W83977ATG [WINBOND]

WINBOND I/O; WINBOND I / O
W83977ATG
型号: W83977ATG
厂家: WINBOND    WINBOND
描述:

WINBOND I/O
WINBOND I / O

文件: 总198页 (文件大小:1039K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W83977ATF  
W83977ATG  
WINBOND I/O  
W83977ATF/W83977ATG  
W83977ATF Data Sheet Revision History  
PAGES  
DATES  
VERSION  
VERSION  
ON WEB  
MAIN CONTENTS  
1
2
3
n.a.  
08/25/97  
11/17/97  
04/01/98  
05/14/98  
09/22/98  
05/02/06  
0.50  
0.51  
0.52  
0.53  
0.54  
0.6  
First published.  
53,54,58,63,64,65  
, 69,138.1,139  
Register correction  
1,2,3,20,45,53,63,  
65,99,103,150  
A1  
A2  
A3  
Typo correction and data calibrated  
spec. revision; configuration register  
programming method.  
4
5
112  
192  
n.a.  
Modify ordering information and top  
marking.  
6
7
Add lead-free package version  
8
9
10  
Publication Release Date: May 2006  
Revision 0.6  
- I -  
W83977ATF/W83977ATG  
Table of Contents-  
1. GENERAL DESCRIPTION.............................................................................................................. 1  
2. FEATURES...................................................................................................................................... 2  
3. PIN CONFIGURATION.................................................................................................................... 5  
4. PIN DESCRIPTION ......................................................................................................................... 6  
4.1 Host Interface ........................................................................................................................ 6  
4.2 General Purpose I/O Port...................................................................................................... 9  
4.3 Serial Port Interface............................................................................................................. 10  
4.4 Infrared Interface................................................................................................................. 11  
4.5 Multi-Mode Parallel Port...................................................................................................... 11  
4.6 FDC Interface ...................................................................................................................... 15  
4.7 KBC Interface ...................................................................................................................... 17  
4.8 POWER PINS...................................................................................................................... 17  
4.9 ACPI Interface ..................................................................................................................... 17  
5. FDC FUNCTIONAL DESCRIPTION.............................................................................................. 18  
5.1 W83977ATF/ATG FDC ....................................................................................................... 18  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
AT interface..........................................................................................................................18  
FIFO (Data) ..........................................................................................................................18  
Data Separator.....................................................................................................................19  
Write Precompensation ........................................................................................................19  
Perpendicular Recording Mode ............................................................................................19  
FDC Core .............................................................................................................................20  
FDC Commands...................................................................................................................20  
5.2 Register Descriptions .......................................................................................................... 29  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
Status Register A (SA Register) (Read base address + 0)...................................................29  
Status Register B (SB Register) (Read base address + 1)...................................................31  
Digital Output Register (DO Register) (Write base address + 2) ..........................................33  
Tape Drive Register (TD Register) (Read base address + 3)...............................................33  
Main Status Register (MS Register) (Read base address + 4).............................................34  
Data Rate Register (DR Register) (Write base address + 4)................................................34  
FIFO Register (R/W base address + 5)................................................................................36  
Digital Input Register (DI Register) (Read base address + 7)...............................................38  
Configuration Control Register (CC Register) (Write base address + 7) ..............................39  
6. UART PORT.................................................................................................................................. 41  
6.1 Universal Asynchronous Receiver/Transmitter (UART A, UART B)................................... 41  
6.2 Register Address................................................................................................................. 41  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
UART Control Register (UCR) (Read/Write) ........................................................................41  
UART Status Register (USR) (Read/Write)..........................................................................43  
Handshake Control Register (HCR) (Read/Write) ................................................................44  
Handshake Status Register (HSR) (Read/Write)..................................................................45  
UART FIFO Control Register (UFR) (Write only)..................................................................46  
- II -  
W83977ATF/W83977ATG  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Interrupt Status Register (ISR) (Read only)..........................................................................47  
Interrupt Control Register (ICR) (Read/Write) ......................................................................48  
Programmable Baud Generator (BLL/BHL) (Read/Write).....................................................48  
User-defined Register (UDR) (Read/Write) ..........................................................................49  
7. INFRARED (IR) PORT .................................................................................................................. 50  
7.1 IR Register Description ....................................................................................................... 50  
7.2 Set0-Legacy/Advanced IR Control and Status Registers ................................................... 51  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write) .....................51  
Set0.Reg1 - Interrupt Control Register (ICR)........................................................................52  
Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR) ........................53  
Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):.......................................57  
Set0.Reg4 - Handshake Control Register (HCR) .................................................................57  
Set0.Reg5 - IR Status Register (USR) .................................................................................59  
Set0.Reg6 - Reserved..........................................................................................................60  
Set0.Reg7 - User Defined Register (UDR/AUDR)................................................................60  
7.3 Set1 - Legacy Baud Rate Divisor Register.......................................................................... 61  
7.3.1  
7.3.2  
Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL).............................................................61  
Set1.Reg 2~7 .......................................................................................................................61  
7.4 Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR).......................................... 62  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)................................................62  
Reg2 - Advanced IR Control Register 1 (ADCR1)................................................................62  
Reg3 - Sets Select Register (SSR).......................................................................................63  
Reg4 - Advanced IR Control Register 2 (ADCR2)................................................................64  
Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only) ......................................................65  
Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)..........................................................66  
7.5 Set3 - Version ID and Mapped Control Registers............................................................... 66  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
Reg0 - Advanced IR ID (AUID).............................................................................................66  
Reg1 - Mapped IR Control Register (MP_UCR)...................................................................66  
Reg2 - Mapped IR FIFO Control Register (MP_UFR) ..........................................................67  
Reg3 - Sets Select Register (SSR).......................................................................................67  
7.6 Set4 - TX/RX/Timer counter registers and IR control registers. ......................................... 67  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH) ...........................................................67  
Set4.Reg2 - Infrared Mode Select (IR_MSL)........................................................................67  
Set4.Reg3 - Set Select Register (SSR)................................................................................68  
Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH) .................................................68  
Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH) ....................................................69  
7.7 Set 5 - Flow control and IR control and Frame Status FIFO registers................................ 69  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL)...............69  
Set5.Reg2 - Flow Control Mode Operation (FC_MD)...........................................................69  
Set5.Reg3 - Sets Select Register (SSR) ..............................................................................70  
Set5.Reg4 - Infrared Configure Register 1 (IRCFG1)...........................................................70  
Set5.Reg5 - Frame Status FIFO Register (FS_FO) .............................................................71  
Publication Release Date: May 2006  
- III -  
Revision 0.6  
W83977ATF/W83977ATG  
7.7.6  
Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame Number  
(LST_NU)..........................................................................................................................................72  
7.8 Set6 - IR Physical Layer Control Registers......................................................................... 72  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.5  
Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2).........................................................72  
Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width............................................................73  
Set6.Reg2 - SIR Pulse Width ...............................................................................................74  
Set6.Reg3 - Set Select Register...........................................................................................74  
Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU)...............................74  
7.9 Set7 - Remote control and IR module selection registers................................................... 75  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
7.9.7  
7.9.8  
4.9.1 Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC)........................................75  
Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC) .............................................77  
Set7.Reg2 - Remote Infrared Config Register (RIR_CFG)...................................................78  
Set7.Reg3 - Sets Select Register (SSR) ..............................................................................79  
Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1) .............................................80  
Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2) .............................................80  
Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3) .............................................81  
Set7.Reg7 - Infrared Module Control Register (IRM_CR) ....................................................81  
8. PARALLEL PORT.......................................................................................................................... 83  
8.1 Printer Interface Logic ......................................................................................................... 83  
8.2 Enhanced Parallel Port (EPP)............................................................................................. 84  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
Data Swapper.......................................................................................................................85  
Printer Status Buffer .............................................................................................................85  
Printer Control Latch and Printer Control Swapper...............................................................86  
EPP Address Port ................................................................................................................86  
EPP Data Port 0-3................................................................................................................87  
Bit Map of Parallel Port and EPP Registers..........................................................................87  
EPP Pin Descriptions ...........................................................................................................88  
EPP Operation .....................................................................................................................88  
8.3 Extended Capabilities Parallel (ECP) Port.......................................................................... 89  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.3.7  
8.3.8  
8.3.9  
ECP Register and Mode Definitions .....................................................................................89  
Data and ecpAFifo Port ........................................................................................................90  
Device Status Register (DSR)..............................................................................................90  
Device Control Register (DCR).............................................................................................91  
cFifo (Parallel Port Data FIFO) Mode = 010.........................................................................91  
ecpDFifo (ECP Data FIFO) Mode = 011...............................................................................92  
tFifo (Test FIFO Mode) Mode = 110.....................................................................................92  
cnfgA (Configuration Register A) Mode = 111......................................................................92  
cnfgB (Configuration Register B) Mode = 111......................................................................92  
8.3.10 ecr (Extended Control Register) Mode = all..........................................................................93  
8.3.11 Bit Map of ECP Port Registers .............................................................................................94  
8.3.12 ECP Pin Descriptions ...........................................................................................................95  
8.3.13 ECP Operation .....................................................................................................................96  
8.3.14 FIFO Operation ....................................................................................................................96  
8.3.15 DMA Transfers .....................................................................................................................97  
- IV -  
W83977ATF/W83977ATG  
8.3.16 Programmed I/O (NON-DMA) Mode.....................................................................................97  
8.4 Extension FDD Mode (EXTFDD) ........................................................................................ 97  
8.5 Extension 2FDD Mode (EXT2FDD) .................................................................................... 97  
9. KEYBOARD CONTROLLER......................................................................................................... 98  
9.1 Output Buffer ....................................................................................................................... 98  
9.2 Input Buffer.......................................................................................................................... 98  
9.3 Status Register.................................................................................................................... 99  
9.4 Commands .......................................................................................................................... 99  
9.5 HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC................................... 101  
9.5.1  
9.5.2  
KB Control Register (Logic Device 5, CR-F0).....................................................................101  
Port 92 Control Register (Default Value = 0x24) ................................................................102  
10. GENERAL PURPOSE I/O ........................................................................................................... 103  
10.1 Basic I/O functions ............................................................................................................ 105  
10.2 Alternate I/O Functions...................................................................................................... 107  
10.2.1 Interrupt Steering................................................................................................................107  
10.2.2 Watch Dog Timer Output....................................................................................................108  
10.2.3 Power LED .........................................................................................................................108  
10.2.4 General Purpose Address Decoder....................................................................................108  
10.2.5 General Purpose Write Strobe ...........................................................................................108  
11. PLUG AND PLAY CONFIGURATION......................................................................................... 109  
11.1 Compatible PnP................................................................................................................. 109  
11.1.1 Extended Function Registers..............................................................................................109  
11.1.2 Extended Functions Enable Registers (EFERs).................................................................110  
11.1.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers (EFDRs)110  
11.2 Configuration Sequence.................................................................................................... 110  
12. ACPI REGISTERS FEATURES .................................................................................................. 112  
12.1 SMI to SCI/SCI to SMI and Bus Master ............................................................................ 113  
12.2 Power Management Timer................................................................................................ 114  
12.3 ACPI Registers (ACPIRs).................................................................................................. 115  
12.3.1 Power Management 1 Status Register 1 (PM1STS1) ........................................................115  
12.3.2 Power Management 1 Status Register 2 (PM1STS2) ........................................................116  
12.3.3 Power Management 1 Enable Register 1(PM1EN1)...........................................................117  
12.3.4 Power Management 1 Enable Register 2 (PM1EN2)..........................................................117  
12.3.5 Power Management 1 Control Register 1 (PM1CTL1) .......................................................118  
12.3.6 Power Management 1 Control Register 2 (PM1CTL2) .......................................................118  
12.3.7 Power Management 1 Control Register 3 (PM1CTL3) .......................................................119  
12.3.8 Power Management 1 Control Register 4 (PM1CTL4) .......................................................119  
12.3.9 Power Management 1 Timer 1 (PM1TMR1).......................................................................120  
12.3.10 Power Management 1 Timer 2 (PM1TMR2).......................................................................120  
12.3.11 Power Management 1 Timer 3 (PM1TMR3).......................................................................121  
12.3.12 Power Management 1 Timer 4 (PM1TMR4).......................................................................121  
Publication Release Date: May 2006  
- V -  
Revision 0.6  
W83977ATF/W83977ATG  
12.3.13 General Purpose Event 0 Status Register 1 (GP0STS1) ...................................................122  
12.3.14 General Purpose Event 0 Status Register 2 (GP0STS2) ...................................................122  
12.3.15 General Purpose Event 0 Enable Register 1 (GP0EN1) ....................................................123  
12.3.16 General Purpose Event 0 Enable Register 2 (GP0EN2) ....................................................124  
12.3.17 General Purpose Event 1 Status Register 1 (GP1STS1) ...................................................124  
12.3.18 General Purpose Event 1 Status Register 2 (GP1STS2) ...................................................125  
12.3.19 General Purpose Event 1 Enable Register 1 (GP1EN1) ....................................................125  
12.3.20 General Purpose Event 1 Enable Register 2 (GP1EN2) ....................................................126  
12.3.21 Bit Map Configuration Registers.........................................................................................127  
13. SERIAL IRQ................................................................................................................................. 128  
13.1 Start Frame........................................................................................................................ 129  
13.2 IRQ/Data Frame ................................................................................................................ 129  
13.3 Stop Frame........................................................................................................................ 130  
13.4 Reset and Initialization ...................................................................................................... 130  
14. CONFIGURATION REGISTER................................................................................................... 131  
14.1 Chip (Global) Control Register.......................................................................................... 131  
14.2 Logical Device 0 (FDC) ..................................................................................................... 136  
14.3 Logical Device 1 (Parallel Port)......................................................................................... 140  
14.4 Logical Device 2 (UART A)¢) ............................................................................................ 141  
14.5 Logical Device 3 (UART B) ............................................................................................... 141  
14.6 Logical Device 5 (KBC) ..................................................................................................... 142  
14.7 Logical Device 6 (IR)......................................................................................................... 143  
14.8 Logical Device 7 (GP I/O Port I)........................................................................................ 144  
14.9 Logical Device 8 (GP I/O Port II)....................................................................................... 148  
14.10 Logical Device 9 (GP I/O Port III)...................................................................................... 152  
14.11 Logical Device A (ACPI).................................................................................................... 155  
15. SPECIFICATIONS....................................................................................................................... 162  
15.1 Absolute Maximum Ratings............................................................................................... 162  
15.2 DC CHARACTERISTICS .................................................................................................. 162  
15.3 AC Characteristics............................................................................................................. 166  
15.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec. ......................................................166  
15.3.2 UART/Parallel Port .............................................................................................................167  
15.3.3 Parallel Port Mode Parameters...........................................................................................168  
15.3.4 EPP Data or Address Read Cycle Timing Parameters.......................................................168  
15.3.5 EPP Data or Address Write Cycle Timing Parameters.......................................................169  
15.3.6 Parallel Port FIFO Timing Parameters................................................................................170  
15.3.7 ECP Parallel Port Forward Timing Parameters ..................................................................170  
15.3.8 ECP Parallel Port Reverse Timing Parameters ..................................................................170  
15.3.9 KBC Timing Parameters.....................................................................................................171  
15.3.10 GPIO Timing Parameters ...................................................................................................172  
16. TIMING WAVEFORMS................................................................................................................ 173  
- VI -  
W83977ATF/W83977ATG  
16.1 FDC ................................................................................................................................... 173  
16.2 UART/Parallel.................................................................................................................... 174  
16.2.1 Modem Control Timing .......................................................................................................175  
16.3 Parallel Port....................................................................................................................... 176  
16.3.1 Parallel Port Timing ............................................................................................................176  
16.3.2 EPP Data or Address Read Cycle (EPP Version 1.9) ........................................................177  
16.3.3 EPP Data or Address Write Cycle (EPP Version 1.9).........................................................178  
16.3.4 EPP Data or Address Read Cycle (EPP Version 1.7) ........................................................179  
16.3.5 EPP Data or Address Write Cycle (EPP Version 1.7).........................................................180  
16.3.6 Parallel Port FIFO Timing...................................................................................................180  
16.3.7 ECP Parallel Port Forward Timing......................................................................................181  
16.3.8 ECP Parallel Port Reverse Timing......................................................................................181  
16.4 KBC ................................................................................................................................... 182  
16.4.1 Write Cycle Timing .............................................................................................................182  
16.4.2 Read Cycle Timing .............................................................................................................182  
16.4.3 Send Data to K/B................................................................................................................182  
16.4.4 Receive Data from K/B.......................................................................................................183  
16.4.5 Input Clock .........................................................................................................................183  
16.4.6 Send Data to Mouse...........................................................................................................183  
16.4.7 Receive Data from Mouse..................................................................................................183  
16.5 GPIO Write Timing Diagram.............................................................................................. 184  
16.6 Master Reset (MR) Timing ................................................................................................ 184  
17. APPLICATION CIRCUITS........................................................................................................... 185  
17.1 Parallel Port Extension FDD.............................................................................................. 185  
17.2 Parallel Port Extension 2FDD............................................................................................ 186  
17.3 Four FDD Mode................................................................................................................. 186  
18. ORDERING INFORMATION....................................................................................................... 187  
19. HOW TO READ THE TOP MARKING ........................................................................................ 188  
20. PACKAGE DIMENSIONS............................................................................................................ 189  
Publication Release Date: May 2006  
- VII -  
Revision 0.6  
W83977ATF/W83977ATG  
1. GENERAL DESCRIPTION  
W83977ATF/ATG is an evolving product from Winbond's most popular I/O chip W83877F --- which  
integrates the disk drive adapter, serial port (UART), IrDA 1.0 SIR, parallel port, configurable plug-  
and-play registers for the whole chip --- plus additional powerful features: ACPI, 8042 keyboard  
controller with PS/2 mouse support, 23 general purpose I/O ports, full 16-bit address decoding,  
OnNow keyboard wake-up, OnNow mouse wake-up, and OnNow CIR wake-up. In addition,  
W83977ATF/ATG provides IR functions: IrDA 1.1 (MIR for 1.152M bps or FIR for 4M bps) and TV  
remote IR (Consumer IR, supporting NEC, RC-5, extended RC-5, and RECS-80 protocols).  
The disk drive adapter functions of W83977ATF/ATG include a floppy disk drive controller compatible  
with the industry standard 82077/ 765, data separator, write pre-compensation circuit, decode logic,  
data rate selection, clock generator, drive interface control logic, and interrupt and DMA logic. The  
wide range of functions integrated onto W83977ATF/ATG greatly reduces the number of components  
required for interfacing with floppy disk drives. W83977ATF/ATG supports four 360K, 720K, 1.2M,  
1.44M, or 2.88M disk drives and data transfer rates of 250 Kb/s, 300 Kb/s, 500 Kb/s,1 Mb/s, and 2  
Mb/s.  
W83977ATF/ATG provides two high-speed serial communication ports (UARTs), one of which  
supports serial Infrared communication. Each UART includes a 16-byte send/receive FIFO, a  
programmable baud rate generator, complete modem control capability, and a processor interrupt  
system. Both UARTs provide legacy speed with baud rate up to 115.2k bps and also advanced speed  
with baud rates of 230k, 460k, or 921k bps which support higher speed modems. W83977ATF/ATG  
provides independent 3rd UART(32-byte FIFO) dedicated for the IR function.  
W83977ATF/ATG supports one PC-compatible printer port (SPP), Bi-directional Printer port (BPP)  
and also Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP). Through the printer  
port interface pins, also available are: Extension FDD Mode and Extension 2FDD Mode allowing one  
or two external floppy disk drives to be connected.  
