrupt due to UART A's idleness.  
Bit 0: URBIDLEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART B's idleness.  
interrupt due to UART B's idleness.  
CRF5 (Default 0x00)  
Bit 7 - 4: Reserved. Return zero when read.  
SMI  
Bit 3 - 0: Enable bits of the  
generation due to device's trap.  
SMI  
These bits enable the generation of an  
interrupt due to any I/O access, IRQ, and external  
input to the device. These 4 bits control the printer port, FDC, UART A, and UART B SMI logics  
respectively.  
Bit 3: PRTTRAPEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to printer port's trap.  
interrupt due to printer port's trap.  
Bit 2: FDCTRAPEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to FDC's trap.  
interrupt due to FDC's trap.  
Bit 1: URATRAPEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART A's trap.  
interrupt due to UART A's trap.  
Bit 0: URBTRAPEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART B's trap.  
interrupt due to UART B's trap.  
CRF6 (Default 0x00)  
Bit 7 - 6: Reserved. Return zero when read.  
SMI  
Bit 5 - 0: Enable bits of the  
generation due to the device's IRQ.  
SMI  
These bits enable the generation of an  
interrupt due to any IRQ of the devices. These 4 bits  
SMI  
SMI  
logic  
control the printer port, FDC, UART A, and UART B  
output for the IRQs is as follows:  
logics respectively. The  
SMI  
logic output = (URBIRQEN and URBIRQSTS) or (URAIRQEN and URAIRQSTS) or  
(FDCIRQEN and FDCIRQSTS) or (PRTIRQEN and PRTIRQSTS)  
(KBCIRQEN and KBCIRQSTS) or (MOUIRQEN and MOUIRQSTS)  
Publication Release Date: March 1998  
Revision 0.62  
-121-  
W83977TF  
PRELIMINARY  
Bit 5: MOUIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to MOUSE's IRQ.  
interrupt due to MOUSE's IRQ.  
Bit 4: KBCIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to KBC's IRQ.  
interrupt due to KBC's IRQ.  
Bit 3: PRTIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to printer port's IRQ.  
interrupt due to printer port's IRQ.  
Bit 2: FDCIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to FDC's IRQ.  
interrupt due to FDC's IRQ.  
Bit 1: URAIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART A's IRQ.  
interrupt due to UART A's IRQ.  
Bit 0: URBIRQEN.  
SMI  
SMI  
= 0  
= 1  
disable the generation of an  
enable the generation of an  
interrupt due to UART B's IRQ.  
interrupt due to UART B's IRQ.  
CRF7 (Default 0x00)  
Bit 7 - 1: Reserved. Return zero when read.  
Bit 0: SMI_EN.  
SMI  
SMI SMI  
event is raised on the output of the  
This bit is the  
output pin enable bit. When an  
SMI  
SMI  
. If this bit is  
logic, setting this bit enables the  
interrupt to be generated on the pin  
SMI  
cleared, only the IRQ status bit in CRF3 is set, and no SMI interrupt is generated on the pin  
.
SMI  
SMI  
= 0  
= 1  
Disable  
Enable  
CRFE, FF (Default 0x00)  
Reserved for Winbond test.  
Publication Release Date: March 1998  
Revision 0.62  
-122-  
W83977TF  
PRELIMINARY  
12.0 SPECIFICATIONS  
12.1 Absolute Maximum Ratings  
PARAMETER  
RATING  
UNIT  
Power Supply Voltage  
Input Voltage  
-0.5 to 7.0  
V
V
V
DD  
-0.5 to V +0.5  
BAT  
Battery Voltage V  
4.0 to 1.8  
0 to +70  
Operating Temperature  
Storage Temperature  
°
°
C
C
-55 to +150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the  
device.  
12.2 DC CHARACTERISTICS  
DD  
SS  
°
°
±
(Ta = 0 C to 70 C, V = 5V 10%, V = 0V)  
PARAMETER  
SYM. MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
= 2.5 V  
BAT  
BAT  
SB  
Battery Quiescent Current  
I
2.4  
2.0  
uA  
V
BAT  
Stand-by Power Supply  
Quiescent Current  
I
mA  
V