The configuration registers support mode selection, function enable/disable, and power down function  
selection. Furthermore, the configurable PnP features are compatible with the plug-and-play feature  
demand of Windows 95TM, which makes system resource allocation more efficient than ever.  
W83977ATF/ATG provides functions that comply with ACPI (Advanced Configuration and Power  
Interface), which includes support of legacy and ACPI power management through SMI or SCI  
function pins. W83977ATF/ATG also has auto power management to reduce power consumption.  
The keyboard controller is based on 8042 compatible instruction set with a 2K Byte programmable  
ROM and a 256-Byte RAM bank. Keyboard BIOS firmware is available with optional AMIKEYTM -2,  
Phoenix MultiKey/42TM, or customer code.  
W83977ATF/ATG provides a set of flexible I/O control functions to the system designer through a set  
of General Purpose I/O ports. These GPIO ports may serve as simple I/O or may be individually  
configured to provide a predefined alternate function.  
W83977ATF/ATG is made to fully comply with Microsoft PC97 Hardware Design Guide. IRQs,  
DMAs, and I/O space resource are flexible to adjust to meet ISA PnP requirement. Moreover,  
W83977ATF/ATG is made to meet the specification of PC97's requirement in the power management:  
ACPI and DPM (Device Power Management).  
Another benefit is that W83977ATF/ATG has the same pin assignment as W83977AF, W83977F, and  
W83977TF. This makes the design very flexible.  
Publication Release Date: May 2006  
- 1 -  
Revision 0.6  
W83977ATF/W83977ATG  
2. FEATURES  
General  
Plug & Play 1.0A compatible  
Support 13 IRQs, 4 DMA channels, full 16-bit address decoding  
Capable of ISA Bus IRQ Sharing  
Compliant with Microsoft PC97 Hardware Design Guide  
Support DPM (Device Power Management), ACPI  
Report ACPI status interrupt by SCI signal issued from any of the 13 IQRs pins or GPIO xx  
Programmable configuration settings  
Single 24/48 Mhz clock input  
FDC  
Compatible with IBM PC AT disk drive systems  
Variable write pre-compensation with track selectable capability  
Support vertical recording format  
DMA enable logic  
16-byte data FIFOs  
Support floppy disk drives and tape drives  
Detects all overrun and underrun conditions  
Built-in address mark detection circuit to simplify the read electronics  
FDD anti-virus functions with software write protect and FDD write enable signal (write data signal  
was forced to be inactive)  
Support up to four 3.5-inch or 5.25-inch floppy disk drives  
Completely compatible with industry standard 82077  
360K/720K/1.2M/1.44M/2.88M format; 250K, 300K, 500K, 1M, 2M bps data transfer rate  
Support 3-mode FDD, and its Win95 driver  
UART  
Two high-speed 16550 compatible UARTs with 16-byte send/receive FIFOs  
MIDI compatible  
Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop bits generation  
Internal diagnostic capabilities:  
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
Programmable baud generator allows division of 1.8461 Mhz and 24 Mhz by 1 to (216-1)  
Maximum baud rate up to 921k bps for 14.769 Mhz and 1.5M bps for 24 Mhz  
- 2 -  
W83977ATF/W83977ATG  
Infrared  
Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
Support IrDA version 1.1 MIR (1.152M bps) and FIR (4M bps) protocol  
--- Single DMA channel for transmitter or receiver  
--- 3rd UART with 32-byte FIFO is supported in both TX/RX transmission  
--- 8-byte status FIFO is supported to store received frame status (such as overrun CRC error,  
etc.)  
Support auto-config SIR and FIR  
Parallel Port  
Compatible with IBM parallel port  
Support PS/2 compatible bi-directional parallel port  
Support Enhanced Parallel Port (EPP) Compatible with IEEE 1284 specification  
Support Extended Capabilities Port (ECP) Compatible with IEEE 1284 specification  
Extension FDD mode supports disk drive B; and Extension 2FDD mode supports disk drives A and  
B through parallel port  
Enhanced printer port back-drive current protection  
Keyboard Controller  
8042 based with optional F/W from AMIKKEYTM-2, Phoenix MultiKey/42TM or customer code  
with 2K bytes of programmable ROM, and 256 bytes of RAM  
Asynchronous Access to Two Data Registers and One status Register  
Software compatibility with the 8042 and PC87911 microcontrollers  
Support PS/2 mouse  
Support port 92  
Support both interrupt and polling modes  
Fast Gate A20 and Hardware Keyboard Reset  
8 Bit Timer/ Counter  
Support binary and BCD arithmetic  
6MHz, 8 MHz, 12 MHz, or 16 MHz operating frequency  
General Purpose I/O Ports  
23 programmable general purpose I/O ports; 1 dedicate, 22 optional  
General purpose I/O ports can serve as simple I/O ports, interrupt steering inputs, watching dog  
timer output, power LED output, infrared I/O pins, general purpose address decoder, KBC control  
I/O pins  
Publication Release Date: May 2006  
- 3 -  
Revision 0.6  
W83977ATF/W83977ATG  
OnNow Funtions  
Keyboard wake-up by programmable keys (patent pending)  
Mouse wake-up by programmable buttons (patent pending)  
CIR wake-up by programmable keys (patent pending)  
Package  
128-pin PQFP  
- 4 -  
W83977ATF/W83977ATG  
3. PIN CONFIGURATION  
/
/
P
A
N
P
A
N
S
S
W
O
U
/
W
I
,
S
M
N T  
,
I
,
I
I
I
R R R I  
I I I I I I I  
G G  
G
P
2
G
P
2
K /  
M
C
L
/
Q Q QR R R R R R R R  
1 1 1 Q Q Q Q Q Q Q Q  
2 1 0 1 3 4 5 6 7 8 9  
A V A A A  
A
V
S
B
A
P P  
V
R
C
R
I
1
S 1 1 1  
1 A A A A A A A A A  
A
1 C  
S 4 3 2 1 C 0 9 8 7 6 5 4 3 2 1  
2
2
L I  
K B  
5
3 2  
0
0
1
K
A
6
6
1 1 1  
9
9
9
9
9 8 8 8  
8 8  
8 8  
8 7 7  
7 7 7 7  
7
7
7 6  
6 6  
8 7  
6
5
9
9 9 9 9  
8
8
7
7
1
6 5  
7 6 4 3  
0 9  
0 0 0 9 8  
2 1 0  
6 5 4 3 2 0 9 8 7  
3 2 1 0 9 8  
5
2 1  
4
64  
103  
104  
IRQ14/GP14  
IRQ15/GP15  
VBAT  
63  
62  
61  
60  
59  
58  
57  
56  
XTAL1  
VSS  
105  
106  
107  
108  
109  
110  
111  
112  
113  
IOR  
IOW  
AEN  
XTAL2  
MDATA  
KDATA  
IOCHRDY  
KBLOCK/GP13  
KBRST/GP12  
GA20/GP11  
VCC  
D0  
D1  
D2  
D3  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
DCDB  
D4  
SOUTB/PEN48  
D5  
114  
115  
116  
117  
118  
119  
120  
121  
122  
SINB  
VCC  
D6  
DTRB  
RTSB  
D7  
MR  
DSRB  
CTSB  
DACK0/GP16  
VSS  
DCDA  
SCI/DRQ0/GP17  
SOUTA/PENKBC  
SINA  
DACK1  
DRQ1  
DACK2  
DRQ2  
DACK3  
DRQ3  
TC  
123  
124  
DTRA/PNPCSV  
RTSA/HEFRAS  
DSRA  
125  
126  
127  
CTSA  
CIRRX/GP24  
128  
IRRXH/IRSL0  
2
2
3
2 3 3 3  
3
1 1 1 1 1 1  
2 2 2 2 2 2  
3
3
1 1 1 1  
2
3
8
3
7
1 2 3 4 5 6 7  
9
4
8 9 0  
3
6 7 8 9  
8
1
5 6 7  
1 2 4 5  
0 1  
2 3  
4
5
6
0
2 3  
P
P
D
0
D
R
V
D
E
N
/
/
P
D
1
/
I
I
D
R
V
D
/
/
/
/
S
L
V
C
C
/
P P  
P
P P  
/
/ /  
/
/
/
V
C
L
K
I
/
/
/
/
/
/
B
U
S
Y
P
E
M
O
B
I
D
S I  
R
W
S D  
T I  
M
O
A
A D  
C 7 6  
K
D D D D  
E
A
S
R
W
D
S
A
S
D H  
R
T
D
S
B
W
N
D
E
X
L
T
X
E
C
T
4 3 2  
N R F T R  
D
S 5  
S E P R  
D
I
E
R
K
I
R D B X  
A
A
K
0
A
T
A
N E  
N
P
N T  
C
H
G
D
1
0
,
G
P
1
0
,
/
S
C
I
Publication Release Date: May 2006  
Revision 0.6  
- 5 -  
W83977ATF/W83977ATG  
4. PIN DESCRIPTION  
Note: Please refer to Section 12.2 DC CHARACTERISTICS for details.  
I/O6t  
I/O8t  
I/O8  
- TTL level bi-directional pin with 6 mA source-sink capability  
- TTL level bi-directional pin with 8 mA source-sink capability  
- CMOS level bi-directional pin with 8 mA source-sink capability  
I/O12t - TTL level bi-directional pin with 12 mA source-sink capability  
I/O12 - CMOS level bi-directional pin with 12 mA source-sink capability  
I/O16u - CMOS level bi-directional pin with 16 mA source-sink capability with internal pull-up resistor  
I/OD16u - CMOS level bi-directional pin open drain output with 16 mA sink capability with internal  
pull-up resistor  
I/O24t - TTL level bi-directional pin with 24 mA source-sink capability  
OUT8t - TTL level output pin with 8 mA source-sink capability  
OUT12t - TTL level output pin with 12 mA source-sink capability  
OD12 - Open-drain output pin with 12 mA sink capability  
OD24 - Open-drain output pin with 24 mA sink capability  
INt  
- TTL level input pin  
INc  
- CMOS level input pin  
INcu  
INcs  
INts  
INtsu  
- CMOS level input pin with internal pull-up resitor  
- CMOS level Schmitt-triggered input pin  
- TTL level Schmitt-triggered input pin  
- TTL level Schmitt-triggered input pin with internal pull-up resistor  
4.1 Host Interface  
SYMBOL  
A0A10  
PIN  
74-84  
86-89  
91  
I/O  
INt  
FUNCTION  
System address bus bits 0-10.  
A11-A14  
A15  
INt  
System address bus bits 11-14.  
System address bus bit 15.  
System data bus bits 0-5.  
INt  
109-  
114  
I/O12t  
D0D5  
116-  
117  
I/O12t  
System data bus bits 6-7.  
D6D7  
105  
106  
INts  
INts  
CPU I/O read signal.  
IOR  
CPU I/O write signal.  
IOW  
AEN  
107  
108  
INts  
System address bus enable.  
IOCHRDY  
OD24  
In EPP Mode, this pin is the IO Channel Ready output to extend the host  
read/write cycle.  
MR  
118  
INts  
Master Reset; Active high; MR is low during normal operations.  
- 6 -  
W83977ATF/W83977ATG  
Host Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
119  
INtsu  
DMA Channel 0 Acknowledge signal. (CR2C bit 5_4 = 00, default)  
DACK0  
GP16  
I/O12t  
General purpose I/O port 1bit 6. (CR2C bit 5_4 = 01)  
Alternate function from GP16: Watch dog timer output.  
KBC P15 I/O port. (CR2C bit 5_4 = 10)  
(WDTO)  
P15  
I/O12t  
OUT12t  
I/O12t  
DRQ0  
121  
DMA Channel 0 request signal. (CR2C bit 7_6 = 00, default)  
General purpose I/O port 1bit 7. (CR2C bit 7_6 = 01)  
Alternate Function from GP17: Power LED output.  
KBC P14 I/O port. (CR2C bit 7_6 = 10)  
GP17  
(PLEDO)  
P14  
SCI  
I/O12t  
OD12  
System Control Interrupt.(CR2C bit 7_6 = 11)  
In the ACPI power management mode, SCI is driven low by the power  
management events.  
122  
INts  
DMA Channel 1 Acknowledge signal.  
DACK1  
DRQ1  
123  
124  
OUT12t  
INts  
DMA Channel 1 request signal.  
DMA Channel 2 Acknowledge signal.  
DACK2  
DRQ2  
125  
126  
OUT12t  
INts  
DMA Channel 2 request signal.  
DMA Channel 3 Acknowledge signal.  
DACK3  
DRQ3  
TC  
127  
128  
OUT12t  
INts  
DMA Channel 3 request signal.  
Terminal Count. When active, this pin indicates termination of a DMA  
transfer.  
IRQ1  
IRQ1  
99  
98  
97  
96  
95  
OUT12t  
I/O12t  
Interrupt request 1. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 0.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ3  
GP31  
OUT12t  
I/O12t  
Interrupt request 3. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 1.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ4  
GP32  
OUT12t  
I/O12t  
Interrupt request 4. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 2.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ5  
GP33  
OUT12t  
I/O12t  
Interrupt request 5. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 3.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ6  
GP34  
OUT12t  
I/O12t  
Interrupt request 6. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 4.  
(Logical device 9, CRF1 bit 2 = 1)  
Publication Release Date: May 2006  
- 7 -  
Revision 0.6  
W83977ATF/W83977ATG  
Host Interface, continued  
SYMBOL  
IRQ7  
PIN  
I/O  
FUNCTION  
94  
93  
92  
OUT12t  
I/O12t  
Interrupt request 7. (Logical device 9, CRF1 bit 2 = 0)  
GP35  
General purpose I/O port 3 bit 5.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ8  
GP36  
OUT12t  
I/O12t  
Interrupt request 8. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 6.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ9  
GP37  
OUT12t  
I/O12t  
Interrupt request 9. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 3 bit 7.  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ10  
SERIRQ  
IRQ11  
PCICLK  
IRQ12  
GP26  
100  
101  
102  
OUT12t  
I/O12t  
OUT12t  
INt  
Interrupt request 10. (Logical device 9, CRF1 bit 2 = 0)  
Serial IRQ input/output. (Logical device 9, CRF1 bit 2 = 1)  
Interrupt request 11. (Logical device 9, CRF1 bit 2 = 0)  
PCI clock input. (Logical device 9, CRF1 bit 2 = 1)  
Interrupt request 12. (Logical device 9, CRF1 bit 2 = 0)  
General purpose I/O port 2 bit 6.  
OUT12t  
I/O12t  
(Logical device 9, CRF1 bit 2 = 1)  
IRQ14  
GP14  
103  
OUT12t  
I/O12t  
Interrupt request 14. (CR2C bit 1_0 = 00, default)  
General purpose I/O port 1 bit 4. (CR2C bit 1_0 = 01)  
Alternate Function 1 from GP14: General purpose address decode  
output.  
( GPACS)  
(P17)  
Alternate Function 2 from GP14: KBC P17 I/O port.  
Power LED output. (CR2C bit 1_0 = 10)  
PLEDO  
IRQ15  
OUT12t  
OUT12t  
I/O12t  
104  
Interrupt request 15.(CR2C bit 3_2 = 00, default)  
General purpose I/O port 1 bit 5. (CR2C bit 3_2 = 01)  
GP15  
( GPAWE)  
Alternate Function 1 from GP15: General purpose address write enable  
output.  
(P12)  
WDT  
Alternate Function 2 from GP15: KBC P12 I/O port.  
Watch-Dog timer output. (CR2C bit 3_2 = 10)  
OUT12t  
INt  
CLKIN  
1
24 or 48 MHz clock input, selectable through CR24 bit 6.  
- 8 -  
W83977ATF/W83977ATG  
4.2 General Purpose I/O Port  
SYMBOL  
GP20  
PIN  
I/O  
FUNCTION  
69  
I/O12t  
General purpose I/O port 2 bit 0.  
(KBRST)  
Alternate Function from GP20: Keyboard reset. (KBC P20)  
System Management Interrupt. (CR2B bit 4_3 = 00, default)  
70  
OD12  
I/O12t  
SMI  
In the legacy power management mode, SMI is driven low by the power  
managenment events.  
GP21  
(P13)  
P16  
General purpose I/O port 2 bit 1. (CR2B bit 4_3 = 01)  
Alternate Function from GP21: KBC P13 I/O port.  
KBC P16 I/O port. (CR2B bit 4_3 = 10)  
I/O12t  
OD12  
I/O12t  
72  
73  
Panel Switch output. (CR2B bit 5 = 0, default)  
General purpose I/O port 2 bit 2. (CR2B bit 5 = 1)  
Alternate Function from GP22: KBC P14 I/O port.  
Panel Switch input. (CR2B bit 7_6 = 00, default)  
General purpose I/O port 2 bit 3. (CR2B bit 7_6 = 01)  
PANSWOUT  
GP22  
(P14)  
IN12t  
PANSWIN  
GP23  
I/O12t  
(P15)  
Alternate Function from GP23: KBC P15 I/O port.  
General purpose I/O port 2 bit 4. (CR2A bit 5_4 = 01)  
Alternate Function from GP24: KBC P16 I/O port.  
KBC P13 I/O port. (CR2A bit 5_4 = 10)  
GP24  
40  
39  
I/O12t  
(P16)  
P13  
I/O12t  
INt  
CIRRX  
GP25  
Consumer IR receiving input. (CR2A bit 5_4 = 00)  
General purpose I/O port 2 bit 5. (CR2A bit 3_2 = 10)  
Alternate Function from GP25: GATE A20. (KBC P21)  
FIR receiving input. (CR2A bit 3_2 = 00)  
I/O12  
(GA20)  
IRRXH  
IRSL0  
INt  
OUT12t  
IR module select 0. (CR2A bit 3_2 = 01)  
Publication Release Date: May 2006  
- 9 -  
Revision 0.6  
W83977ATF/W83977ATG  
4.3 Serial Port Interface  
SYMBOL  
PIN  
41  
I/O  
FUNCTION  
INt  
Clear To Send. This is the modem control input.  
CTSA  
CTSB  
48  
The function of these pins can be tested by reading bit 4 of the  
handshake status register.  
42  
49  
INt  
Data Set Ready. An active low signal indicates the modem or data set is  
ready to establish a communication link and transfer data to the UART.  
DSRA  
DSRB  
RTSA  
43  
I/O8t  
UART A Request To Send. An active low signal informs the modem or  
data set that the controller is ready to send data.  
HEFRAS  
During power-on reset, this pin is pulled down internally and is defined as  
HEFRAS, which provides the power-on value for CR26 bit 6 (HEFRAS).  
A 4.7 kΩ is recommended if intends to pull up. (select 370H as  
configuration I/O ports address)  
50  
44  
I/O8t  
I/O8t  
UART B Request To Send. An active low signal informs the modem or  
data set that the controller is ready to send data.  
RTSB  
UART A Data Terminal Ready. An active low signal informs the modem  
or data set that the controller is ready to communicate.  
DTRA  
During power-on reset, this pin is pulled down internally and is defined as  
PNPCSV , which provides the power-on value for CR24 bit 0  
PNPCSV  
(PNPCSV ). A 4.7 kΩ is recommended if intends to pull up. (clear the  
default value of FDC, UARTs, and PRT)  
51  
I/O8t  
UART B Data Terminal Ready. An active low signal informs the modem  
or data set that controller is ready to communicate.  
DTRB  
SINA  
SINB  
45, 52  
46  
INt  
Serial Input. It is used to receive serial data through the communication  
link.  
SOUTA  
I/O8t  
UART A Serial Output. It is used to transmit serial data out to the  
communication link.  
PENKBC  
During power-on reset, this pin is pulled down internally and is defined as  
PENKBC, which provides the power-on value for CR24 bit 2 (ENKBC). A  
4.7 kΩ resistor is recommended if intends to pull up. (enable KBC)  
SOUTB  
PEN48  
53  
I/O8t  
UART B Serial Output. During power-on reset, this pin is pulled down  
internally and is defined as PEN48, which provides the power-on value  
for CR24 bit 6 (EN48). A 4.7 kΩ resistor is recommended if intends to  
pull up.  
47  
54  
65  
66  
INt  
INt  
Data Carrier Detect. An active low signal indicates the modem or data  
set has detected a data carrier.  
DCDA  
DCDB  
Ring Indicator. An active low signal indicates that a ring signal is being  
received from the modem or data set.  
RIA  
RIB  
- 10 -  
W83977ATF/W83977ATG  
4.4 Infrared Interface  
SYMBOL  
IRRX  
IRTX  
PIN  
37  
I/O  
INcs  
FUNCTION  
Infrared Receiver input.  
Infrared Transmitter Output.  
38  
OUT12t  
4.5 Multi-Mode Parallel Port  
The following pins have alternate functions, which are controlled by CR28 and L3-CRF0.  
SYMBOL  
SLCT  
PIN  
I/O  
FUNCTION  
18  
INt  
PRINTER MODE: SLCT  
An active high input on this pin indicates that the printer is selected. This  
pin is pulled high internally. Refer to the description of the parallel port  
for definition of this pin in ECP and EPP mode.  
OD12  
OD12  
INt  
EXTENSION FDD MODE: WE2  
This pin is for Extension FDD B; its function is the same as the  
of FDC.  
pin  
WE  
EXTENSION 2FDD MODE: WE2  
This pin is for Extension FDD A and B; its function is the same as the  
WE pin of FDC.  
PRINTER MODE: PE  
PE  
19  
An active high input on this pin indicates that the printer has detected the  
end of the paper. This pin is pulled high internally. Refer to the  
description of the parallel port for the definition of this pin in ECP and  
EPP mode.  
OD12  
OD12  
EXTENSION FDD MODE: WD2  
This pin is for Extension FDD B; its function is the same as the WD pin  
of FDC.  
EXTENSION 2FDD MODE: WD2  
This pin is for Extension FDD A and B; its function is the same as the  
WD pin of FDC.  
BUSY  
21  
INt  
PRINTER MODE: BUSY  
An active high input indicates that the printer is not ready to receive data.  
This pin is pulled high internally. Refer to the description of the parallel  
port for definition of this pin in ECP and EPP mode.  
MOB2  
EXTENSION FDD MODE:  
OD12  
OD12  
MOB  
This pin is for Extension FDD B; its function is the same as the  
of FDC.  
pin  
MOB2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as the  
MOB  
pin of FDC.  
Publication Release Date: May 2006  
Revision 0.6  
- 11 -  
W83977ATF/W83977ATG  
Multi-Mode Parallel Port, continued  
SYMBOL  
ACK  
PIN  
I/O  
FUNCTION  
22  
INt  
PRINTER MODE: ACK  
An active low input on this pin indicates that the printer has received  
data and is ready to accept more data. This pin is pulled high internally.  
Refer to the description of the parallel port for the definition of this pin in  
ECP and EPP mode.  
EXTENSION FDD MODE: DSB2  
OD12  
OD12  
INt  
This pin is for the Extension FDD B; its functions is the same as the  
DSB pin of FDC.  
EXTENSION 2FDD MODE: DSB2  
This pin is for Extension FDD A and B; its function is the same as the  
DSB pin of FDC.  
34  
PRINTER MODE: ERR  
ERR  
An active low input on this pin indicates that the printer has encountered  
an error condition. This pin is pulled high internally. Refer to the  
description of the parallel port for the definition of this pin in ECP and  
EPP mode.  
EXTENSION FDD MODE: HEAD2  
OD12  
OD12  
This pin is for Extension FDD B; its function is the same as the  
HEADpin of FDC.  
EXTENSION 2FDD MODE: HEAD2  
This pin is for Extension FDD A and B; its function is the same as the  
HEAD pin of FDC.  
32  
OD12  
SLIN  
SLIN  
PRINTER MODE:  
Output line for detection of printer selection. This pin is pulled high  
internally. Refer to the description of the parallel port for the definition of  
this pin in ECP and EPP mode.  
STEP2  
EXTENSION FDD MODE:  
OD12  
OD12  
STEP  
This pin is for Extension FDD B; its function is the same as the  
pin of FDC.  
STEP2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as the  
STEP  
pin of FDC.  
- 12 -  
W83977ATF/W83977ATG  
Multi-Mode Parallel Port, continued  
SYMBOL  
INIT  
PIN  
I/O  
FUNCTION  
33  
OD12  
PRINTER MODE: INIT  
Output line for the printer initialization. This pin is pulled high internally.  
Refer to the description of the parallel port for the definition of this pin in  
ECP and EPP mode.  
OD12  
OD12  
EXTENSION FDD MODE: DIR2  
This pin is for Extension FDD B; its function is the same as the DIR pin  
of FDC.  
EXTENSION 2FDD MODE: DIR2  
This pin is for Extension FDD A and B; its function is the same as the  
DIR pin of FDC.  
35  
OD12  
PRINTER MODE: AFD  
AFD  
An active low output from this pin causes the printer to auto feed a line  
after a line is printed. This pin is pulled high internally. Refer to the  
description of the parallel port for the definition of this pin in ECP and  
EPP mode.  
EXTENSION FDD MODE: DRVDEN0  
OD12  
This pin is for Extension FDD B; its function is the same as the  
DRVDEN0 pin of FDC.  
EXTENSION 2FDD MODE: DRVDEN0  
OD12  
OD12  
This pin is for Extension FDD A and B; its function is the same as the  
DRVDEN0 pin of FDC.  
36  
31  
STB  
PD0  
PRINTER MODE: STB  
An active low output is used to latch the parallel data into the printer.  
This pin is pulled high internally. Refer to the description of the parallel  
port for the definition of this pin in ECP and EPP mode.  
-
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
PRINTER MODE: PD0  
I/O24t  
Parallel port data bus bit 0. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
INt  
INt  
INDEX2  
EXTENSION FDD MODE:  
INDEX  
This pin is for Extension FDD B; its function is the same as the  
pin of FDC. It is pulled high internally.  
INDEX2  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; its function is the same as the  
INDEX  
pin of FDC. It is pulled high internally.  
Publication Release Date: May 2006  
Revision 0.6  
- 13 -  
W83977ATF/W83977ATG  
Multi-Mode Parallel Port, continued  
SYMBOL  
PD1  
PIN  
I/O  
FUNCTION  
30  
I/O24t  
PRINTER MODE: PD1  
Parallel port data bus bit 1. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: TRAK02  
INt  
This pin is for Extension FDD B; its function is the same as the TRAK0  
pin of FDC. It is pulled high internally.  
EXTENSION. 2FDD MODE: TRAK02  
INt  
This pin is for Extension FDD A and B; its function is the same as the  
TRAK0 pin of FDC. It is pulled high internally.  
PD2  
29  
I/O24t  
PRINTER MODE: PD2  
Parallel port data bus bit 2. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: WP2  
INt  
INt  
This pin is for Extension FDD B; its function is the same as the  
of FDC. It is pulled high internally.  
pin  
WP  
EXTENSION. 2FDD MODE: WP2  
This pin is for Extension FDD A and B; its function is the same as the  
WP pin of FDC. It is pulled high internally.  
PD3  
28  
I/O24t  
INt  
PRINTER MODE: PD3  
Parallel port data bus bit 3. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: RDATA2  
This pin is for Extension FDD B; its function is the same as the RDATA  
pin of FDC. It is pulled high internally.  
INt  
EXTENSION 2FDD MODE: RDATA2  
This pin is for Extension FDD A and B; its function is the same as the  
RDATA pin of FDC. It is pulled high internally.  
PD4  
27  
I/O24t  
INt  
PRINTER MODE: PD4  
Parallel port data bus bit 4. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
DSKCHG2  
EXTENSION FDD MODE:  
This pin is for Extension FDD B; the function of this pin is the same as  
DSKCHG  
the  
EXTENSION 2FDD MODE:  
This pin is for Extension FDD A and B; this function of this pin is the  
pin of FDC. It is pulled high internally.  
INt  
DSKCHG2  
DSKCHG  
same as the  
pin of FDC. It is pulled high internally.  
- 14 -  
W83977ATF/W83977ATG  
Multi-Mode Parallel Port, continued  
SYMBOL  
PD5  
PIN  
I/O  
FUNCTION  
26  
I/O24t  
PRINTER MODE: PD5  
Parallel port data bus bit 5. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: This pin is a tri-state output.  
-
-
PD6  
24  
I/O24t  
PRINTER MODE: PD6  
Parallel port data bus bit 6. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
-
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION. 2FDD MODE: MOA2  
OD24  
This pin is for Extension FDD A; its function is the same as the MOA  
pin of FDC.  
PD7  
23  
I/O24t  
PRINTER MODE: PD7  
Parallel port data bus bit 7. Refer to the description of the parallel port  
for the definition of this pin in ECP and EPP mode.  
EXTENSION FDD MODE: This pin is a tri-state output.  
EXTENSION 2FDD MODE: DSA2  
-
OD24  
This pin is for Extension FDD A; its function is the same as the DSA pin  
of FDC.  
4.6 FDC Interface  
SYMBOL  
DRVDEN0  
DRVDEN1  
GP10  
PIN  
2
I/O  
FUNCTION  
Drive Density Select bit 0.  
OD24  
OD24  
IO24t  
3
Drive Density Select bit 1. (CR2A bit 1_0 = 00, default)  
General purpose I/O port 1 bit 0. (CR2A bit 1_0 = 01)  
Alternate Function from GP10: Interrupt channel input.  
KBC P12 I/O port. (CR2A bit 1_0 = 10)  
(IRQIN1)  
P12  
IO24t  
OD12  
System Control Interrupt. (CR2A bit 1_0 = 11)  
SCI  
In the ACPI power management mode, SCI is driven low by the power  
management events.  
5
OD24  
Head select. This open drain output determines which disk drive head is  
active.  
HEAD  
Logic 1 = side 0  
Logic 0 = side 1  
9
OD24  
OD24  
Write enable. An open drain output.  
WE  
WD  
10  
Write data. This logic low open drain writes pre-compensation serial  
data to the selected FDD. An open drain output.  
Publication Release Date: May 2006  
- 15 -  
Revision 0.6  
W83977ATF/W83977ATG  
FDC Interface, continued  
SYMBOL  
PIN  
I/O  
FUNCTION  
11  
OD24  
Step output pulses. This active low open drain output produces a pulse  
to move the head to another track.  
STEP  
12  
OD24  
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion  
DIR  
Logic 0 = inward motion  
13  
14  
15  
16  
4
OD24  
OD24  
OD24  
OD24  
INcs  
Motor B On. When set to 0, this pin enables disk drive 1. This is an  
open drain output.  
MOB  
Drive Select A. When set to 0, this pin enables disk drive A. This is an  
open drain output.  
DSA  
Drive Select B. When set to 0, this pin enables disk drive B. This is an  
open drain output.  
DSB  
Motor A On. When set to 0, this pin enables disk drive 0. This is an  
open drain output.  
MOA  
Diskette change. This signal is active low at power on and whenever the  
diskette is removed. This input pin is pulled up internally by a 1  
Kresistor. The resistor can be disabled by bit 7 of L0-CRF0  
(FIPURDWN).  
DSKCHG  
6
INcs  
INcs  
The read data input signal from the FDD. This input pin is pulled up  
internally by a 1 Kresistor. The resistor can be disabled by bit 7 of L0-  
CRF0 (FIPURDWN).  
RDATA  
WP  
7
Write protected. This active low Schmitt input from the disk drive  
indicates that the diskette is write-protected. This input pin is  
pulled up internally by a 1 Kresistor. The resistor can be  
disabled by bit 7 of L0-CRF0 (FIPURDWN).  
8
INcs  
INcs  
Track 0. This Schmitt-triggered input from the disk drive is active  
low when the head is positioned over the outermost track. This  
input pin is pulled up internally by a 1 Kresistor. The resistor  
can be disabled by bit 7 of L0-CRF0 (FIPURDWN).  
TRAK0  
INDEX  
17  
This Schmitt-triggered input from the disk drive is active low  
when the head is positioned over the beginning of a track marked  
by an index hole. This input pin is pulled up internally by a 1 Kꢀ  
resistor. The resistor can be disabled by bit 7 of L0-CRF0  
(FIPURDWN).  
- 16 -  
W83977ATF/W83977ATG  
4.7 KBC Interface  
SYMBOL  
KDATA  
PIN  
59  
60  
67  
68  
56  
I/O  
FUNCTION  
I/O16u  
I/O16u  
I/O16u  
I/O16u  
I/O12t  
I/O12t  
Keyboard Data.  
PS2 Mouse Data.  
Keyboard Clock.  
PS2 Mouse Clock.  
MDATA  
KCLK  
MCLK  
GA20  
KBC GATE A20 (P21) Output. (CR2A bit 6 = 0, default)  
General purpose I/O port 1 bit 1. (CR2A bit 6 = 1)  
Alternate Function from GP11: Interrupt channel input.  
W83C45 Keyboard Reset (P20) Output. (CR2A bit 7 = 0, default)  
General purpose I/O port 1 bit 2. (CR2A bit 7 = 1)  
Alternate Function 1 from GP12: Watchdog timer output.  
W83C45 KINH (P17) Input. (CR2B bit 0 = 0, default)  
General purpose I/O port 1 bit 3. (CR2B bit 0 = 1)  
GP11  
(IRQIN2)  
KBRST  
GP12  
57  
58  
I/O12t  
I/O12t  
(WDTO)  
KBLOCK  
GP13  
INts  
I/O16t  
4.8 POWER PINS  
SYMBOL  
VCC  
PIN  
20, 55, 85, 115  
FUNCTION  
+5V power supply for the digital circuitry.  
+5V stand-by power supply for the digital circuitry.  
Ground.  
VSB  
71  
GND  
25, 62, 90, 120  
4.9 ACPI Interface  
SYMBOL  
VBAT  
PIN  
64  
I/O  
NA  
INC  
O8t  
FUNCTION  
Battery voltage input.  
XTAL1  
XTAL2  
63  
32.768Khz Clock Input.  
61  
32.768Khz Clock Output.  
Publication Release Date: May 2006  
Revision 0.6  
- 17 -  
W83977ATF/W83977ATG  
5. FDC FUNCTIONAL DESCRIPTION  
5.1 W83977ATF/ATG FDC  
The floppy disk controller of W83977ATF/ATG integrates all of the logic required for floppy disk  
control. The FDC implements a PC/AT or PS/2 solution. All programmable options default to  
compatible values. The FIFO provides better system performance in multi-master systems. The digital  
data separator supports up to 2 M bits/sec data rate.  
The FDC includes the following blocks: AT interface, Precompensation, Data Rate Selection, Digital  
Data Separator, FIFO, and FDC Core.  
5.1.1 AT interface  
The interface consists of the standard asynchronous signals:RD , WR, A0-A3, IRQ, DMA control, and  
a data bus. The address lines select between the configuration registers, the FIFO and control/status  
registers. This interface can be switched between PC/AT, Model 30, or PS/2 normal modes. The PS/2  
register sets are a superset of the registers found in a PC/AT.  
5.1.2 FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM and  
DIO bits in the Main Status Register.  
The FIFO defaults to disabled mode after any form of reset. This maintains PC/AT hardware  
compatibility. The default values can be changed through the CONFIGURE command. The advantage  
of the FIFO is that it allows the system a larger DMA latency without causing disk errors. The following  
tables give several examples of the delays with a FIFO. The data are based upon the following  
formula:  
THRESHOLD # × (1/DATA/RATE) *8 - 1.5 μS = DELAY  
FIFO THRESHOLD  
MAXIMUM DELAY TO SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
1 × 16 μS - 1.5 μS = 14.5 μS  
2 × 16 μS - 1.5 μS = 30.5 μS  
8 × 16 μS - 1.5 μS = 6.5 μS  
15 × 16 μS - 1.5 μS = 238.5 μS  
MAXIMUM DELAY TO SERVICING AT 1M BPS  
Data Rate  
8 Byte  
15 Byte  
FIFO THRESHOLD  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 8 μS - 1.5 μS = 6.5 μS  
2 × 8 μS - 1.5 μS = 14.5 μS  
8 × 8 μS - 1.5 μS = 62.5 μS  
15 × 8 μS - 1.5 μS = 118.5 μS  
- 18 -  
W83977ATF/W83977ATG  
At the start of a command the FIFO is always disabled, and command parameters must be sent based  
upon the RQM and DIO bit settings in the main status register. When the FDC enters the command  
execution phase, it clears the FIFO of any data to ensure that invalid data are not transferred.  
An overrun and underrun will terminate the current command and the data transfer. Disk writes will  
complete the current sector by generating a 00 pattern and valid CRC. Reads require the host to  
remove the remaining data so that the result phase may be entered.  
DMA transfers are enabled with the SPECIFY command and are initiated by the FDC by activating the  
DRQ pin during a data transfer command. The FIFO is enabled directly by asserting DACK and  
addresses need not be valid.  
Note that if the DMA controller is programmed to function in verify mode a pseudo read is performed  
by the FDC based only on DACK . This mode is only available when the FDC has been configured  
into byte mode (FIFO disabled) and is programmed to do a read. With the FIFO enabled the above  
operation is performed by using the new VERIFY command. No DMA operation is needed.  
5.1.3 Data Separator  
The function of the data separator is to lock onto the incoming serial read data. When a lock is  
achieved the serial front end logic of the chip is provided with a clock which is synchronized to the  
read data. The synchronized clock, called the Data Window, is used to internally sample the serial  
data portion of the bit cell, and the alternate state samples the clock portion. Serial to parallel  
conversion logic separates the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
Ideally, the DDS circuit cycles once every 12 clock cycles. Any data pulse input will be synchronized  
and then adjusted by immediate error adjustment. The control logic will generate RDD and RWD for  
every pulse input. During any cycle where no data pulse is present, the DDS cycles are based on  
speed. A digital integrator is used to keep track of the speed changes in the input data stream.  
5.1.4 Write Precompensation  
The write precompensation logic is used to minimize bit shifts in the RDDATA stream from the disk  
drive. Shifting of bits is a known phenomenon in magnetic media and is dependent on the disk media  
and the floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known. Depending upon the pattern, the bit is shifted either early or late  
relative to the surrounding bits.  
5.1.5 Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented  
vertically. This scheme packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks, and can also read and  
write perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. The perpendicular mode requires a 1 Mbps data rate for the FDC. At this data rate the  
FIFO eases the host interface bottleneck due to the speed of data transfer to or from the disk.  
Publication Release Date: May 2006  
- 19 -  
Revision 0.6  
W83977ATF/W83977ATG  
5.1.6 FDC Core  
W83977ATF/ATG FDC is capable of performing twenty commands. Each command is initiated by a  
multi-byte transfer from the microprocessor. The result can also be a multi-byte transfer back to the  
microprocessor. Each command consists of three phases: command, execution, and result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information is provided to  
the microprocessor.  