= 5.0 V, All ACPI pins are  
not connected.  
I/O8t - TTL level bi-directional pin with source-sink capability of 8 mA  
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.8  
V
V
V
V
IH  
V
2.0  
2.4  
OL  
OL  
OH  
IN  
= 8 mA  
V
0.4  
I
I
OH  
= - 8 mA  
V
LIH  
DD  
= V  
I
+10  
-10  
V
V
m
A
LIL  
IN  
I
= 0V  
mA  
I/O6t - TTL level bi-directional pin with source-sink capability of 6 mA  
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.8  
0.4  
V
V
V
V
IH  
V
2.0  
2.4  
OL  
OL  
OH  
IN  
= 6 mA  
V
I
I
OH  
= - 6 mA  
V
LIH  
DD  
= V  
I
+10  
-10  
V
V
m
A
LIL  
IN  
= 0V  
I
m
A
Publication Release Date: March 1998  
Revision 0.62  
- 123 -  
W83977TF  
PRELIMINARY  
12.2 DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O8 - CMOS level bi-directional pin with source-sink capability of 8 mA  
IL  
DD  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.3xV  
0.4  
V
V
V
V
IH  
DD  
V
0.7xV  
3.5  
OL  
OL  
OH  
IN  
= 8 mA  
V
I
I
OH  
= - 8 mA  
V
LIH  
LIL  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
IN  
I
= 0V  
m
A
I/O12 - CMOS level bi-directional pin with source-sink capability of 12 mA  
IL  
DD  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.3xV  
0.4  
V
V
V
V
IH  
DD  
V
0.7xV  
3.5  
OL  
OL  
OH  
IN  
= 12 mA  
V
I
I
OH  
= - 12 mA  
V
LIH  
LIL  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
IN  
I
= 0V  
m
A
I/O16u - CMOS level bi-directional pin with source-sink capability of 16 mA, with internal pull-up  
resistor  
IL  
DD  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.3xV  
V
V
V
V
IH  
DD  
V
0.7xV  
3.5  
OL  
OL  
OH  
IN  
= 16 mA  
V
0.4  
I
I
OH  
= - 16 mA  
V
LIH  
LIL  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
IN  
I
= 0V  
m
A
I/OD16u - CMOS level Open-Drain pin with source-sink capability of 16 mA, with internal pull-up  
resistor  
IL  
DD  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.3xV  
V
V
V
V
IH  
DD  
V
0.7xV  
3.5  
OL  
OL  
OH  
IN  
= 16 mA  
V
0.4  
I
I
OH  
= - 16 mA  
V
LIH  
LIL  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
IN  
I
= 0V  
m
A
Publication Release Date: March 1998  
Revision 0.62  
- 124 -  
W83977TF  
PRELIMINARY  
12.2 DC CHARACTERISTICS, continued  
PARAMETER SYM. MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O12t - TTL level bi-directional pin with source-sink capability of 12 mA  
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.8  
V
V
V
V
IH  
V
2.0  
2.4  
OL  
OL  
OH  
IN  
= 12 mA  
V
0.4  
I
OH  
= - 12 mA  
V
I
LIH  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
LIL  
IN  
= 0V  
I
m
A
I/O24t - TTL level bi-directional pin with source-sink capability of 24 mA  
IL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.8  
0.4  
V
V
V
V
IH  
V
2.0  
2.4  
OL  
OL  
OH  
IN  
= 24 mA  
V
I
OH  
= - 24 mA  
V
I
LIH  
DD  
= V  
I
+ 10  
- 10  
V
V
m
A
LIL  
IN  
= 0V  
I
m
A
OUT8t - TTL level output pin with source-sink capability of 8 mA  
OL  
OL  
= 8 mA  
Output Low Voltage  
Output High Voltage  
V
0.4  
V
I
OH  
OH  
I
= - 8 mA  
V
2.4  
V
OUT12t - TTL level output pin with source-sink capability of 12 mA  
OL  
OL  
= 12 mA  
= -12 mA  
Output Low Voltage  
Output High Voltage  
V
0.4  
V
V
I
OH  
OH  
I
V
2.4  
OD12 - Open-drain output pin with sink capability of 12 mA  
OL  
OL  
= 12 mA  
= 24 mA  
Output Low Voltage  
V
0.4  
V
V
I
I
OD24 - Open-drain output pin with sink capability of 24 mA  
OL  
V
OL  
Output Low Voltage  
0.4  
INt - TTL level input pin  
Input Low Voltage  
IL  
V
0.8  
V
V
IH  
Input High Voltage  
V
2.0  
LIH  
LIL  
IN  
DD  
Input High Leakage  