5.1.7 FDC Commands  
Command Symbol Descriptions:  
C:  
Cylinder number 0 - 256  
Data Pattern  
D:  
DIR:  
Step Direction  
DIR = 0, step out  
DIR = 1, step in  
DS0:  
DS1:  
DTL:  
EC:  
Disk Drive Select 0  
Disk Drive Select 1  
Data Length  
Enable Count  
EOT:  
EFIFO:  
EIS:  
End of Track  
Enable FIFO  
Enable Implied Seek  
End of track  
EOT:  
FIFOTHR:  
GAP:  
GPL:  
H:  
FIFO Threshold  
Gap length selection  
Gap Length  
Head number  
HDS:  
HLT:  
HUT:  
LOCK:  
MFM:  
MT:  
Head number select  
Head Load Time  
Head Unload Time  
Lock EFIFO, FIFOTHR, PTRTRK bits prevent affected by software reset  
MFM or FM Mode  
Multitrack  
N:  
The number of data bytes written in a sector  
New Cylinder Number  
Non-DMA Mode  
NCN:  
ND:  
OW:  
Overwritten  
- 20 -  
W83977ATF/W83977ATG  
PCN:  
POLL:  
PRETRK:  
R:  
Present Cylinder Number  
Polling Disable  
Precompensation Start Track Number  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sector/per cylinder  
Skip deleted data address mark  
Step Rate Time  
SK:  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
Write gate alters timing of WE  
(1) Read Data  
PHASE  
R/W  
W
D7  
D6 D5 D4  
D3  
D2 D1 D0  
REMARKS  
Command codes  
Command  
MT MFM SK  
0
0
0
0
1
1
0
W
0
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior to  
command execution  
W
W
W
W
W
W
Execution  
Result  
Data transfer between the FDD  
and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
R
Sector ID information after  
command execution  
Publication Release Date: May 2006  
Revision 0.6  
- 21 -  
W83977ATF/W83977ATG  
(2) Read Deleted Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
MT MFM SK  
REMARKS  
Command  
0
1
1
0
0
Command codes  
0
0
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
(3) Read A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior to  
command execution  
Execution  
Result  
Data transfer between the  
FDD and system; FDD reads  
contents of all cylinders from  
index hole to EOT  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
- 22 -  
W83977ATF/W83977ATG  
(4) Read ID  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
0
0
MFM  
0
0
0
0
0
1
0
0
1
0
W
HDS DS1 DS0  
Execution  
Result  
The first correct ID information  
on the cylinder is stored in  
Data Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
Disk status after the command  
has been completed  
R
R
(5) Verify  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
W
0
0
HDS DS1 DS0  
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
W
W
W
W
W
Execution  
Result  
No data transfer takes  
place  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: May 2006  
Revision 0.6  
- 23 -  
W83977ATF/W83977ATG  
(6) Version  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command code  
Command  
Result  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
Enhanced controller  
(7) Write Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
0
0
1
0
1
Command codes  
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to Command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
Command execution  
Sector ID information after  
Command execution  
- 24 -  
W83977ATF/W83977ATG  
(8) Write Deleted Data  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
1
0
0
1
Command codes  
0
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Sector ID information prior  
to command execution  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
Publication Release Date: May 2006  
Revision 0.6  
- 25 -  
W83977ATF/W83977ATG  
(9) Format A Track  
PHASE  
R/W  
W
W
W
W
W
W
W
W
W
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
Command codes  
HDS DS1 DS0  
---------------------- N ------------------------  
--------------------- SC -----------------------  
--------------------- GPL ---------------------  
---------------------- D ------------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
Bytes/Sector  
Sectors/Cylinder  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector  
Input Sector Parameters  
Repeat:  
Result  
Status information after  
command execution  
R
R
R
R
R
R
(10) Recalibrate  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
0
0
0
0
1
1
1
Command codes  
0
0
DS1 DS0  
Execution  
Head retracted to Track 0  
Interrupt  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
0
0
0
Command code  
R
---------------- ST0 -------------------------  
---------------- PCN -------------------------  
Status information at the end  
of each seek operation  
R
- 26 -  
W83977ATF/W83977ATG  
(12) Specify  
PHASE  
R/W  
W
D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
0
0
0
0
0
0
1
1
W
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
W
(13) Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command codes  
Command  
0
0
0
0
0
0
0
0
1
0
1
1
1
W
HDS DS1 DS0  
W
-------------------- NCN -----------------------  
Execution  
R
Head positioned over proper  
cylinder on diskette  
(14) Configure  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
W
0
0
W
0
EIS EFIFO POLL | ------ FIFOTHR ----|  
W
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
(15) Relative Seek  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
1
0
DIR  
0
0
0
0
0
1
0
1
1
1
Command codes  
W
HDS DS1 DS0  
W
| -------------------- RCN ---------------------------- |  
Publication Release Date: May 2006  
Revision 0.6  
- 27 -  
W83977ATF/W83977ATG  
(16) Dumpreg  
PHASE  
Command  
Result  
R/W  
W
R
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
0
0
0
0
1
1
1
0
Registers placed in FIFO  
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
R
R
R
R
R
R
R
R
R
(17) Perpendicular Mode  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
1
0
0
1
0
Command Code  
W
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
Result  
LOCK 0  
0
0
1
0
0
1
0
0
0
0
Command Code  
R
0
0
LOCK  
0
(19) Sense Drive Status  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
0
1
0
0
Command Code  
W
0
HDS DS1 DS0  
Result  
R
---------------- ST3 -------------------------  
Status information about  
disk drive  
(20) Invalid  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
------------- Invalid Codes -----------------  
Invalid codes (no  
operation- FDC goes to  
standby state)  
Result  
R
-------------------- ST0 ----------------------  
ST0 = 80H  
- 28 -  
W83977ATF/W83977ATG  
5.2 Register Descriptions  
There are several status, data, and control registers in W83977ATF/ATG. These registers are defined  
below:  
ADDRESS  
OFFSET  
REGISTER  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
5.2.1 Status Register A (SA Register) (Read base address + 0)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP  
DRV2  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRV2 (Bit 6):  
0
1
A second drive has been installed  
A second drive has not been installed  
STEP (Bit 5):  
This bit indicates the complement of STEP output.  
TRAK0 (Bit 4):  
This bit indicates the value of TRAK0 input.  
Publication Release Date: May 2006  
Revision 0.6  
- 29 -  
W83977ATF/W83977ATG  
HEAD (Bit 3):  
This bit indicates the complement of HEAD output.  
0
1
side 0  
side 1  
INDEX (Bit 2):  
This bit indicates the value of INDEX output.  
WP  
0
(Bit 1):  
disk is write-protected  
disk is not write-protected  
1
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
outward direction  
inward direction  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DIR  
WP  
INDEX  
HEAD  
TRAK0  
STEP F/F  
DRQ  
INIT PENDING  
INIT PENDING (Bit 7):  
This bit indicates the value of the floppy disk interrupt output.  
DRQ (Bit 6):  
This bit indicates the value of DRQ output pin.  
STEP F/F (Bit 5):  
This bit indicates the complement of latched STEP output.  
TRAK0 (Bit 4):  
This bit indicates the complement of TRAK0 input.  
- 30 -  
W83977ATF/W83977ATG  
HEAD (Bit 3):  
This bit indicates the value of HEAD output.  
0
1
side 1  
side 0  
INDEX (Bit 2):  
This bit indicates the complement of INDEX output.  
WP (Bit 1):  
0
1
disk is not write-protected  
disk is write-protected  
DIR (Bit 0)  
This bit indicates the direction of head movement.  
0
1
inward direction  
outward direction  
5.2.2 Status Register B (SB Register) (Read base address + 1)  
This register is used to monitor several disk interface pins in PS/2 and Model 30 modes. In PS/2  
mode, the bit definitions for this register are as follows:  
2
1
7
1
6
5
4
3
0
1
MOT EN A  
MOT EN B  
WE  
RDATA Toggle  
WDATA Toggle  
Drive SEL0  
Drive SEL0 (Bit 5):  
This bit indicates the status of DO REGISTER bit 0 (drive select bit 0).  
WDATA Toggle (Bit 4):  
This bit changes state at every rising edge of the WD output pin.  
RDATA Toggle (Bit 3):  
This bit changes state at every rising edge of the RDATA output pin.  
WE (Bit 2):  
This bit indicates the complement of the WE output pin.  
Publication Release Date: May 2006  
Revision 0.6  
- 31 -  
W83977ATF/W83977ATG  
MOT EN B (Bit 1)  
This bit indicates the complement of the MOB output pin.  
MOT EN A (Bit 0)  
This bit indicates the complement of the MOA output pin.  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
2
1
7
6
5
4
3
0
DSC  
DSD  
WE F/F  
RDATA F/F  
WD F/F  
DSA  
DSB  
DRV2  
DRV2 (Bit 7):  
0
1
A second drive has been installed  
A second drive has not been installed  
DSB (Bit 6):  
This bit indicates the status of DSB output pin.  
DSA (Bit 5):  
This bit indicates the status of DSA output pin.  
WD F/F (Bit 4):  
This bit indicates the complement of the latched WD output pin at every rising edge of the WD output  
pin.  
RDATA F/F(Bit 3):  
This bit indicates the complement of the latched RDATA output pin.  
WE F/F (Bit 2):  
This bit indicates the complement of latched WE output pin.  
DSD (Bit 1):  
0
1
Drive D has been selected  
Drive D has not been selected  
DSC (Bit 0):  
0
1
Drive C has been selected  
Drive C has not been selected  
- 32 -  
W83977ATF/W83977ATG  
5.2.3 Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register controlling drive motors, drive selection, DRQ/IRQ  
enable, and FDC resetting. All the bits in this register are cleared by the MR pin. The bit definitions are  
as follows:  
7
6
3
1-0  
5
4
2
Drive Select: 00 select drive A  
01 select drive B  
10 select drive C  
11 select drive D  
Floppy Disk Controller Reset  
Active low resets FDC  
DMA and INT Enable  
Active high enable DRQ/IRQ  
Motor Enable A. Motor A on when active high  
Motor Enable B. Motor B on when active high  
Motor Enable C. Motor C on when active high  
Motor Enable D. Motor D on when active high  
5.2.4 Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information of the  
floppy disk drive. In normal floppy mode, this register includes only bit 0 and 1. The bit definitions are  
as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
X
Tape sel 0  
Tape sel 1  
If three mode FDD function is enabled (EN3MODE = 1 in CR9), the bit definitions are as follows:  
2
1
7
6
5
4
3
0
Tape Sel 0  
Tape Sel 1  
Floppy boot drive 0  
Floppy boot drive 1  
Drive type ID0  
Drive type ID1  
Media ID0  
Media ID1  
Publication Release Date: May 2006  
Revision 0.6  
- 33 -  
W83977ATF/W83977ATG  
Media ID1 Media ID0 (Bit 7, 6):  
These two bits are read only. These two bits reflect the value of CR8 bit 3, 2.  
Drive type ID1 Drive type ID0 (Bit 5, 4):  
These two bits reflect two of the bits of CR7. Which two bits are reflected depends on the last drive  
selected in the DO REGISTER.  
Floppy Boot drive 1, 0 (Bit 3, 2):  
These two bits reflect the value of CR8 bit 1, 0.  
Tape Sel 1, Tape Sel 0 (Bit 1, 0):  
These two bits assign a logical drive number to the tape drive. Drive 0 is not available as a tape drive  
and is reserved as the floppy disk boot drive.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
5.2.5 Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
6
0
7
5
4
3
2
1
FDD 0 Busy, (D0B = 1), FDD number 0 is in the SEEK mode.  
FDD 1 Busy, (D1B = 1), FDD number 1 is in the SEEK mode.  
FDD 2 Busy, (D2B = 1), FDD number 2 is in the SEEK mode.  
FDD 3 Busy, (D3B = 1), FDD number 3 is in the SEEK mode.  
FDC Busy, (CB). A read or write command is in the process when CB = HIGH.  
Non-DMA mode, the FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
Transition to LOW state indicates execution phase has ended.  
DATA INPUT/OUTPUT, (DIO). If DIO= HIGH then transfer is from Data Register to the processor.  
If DIO = LOW then transfer is from processor to Data Register.  
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or receive data to or from the processor.  
5.2.6 Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. The data rate of  
the FDC is programmed by the CC REGISTER for PC-AT and PS/2 Model 30 and PS/2 mode, and  
not by the DR REGISTER. The real data rate is determined by the most recent write to either of the  
DR REGISTER or CC REGISTER.  
- 34 -  
W83977ATF/W83977ATG  
1
7
6
5
0
4
3
2
0
DRATE0  
DRATE1  
PRECOMP0  
PRECOMP1  
PRECOMP2  
POWER DOWN  
S/W RESET  
S/W RESET (Bit 7):  
This bit is the software reset bit.  
POWER-DOWN (Bit 6):  
0
1
FDC in normal mode  
FDC in power-down mode  
PRECOMP2 PRECOMP1 PRECOMP0 (Bit 4, 3, 2):  
These three bits select the value of write precompensation. The following tables show the  
precompensation values for the combination of these bits.  
PRECOMP  
PRECOMPENSATION DELAY  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
250K - 1 Mbps  
2 Mbps Tape drive  
Default Delays  
20.8 nS  
Default Delays  
41.67 nS  
83.34 nS  
41.17 nS  
125.00 nS  
62.5nS  
166.67 nS  
83.3 nS  
208.33 nS  
104.2 nS  
250.00 nS  
125.00 nS  
0.00 nS (disabled)  
0.00 nS (disabled)  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 nS  
125 nS  
125 nS  
41.67nS  
20.8 nS  
2 MB/S  
Publication Release Date: May 2006  
Revision 0.6  
- 35 -  
W83977ATF/W83977ATG  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC and reduced write current control.  
00 500 KB/S (MFM), 250 KB/S (FM), RWC = 1  
01 300 KB/S (MFM), 150 KB/S (FM), RWC = 0  
10 250 KB/S (MFM), 125 KB/S (FM), RWC = 0  
11 1 MB/S (MFM), Illegal (FM), RWC = 1  
The 2 MB/S data rate for Tape drive is only supported by setting 01 to DRATE1 and DRATE0 bits, as  
well as setting 10 to DRT1 and DRT0 bits, which are two of the Configure Register CRF4 or CRF5 bits  
in logic device 0. Please refer to the function description of CRF4 or CRF5 and data rate table for  
individual data rates setting.  
5.2.7 FIFO Register (R/W base address + 5)  
The Data Register consists of four status registers in a stack, with only one register presented to the  
data bus at a time. This register stores data, commands, and parameters and provides diskette-drive  
status information. Data bytes are passed through the data register to program or obtain results after  
a command. In W83977ATF/ATG, this register defaults to FIFO disabled mode after reset. The FIFO  
can change its value and enable its operation through the CONFIGURE command.  
Status Register 0 (ST0)  
7-6  
5
3
2
1-0  
4
US1, US0 Drive Select:  
00 Drive A selected  
01 Drive B selected  
10 Drive C selected  
11 Drive D selected  
HD Head address:  
1 Head selected  
0 Head selected  
NR Not Ready:  
1 Drive is not ready  
0 Drive is ready  
EC Equipment Check:  
1 When a fault signal is received from the FDD or the track  
0 signal fails to occur after 77 step pulses  
0 No error  
SE Seek end:  
1 seek end  
0 seek error  
IC Interrupt Code:  
00 Normal termination of command  
01 Abnormal termination of command  
10 Invalid command issue  
11 Abnormal termination because the ready signal from FDD changed state during command executio  
- 36 -  
W83977ATF/W83977ATG  
Status Register 1 (ST1)  
7
6
5
4
3
2
1
0
Missing Address Mark. 1 When the FDC cannot detect the data address mark  
or the data address mark has been deleted.  
NW (Not Writable). 1 If a write Protect signal is detected from the diskette drive during  
execution of write data.  
ND (No DATA). 1 If specified sector cannot be found during execution of a read, write or verifly data.  
Not used. This bit is always 0.  
OR (Over Rum). 1 If the FDC is not serviced by the host system within a certain time interval during data transfer.  
DE (data Error).1 When the FDC detects a CRC error in either the ID field or the data field.  
Not used. This bit is always 0.  
EN (End of track). 1 When the FDC tries to access a sector beyond the final sector of a cylinder.  
Status Register 2 (ST2)  
7
1
0
4
3
2
6
5
MD (Missing Address Mark in Data Field).  
1 If the FDC cannot find a data address mark  
(or the address mark has been deleted)  
when reading data from the media  
0 No error  
BC (Bad Cylinder)  
1 Bad Cylinder  
0 No error  
SN (Scan Not satisfied)  
1 During execution of the Scan command  
0 No error  
SH (Scan Equal Hit)  
1 During execution of the Scan command, if the equal condition is satisfied  
0 No error  
WC (Wrong Cylinder)  
1 Indicates wrong Cylinder  
DD (Data error in the Data field)  
1 If the FDC detects a CRC error in the data field  
0 No error  
CM (Control Mark)  
1 During execution of the read data or scan command  
0 No error  
Not used. This bit is always 0  
Status Register 3 (ST3)  
6
4
2
1
0
7
5
3
US0 Unit Select 0  
US1 Unit Select 1  
HD Head Address  
TS Two-Side  
TO Track 0  
RY Ready  
WP Write Protected  
FT Fault  
Publication Release Date: May 2006  
Revision 0.6  
- 37 -  
W83977ATF/W83977ATG  
5.2.8 Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit read-only register used for diagnostic purposes. In a PC/XT or AT  
only Bit 7 is checked by the BIOS. When the register is read, Bit 7 shows the complement of  
DSKCHG , while other bits of the data bus remain in tri-state. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
x x x  
x x x  
x
Reserved for the hard disk controller  
x
During a read of this register, these bits are in tri-stat  
DSKCHG  
In the PS/2 mode, the bit definitions are as follows:  
7
6
1
5
4
3
1
2
0
1
1
1
HIGH DENS  
DRATE0  
DRATE1  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the complement of the DSKCHG input.  
Bit 6-3: These bits are always a logic 1 during a read.  
DRATE1 DRATE0 (Bit 2, 1):  
These two bits select the data rate of the FDC. Refer to the DR register bits 1 and 0 for the settings  
corresponding to the individual data rates.  
HIGH DENS (Bit 0):  
0
1
500 KB/S or 1 MB/S data rate (high density FDD)  
250 KB/S or 300 KB/S data rate  
- 38 -  
W83977ATF/W83977ATG  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
7
6
0
5
0
4
3
2
0
1
0
DRATE0  
DRATE1  
NOPREC  
DMAEN  
DSKCHG  
DSKCHG (Bit 7):  
This bit indicates the status of DSKCHG input.  
Bit 6-4: These bits are always a logic 1 during a read.  
DMAEN (Bit 3):  
This bit indicates the value of DO REGISTER bit 3.  
NOPREC (Bit 2):  
This bit indicates the value of CC REGISTER NOPREC bit.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
5.2.9 Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In the PC/AT and PS/2 mode, the bit definitions are as  
follows:  
4
2
3
1
6
5
0
7
x
x
x
x
x
x
DRATE0  
DRATE1  
X: Reserved  
Bit 7-2: Reserved. These bits should be set to 0.  
Publication Release Date: May 2006  
Revision 0.6  
- 39 -  
W83977ATF/W83977ATG  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
2
1
7
6
5
4
3
0
X
X
X
X
X
DRATE0  
DRATE1  
NOPREC  
X: Reserved  
Bit 7-3: Reserved. These bits should be set to 0.  
NOPREC (Bit 2):  
This bit indicates no precompensation. It has no function and can be set by software.  
DRATE1 DRATE0 (Bit 1, 0):  
These two bits select the data rate of the FDC.  
- 40 -  
W83977ATF/W83977ATG  
6. UART PORT  
6.1 Universal Asynchronous Receiver/Transmitter (UART A, UART B)  
The UARTs are used to convert parallel data into serial format on the transmit side and, convert serial  
data to parallel format on the receiver side. The serial format, in order of transmission and reception,  
is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half (five-  
bit format only) or two stop bits. The UARTs are capable of handling divisors of 1 to 65535 and  
producing a 16x clock for driving the internal transmitter logic. Provisions are also included to use this  
16x clock to drive the receiver logic. The UARTs also support the MIDI data rate. Furthermore, the  
UARTs also include complete modem control capability and a processor interrupt system that may be  
software trailed to the computing time required to handle the communication link. The UARTs have a  
FIFO mode to reduce the number of interrupts presented to the CPU. In each UART, there are 16-  
byte FIFOs for both receive and transmit mode.  
6.2 Register Address  
6.2.1 UART Control Register (UCR) (Read/Write)  
The UART Control Register controls and defines the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
5
4
2
7
6
3
0
1
Data length select bit 0 (DLS0)  
Data length select bit 1(DLS1)  
Multiple stop bits enable (MSBE)  
Parity bit enable (PBE)  
Even parity enable (EPE)  
Parity bit fixed enable (PBFE)  
Set silence enable (SSE)  
Baudrate divisor latch access bit (BDLAB)  
Bit 7: BDLAB. When this bit is set to a logical 1, designers can access the divisor (in 16-bit binary  
format) from the divisor latches of the baudrate generator during a read or write operation.  
When this bit is reset, the Receiver Buffer Register, the Transmitter Buffer Register, or the  
Interrupt Control Register can be accessed.  
Bit 6: SSE. A logical 1 forces the Serial Output (SOUT) to a silent state (a logical 0). Only IRTX is  
affected by this bit; the transmitter is not affected.  
Bit 5: PBFE. When PBE and PBFE of UCR are both set to a logical 1,  
(1) if EPE is logical 1, the parity bit is fixed as logical 0 to transmit and check.  
(2) if EPE is logical 0, the parity bit is fixed as logical 1 to transmit and check.  
Publication Release Date: May 2006  
- 41 -  
Revision 0.6  
W83977ATF/W83977ATG  
TABLE 6-1 UART Register Bit Map  
BIT NUMBER  
REGISTER  
0
1
2
3
4
5
6
7
ADDRESS BASE  
+ 0  
Receiver  
Buffer  
Register  
RBR RX Data RX Data RX Data RX Data RX Data RX Data RX Data RX Data  
BDLAB = 0  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
(Read Only)  
+ 0  
Transmitter TBR TX Data TX Data  
Buffer  
Register  
TX Data  
Bit 2  
TX Data  
Bit 3  
TX Data TX Data TX Data  
TX Data  
Bit 7  
BDLAB = 0  
Bit 0  
Bit 1  
Bit 4  
Bit 5  
Bit 6  
(Write Only)  
+ 1  
Interrupt  
Control  
Register  
ICR RBR Data  
Ready  
TBR  
Empty  
Interrupt  
Enable  
USR  
HSR  
0
0
0
0
Interrupt Interrupt  
Enable  
BDLAB = 0  
Interrupt  
Enable  
(ERDRI) (ETBREI)  
Enable  
(EUSRI)  
(EHSRI)  
+ 2  
+ 2  
Interrupt  
Status  
Register  
ISR  
"0" if  
Interrupt  
Pending  
Interrupt  
Status  
Interrupt  
Status  
Interrupt  
Status  
0
0
FIFOs  
Enabled  
**  
FIFOs  
Enabled  
**  
Bit (0)  
Bit (1)  
Bit (2)**  
(Read Only)  
UART FIFO UFR  
Control  
Register  
FIFO  
Enable  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Reserved Reversed  
RX  
Interrupt  
Active  
Level  
RX  
Interrupt  
Active  
Level  
(Write Only)  
(LSB)  
(MSB)  
+ 3  
UART  
Control  
Register  
UCR  
Data  
Length  
Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Enable  
Even  
Parity  
Enable  
Parity  
Bit Fixed  
Enable  
Set  
Silence  
Enable  
Baudrate  
Divisor  
Latch  
Access Bit  
(BDLAB)  
(MSBE)  
(PBE)  
(EPE)  
PBFE)  
(SSE)  
(DLS0)  
(DLS1)  
+ 4  
+ 5  
+ 6  
+ 7  
Handshake HCR  
Control  
Register  
Data  
Terminal  
Ready  
(DTR)  
Request Loopback  
IRQ  
Internal  
0
0
0
to  
RI  
Enable Loopback  
Enable  
Send  
(RTS)  
Input  
UART Status USR RBR Data Overrun Parity Bit No Stop  
Register  
Silent  
Byte  
Detected  
(SBD)  
TBR  
Empty  
TSR  
Empty  
RX FIFO  
Error  
Indication  
(RFEI) **  
Ready  
Error  
Error  
Bit  
Error  
(NSER)  
(RDR)  
(OER)  
(PBER)  
(TBRE)  
(TSRE)  
Handshake HSR  
Status  
Register  
CTS  
DSR  
RI Falling  
Edge  
DCD  
Toggling  
Clear  
to Send  
Data Set  
Ready  
Ring  
Indicator  
Data  
Carrier  
Detect  
(DCD)  
Toggling Toggling  
(TCTS)  
(TDSR)  
(FERI)  
(TDCD)  
(CTS)  
(DSR)  
(RI)  
User Defined UDR  
Register  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
+ 0  
Baudrate  
Divisor Latch  
Low  
BLL  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
BDLAB = 1  
+ 1  
Baudrate  
Divisor Latch  
High  
BHL  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
BDLAB = 1  
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
- 42 -  
W83977ATF/W83977ATG  
Bit 4: EPE. This bit describes the number of logic 1's in the data word bits and parity bit only when bit  
3 is programmed. When this bit is set, an even number of logic 1's are sent or checked. When  
the bit is reset, an odd number of logic 1's are sent or checked.  
Bit 3: PBE. When this bit is set, the position between the last data bit and the stop bit of the SOUT will  
be stuffed with the parity bit at the transmitter. For the receiver, the parity bit in the same  
position as the transmitter will be detected.  
Bit 2: MSBE. This bit defines the number of stop bits in each serial character that is transmitted or  
received.  
(1) If MSBE is set to a logical 0, one stop bit is sent and checked.  
(2) If MSBE is set to a logical 1, and data length is 5 bits, one and a half stop bits are sent and  
checked.  
(3) If MSBE is set to a logical 1, and data length is 6, 7, or 8 bits, two stop bits are sent and  
checked.  
Bits 0 and 1: DLS0, DLS1. These two bits define the number of data bits that are sent or checked in  
each serial character.  
TABLE 6-2 WORD LENGTH DEFINITION  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
6.2.2 UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of the data transfer during communication.  
2
7
6
4
3
1
0
5
RBR Data ready (RDR)  
Overrun error (OER)  
Parity bit error (PBER)  
No stop bit error (NSER)  
Silent byte detected (SBD)  
Transmitter Buffer Register empty (TBRE)  
Transmitter Shift Register empty (TSRE)  
RX FIFO Error Indication (RFEI)  
Bit 7: RFEI. In 16450 mode, this bit is always set to a logic 0. In 16550 mode, this bit is set to a logic 1  
when there is at least one parity bit error, no stop bit error or silent byte detected in the FIFO. In  
16550 mode, this bit is cleared by reading from the USR if there are no remaining errors left in  
the FIFO.  
Publication Release Date: May 2006  
- 43 -  
Revision 0.6  
W83977ATF/W83977ATG  
Bit 6: TSRE. In 16450 mode, when TBR and TSR are both empty, this bit will be set to a logical 1. In  
16550 mode, if the transmit FIFO and TSR are both empty, it will be set to a logical 1. Other  
than in these two cases, this bit will be reset to a logical 0.  
Bit 5: TBRE. In 16450 mode, when a data character is transferred from TBR to TSR, this bit will be set  
to a logical 1. If ETREI of ICR is a logical 1, an interrupt will be generated to notify the CPU to  
write the next data. In 16550 mode, this bit will be set to a logical 1 when the transmit FIFO is  
empty. It will be reset to a logical 0 when the CPU writes data into TBR or FIFO.  
Bit 4: SBD. This bit is set to a logical 1 to indicate that received data are kept in silent state for a full  
word time, including start bit, data bits, parity bit, and stop bits. In 16550 mode, it indicates the  
same condition for the data on top of the FIFO. When the CPU reads USR, it will clear this bit to  
a logical 0.  
Bit 3: NSER. This bit is set to a logical 1 to indicate that the received data have no stop bit. In 16550  
mode, it indicates the same condition for the data on top of the FIFO. When the CPU reads  
USR, it will clear this bit to a logical 0.  
Bit 2: PBER. This bit is set to a logical 1 to indicate that the parity bit of received data is wrong. In  
16550 mode, it indicates the same condition for the data on top of the FIFO. When the CPU  
reads USR, it will clear this bit to a logical 0.  
Bit 1: OER. This bit is set to a logical 1 to indicate received data have been overwritten by the next  
received data before they were read by the CPU. In 16550 mode, it indicates the same  
condition instead of FIFO full. When the CPU reads USR, it will clear this bit to a logical 0.  
Bit 0: RDR. This bit is set to a logical 1 to indicate received data are ready to be read by the CPU in  
the RBR or FIFO. After no data are left in the RBR or FIFO, the bit will be reset to a logical 0.  
6.2.3 Handshake Control Register (HCR) (Read/Write)  
This register controls the pins of the UART used for handshaking peripherals such as modem, and  
controls the diagnostic mode of the UART.  
2
7
0
5
0
4
3
1
0
6
0
Data terminal ready (DTR)  
Request to send (RTS)  
Loopback RI input  
IRQ enable  
Internal loopback enable  
- 44 -  
W83977ATF/W83977ATG  
Bit 4: When this bit is set to a logical 1, the UART enters diagnostic mode by an internal loopback, as  
follows:  
(1) SOUT is forced to logical 1, and SIN is isolated from the communication link instead of the  
TSR.  
(2) Modem output pins are set to their inactive state.  
(3) Modem input pins are isolated from the communication link and connect internally as DTR  
(bit 0 of HCR) DSR, RTS ( bit 1 of HCR) CTS, Loopback RI input ( bit 2 of HCR) →  
RI and IRQ enable ( bit 3 of HCR) DCD.  
Aside from the above connections, the UART operates normally. This method allows the  
CPU to test the UART in a convenient way.  
Bit 3: The UART interrupt output is enabled by setting this bit to a logic 1. In the diagnostic mode this  
bit is internally connected to the modem control input DCD .  
Bit 2: This bit is used only in the diagnostic mode. In the diagnostic mode this bit is internally  
connected to the modem control input RI .  
Bit 1: This bit controls the RTS output. The value of this bit is inverted and output to RTS .  
Bit 0: This bit controls the DTR output. The value of this bit is inverted and output to DTR.  
6.2.4 Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins for handshake peripherals such as a modem  
and records changes on these pins.  
7
6
5
4
3
2
1
0
toggling (TCTS)  
toggling (TDSR)  
CTS  
DSR  
RI falling edge (FERI)  
toggling (TDCD)  
DCD  
Clear to send (CTS)  
Data set ready (DSR)  
Ring indicator (RI)  
Data carrier detect (DCD)  
Bit 7: This bit is the opposite of the DCD input. This bit is equivalent to bit 3 of HCR in loopback  
mode.  
Bit 6: This bit is the opposite of the RI input. This bit is equivalent to bit 2 of HCR in loopback mode.  
Bit 5: This bit is the opposite of the DSR input. This bit is equivalent to bit 0 of HCR in loopback  
mode.  
Bit 4: This bit is the opposite of the CTS input. This bit is equivalent to bit 1 of HCR in loopback  
mode.  
Bit 3: TDCD. This bit indicates that the DCD pin has changed state after HSR was read by the CPU.  
Publication Release Date: May 2006  
- 45 -  
Revision 0.6  
W83977ATF/W83977ATG  
Bit 2: FERI. This bit indicates that the RI pin has changed from low to high state after HSR was read  
by the CPU.  
Bit 1: TDSR. This bit indicates that the DSR pin has changed state after HSR was read by the CPU.  
Bit 0: TCTS. This bit indicates that the CTS pin has changed state after HSR was read.  
6.2.5 UART FIFO Control Register (UFR) (Write only)  
This register is used to control the FIFO functions of the UART.  
2
1
7
6
5
4
3
0
FIFO enable  
Receiver FIFO reset  
Transmitter FIFO reset  
DMA mode select  
Reserved  
Reserved  
RX interrupt active level (LSB)  
RX interrupt active level (MSB)  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes, once there are more than 4 data characters in the  
receiver FIFO, the interrupt will be activated to notify the CPU to read the data from the FIFO.  
TABLE 6-3 FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 1: Setting this bit to a logical 1 resets the RX FIFO counter logic to initial state. This bit will clear to  
a logical 0 by itself after being set to a logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the UART. This bit should be set to a logical 1 before  
other bits of UFR are programmed.  
- 46 -  
W83977ATF/W83977ATG  
6.2.6 Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status, which is encoded by different interrupt sources into 3  
bits.  
7
6
5
0
4
3
2
1
0
0
0 if interrupt pending  
Interrupt Status bit 0  
Interrupt Status bit 1  
Interrupt Status bit 2  
FIFOs enabled  
FIFOs enabled  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logic 0.  
Bit 3: In 16450 mode, this bit is 0. In 16550 mode, both bit 3 and 2 are set to a logical 1 when a time-  
out interrupt is pending.  
Bit 2, 1: These two bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to a logical 0.  
TABLE 6-4 INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Interrupt  
priority  
Interrupt Type  
Interrupt Source  
Clear Interrupt  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
UART Receive 1. OER = 1 2. PBER =1  
Read USR  
Status  
3. NSER = 1 4. SBD = 1  
0
1
0
0
Second  
RBR Data  
Ready  
1. RBR data ready  
1. Read RBR  
2. FIFO interrupt active level 2. Read RBR until  
reached  
FIFO data under  
active level  
1
0
1
0
0
1
0
0
Second  
Third  
FIFO Data  
Timeout  
Data present in RX FIFO for Read RBR  
4 characters period of time  
since last access of RX  
FIFO.  
TBR Empty  
TBR empty  
1. Write data into  
TBR  
2. Read ISR (if  
priority is third)  
0
0
0
0
Fourth  
Handshake  
status  
1. TCTS = 1 2. TDSR = 1  
3. FERI = 1 4. TDCD = 1  
Read HSR  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
Publication Release Date: May 2006  
Revision 0.6  
- 47 -  
W83977ATF/W83977ATG  
6.2.7 Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register allows the five types of controller interrupts to activate the interrupt output signal  
separately. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt  
Control Register (ICR). A selected interrupt can be enabled by setting the appropriate bits of this  
register to a logical 1.  
5
6
0
3
0
4
0
2
7
0
1
0
RBR data ready interrupt enable (ERDRI)  
TBR empty interrupt enable (ETBREI)  
UART receive status interrupt enable (EUSRI)  
Handshake status interrupt enable (EHSRI)  
Bit 7-4: These four bits are always logic 0.  
Bit 3: EHSRI. Setting this bit to a logical 1 enables the handshake status register interrupt.  
Bit 2: EUSRI. Setting this bit to a logical 1 enables the UART status register interrupt.  
Bit 1: ETBREI. Setting this bit to a logical 1 enables the TBR empty interrupt.  
Bit 0: ERDRI. Setting this bit to a logical 1 enables the RBR data ready interrupt.  
6.2.8 Programmable Baud Generator (BLL/BHL) (Read/Write)  
Two 8-bit registers, BLL and BHL, compose a programmable baud generator that uses 24 MHz to  
16  
generate a 1.8461 MHz frequency and divides it by a divisor from 1 to 2 -1. The output frequency of  
the baud generator is the baud rate multiplied by 16, and this is the base frequency for the transmitter  
and receiver. The table in the next page illustrates the use of the baud generator with a frequency of  
1.8461 MHz. In high-speed UART mode (refer to CR0C bit7 and CR0C bit6), the programmable baud  
generator directly uses 24 MHz and the same divisor as the normal speed divisor. In high-speed  
mode, the data transmission rate can be as high as 1.5M bps.  
- 48 -  
W83977ATF/W83977ATG  
6.2.9 User-defined Register (UDR) (Read/Write)  
This is a temporary register that can be accessed and defined by the user.  
TABLE 6-5 BAUD RATE TABLE  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
Pre-Div: 13  
1.8461M Hz  
50  
Pre-Div:1.625  
14.769M Hz  
400  
Pre-Div: 1.0  
24M Hz  
650  
Decimal divisor used  
to generate 16X clock  
Error Percentage between  
desired and actual  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
75  
600  
975  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
1800  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
2000  
0.53%  
**  
58  
2400  
48  
3600  
**  
32  
4800  
**  
24  
7200  
**  
16  
9600  
**  
12  
19200  
38400  
57600  
115200  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
Note. Pre-Divisor is determined by CRF0 of UART A and B.  
Publication Release Date: May 2006  
Revision 0.6  
- 49 -  
W83977ATF/W83977ATG  
7. INFRARED (IR) PORT  
The Infrared (IR) function provides a point-to-point (or multi-point to multi-point) wireless  
communication which can operate under various transmission protocols including IrDA 1.0 SIR, IrDA  
1.1 MIR (1.152 Mbps), IrDA 1.1 FIR (4 Mbps), SHARP ASK-IR, and remote control (NEC, RC-5,  
advanced RC-5, and RECS-80 protocol).  
7.1 IR Register Description  
When bank select enable bit (ENBNKSEL, the bit 0 in CRF0 of logic device 6) is set, legacy IR will be  
switched to Advanced IR, and eight Register Sets can then be accessible. These Register Sets  
control enhanced IR, SIR, MIR, or FIR. Also, a superior traditional SIR function can be used with  
enhanced features such as 32-byte transmitter/receiver FIFOs, non-encoding IRQ identify status  
register, and automatic flow control. The MIR/FIR and remote control registers are also defined in  
these Register Sets. Structure of these Register Sets is as shown below.  
Reg 7  
Reg 6  
Reg 5  
Reg 4  
BDL/SSR  
All in one Reg  
to Select SSR  
Reg 2  
Reg 1  
Reg 0  
Set 0  
Set 1  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
*Set 0, 1 are legacy/Advanced UART Registers  
*Set 2~7 are Advanced UART Registers  
Each of these register sets has a common register, namely Sets Select Register (SSR), in order to  
switch to another register set. The summary description of these Sets is given below.  
- 50 -  
W83977ATF/W83977ATG  
SET  
0
SETS DESCRIPTION  
Legacy/Advanced IR Control and Status Registers.  
1
Legacy Baud Rate Divisor Register.  
2
Advanced IR Control and Status Registers.  
3
Version ID and Mapped Control Registers.  
4
Transmitter/Receiver/Timer Counter Registers and IR Control Registers.  
Flow Control and IR Control and Frame Status FIFO Registers.  
IR Physical Layer Control Registers  
5
6
7
Remote Control and IR front-end Module Selection Registers.  