Input Low Leakage  
I
+10  
-10  
V
= V  
m
A
IN  
V
I
= 0 V  
mA  
Publication Release Date: March 1998  
Revision 0.62  
- 125 -  
W83977TF  
PRELIMINARY  
12.2 DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
INc - CMOS level input pin  
Input Low Voltage  
IL  
V
V
V
DD  
´
0.3 V  
IH  
Input High Voltage  
V
DD  
´
0.7 V  
LIH  
IN  
DD  
= V  
Input High Leakage  
Input Low Leakage  
I
+10  
-10  
V
m
A
LIL  
IN  
V = 0 V  
I
m
A
INcs - CMOS level Schmitt-triggered input pin  
t-  
DD  
DD  
DD  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
V
1.3  
3.2  
1.5  
1.5  
3.5  
2
1.7  
3.8  
V
V
V
V
V
V
= 5 V  
= 5 V  
= 5 V  
DD  
t+  
V
V
V
TH  
V
LIH  
LIL  
IN  
Input High Leakage  
Input Low Leakage  
I
+10  
-10  
= V  
m
A
IN  
I
= 0 V  
m
A
INcu - CMOS level input pin with internal pull-up resistor  
IL  
DD  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
V
0.7xV  
V
IH  
DD  
V
0.7xV  
V
LIH  
IN  
IN  
DD  
= V  
I
+10  
-10  
V
m
A
LIL  
I
V
= 0 V  
m
A
INts - TTL level Schmitt-triggered input pin  
t-  
DD  
DD  
DD  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
V
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
V
V
V
V
= 5 V  
= 5 V  
= 5 V  
DD  
t+  
V
V
V
TH  
V
LIH  
LIL  
IN  
Input High Leakage  
Input Low Leakage  
I
+10  
-10  
= V  
m
A
IN  
I
= 0 V  
m
A
INtsu - TTL level Schmitt-triggered input pin with internal pull-up resistor  
t-  
DD  
DD  
DD  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
V
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
V
V
V
V
= 5 V  
= 5 V  
= 5 V  
DD  
t+  
V
V
V
TH  
V
LIH  
LIL  
IN  
Input High Leakage  
Input Low Leakage  
I
+10  
-10  
= V  
m
A
IN  
I
= 0 V  
m
A
Publication Release Date: March 1998  
Revision 0.62  
- 126 -  
W83977TF  
PRELIMINARY  
12.3 AC Characteristics  
12.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec.  
PARAMETER  
SYM. TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
AR  
T
T
T
25  
nS  
DACK  
SA9-SA0, AEN,  
CS  
,
IOR¡ õ  
, setup time to  
AR  
0
nS  
DACK  
SA9-SA0, AEN,  
IOR¡ ô  
,
hold time for  
IOR  
RR  
FD  
80  
nS  
nS  
width  
CL = 100 pf  
Data access time from  
T
80  
IOR¡ õ  
DH  
CL = 100 pf  
CL = 100 pf  
T
10  
10  
nS  
nS  
nS  
IOR¡ õ  
Data hold from  
DF  
RI  
T
50  
IOR ¡ ô  
SD to from  
T
360/570  
/675  
IOR¡ ô  
IRQ delay from  
AW  
T
25  
0
nS  
nS  
DACK  
IOW¡ õ  
SA9-SA0, AEN,  
setup time to  
,
,
WA  
T
DACK  
SA9-SA0, AEN,  
IOW ¡ ô  
hold time for  
WW  
DW  
T
60  
60  
0
nS  
nS  
nS  
IOW  
width  
Data setup time to  
T
T
IOW ¡ ô  
WD  
Data hold time from  
IOW ¡ ô  
WI  
T
360/570  
/675  
nS  
IOW ¡ ô  
IRQ delay from  
MCY  
AM  
DRQ cycle time  
DRQ delay time  
T
27  
0
m
S
T
50  
nS  
nS  
nS  
DACK ¡ õ  
MA  
T
DACK  
width  
DRQ to  
delay  
AA  
T
260/430  
/510  
DACK  
MR  
T
0
0
nS  
nS  
DRQ  
IOR  
delay from  
delay from  
MW  
T
IOW  
DRQ  
Publication Release Date: March 1998  
Revision 0.62  
- 127 -  
W83977TF  
PRELIMINARY  
12.3.1 AC Characteristics, FDC continued  
PARAMETER SYM. TEST  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
(NOTE 1)  
MRW  
TC  
T
6/12  
/20/24  
m
S
IOW  
from DRQ  
IOR  
response time  
or  
TC width  
T
135/220  
/260  
nS  
RST  
RESET width  
T
1.8/3/3.  
5
m
S
IDX  
T
0.5/0.9  
/1.0  
m
S
INDEX  
width  
DST  
T
1.0/1.6  
/2.0  
m
S
DIR  
DIR  
STEP  
setup time to  
STD  
STP  
T
24/40/48  
m
S
STEP  
hold time from  
T
6.8/11.5  
/13.8  
7/11.7  
/14  
7.2/11.9  
/14.2  
m
S
STEP  
pulse width  
SC  
T
Note 2  
Note 2  
Note 2  
mS  
STEP  
cycle width  
pulse width  
WDD  
T
100/185  
/225  
125/210  
/250  
150/235  