7.2 Set0-Legacy/Advanced IR Control and Status Registers  
ADDRESS  
OFFSET  
REGISTER NAME  
REGISTER DESCRIPTION  
0
1
2
3
4
5
6
7
Receiver/Transmitter Buffer Registers  
Interrupt Control Register  
RBR/TBR  
ICR  
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
ISR/UFR  
UCR/SSR  
HCR  
USR  
Handshake Status Register  
User Defined Register  
HSR  
UDR/ESCR  
7.2.1 Set0.Reg0 - Receiver/Transmitter Buffer Registers (RBR/TBR) (Read/Write)  
Receiver Buffer Register is read only and Transmitter Buffer Register is write only. When operating in  
the PIO mode, the port is used to Receive/Transmit 8-bit data.  
When function as a legacy IR, this port only supports PIO mode. If set in the advanced IR mode and  
configured as MIR/FIR/Remote IR, this port can support DMA transmission. Two DMA channels can  
be used simultaneously, one for TX DMA and the other for RX DMA. Therefore, single DMA channel  
is also supported when the bit of D_CHSW (DMA Channel Swap, in Set2.Reg2.Bit3) is set and the  
TX/RX DMA channel is swapped. Note that two DMA channels can be defined in configure register  
CR2A, which selects DMA channel or disables DMA channel. If only RX DMA channel is enabled  
while TX DMA channel is disabled, then the single DMA channel will be selected.  
Publication Release Date: May 2006  
- 51 -  
Revision 0.6  
W83977ATF/W83977ATG  
7.2.2 Set0.Reg1 - Interrupt Control Register (ICR)  
MODE  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
B1  
B0  
Legacy IR  
Advanced IR  
EUSRI  
ETBREI  
ERDRI  
ERBRI  
ETMRI  
EFSFI  
ETXTHI  
EDMAI  
0
EUSRI/ TXURI ETBREI  
The advanced IR functions including Advanced SIR/ASK-IR, MIR, FIR, or Remote IR are described  
below.  
Bit 7:  
Bit 6:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced IR Mode:  
ETMRI - Enable Timer Interrupt  
A write to 1 will enable timer interrupt.  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR mode:  
EFSFI - Enable Frame Status FIFO Interrupt  
A write to 1 will enable frame status FIFO interrupt.  
Advanced SIR/ASK-IR, Remote IR:  
Not used.  
Bit 5:  
Bit 4:  
Bit 3:  
Legacy IR Mode:  
Not used. A read will return 0.  
Advanced SIR/ASK-IR, MIR, FIR, Remote IR:  
ETXTHI - Enable Transmitter Threshold Interrupt  
A write to 1 will enable transmitter threshold interrupt.  
Legacy IR Mode:  
Not used. A read will return 0.  
MIR, FIR, Remote IR:  
EDMAI - Enable DMA Interrupt.  
A write to 1 will enable DMA interrupt.  
Reserved. A read will return 0.  
- 52 -  
W83977ATF/W83977ATG  
Bit 2:  
Legacy IR Mode:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
Advanced SIR/ASK-IR:  
EUSRI - Enable USR (IR Status Register) Interrupt  
A write to 1 will enable IR status register interrupt.  
MIR, FIR, Remote Controller:  
EHSRI/ETXURI - Enable USR Interrupt or Enable Transmitter Underrun Interrupt  
A write to 1 will enable USR interrupt or enable transmitter underrun interrupt.  
ETBREI - Enable TBR (Transmitter Buffer Register) Empty Interrupt  
A write to 1 will enable the transmitter buffer register empty interrupt.  
ERBRI - Enable RBR (Receiver Buffer Register) Interrupt  
A write to 1 will enable receiver buffer register interrupt.  
Bit 1:  
Bit 0:  
7.2.3 Set0.Reg2 - Interrupt Status Register/IR FIFO Control Register (ISR/UFR)  
Interrupt Status Register (Read Only)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Legacy IR  
Advanced IR  
FIFO Enable  
TMR_I  
FIFO Enable  
FSF_I  
0
0
IID2  
IID1  
IID0  
IP  
TXTH_I DMA_I HS_I  
USR_I/  
TXEMP_I RXTH_I  
FEND_I  
Reset Value  
0
0
1
0
0
0
1
0
Legacy IR:  
This register reflects the Legacy IR interrupt status, which is encoded by different interrupt sources  
into 3 bits.  
Bit 7, 6: These two bits are set to a logical 1 when UFR bit 0 = 1.  
Bit 5, 4: These two bits are always logical 0.  
Bit 3: When not in FIFO mode, this bit is always 0. In FIFO mode, both bit 3 and 2 are set to logical 1  
when a time-out interrupt is pending.  
Bit 2, 1: These bits identify the priority level of the pending interrupt, as shown in the table below.  
Bit 0: This bit is a logical 1 if there is no interrupt pending. If one of the interrupt sources has occurred,  
this bit will be set to logical 0.  
Publication Release Date: May 2006  
- 53 -  
Revision 0.6  
W83977ATF/W83977ATG  
TABLE: INTERRUPT CONTROL FUNCTION  
ISR  
INTERRUPT SET AND FUNCTION  
Bit  
3
Bit  
2
Bit  
1
Bit  
0
Interrupt  
priority  
Interrupt  
Type  
Interrupt Source  
Clear Interrupt  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
IR Receive 1. OER = 1 2. PBER =1  
Read USR  
Status  
3. NSER = 1 4. SBD = 1  
0
1
1
1
0
0
0
0
Second  
Second  
RBR Data  
Ready  
1. RBR data ready  
1. Read RBR  
2. FIFO interrupt active level  
reached  
2. Read RBR until FIFO  
data under active level  
FIFO Data  
Time-out  
Data present in RX FIFO for  
4 characters period of time  
since last access of RX  
FIFO.  
Read RBR  
0
0
1
0
Third  
TBR  
TBR empty  
1. Write data into TBR  
Empty  
2. Read ISR (if priority  
is third)  
** Bit 3 of ISR is enabled when bit 0 of UFR is a logical 1.  
Advanced IR:  
Bit 7:  
TMR_I - Timer Interrupt.  
Set to 1 when timer counts to logical 0. This bit is valid when: (1) the timer registers are  
defined in Set4.Reg0 and Set4.Reg1; (2) EN_TMR(Enable Timer, in Set4.Reg2.Bit0) is  
set to 1; (3) ENTMR_I (Enable Timer Interrupt, in Set0.Reg1.Bit7) is set to 1.  
Bit 6:  
MIR, FIR modes:  
FSF_I - Frame Status FIFO Interrupt.  
Set to 1 when Frame Status FIFO is equal or larger than the threshold level or Frame  
Status FIFO time-out occurs. Cleared to 0 when Frame Status FIFO is below the  
threshold level.  
Advanced SIR/ASK-IR, Remote IR modes: Not used.  
Bit 5:  
Bit 4:  
TXTH_I - Transmitter Threshold Interrupt.  
Set to 1 if the TBR (Transmitter Buffer Register) FIFO is below the threshold level.  
Cleared to 0 if the TBR (Transmitter Buffer Register) FIFO is above the threshold level.  
MIR, FIR, Remote IR Modes:  
DMA_I - DMA Interrupt.  
Set to 1 if the DMA controller 8237A sends a TC (Terminal Count) to I/O device which  
might be a Transmitter TC or a Receiver TC. Cleared to 0 when this register is read.  
Bit 3:  
HS_I - Handshake Status Interrupt.  
Set to 1 when the Handshake Status Register has a toggle. Cleared to 0 when  
Handshake Status Register (HSR) is read. Note that in all IR modes including SIR, ASK-  
IR, MIR, FIR, and Remote Control IR, this bit defaults to be inactive unless IR Handshake  
Status Enable (IRHS_EN) is set to 1.  
- 54 -  
W83977ATF/W83977ATG  
Bit 2:  
Advanced SIR/ASK-IR modes:  
USR_I - IR Status Interrupt.  
Set to 1 when overrun error, parity error, stop bit error, or silent byte error is detected and  
registered in the IR Status Register (USR). Cleared to 0 when USR is read.  
MIR, FIR modes:  
FEND_I - Frame End Interrupt.  
Set to 1 when (1) a frame has a grace end to be detected where the frame signal is  
defined in the physical layer of IrDA version 1.1; (2) abort signal or illegal signal has been  
detected during receiving valid data. Cleared to 0 when this register is read.  
Remote Controller Mode: Not used.  
Bit 1:  
Bit 0:  
TXEMP_I - Transmitter Empty.  
Set to 1 when transmitter (or, say, FIFO + Transmitter) is empty. Cleared to 0 when this  
register is read.  
RXTH_I - Receiver Threshold Interrupt.  
Set to 1 when (1) the Receiver Buffer Register (RBR) is equal or larger than the  
threshold level; or (2) RBR time-out occurs if the receiver buffer register has valid data  
and is below the threshold level. Cleared to 0 when RBR is less than threshold level  
after reading RBR.  
IR FIFO Control Register (UFR):  
MODE BIT 7 BIT 6  
Legacy IR RXFTL1 RXFTL0  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
0
TXF_RST RXF_RST EN_FIFO  
(MSB) (LSB)  
Advanced RXFTL1 RXFTL0 TXFTL1 TXFTL0  
0
0
TXF_RST RXF_RST EN_FIFO  
IR  
(MSB)  
(LSB)  
(MSB)  
(LSB)  
Reset Value  
0
0
0
0
0
0
0
Legacy IR:  
This register is used to control FIFO functions of the IR.  
Bit 6, 7: These two bits are used to set the active level for the receiver FIFO interrupt. For example, if  
the interrupt active level is set as 4 bytes and there are more than 4 data characters in the  
receiver FIFO, the interrupt will be activated to notify CPU to read the data from FIFO.  
Publication Release Date: May 2006  
- 55 -  
Revision 0.6  
W83977ATF/W83977ATG  
TABLE: FIFO TRIGGER LEVEL  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
Bit 4, 5: Reserved  
Bit 3: When this bit is programmed to logic 1, the DMA mode will change from mode 0 to mode 1 if  
UFR bit 0 = 1.  
Bit 2: Setting this bit to a logical 1 resets the TX FIFO counter logic to its initial state. This bit will be  
cleared to logical 0 by itself after being set to logical 1.  
Bit 1: Setting this bit to logical 1 resets the RX FIFO counter logic to its initial state. This bit will be  
cleared to a logical 0 by itself after being set to logical 1.  
Bit 0: This bit enables the 16550 (FIFO) mode of the IR. This bit should be set to logical 1 before  
other bits of UFR can be programmed.  
Advanced IR:  
Bit 7, 6:  
RXFTL1, 0 - Receiver FIFO Threshold Level  
Its definition is the same as Legacy IR. RXTH_I becomes 1 when the Receiver FIFO  
Threshold Level is equal to or larger than the defined value shown as follow.  
RXFTL1, 0  
(BIT 7, 6)  
00  
RX FIFO THRESHOLD LEVEL  
RX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 16-BYTE)  
(FIFO SIZE: 32-BYTE)  
1
1
4
8
4
01  
10  
11  
16  
26  
14  
Note that the FIFO Size is selectable in SET2.Reg4.  
Bit 5, 4:  
TXFTL1, 0 - Transmitter FIFO Threshold Level  
TXTH_I (Transmitter Threshold Level Interrupt) is set to 1 when the Transmitter  
Threshold Level is less than the programmed value shown below.  
- 56 -  
W83977ATF/W83977ATG  
TXFTL1, 0  
(BIT 5, 4)  
00  
TX FIFO THRESHOLD LEVEL  
TX FIFO THRESHOLD LEVEL  
(FIFO SIZE: 16-BYTE)  
(FIFO SIZE: 32-BYTE)  
1
3
1
7
01  
10  
11  
9
17  
25  
13  
Bit 3 ~0  
Same as in Legacy IR Mode  
7.2.4 Set0.Reg3 - IR Control Register/Set Select Register (UCR/SSR):  
These two registers share the same address. In all Register Sets, Set Select Register (SSR) can be  
programmed to select a desired Set, but IR Control Register can only be programmed in Set 0 and  
Set 1. In other words, writing to Reg3 in Sets other than Set 0 and Set 1 will not affect IR Control  
Register. The mapping of entry Set and programming value is shown below.  
SSR BITS  
SELECTED  
Set  
7
0
1
1
1
1
1
1
1
6
5
4
3
2
1
0
Hex Value  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ñ  
¡Ð  
¡Ð  
Set 0  
Set1  
Any combination except those used in SET 2~7  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0xE0  
0xE4  
0xE8  
0xEC  
0xF0  
0xF4  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
7.2.5 Set0.Reg4 - Handshake Control Register (HCR)  
MODE  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
0
B0  
0
Legacy IR  
0
0
0
XLOOP  
EN_IRQ  
0
EN_DMA  
0
Advanced IR AD_MD2 AD_MD1 AD_MD0 SIR_PLS TX_WT  
0
0
Reset Value  
0
1
1
0
0
0
0
Publication Release Date: May 2006  
Revision 0.6  
- 57 -  
W83977ATF/W83977ATG  
Legacy IR Register:  
This register controls the pins of IR used for handshaking with peripherals such as modem, and  
controls the diagnostic mode of IR.  
Bit 4: When this bit is set to logical 1, the legacy IR enters diagnostic mode by an internal loopback:  
IRTX is forced to logical 0, and IRRX is isolated from the communication link instead of the  
TSR.  
Bit 3: The legacy IR interrupt output is enabled by setting this bit to logic 1.  
Advanced IR Register:  
Bit 7~5 Advanced SIR/ASK-IR, MIR, FIR, Remote Controller Modes:  
AD_MD2~0 - Advanced IR/Infrared Mode Select.  
These registers are active when Advanced IR Select (ADV_SL, in Set2.Reg2.Bit0) is set  
to 1. Operational mode selection is defined as follows. When backward operation  
occurs, these registers will be reset to 0 and fall back to legacy IR mode.  
AD_MD2~0 (BIT 7, 6, 5)  
SELECTED MODE  
Reserved  
000  
001  
010  
011  
100  
101  
110  
111  
Low speed MIR (0.576M bps)  
Advanced ASK-IR  
Advanced SIR  
High Speed MIR (1.152M bps)  
FIR (4M bps)  
Consumer IR  
Reserved  
Bit 4:  
Bit 3:  
MIR, FIR Modes:  
SIR_PLS - Send Infrared Pulse  
Writing 1 to this bit will send a 2 μ s long infrared pulse after physical frame end. This is  
to signal to SIR that the high speed infrared is still in. This bit will be auto cleared by  
hardware.  
Other Modes: Not used.  
MIR, FIR modes:  
TX_WT - Transmission Waiting  
If this bit is set to 1, the transmitter will wait for TX FIFO to reach threshold level or  
transmitter time-out before it begins to transmit data; this prevents short queues of data  
bytes from transmitting prematurely. This is to avoid Underrun.  
Other Modes: Not used.  
- 58 -  
W83977ATF/W83977ATG  
Bit 2:  
MIR, FIR modes:  
EN_DMA - Enable DMA  
Enable DMA function for transmitting or receiving. Before using this, the DMA channel  
should be selected first. If only RX DMA channel is set and TX DMA channel is disabled,  
then the single DMA channel is used. In the single channel system, the bit of D_CHSW  
(DMA channel swap, in Set 2.Reg2.Bit3) will determine if it is RX_DMA or TX_DMA  
channel.  
Other modes: Not used.  
Bit 1, 0:  
RTS, DTR  
Functional definitions are the same as in legacy IR mode.  
7.2.6 Set0.Reg5 - IR Status Register (USR)  
MODE  
B7  
B6  
TSRE  
TSRE  
0
B5  
TBRE  
TBRE  
0
B4  
B3  
B2  
B1  
OER  
OER  
0
B0  
RDR  
RDR  
0
Legacy IR  
RFEI  
SBD  
NSER  
PBER  
Advanced IR LB_INFR  
Reset Value  
MX_LEX PHY_ERR CRC_ERR  
0
0
0
0
Legacy IR Register: These registers are defined the same as previous description.  
Advanced IR Register:  
Bit 7:  
MIR, FIR Modes:  
LB_INFR - Last Byte In Frame End  
Set to 1 when last byte of a frame is in the bottom of FIFO. This bit separates one frame  
from another when RX FIFO has more than one frame.  
Bit 6, 5:  
Bit 4:  
Same as legacy IR description.  
MIR, FIR modes:  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when the length of a frame from the receiver has exceeded the programmed  
frame length defined in SET4.Reg6 and Reg5. If this bit is set to 1, the receiver will not  
receive any data to RX FIFO.  
Bit 3:  
MIR, FIR modes:  
PHY_ERR - Physical Layer Error  
Set to 1 when an illegal data symbol is received. The illegal data symbol is defined in  
physical layer of IrDA version 1.1. When this bit is set to 1, the decoder of receiver will  
be aborted and a frame end signal is set to 1.  
Bit 2:  
MIR, FIR Modes:  
CRC_ERR - CRC Error  
Set to 1 when an attached CRC is erroneous.  
OER - Overrun Error, RDR - RBR Data Ready  
Definitions are the same as legacy IR.  
Bit 1, 0:  
Publication Release Date: May 2006  
- 59 -  
Revision 0.6  
W83977ATF/W83977ATG  
7.2.7 Set0.Reg6 - Reserved  
7.2.8 Set0.Reg7 - User Defined Register (UDR/AUDR)  
MODE  
BIT 7  
BIT 6  
Bit 6  
BIT 5  
BIT 4  
BIT 3  
Bit 3  
BIT 2  
Bit 2  
0
BIT 1  
Bit 1  
BIT 0  
Bit 0  
Legacy IR  
Bit 7  
Bit 5  
Bit 4  
Advanced FLC_ACT  
IR  
UNDRN  
RX_BSY/  
RX_IP  
LST_FE/  
RX_PD  
S_FEND  
LB_SF  
RX_TO  
Reset  
Value  
0
0
0
0
0
0
0
0
Legacy IR Register:  
This is a temporary register that can be accessed and defined by the user.  
Advanced IR Register:  
Bit 7  
MIR, FIR Modes:  
FLC_ACT - Flow Control Active  
Set to 1 when the flow control occurs. Cleared to 0 when this register is read. Note that  
this will be affected by Set5.Reg2 which controls the SIR mode switches to MIR/FIR  
mode or MIR/FIR mode operated in DMA function switches to SIR mode.  
Bit 6  
Bit 5  
MIR, FIR Modes:  
UNDRN - Underrun  
Set to 1 when transmitter is empty and S_FEND (bit 3 of this register) is not set in PIO  
mode or no TC (Terminal Count) in DMA mode. Cleared to 0 after a write to 1.  
MIR, FIR Modes:  
RX_BSY - Receiver Busy  
Set to 1 when receiver is busy or active in process.  
Remote IR mode:  
RX_IP - Receiver in Process  
Set to 1 when receiver is in process.  
MIR, FIR modes:  
Bit 4:  
LST_FE - Lost Frame End  
Set to 1 when a frame end in a entire frame is lost. Cleared to 0 when this register is  
read.  
Remote IR Modes:  
RX_PD - Receiver Pulse Detected  
Set to 1 when one or more remote pulses are detected. Cleared to 0 when this register  
is read.  
Bit 3  
MIR, FIR Modes:  
S_FEND - Set a Frame End  
Set to 1 when trying to terminate the frame, that is, the procedure od PIO command is  
An Entire Frame = Write Frame Data (First) + Write S_FEND (Last)  
This bit should be set to 1, if used in PIO mode, to avoid transmitter underrun. Note that  
setting S_FEND to 1 is equivalent to TC (Terminal Count) in DMA mode. Therefore, this  
bit should be set to 0 in DMA mode.  
Bit 2:  
Reserved.  
- 60 -  
W83977ATF/W83977ATG  
Bit 1:  
Bit 0:  
MIR, FIR Modes:  
LB_SF - Last Byte Stay in FIFO  
A 1 in this bit indicates one or more frame ends remain in receiver FIFO.  
MIR, FIR, Remote IR Modes:  
RX_TO - Receiver FIFO or Frame Status FIFO time-out  
Set to 1 when receiver FIFO or frame status FIFO time-out occurs  
7.3 Set1 - Legacy Baud Rate Divisor Register  
ADDRESS OFFSET  
REGISTER NAME  
BLL  
REGISTER DESCRIPTION  
Baud Rate Divisor Latch (Low Byte)  
0
1
2
3
4
5
6
7
Baud Rate Divisor Latch (High Byte)  
Interrupt Status or IR FIFO Control Register  
IR Control or Sets Select Register  
Handshake Control Register  
IR Status Register  
BHL  
ISR/UFR  
UCR/SSR  
HCR  
USR  
Handshake Status Register  
User Defined Register  
HSR  
UDR/ESCR  
7.3.1 Set1.Reg0~1 - Baud Rate Divisor Latch (BLL/BHL)  
These two registers of BLL and BHL are baud rate divisor latch in the legacy SIR/ASK-IR mode.  
Accessing these registers in Advanced IR mode will cause backward operation, that is, UART will fall  
back to legacy SIR mode and clear some register values as shown in the following table.  
SET & REGISTER  
ADVANCED MODE  
DIS_BACK=¡Ñ  
LEGACY MODE  
DIS_BACK=0  
Set 0.Reg 4  
Set 2.Reg 2  
Set 4.Reg 3  
Bit 7~5  
Bit 0, 5, 7  
Bit 2, 3  
-
Bit 5, 7  
-
Note that DIS_BACK=1 (Disable Backward operation) in legacy SIR/ASK-IR mode will not affect any  
register which is meaningful in legacy SIR/ASK-IR.  
7.3.2 Set1.Reg 2~7  
These registers are defined the same as Set 0 registers.  
Publication Release Date: May 2006  
- 61 -  
Revision 0.6  
W83977ATF/W83977ATG  
7.4 Set2 - Interrupt Status or IR FIFO Control Register (ISR/UFR)  
These registers are only used in advanced modes.  
ADDRESS OFFSET  
REGISTER NAME  
ABLL  
REGISTER DESCRIPTION  
Advanced Baud Rate Divisor Latch (Low Byte)  
Advanced Baud Rate Divisor Latch (High Byte)  
Advanced IR Control Register 1  
Sets Select Register  
0
1
2
3
4
5
6
7
ABHL  
ADCR1  
SSR  
Advanced IR Control Register 2  
-
ADCR2  
Reserved  
TXFDTH  
RXFDTH  
Transmitter FIFO Depth  
Receiver FIFO Depth  
7.4.1 Reg0, 1 - Advanced Baud Rate Divisor Latch (ABLL/ABHL)  
These two registers are the same as legacy IR baud rate divisor latch in SET 1.Reg0~1. In advanced  
SIR/ASK-IR mode, the user should program these registers to set baud rate. This is to prevent  
backward operations from occurring.  
7.4.2 Reg2 - Advanced IR Control Register 1 (ADCR1)  
MODE  
Advanced IR BR_OUT  
Reset Value  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
DMA_F  
0
BIT 0  
ADV_SL  
0
-
EN_LOUT ALOOP  
D_CHSW DMATHL  
0
0
0
0
0
0
Bit 7:  
BR_OUT - Baud Rate Clock Output  
When written to 1, the programmed baud rate clock will be output to DTR pin. This bit is  
only used to test baud rate divisor.  
Bit 6:  
Bit 5:  
Reserved, write 0.  
EN_LOUT - Enable Loopback Output  
A write to 1 will enable transmitter to output data to IRTX pin when loopback operation  
occurs. Internal data can be verified through an output pin by setting this bit.  
- 62 -  
W83977ATF/W83977ATG  
Bit 4:  
Bit 3:  
ALOOP - All Mode Loopback  
A write to 1 will enable loopback in all modes.  
D_CHSW - DMA TX/RX Channel Swap  
If only one DMA channel operates in MIR/FIR mode, then the DMA channel can be  
swapped.  
D_CHSW  
DMA Channel Selected  
Receiver (Default)  
Transmitter  
0
1
A write to 1 will enable output data when ALOOP=1.  
DMATHL - DMA Threshold Level  
Bit 2:  
Set DMA threshold level as shown in the following table.  
DMATHL  
TX FIFO THRESHOLD  
RX FIFO THRESHOLD  
16-BYTE  
32-BYTE  
(16/32-BYTE)  
13  
23  
13  
7
4
0
1
10  
Bit 1:  
Bit 0:  
DMA_F - DMA Fairness  
DMA_F  
Function Description  
DMA request (DREQ) is forced inactive after 10.5us  
No effect DMA request.  
0
1
ADV_SL - Advanced Mode Select  
A write to 1 selects advanced mode.  
7.4.3 Reg3 - Sets Select Register (SSR)  
Reading this register returns E0H. Writing a value selects Register Set.  
REG.  
SSR  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Refault Value  
Publication Release Date: May 2006  
Revision 0.6  
- 63 -  
W83977ATF/W83977ATG  
7.4.4 Reg4 - Advanced IR Control Register 2 (ADCR2)  
MODE  
Advanced IR DIS_BACK  
Reset Value  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
PR_DIV1 PR_DIV0 RX_FSZ1 RX_FSZ0 TX_FSZ1 TXFSZ0  
0
0
0
0
0
0
0
0
Bit 7:  
DIS_BACK - Disable Backward Operation  
A write to 1 disables backward legacy IR mode. When operating in legacy SIR/ASK-IR  
mode, this bit should be set to 1 to avoid backward operation.  
Bit 6:  
Reserved, write 0.  
Bit 5, 4:  
PR_DIV1~0 - Pre-Divisor 1~0.  
These bits select pre-divisor for external input clock 24M Hz. The clock goes through the  
pre-divisor, then input to baud rate divisor of IR.  
PR_DIV1~0  
PRE-DIVISOR  
MAX. BAUD RATE  
115.2K bps  
13.0  
1.625  
6.5  
00  
01  
10  
11  
921.6K bps  
230.4K bps  
1
1.5M bps  
Bit 3, 2:  
RX_FSZ1~0 - Receiver FIFO Size 1~0  
These bits setup receiver FIFO size when FIFO is enable.  
RX_FSZ1~0  
RX FIFO SIZE  
00  
01  
1X  
16-Byte  
32-Byte  
Reserved  
Bit 1, 0:  
TX_FSZ1~0 - Transmitter FIFO Size 1~0  
These bits setup transmitter FIFO size when FIFO is enable.  
TX_FSZ1~0  
TX FIFO SIZE  
16-Byte  
00  
01  
1X  
32-Byte  
Reserved  
- 64 -  
W83977ATF/W83977ATG  
TABLE: SIR Baud Rate  
BAUD RATE FROM DIFFERENT PRE-DIVIDER  
Pre-Div: 13  
1.8461M Hz  
50  
Pre-Div:1.625  
Pre-Div: 1.0  
24M Hz  
650  
Decimal divisor used to  
generate 16X clock  
Error Percentage between  
desired and actual  
14.769M Hz  
400  
**  
2304  
1536  
1047  
857  
768  
384  
192  
96  
75  
600  
975  
**  
110  
880  
1430  
0.18%  
134.5  
150  
1076  
1478.5  
1950  
0.099%  
1200  
**  
**  
300  
2400  
3900  
600  
4800  
7800  
**  
1200  
9600  
15600  
23400  
26000  
31200  
46800  
62400  
93600  
124800  
249600  
499200  
748800  
1497600  
**  
1800  
14400  
16000  
19200  
28800  
38400  
57600  
76800  
153600  
307200  
460800  
921600  
**  
64  
2000  
0.53%  
**  
58  
2400  
48  
3600  
**  
32  
4800  
**  
24  
7200  
**  
16  
9600  
**  
12  
19200  
38400  
57600  
115200  
**  
6
**  
3
**  
2
**  
1
** The percentage error for all baud rates, except where indicated otherwise, is 0.16%.  
7.4.5 Reg6 - Transmitter FIFO Depth (TXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
TXFD5  
0
BIT 4  
TXFD4  
0
BIT 3  
TXFD3  
0
BIT 2  
TXFD2  
0
BIT 1  
TXFD1  
0
BIT 0  
TXFD1  
0
Advanced IR  
Reset Value  
0
0
0
0
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current transmitter FIFO depth, that is, the number of  
bytes left in the transmitter FIFO.  
Publication Release Date: May 2006  
- 65 -  
Revision 0.6  
W83977ATF/W83977ATG  
7.4.6 Reg7 - Receiver FIFO Depth (RXFDTH) (Read Only)  
MODE  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
RXFD2  
0
BIT 1  
BIT 0  
Advanced IR  
0
0
0
0
RXFD5 RXFD4 RXFD3  
RXFD1 RXFD1  
Reset Value  
0
0
0
0
0
Bit 7~6:  
Bit 5~0:  
Reserved, Read 0.  
Reading these bits returns the current receiver FIFO depth, that is, the number of bytes  
left in the receiver FIFO.  
7.5 Set3 - Version ID and Mapped Control Registers  
ADDRESS  
OFFSET  
REGISTER NAME  
REGISTER DESCRIPTION  
Advanced IR ID  
0
1
2
3
4
5
6
7
AUID  
Mapped IR Control Register  
MP_UCR  
MP_UFR  
SSR  
Mapped IR FIFO Control Register  
Sets Select Register  
-
-
-
-
Reversed  
Reserved  
Reserved  
Reserved  
7.5.1 Reg0 - Advanced IR ID (AUID)  
This register is read only. It stores advanced IR version ID. Reading it returns 1XH.  
REG.  
SSR  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
1
BIT 3  
SSR3  
X
BIT 2  
SSR2  
X
BIT 1  
SRR1  
X
BIT 0  
SRR0  
X
Default Value  
7.5.2 Reg1 - Mapped IR Control Register (MP_UCR)  
This register is read only. Reading this register returns IR Control Register value of Set 0.  
REG.  
SSR  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
- 66 -  
W83977ATF/W83977ATG  
7.5.3 Reg2 - Mapped IR FIFO Control Register (MP_UFR)  
This register is read only. Reading this register returns IR FIFO Control Register (UFR) value of SET  
0.  
REG.  
SSR  
BIT 7  
SSR7  
0
BIT 6  
SSR6  
0
BIT 5  
SSR5  
0
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
7.5.4 Reg3 - Sets Select Register (SSR)  
Reading this register returns E4H. Writing a value selects a Register Set.  
REG.  
SSR  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
0
BIT 3  
SSR3  
0
BIT 2  
SSR2  
1
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
7.6 Set4 - TX/RX/Timer counter registers and IR control registers.  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Timer Value Low Byte  
0
1
2
3
4
5
6
7
TMRL  
TMRH  
IR_MSL  
SSR  
Timer Value High Byte  
Infrared Mode Select  
Sets Select Register  
Transmitter Frame Length Low Byte  
Transmitter Frame Length High Byte  
Receiver Frame Length Low Byte  
Receiver Frame Length High Byte  
TFRLL  
TFRLH  
RFRLL  
RFRLH  
7.6.1 Set4.Reg0, 1 - Timer Value Register (TMRL/TMRH)  
This is a 12-bit timer whose resolution is 1ms, that is, the maximum programmable time is 212-1 ms.  
The timer is a down-counter and starts counting down when EN_TMR (Enable Timer) of Set4.Reg2 is  
set to 1. When the timer counts down to zero and EN_TMR=1, the TMR_I is set to 1 and a new initial  
value will be loaded into counter.  
7.6.2 Set4.Reg2 - Infrared Mode Select (IR_MSL)  
MODE  
BIT 7 BIT 6 BIT 5 BIT 4  
BIT 3  
IR_MSL1  
0
BIT 2  
IR_MSL0  
0
BIT 1  
TMR_TST  
0
BIT 0  
EN_TMR  
0
Advanced IR  
-
-
-
-
Reset Value  
0
0
0
0
Publication Release Date: May 2006  
Revision 0.6  
- 67 -  
W83977ATF/W83977ATG  
Bit 7~4:  
Bit 3, 2:  
Reserved, write to 0.  
IR_MSL1, 0 - Infrared Mode Select  
Select legacy IR, SIR, or ASK-IR mode. Note that in legacy SIR/ASK-IR user should set  
DIS_BACK=1 to avoid backward when programming baud rate.  
IR_MSL1, 0  
OPERATION MODE SELECTED  
00  
01  
10  
11  
Legacy IR  
CIR  
Legacy ASK-IR  
Legacy SIR  
Bit 1:  
Bit 0:  
TMR_TST - Timer Test  
When set to 1, reading the TMRL/TMRH returns the programmed values of TMRL/TMRH  
instead of the value of down counter. This bit is for testing timer register.  
EN_TMR - Enable Timer  
A write to 1 will enable the timer.  
7.6.3 Set4.Reg3 - Set Select Register (SSR)  
Reading this register returns E8H. Writing this register selects Register Set.  
REG.  
SSR  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
1
BIT 3  
SSR3  
1
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
7.6.4 Set4.Reg4, 5 - Transmitter Frame Length (TFRLL/TFRLH)  
REG.  
TFRLL  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
bit 4  
0
BIT 3  
bit3  
0
BIT 2  
BIT 1  
BIT 0  
bit 0  
0
bit 7  
bit 6  
bit 5  
bit 2  
0
bit 1  
0
Reset Value  
TFRLH  
0
-
0
-
0
-
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset Value  
-
-
-
These are combined to be a 13-bit register. Writing these registers programs the transmitter frame  
length of a package. These registers are only valid when APM=1 (automatic package mode,  
Set5.Reg4.bit5). When APM=1, the physical layer will split data stream to a programmed frame  
length if the transmitted data is larger than the programmed frame length. When these registers are  
read, they will return the number of bytes which is not transmitted from a frame length programmed.  
- 68 -  
W83977ATF/W83977ATG  
7.6.5 Set4.Reg6, 7 - Receiver Frame Length (RFRLL/RFRLH)  
REG.  
RFRLL  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
bit 4  
0
BIT 3  
bit 3  
0
BIT 2  
bit 2  
0
BIT 1  
bit 1  
0
BIT 0  
bit 0  
0
bit 7  
bit 6  
bit 5  
Reset Value  
RFRLH  
0
-
0
-
0
-
bit 12  
0
bit 11  
0
bit 10  
0
bit 9  
0
bit 8  
0
Reset Value  
-
-
-
These are combined to be a 13-bit register and up counter. The length of receiver frame will be  
limited to the programmed frame length. If the received frame length is larger than the programmed  
receiver frame length, the bit of MX_LEX (Maximum Length Exceed) will be set to 1. Simultaneously,  
the receiver will not receive any more data to RX FIFO until the next start flag of the next frame, which  
is defined in the physical layer IrDA 1.1. Reading these registers returns the number of received data  
bytes of a frame from the receiver.  
7.7 Set 5 - Flow control and IR control and Frame Status FIFO registers  
ADDRESS  
OFFSET  
REGISTER  
NAME  
REGISTER DESCRIPTION  
Flow Control Baud Rate Divisor Latch Register (Low Byte)  
Flow Control Baud Rate Divisor Latch Register (High Byte)  
Flow Control Mode Operation  
0
1
2
3
4
5
6
7
FCBLL  
FCBHL  
FC_MD  
SSR  
Sets Select Register  
Infrared Configure Register  
IRCFG1  
FS_FO  
RFRLFL  
RFRLFH  
Frame Status FIFO Register  
Receiver Frame Length FIFO Low Byte  
Receiver Frame Length FIFO High Byte  
7.7.1 Set5.Reg0, 1 - Flow Control Baud Rate Divisor Latch Register (FCDLL/ FCDHL)  
If flow control is enforced when UART switches mode from MIR/FIR to SIR, then the pre-programmed  
baud rate of FCBLL/FCBHL are loaded into advanced baud rate divisor latch (ADBLL/ADBHL).  
7.7.2 Set5.Reg2 - Flow Control Mode Operation (FC_MD)  
These registers control flow control mode operation as shown in the following table.  
REG.  
BIT 7  
FC_MD2  
0
BIT 6  
FC_MD1  
0
BIT 5  
FC_MD0  
0
BIT 4  
BIT 3  
FC_DSW  
0
BIT 2  
EN_FD  
0
BIT 1  
EN_BRFC  
0
BIT 0  
EN_FC  
0
FC_MD  
-
Reset  
Value  
0
Publication Release Date: May 2006  
Revision 0.6  
- 69 -  
W83977ATF/W83977ATG  
Bit 7~5  
FC_MD2 - Flow Control Mode  
When flow control is enforced, these bits will be loaded into AD_MD2~0 of advanced HSR  
(Handshake Status Register). These three bits are defined as same as AD_MD2~0.  
Bit 4:  
Bit 3:  
Reserved, write 0.  
FC_DSW - Flow Control DMA Channel Swap  
A write to 1 allows user to swap DMA channel for transmitter or receiver when flow control is  
enforced.  
FC_DSW  
Next Mode After Flow Control Occurred  
Receiver Channel  
0
1
Transmitter Channel  
Bit 2:  
Bit 1:  
EN_FD - Enable Flow DMA Control  
A write to 1 enables UART to use DMA channel when flow control is enforced.  
EN_BRFC - Enable Baud Rate Flow Control  
A write to 1 enables FC_BLL/FC_BHL (Flow Control Baud Rate Divider Latch, in Set5.Reg1~0) to  
be loaded into advanced baud rate divisor latch (ADBLL/ADBHL, in Set2.Reg1~0).  
Bit 0:  
EN_FC - Enable Flow Control  
A write to 1 enables flow control function and bit 7~1 of this register.  
7.7.3 Set5.Reg3 - Sets Select Register (SSR)  
Writing this register selects Register Set. Reading this register returns ECH.  
REG.  
SSR  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
0
BIT 3  
SSR3  
1
BIT 2  
SSR2  
1
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
7.7.4 Set5.Reg4 - Infrared Configure Register 1 (IRCFG1)  
REG.  
IRCFG1  
BIT 7  
BIT 6  
FSF_TH  
0
BIT 5  
FEND_M  
0
BIT 4  
AUX_RX  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
-
-
-
IRHSSL IR_FULL  
Reset Value  
0
0
0
0
0
Bit 7:  
Bit 6:  
Reserved, write 0.  
FSF_TH - Frame Status FIFO Threshold  
Set this bit to determine the frame status FIFO threshold level and to generate the FSF_I.  
The threshold level values are defined as follows.  
FSF_TH  
STATUS FIFO THRESHOLD LEVEL  
2
4
0
1
- 70 -  
W83977ATF/W83977ATG  
Bit 5:  
Bit 4:  
FEND_MD - Frame End Mode  
A write to 1 enables hardware to split data stream into equal length frame automatically as defined  
in Set4.Reg4 and Set4.Reg5, i.e., TFRLL/TFRLH.  
AUX_RX - Auxiliary Receiver Pin  
A write to 1 selects IRRX input pin. (Refer to Set7.Reg7.Bit5)  
Reserved, write 0.  
Bit 3~2:  
Bit 1:  
IRHSSL - Infrared Handshake Status Select  
When set to 0, the HSR (Handshake Status Register) operates the same as defined in IR mode. A  
write to 1 will disable HSR, and reading HSR returns 30H.  