/275  
m
S
WD  
WPC  
Write precompensation  
T
100/138  
/225  
125/210  
/250  
150/235  
/275  
m
S
Notes:  
1. Typical values for T = 25 C and normal supply voltage.  
°
2. Programmable from 2 mS through 32 mS in 2 mS increments.  
Publication Release Date: March 1998  
Revision 0.62  
- 128 -  
W83977TF  
PRELIMINARY  
12.3.2 UART/Parallel Port  
PARAMETER  
SYMBOL TEST  
CONDITIONS  
MIN.  
MAX.  
UNIT  
SINT  
T
Delay from Stop to Set Interrupt  
9/16  
Baud  
Rate  
RINT  
IRS  
T
100 pf Loading  
100 pf Loading  
1
m
S
IOR  
Delay from  
Reset Interrupt  
Delay from Initial IRQ Reset to  
Transmit Start  
T
1/16  
9/16  
8/16  
Baud  
Rate  
HR  
SI  
T
175  
nS  
IOW  
Delay from  
to Reset interrupt  
IOW  
T
16/16  
Baud  
Rate  
Delay from Initial  
to interrupt  
STI  
Delay from Stop to Set Interrupt  
T
1/2  
Baud  
Rate  
IR  
T
100 pF Loading  
100 pF Loading  
250  
200  
250  
nS  
nS  
nS  
IOR  
IOR  
Delay from  
Delay from  
to Reset Interrupt  
to Output  
MWO  
T
SIM  
Set Interrupt Delay from Modem  
Input  
T
RIM  
IAD  
T
250  
nS  
IOR  
Reset Interrupt Delay from  
Interrupt Active Delay  
Interrupt Inactive Delay  
Baud Divisor  
T
T
100 pF Loading  
100 pF Loading  
100 pF Loading  
25  
30  
216-1  
nS  
nS  
IID  
N
12.3.3 Parallel Port Mode Parameters  
PARAMETER  
SYM.  
MIN.  
TYP. MAX.  
UNIT  
t1  
100  
nS  
INDEX STROBE AUTOFD  
PD0-7,  
IOW  
,
,
Delay from  
t2  
t3  
t4  
t5  
60  
nS  
nS  
nS  
nS  
ACK  
IOW  
IRQ Delay from  
IRQ Delay from  
, nFAULT  
105  
300  
105  
IRQ Active Low in ECP and EPP Modes  
ERROR  
200  
Active to IRQ Active  
Publication Release Date: March 1998  
Revision 0.62  
- 129 -  
W83977TF  
PRELIMINARY  
12.3.4 EPP Data or Address Read Cycle Timing Parameters  
PARAMETER  
SYM.  
MIN.  
40  
MAX.  
UNIT  
t1  
t2  
t3  
t4  
t5  
nS  
nS  
nS  
IOR  
Ax Valid to  
Asserted  
0
IOR  
IOCHRDY Deasserted to  
Deasserted  
10  
40  
0
10  
24  
IOR  
IOR  
IOR  
Deasserted to Ax Valid  
IOR  
Deasserted to IOW or  
Asserted  
nS  
nS  
Asserted to IOCHRDY Asserted  
PD Valid to SD Valid  
IOR  
t6  
t7  
0
0
75  
40  
m
S
Deasserted to SD Hi-Z (Hold Time)  
SD Valid to IOCHRDY Deasserted  
WAIT  
t8  
t9  
0
85  
nS  
nS  
60  
160  
Deasserted to IOCHRDY Deasserted  
PD Hi-Z to PDBIR Set  
WRITE  
t10  
t13  
t14  
t15  
t16  
0
0
nS  
nS  
nS  
nS  
nS  
IOR  
Deasserted to  
Asserted  
0
185  
190  
50  
WAIT  
WRITE  
Asserted to  
WRITE  
Deasserted  
60  
0
Deasserted to  
Modified  
Asserted to PD Hi-Z  
WAIT  
IOR  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
60  
0
180  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
Asserted to PD Hi-Z  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
0
60  
1
190  
WAIT Deasserted to PD Drive  
WRITE Deasserted to Command  
PBDIR Set to Command  
0
20  
30  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
0
0
195  
180  
12  
60  
10  
0
WAIT Deasserted to Command Deasserted  
Time out  
PD Valid to WAIT Deasserted  
PD Hi-Z to WAIT Deasserted  
0
mS  
Publication Release Date: March 1998  
Revision 0.62  
- 130 -  
W83977TF  
PRELIMINARY  
12.3.5 EPP Data or Address Write Cycle Timing Parameters  
PARAMETER  
SYM.  
MIN.  
40  
MAX.  
UNIT  
nS  
t1  
t2  
IOW  
Ax Valid to  
Asserted  
SD Valid to Asserted  
10  
10  
0
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
t3  
IOW  
Deasserted to Ax Invalid  
t4  
WAIT  
Deasserted to IOCHRDY Deasserted  
t5  
10  
40  
0
WAIT  
Command Asserted to  
Deasserted  
Asserted  
t6  
IOW  
IOW  
IOR  
Deasserted to  
or  
t7  
24  
160  
70  
IOW  
IOCHRDY Deasserted to  
Deasserted  
Asserted to Command Asserted  
t8  
60  
0
WAIT  
t9  
IOW  
WAIT  
Asserted to  
Asserted  
Asserted  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
0
WRITE  
PBDIR Low to  
60  
60  
0
185  
185  
50  
WAIT  
WAIT  
IOW  
WRITE  
Asserted to  
Asserted to  
Asserted  
Change  
WRITE  
Asserted to PD Valid  
0
WAIT  
Asserted to PD Invalid  
10  
5
PD Invalid to Command Asserted  
35  
210  
190  
10  
IOW  
to Command Asserted  
60  
60  
0
WAIT  
Asserted to Command Asserted  
WAIT Deasserted to Command Deasserted  
m
S
Command Asserted to WAIT Deasserted  
Time out  
10  
0
12  
m
S
nS  
nS  
Command Deasserted to WAIT Asserted  
0
IOW Deasserted to WRITE Deasserted and PD invalid  
Publication Release Date: March 1998  
Revision 0.62  
- 131 -  
W83977TF  
PRELIMINARY  
12.3.6 Parallel Port FIFO Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
600  
MAX.  
UNIT  
nS  
DATA Valid to nSTROBE Active  
nSTROBE Active Pulse Width  
DATA Hold from nSTROBE Inactive  
BUSY Inactive to PD Inactive  
t1  
t2  
t3  
t4  
t5  
t6  
600  
450  
80  
nS  
nS  
nS  
nS  
nS  
BUSY Inactive to nSTROBE Active  
nSTROBE Active to BUSY Active  
680  
500  
12.3.7 ECP Parallel Port Forward Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
nAUTOFD Valid to nSTROBE Asserted  
PD Valid to nSTROBE Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
60  
60  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
BUSY Deasserted to nAUTOFD Changed  
BUSY Deasserted to PD Changed  
80  
80  
0
180  
180  
nSTROBE Deasserted to BUSY Deasserted  
BUSY Deasserted to nSTROBE Asserted  
nSTROBE Asserted to BUSY Asserted  
BUSY Asserted to nSTROBE Deasserted  
80  
0
200  
180  
80  
12.3.8 ECP Parallel Port Reverse Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
PD Valid to nACK Asserted  
t1  
t2  
t3  
t4  
0
0
0
0
nS  
nS  
nS  
nS  
nAUTOFD Deasserted to PD Changed  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
nACK Deasserted to nAUTOFD Asserted  
PD Changed to nAUTOFD Deasserted  
t5  
t6  
80  
80  
200  
200  
nS  
nS  
Publication Release Date: March 1998  
Revision 0.62  
- 132 -  
W83977TF  
PRELIMINARY  
12.3.9 KBC Timing Parameters  
NO.  
T1  
DESCRIPTION  
MIN.  
MAX.  
UNIT  
Address Setup Time from WRB  
Address Setup Time from RDB  
WRB Strobe Width  
0
0
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
T2  
T3  
20  
T4  
RDB Strobe Width  
20  
0
T5  
Address Hold Time from WRB  
Address Hold Time from RDB  
Data Setup Time  
T6  
0
T7  
50  
0
T8  
Data Hold Time  
T9  
Gate Delay Time from WRB  
RDB to Drive Data Delay  
RDB to Floating Data Delay  
Data Valid After Clock Falling (SEND)  
K/B Clock Period  
10  
30  
40  
20  
4
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
0
m
S
20  
10  
4
m
S
K/B Clock Pulse Width  
m
S
Data Valid Before Clock Falling (RECEIVE)  
K/B ACK After Finish Receiving  
RC Fast Reset Pulse Delay (8 Mhz)  
RC Pulse Width (8 Mhz)  
Transmit Timeout  
m
S
20  
2
m
S
3
2
m
S
6
m
S
mS  
Data Valid Hold Time  
0
m
S
83  
30  
30  
5
167  
50  
nS  
-
Input Clock Period (6 12 Mhz)  
Duration of CLK inactive  
Duration of CLK active  
m
S
50  
m
S
Time from inactive CLK transition, used to time when  
the auxiliary device sample DATA  
25  
m
S
T25  
T26  
T27  
T28  
T29  
Time of inhibit mode  
100  
5
300  
T28-5  
50  
mS  
mS  
Time from rising edge of CLK to DATA transition  
Duration of CLK inactive  
30  
30  
5
m
S
Duration of CLK active  
50  
m
S
Time from DATA transition to falling edge of CLK  
25  
m
S
Publication Release Date: March 1998  
Revision 0.62  
- 133 -  
W83977TF  
PRELIMINARY  
12.3.10 GPIO Timing Parameters  
SYMBOL  
PARAMETER  
Write data to GPIO update  
MIN.  
MIN.  
MAX.  
UNIT  
tWGO  
300(Note 1)  
ns  
Note : Refer to Microprocessor Interface Timing for Read Timing.  
12.3.11 Keyboard/Mouse Timing Parameters  
SYMBOL  
tSWL  
PARAMETER  
MAX.  
20  
UNIT  
ns  
PANSWIN falling edge to PANSWOUT falling edge  
tSWH  
50  
ns  
PANSWIN  
PANSWOUT  
falling edge to  
Hi-Z  
tWKUPD  
200  
ns  
KCLK/MCLK falling edge to PANSWOUT falling  
edge delay  
tWKUPW  
0.5  
1
sec  
PANSWOUT  
active pulse width  
Publication Release Date: March 1998  
Revision 0.62  
- 134 -  
W83977TF  
PRELIMINARY  
13.0 TIMING WAVEFORMS  
13.1 FDC  
Write Date  
Processor Read Operation  
WD  
SA0-SA9  
AEN  
TWDD  
CS  
TAR  
TRA  
DACK  
TRR  
IOR  
TDH  
Index  
TFD  
TDF  
D0-D7  
IRQ  
INDEX  
TR  
TIDX  
TIDX  
Processor Write Operation  
Terminal Count  
SA0-SA9  
AEN  
TC  
TAW  
TWA  
DACK  
IOW  
TTC  
TWW  
TWD  
Reset  
TDW  
D0-D7  
IRQ  
RESET  
TWI  
TRST  
DMA Operation  
Drive Seek operation  
TAM  
DRQ  
DIR  
TMCY  
TAA  
DACK  
TMA  
TSTP  
TSTD  
TDST  
TMRW  
IOW or  
IOR  
STEP  
TMW (IOW)  
TMR (IOR)  
TSC  
Publication Release Date: March 1998  
Revision 0.62  
- 135 -  
W83977TF  
PRELIMINARY  
13.2 UART/Parallel  
Receiver Timing  
SIN  
(RECEIVER  
STAR  
INPUT DATA)  
DATA BITS  
(5-8)  
PARITY  
STOP  
TSINT  
IRQ3 or IRQ4  
IOR  
TRINT  
(READ RECEIVER  
BUFFER REGISTER)  
Transmitter Timing  
SERIAL OUT  
(SOUT)  
STAR  
STAR  
TSTI  
DATA  
(5-8)  
PARITY  
STOP  
(1-2)  
THRS  
THR  
IRQ3 or IRQ4  
THR  
IOW  
TSI  
(WRITE THR)  
TIR  
IOR  
(READ TIR)  
Publication Release Date: March 1998  
Revision 0.62  
- 136 -  
W83977TF  
PRELIMINARY  
13.2.1 Modem Control Timing  
MODEM Control Timing  
IOW  
¢x  
¢x  
¢x  
(WRITE MCR)  
¢x  
¢x  
¢x  
¢x  
TMWO  
¢x  
TMWO  
¡ ÷  
¡ ÷ ¡ ö  
¢¡x ö  
¢x  
RTS,DTR  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢
¢x  
¢x  
¢x  
¢x  
¢x  
CTS,DSR  
DCD  
¢x  
¢x  
¡ ÷  
TSIM  
TSIM  
¡ ö  
¡ ö  
¡ ÷  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
IRQ3 or  
IRQ4  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¡ öTRIM  
¢x  
¢x  
¢x  
¢x  
¡ öTRIM  
¡ ÷  
¡ ÷  
¢x  
¢x  
¢x  
¢x  
IOR  
(READ MSR)  
TSIM  
¡ ÷  
¡ ö  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢
RI  
Printer Interrupt Timing  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
ACK  
¢x  
TLAD  
TLID  
¢x  
¡ ÷  
¡ ö  
¡ ÷  
¢x¡ ö  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
¢x  
IRQ7  
Publication Release Date: March 1998  
Revision 0.62  
- 137 -  
W83977TF  
PRELIMINARY  
13.3 Parallel Port  
13.3.1 Parallel Port Timing  
IOW  
t1  
INIT, STROBE  
AUTOFD, SLCTIN  
PD<0:7>  
ACK  
t2  
IRQ (SPP)  
IRQ  
t3  
t4  
(EPP or ECP)  
nFAULT  
(ECP)  
ERROR  
(ECP)  
t5  
t2  
t4  
IRQ  
Publication Release Date: March 1998  
Revision 0.62  
- 138 -  
W83977TF  
PRELIMINARY  
13.3.2 EPP Data or Address Read Cycle (EPP Version 1.9)  
t3  
A<0:10>  
t1  
t2  
t4  
IOR  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
t26  
WAIT  
Publication Release Date: March 1998  
Revision 0.62  
- 139 -  
W83977TF  
PRELIMINARY  
13.3.3 EPP Data or Address Write Cycle (EPP Version 1.9)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t2  
t6  
IOW  
IOCHRDY  
t7  
t8  
t9  
t10  
t11  
t12  
t14  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t21  
t20  
WAIT  
t22  
PBDIR  
Publication Release Date: March 1998  
Revision 0.62  
- 140 -  
W83977TF  
PRELIMINARY  
13.3.4 EPP Data or Address Read Cycle (EPP Version 1.7)  
t3  
A<0:10>  
t1  
t2  
t4  
IOR  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
ADDRSTB  
DATASTB  
t24  
t26  
t28  
t27  
WAIT  
Publication Release Date: March 1998  
Revision 0.62  
- 141 -  
W83977TF  
PRELIMINARY  
13.3.5 EPP Data or Address Write Cycle (EPP Version 1.7)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t2  
t6  
IOW  
t7  
t8  
IOCHRDY  
t9  
t10  
t11  
t22  
t22  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t20  
WAIT  
13.3.6 Parallel Port FIFO Timing  
t4  
>|  
t3  
>|  
PD<0:7>  
t1  
t2  
t5  
>|  
>
>|  
nSTROBE  
t6  
>|  
BUSY  
Publication Release Date: March 1998  
Revision 0.62  
- 142 -  
W83977TF  
PRELIMINARY  
13.3.7 ECP Parallel Port Forward Timing  
t3  
t4  
nAUTOFD  
PD<0:7>  
t1  
t2  
t6  
t8  
nSTROBE  
t5  
t5  
t7  
BUSY  
13.3.8 ECP Parallel Port Reverse Timing  
t2  
PD<0:7>  
t1  
t3  
t4  
nACK  
t5  
t5  
t6  
nAUTOFD  
Publication Release Date: March 1998  
Revision 0.62  
- 143 -  
W83977TF  
PRELIMINARY  
13.4 KBC  
13.4.1 Write Cycle Timing  
A2, CSB  
T1  
T5  
T3  
WRB  
ACTIVE  
T7  
T8  
D0~D7  
DATA IN  
T9  
GA20  
OUTPUT PORT  
T17  
T18  
FAST RESET PULSE RC  
FE COMMAND  
13.4.2 Read Cycle Timing  
A2,CSB  
AEN  
T2  
T6  
T4  
RDB  
ACTIVE  
T10  
T11  
D0-D7  
DATA OUT  
13.4.3 Send Data to K/B  
CLOCK  
(KCLK)  
T12  
T13  
T16  
T14  
D3  
SERIAL DATA  
(KDAT)  
D5  
D4  
D1  
START  
D2  
D0  
D6  
D7  
P
STOP  
T19  
Publication Release Date: March 1998  
Revision 0.62  
- 144 -  
W83977TF  
PRELIMINARY  
13.4.4 Receive Data from K/B  
CLOCK  
(KCLK)  
T14  
T13  
T15  
SERIAL DATA  
(T1)  
D5  
START  
T20  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
13.4.5 Input Clock  
CLOCK  
CLOCK  
T21  
13.4.6 Send Data to Mouse  
MCLK  
T25  
T23  
T24  
T22  
MDAT  
START  
Bit  
D5  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
13.4.7 Receive Data from Mouse  
MCLK  
T29  
T26  
D1  
T27  
T28  
D3  
MDAT  
D5  
START  
D2  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
Publication Release Date: March 1998  
Revision 0.62  
- 145 -  
W83977TF  
PRELIMINARY  
13.5 GPIO Write Timing Diagram  
VALID  
VALID  
A0-A15  
IOW  
D0-7  
GPIO10-17  
GPIO20-25  
PREVIOUS STATE  
VALID  
tWGO  
13.6 Master Reset (MR) Timing  
Vcc  
MR  
tVMR  
13.7 Keyboard/Mouse Wake-up Timing  
KCLK  
MCLK  
PANSWIN  
tWKUPW  
PANSWOUT  
HI-Z  
tWKUPD  
tSWZ  
tSWL  
Publication Release Date: March 1998  
Revision 0.62  
- 146 -  
W83977TF  
PRELIMINARY  
14.0 APPLICATION CIRCUITS  
14.1 Parallel Port Extension FDD  
JP13  
13  
WE2/SLCT  
25  
12  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
15  
2
14  
1
JP 13A  
WD2/PE  
DCH2  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2/BUSY  
HEAD2  
RDD2  
WP2  
DSB2/ACK  
TRK02  
WE2  
PD7  
WD2  
PD6  
STEP2  
DIR2  
PD5  
MOB2  
DSB2  
IDX2  
DCH2/PD4  
RDD2/PD3  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension FDD Mode Connection Diagram  
14.2 Parallel Port Extension 2FDD  
JP13  
13  
25  
12  
WE2/SLCT  
JP 13A  
34  
WD2/PE  
DCH2  
HEAD2  
RDD2  
WP2  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
33  
MOB2/BUSY  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
DSB2/ACK  
TRK02  
DSA2/PD7  
MOA2/PD6  
WE2  
WD2  
STEP2  
DIR2  
PD5  
MOB2  
DSA2  
DCH2/PD4  
RDD2/PD3  
DSB2  
MOA2  
IDX2  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
15  
2
14  
1
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension 2FDD Connection Diagram  
Publication Release Date: March 1998  
Revision 0.62  
- 147 -  
W83977TF  
PRELIMINARY  
14.3 Four FDD Mode  
74LS139  
G1  
7407(2)  
W83977F  
1Y0  
1Y1  
DSA  
DSB  
DSC  
DSD  
MOA  
DSA  
DSB  
A1  
B1  
1Y2  
1Y3  
2Y0  
2Y1  
MOA  
MOB  
MOB  
MOC  
MOD  
G2  
2Y2  
2Y3  
A2  
B2  
15.0 ORDERING INFORMATION  
PART NO.  
W83977TF-P  
W83977TF-A  
W83977TF-PW  
W83977TF-AW  
KBC FIRMWARE  
Phoenix MultiKey/42TM  
AMIKEYTM-2  
Phoenix MultiKey/42TM  
AMIKEYTM-2  
REMARKS  
with OnNow / security keyboard wake-up  
with OnNow / security keyboard wake-up  
16.0 HOW TO READ THE TOP MARKING  
Example: The top marking of W83977TF-A  
inbond  
W83977TF-A  
ã AM. MEGA. 87-96  
730AC2722968SA  
1st line: Winbond logo  
2nd line: the type number: W83977TF-A  
3rd line: the source of KBC F/W -- American Megatrends IncorporatedTM  
4th line: the tracking code  
730 A C 2 722968 SA  
730: packages made in '97, week 30  
A: assembly house ID; A means ASE, S means SPIL.... etc.  
C: IC revision; B means version B, C means version C  
2: wafers manufactured in Winbond FAB 2  
722968: wafer production series lot number  
SA: if made by 0.5-um process: SA; otherwise by 0.6-um process: blank  
Publication Release Date: March 1998  
Revision 0.62  
- 148 -  
W83977TF  
PRELIMINARY  
17.0 PACKAGE DIMENSIONS  
(128-pin PQFP)  
Dimension in mm  
Dimension in inch  
H E  
E
Symbol  
Min Nom Max  
Min  
0.25  
2.57  
Nom  
0.35  
Max  
0.45  
2.87  
65  
102  
0.010  
0.101  
0.014  
0.107  
0.018  
0.113  
1
A
2.72  
2
A
64  
103  
0.10  
0.10  
0.20  
0.15  
0.30  
0.20  
0.004 0.008  
0.012  
b
c
0.004 0.006 0.008  
13.90  
19.90  
14.00  
20.00  
0.50  
14.10  
20.10  
0.547  
0.551  
0.555  
0.791  
D
E
e
0.783 0.787  
0.020  
HD  
D
H
D
17.20  
23.20  
0.669  
0.677 0.685  
0.921  
17.40  
23.40  
0.95  
17.00  
23.00  
0.905 0.913  
HE  
L
L
0.80  
1.60  
0.025  
0
0.031 0.037  
0.063  
0.65  
39  
128  
1
0.08  
7
y
0.003  
7
1
38  
e
b
0
0
c
Note:  
A
1.Dimension D & E do not include interlead  
flash.  
2
1
A
2.Dimension b does not include dambar  
protrusion/intrusion  
.
3.Controlling dimension : Millimeter  
4.General appearance spec. should be based  
on final visual inspection spec.  
A
See Detail F  
Seating Plane  
L
y
L 1  
Detail F  
5. PCB layout please use the "mm".  
Headquarters  
No. 4, Creation Rd. III  
Science-Based Industrial Park  
Hsinchu, Taiwan  
TEL: 886-35-770066  
FAX: 886-35-789467  
www: http://www.winbond.com.tw/  
Winbond Electronics  
(North America) Corp.  
2730 Orchard Parkway  
San Jose, CA 95134 U.S.A.  
TEL: 1-408-9436666  
Winbond Electronics (H.K.) Ltd.  
Rm. 803, World Trade Square, Tower II  
123 Hoi Bun Rd., Kwun Tong  
Kowloon, Hong Kong  
TEL: 852-27516023-7  
FAX: 852-27552064  
FAX: 1-408-9436668  
Taipei Office  
11F, No. 115, Sec. 3, Min-Sheng East Rd.  
Taipei, Taiwan  
TEL: 886-2-7190505  
FAX: 886-2-7197502  
TLX: 16485 WINTPE  
Please note that all data and specifications are subject to change without notice. All the  
trade marks of products and companies mentioned in this data sheet belong to their  
original owners.  
Publication Release Date: March 1998  
- 149 -  
Revision 0.62  

相关型号:

W83977TF(EOL)

W83877TF plus KBC. CIR. RTC
ETC

W83977TF-A

I/O chip disk drive adapter
WINBOND

W83977TF-AW

I/O chip disk drive adapter
WINBOND

W83977TF-P

I/O chip disk drive adapter
WINBOND

W83977TF-PW

I/O chip disk drive adapter
WINBOND

W83977TF_98

WINBOND I/O
WINBOND

W83C17

Processor Specific Clock Generator, 80MHz, CMOS, PDIP14, 0.300 INCH, PLASTIC, DIP-14
WINBOND

W83C17P

Processor Specific Clock Generator, 80MHz, CMOS, PDSO14, 0.150 INCH, PLASTIC, SOP-14
WINBOND

W83C42

KEYBOARD CONTROLLER
WINBOND

W83C42P

KEYBOARD CONTROLLER
ETC

W83C43

KEYBOARD CONTROLLER
WINBOND

W83C43P

Microprocessor Circuit, CMOS, PQCC44, PLASTIC, LCC-44
WINBOND