Bit 0:  
IR_FULL - Infrared Full Duplex Operation  
When set to 0, IR module operates in half duplex. A write to 1 makes IR module operate in full  
duplex.  
7.7.5 Set5.Reg5 - Frame Status FIFO Register (FS_FO)  
This register shows the bottom byte of frame status FIFO.  
REG.  
FS_FO  
BIT 7  
FSFDR  
0
BIT 6  
LST_FR  
0
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
RX_OV  
0
BIT 0  
FSF_OV  
0
-
MX_LEX PHY_ERR CRC_ERR  
Reset Value  
0
0
0
0
Bit 7:  
Bit 6:  
FSFDR - Frame Status FIFO Data Ready  
Indicates that a data byte is valid in frame status FIFO bottom.  
LST_FR - Lost Frame  
Set to 1 when one or more frames have been lost.  
Reserved.  
Bit 5:  
Bit 4:  
MX_LEX - Maximum Frame Length Exceed  
Set to 1 when incoming data exceeds programmed maximum frame length defined in Set4.Reg6 and  
Set4.Reg7. This bit is in frame status FIFO bottom and is valid only when FSFDR=1 (Frame Status  
FIFO Data Ready).  
Bit 3:  
Bit 2:  
PHY_ERR - Physical Error  
When receiving data, any physical layer error as defined in IrDA 1.1 will set this bit to 1. This bit is in  
frame status FIFO bottom and is valid only when FSFDR=1 (Frame Status FIFO Data Ready).  
CRC_ERR - CRC Error  
Set to 1 when a bad CRC is received in a frame. This CRC belongs to physical layer as defined in  
IrDA 1.1. This bit is in frame status FIFO bottom and is valid only when FSFDR=1 (Frame Status FIFO  
Data Ready).  
Bit 1:  
Bit 0:  
RX_OV - Received Data Overrun  
Set to 1 when receiver FIFO overruns.  
FSF_OV - Frame Status FIFO Overrun  
Set to 1 When frame status FIFO overruns.  
Publication Release Date: May 2006  
- 71 -  
Revision 0.6  
W83977ATF/W83977ATG  
7.7.6 Set5.Reg6, 7 - Receiver Frame Length FIFO (RFLFL/RFLFH) or Lost Frame Number  
(LST_NU)  
REG.  
RFLFL/ LST_NU  
Reset Value  
RFLFH  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
Bit 4  
0
BIT 3  
Bit 3  
0
BIT 2  
Bit 2  
0
BIT 1  
Bit 1  
0
BIT 0  
Bit 0  
0
Bit 7  
Bit 6  
Bit 5  
0
-
0
-
0
-
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Reset Value  
0
0
0
Receiver Frame Length FIFO (RFLFL/RFLFH):  
These are combined to be a 13-bit register. Reading these registers returns received byte count for  
the frame. When read, the register of RFLFH will pop-up another frame status and frame length if  
FSFDR=1 (Set5.Reg4.Bit7).  
Lost Frame Number (LST_NU):  
When LST_FR=1 (Set5.Reg4.Bit6), Reg6 stands for LST_NU which is a 8-bit register holding the  
number of frames lost in succession.  
7.8 Set6 - IR Physical Layer Control Registers  
ADDRESS OFFSET  
REGISTER NAME  
IR_CFG2  
MIR_PW  
REGISTER DESCRIPTION  
Infrared Configure Register 2  
0
1
2
3
4
5
6
7
MIR (1.152M bps or 0.576M bps) Pulse Width  
SIR Pulse Width  
SIR_PW  
Sets Select Register  
SSR  
High Speed Infrared Flag Number  
HIR_FNU  
Reserved  
Reserved  
Reserved  
-
-
-
7.8.1 Set6.Reg0 - Infrared Configure Register 2 (IR_CFG2)  
This register controls ASK-IR, MIR, FIR operations.  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
INV_CRC  
0
BIT 1  
DIS_CRC  
0
BIT 0  
IR_CFG2  
Reset Value  
SHMD_N SHDM_N  
FIR_CRC MIR_CRC  
-
-
0
0
1
0
0
0
Bit 7:  
SHMD_N - ASK-IR Modulation Disable  
SHMD_N  
Modulation Mode  
0
1
IRTX modulate 500K Hz Square Wave  
Re-rout IRTX  
- 72 -  
W83977ATF/W83977ATG  
Bit 6:  
Bit 5:  
SHDM_N - ASK-IR Demodulation Disable  
SHDM_N  
Demodulation Mode  
Demodulation 500K Hz  
Re-rout IRRX  
0
1
FIR_CRC - FIR (4M bps) CRC Type  
FIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Note that the 16/32-bit CRC are defined in IrDA 1.1 physical layer.  
Bit 4:  
MIR_CRC - MIR (1.152M/0.576M bps) CRC Type  
MIR_CRC  
CRC Type  
16-bit CRC  
32-bit CRC  
0
1
Bit 2:  
Bit 1:  
Bit 0:  
INV_CRC - Inverting CRC  
When set to 1, the CRC is inversely output in physical layer.  
DIS_CRC - Disable CRC  
When set to 1, the transmitter does not transmit CRC in physical layer.  
Reserved, write 1.  
7.8.2 Set6.Reg1 - MIR (1.152M/0.576M bps) Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
M_PW2  
0
BIT 1  
M_PW1  
1
BIT 0  
M_PW0  
0
MIR_PW  
-
-
-
M_PW4 M_PW3  
Reset Value  
0
0
0
0
1
This 5-bit register sets MIR output pulse width.  
M_PW4~0  
00000  
00001  
00010  
...  
MIR PULSE WIDTH (1.152M BPS)  
MIR OUTPUT WIDTH (0.576M BPS)  
0 ns  
20.83 ns  
0 ns  
41.66 ns  
41.66 (==20.83*2) ns  
...  
83.32 (==41.66*2) ns  
...  
k10  
20.83*k10 ns  
41.66*k10 ns  
...  
...  
...  
11111  
645 ns  
1290 ns  
Publication Release Date: May 2006  
Revision 0.6  
- 73 -  
W83977ATF/W83977ATG  
7.8.3 Set6.Reg2 - SIR Pulse Width  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
S_PW4  
0
BIT 3  
S_PW3  
0
BIT 2  
S_PW2  
0
BIT 1  
S_PW1  
0
BIT 0  
S_PW0  
0
SIR_PW  
-
-
-
Reset Value  
0
0
0
This 5-bit register sets SIR output pulse width.  
S_PW4~0  
00000  
SIR OUTPUT PULSE WIDTH  
3/16 bit time of IR  
1.6 us  
01101  
Others  
1.6 us  
7.8.4 Set6.Reg3 - Set Select Register  
Select Register Set by writing a set number to this register. Reading this register returns F0H.  
REG.  
SSR  
BIT 7  
SSR7  
1
BIT 6  
SSR6  
1
BIT 5  
SSR5  
1
BIT 4  
SSR4  
1
BIT 3  
SSR3  
0
BIT 2  
SSR2  
0
BIT 1  
SRR1  
0
BIT 0  
SRR0  
0
Default Value  
7.8.5 Set6.Reg4 - High Speed Infrared Beginning Flag Number (HIR_FNU)  
REG.  
BIT 7  
M_FG3  
0
BIT 6  
M_FG2  
0
BIT 5  
M_FG1  
1
BIT 4  
M_FG0  
0
BIT 3  
F_FL3  
1
BIT 2  
F_FL2  
0
BIT 1  
F_FL1  
1
BIT 0  
F_FL0  
0
HIR_FNU  
Reset Value  
Bit 7~4:  
M_FG3~0 - MIR beginning Flag Number  
These bits define the number of transmitter Start Flag of MIR. Note that the number of  
MIR start flag should be equal or more than two which is defined in IrDA 1.1 physical  
layer. The default value is 2.  
M_FG3~0  
0000  
BEGINNING FLAG NUMBER  
M_FG3~0  
1000  
BEGINNING FLAG NUMBER  
Reserved  
10  
12  
1
0001  
1001  
16  
0010  
2 (Default)  
1010  
3
4
5
6
8
20  
0011  
1011  
24  
0100  
1100  
28  
0101  
1101  
32  
0110  
1110  
Reserved  
0111  
1111  
- 74 -  
W83977ATF/W83977ATG  
Bit 3~0:  
F_FG3~0 - FIR Beginning Flag Number  
These bits define the number of transmitter Preamble Flag in FIR. Note that the number  
of FIR start flag should be equal to sixteen which is defined in IrDA 1.1 physical layer.  
The default value is 16.  
M_FG3~0  
BEGINNING FLAG  
NUMBER  
M_FG3~0  
BEGINNING FLAG NUMBER  
Reserved  
10  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
8
12  
16 (Default)  
20  
24  
28  
32  
Reserved  
7.9 Set7 - Remote control and IR module selection registers  
ADDRESS OFFSET REGISTER NAME  
REGISTER DESCRIPTION  
Remote Infrared Receiver Control  
Remote Infrared Transmitter Control  
Remote Infrared Config Register  
Sets Select Register  
0
1
2
3
4
5
6
7
RIR_RXC  
RIR_TXC  
RIR_CFG  
SSR  
Infrared Module (Front End) Select 1  
Infrared Module Select 2  
IRM_SL1  
IRM_SL2  
IRM_SL3  
IRM_CR  
Infrared Module Select 3  
Infrared Module Control Register  
7.9.1 4.9.1 Set7.Reg0 - Remote Infrared Receiver Control (RIR_RXC)  
REG.  
BIT 7  
RX_FR2  
0
BIT 6  
RX_FR1  
0
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_RXC  
RX_FR0 RX_FSL4 RX_FSL3 RX_FSL2 RX_FSL1 RX_FSL0  
Default Value  
1
0
1
0
0
1
This register defines frequency range of receiver of remote IR.  
Publication Release Date: May 2006  
Revision 0.6  
- 75 -  
W83977ATF/W83977ATG  
Bit 7~5:  
Bit 4~0:  
RX_FR2~0 - Receiver Frequency Range 2~0.  
These bits select the input frequency range of the receiver. It is implemented through a  
band pass filter, i.e., only the input signals whose frequency lies in the range defined in  
this register will be received.  
RX_FSL4~0 - Receiver Frequency Select 4~0.  
Selects the operation frequency of receiver.  
Table: Low Frequency range select of receiver.  
RX_FR2~0 (LOW FREQUENCY)  
010  
001  
011  
RX_FSL4~0  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01011  
01100  
01101  
01111  
10000  
10010  
10011  
10101  
10111  
11010  
11011  
11101  
Min.  
26.1  
28.2  
29.4  
30.0  
31.4  
32.1  
32.8  
33.6*  
34.4  
36.2  
37.2  
38.2  
40.3  
41.5  
42.8  
44.1  
45.5  
48.7  
50.4  
54.3  
Max.  
29.6  
32.0  
33.3  
34.0  
35.6  
36.4  
37.2  
38.1*  
39.0  
41.0  
42.1  
43.2  
45.7  
47.1  
48.5  
50.0  
51.6  
55.2  
57.1  
61.5  
Min.  
24.7  
26.7  
27.8  
28.4  
29.6  
30.3  
31.0  
31.7  
32.5  
34.2  
35.1  
36.0  
38.1  
39.2  
40.4  
41.7  
43.0  
46.0  
47.6  
51.3  
Max.  
31.7  
34.3  
35.7  
36.5  
38.1  
39.0  
39.8  
40.8  
41.8  
44.0  
45.1  
46.3  
49.0  
50.4  
51.9  
53.6  
55.3  
59.1  
61.2  
65.9  
Min.  
23.4  
25.3  
26.3  
26.9  
28.1  
28.7  
29.4  
30.1  
30.8  
32.4  
33.2  
34.1  
36.1  
37.2  
38.3  
39.5  
40.7  
43.6  
45.1  
48.6  
Max.  
34.2  
36.9  
38.4  
39.3  
41.0  
42.0  
42.9  
44.0  
45.0  
47.3  
48.6  
49.9  
52n.7  
54.3  
56.0  
57.7  
59.6  
63.7  
65.9  
71.0  
Note that those unassigned combinations are reserved.  
- 76 -  
W83977ATF/W83977ATG  
Table: High Frequency range select of receiver  
RX_FR2~0 (HIGH FREQUENCY)  
001  
Min.  
Max.  
457.1  
489.8  
527.4  
RX_FSL4~0  
355.6  
380.1  
410.3  
00011  
01000  
01011  
Note that those unassigned combinations are reserved.  
Table: SHARP ASK-IR receiver frequency range select.  
RX_FSL4~0 (SHARP ASK-IR)  
010 011 100  
001  
RX_FR2~0  
101  
110  
-
457.1 564.7 436.4 600.0 417.4 640.0 400.0 685.6 384.0 738.5  
480.0* 533.3*  
Note that those unassigned combinations are reserved.  
7.9.2 Set7.Reg1 - Remote Infrared Transmitter Control (RIR_TXC)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RIR_TXC  
TX_PW2 TX_PW1 TX_PW0 TX_FSL4 TX_FSL3 TX_FSL2 TX_FSL1 TX_FSL0  
Default Value  
0
1
1
0
1
0
0
1
This Register defines the transmitter frequency and pulse width of remote IR.  
Bit 7~5:  
TX_PW2~0 - Transmitter Pulse Width 2~ 0.  
Select the transmission pulse width.  
TX_PW2~0  
010  
LOW FREQUENCY  
6 μ s  
HIGH FREQUENCY  
0.7 μ s  
011  
7 μ s  
0.8 μ s  
100  
9 μ s  
0.9 μ s  
101  
10.6 μ s  
1.0 μ s  
Note that those unassigned combinations are reserved.  
Bit 4~0:  
TX_FSL4~0 - Transmitter Frequency Select 4~0.  
Select the transmission frequency.  
Publication Release Date: May 2006  
Revision 0.6  
- 77 -  
W83977ATF/W83977ATG  
Table: Low frequency selected.  
TX_FSL4~0  
LOW FREQUENCY  
30K Hz  
31K HZ  
...  
00011  
00100  
...  
11101  
56K Hz  
Note that those unassigned combinations are reserved.  
Table: High frequency selected.  
TX_FSL4~0  
HIGH FREQUENCY  
400K Hz  
450K Hz  
480K Hz  
00011  
01000  
01011  
Note that those unassigned combinations are reserved.  
7.9.3 Set7.Reg2 - Remote Infrared Config Register (RIR_CFG)  
REG.  
BIT 7  
P_PNB  
0
BIT 6  
SMP_M  
0
BIT 5  
RXCFS  
0
BIT 4  
BIT 3  
TX_CFS  
0
BIT 2  
RX_DM  
0
BIT 1  
BIT 0  
RIR_CFG  
-
TX_MM1 TX_MM0  
Default Value  
0
0
0
Bit 7:  
P_PNB: Programming Pulse Number Coding.  
Write a 1 to select programming pulse number coding. The code format is defined as  
follows.  
(Number of bits) - 1  
B7 B6 B5 B4 B3 B2 B1 B0  
Bit value  
- 78 -  
W83977ATF/W83977ATG  
If the bit value is set to 0, the high pulse will be transmitted/received. If the bit value is  
set to 1, then no energy will be transmitted/received.  
Bit 6:  
Bit 5:  
SMP_M - Sampling Mode.  
To select receiver sampling mode.  
When set to 0 then uses T-period sampling, that the T-period is programmed IR baud  
rate.  
When set to 1, programmed baud rate will be used to do oversampling.  
RXCFS - Receiver Carry Frequency Select  
RXCFS  
Selected Frequency  
30K ~ 56K Hz  
0
1
400K ~ 480K Hz  
Bit 4:  
Bit 3:  
Reserved, write 0.  
TX_CFS - Transmitter Carry Frequency Select.  
Select low speed or high speed transmitter carry frequency.  
TX_FCS  
Selected Frequency  
30K ~ 56K Hz  
0
400K ~ 480K Hz  
1
Bit 2:  
RX_DM - Receiver Demodulation Mode.  
RX_DM  
Demodulation Mode  
Enable internal decoder  
Disable internal decoder  
0
1
Bit 1~0:  
TX_MM1~0 - Transmitter Modulation Mode 1~0  
TX_MM1~0  
TX Modulation Mode  
Continuously send pulse for logic 0  
8 pulses for logic 0 and no pulse for logic 1.  
6 pulses for logic 0 and no pulse for logic 1  
Reserved.  
00  
01  
10  
11  
7.9.4 Set7.Reg3 - Sets Select Register (SSR)  
REG.  
SSR  
BIT 7  
Bit 7  
1
BIT 6  
Bit 6  
1
BIT 5  
Bit 5  
1
BIT 4  
Bit 4  
1
BIT 3  
Bit 3  
0
BIT 2  
Bit 2  
1
BIT 1  
Bit 1  
0
BIT 0  
Bit 0  
0
Default Value  
Reading this register returns F4H. Select Register Set by writing a set number to this register.  
Publication Release Date: May 2006  
Revision 0.6  
- 79 -  
W83977ATF/W83977ATG  
7.9.5 Set7.Reg4 - Infrared Module (Front End) Select 1 (IRM_SL1)  
REG.  
BIT 7  
IR_MSP  
0
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL1  
SIR_SL2 SIR_SL1 SIR_SL0  
-
AIR_SL2 AIR_SL1 AIR_SL0  
Default Value  
0
0
0
0
0
0
0
Bit 7:  
IR_MSP - IR Mode Select Pulse  
When set to 1, the transmitter (IRTX) will send a 64 μs pulse to setup a special IR front-  
end operational mode. When IR front-end module uses mode select pin (MD) and  
transmitter IR pulse (IRTX) to switch between high speed IR (such as FIR or MIR) and  
low speed IR (SIR or ASK-IR), this bit should be used.  
Bit 6~4:  
SIR_SL2~0 - SIR (Serial IR) mode select.  
These bits are used to program the operational mode of the SIR front-end module.  
These values of SIR_SL2~0 will be automatically loaded to pins of IR_SL2~0,  
respectively, when (1) AM_FMT=1 (Automatic Format, in Set7.Reg7.Bit7); (2) the mode  
of Advanced IR is set to SIR (AD_MD2~0, in Set0.Reg4.Bit7~0).  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
AIR_SL2~0 - ASK-IR Mode Select.  
These bits setup the operational mode of ASK-IR front-end module when AM_FMT=1  
and AD_MD2~0 are configured to ASK-IR mode. These values will be automatically  
loaded to IR_SL2~0, respectively.  
7.9.6 Set7.Reg5 - Infrared Module (Front End) Select 2 (IRM_SL2)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL2  
-
FIR_SL2 FIR_SL1 FIR_SL0  
-
MIR_SL2 MIR_SL1 MIR_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
Reserved, write 0.  
FIR_SL2~0 - FIR mode select.  
Bit 6~4:  
These bits setup the operational mode of FIR front-end module when AM_FMT=1 and  
AD_MD2~0 are configured to FIR mode. These values will be automatically loaded to  
IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
MIR_SL2~0 - MIR Mode Select.  
These bits setup the MIR operational mode when AM_FMT=1 and AD_MD2~0 are  
configured to MIR mode. These values will be automatically loaded to IR_SL2~0,  
respectively.  
- 80 -  
W83977ATF/W83977ATG  
7.9.7 Set7.Reg6 - Infrared Module (Front End) Select 3 (IRM_SL3)  
REG.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IRM_SL3  
-
LRC_SL2 LRC_SL1 LRC_SL0  
-
HRC_SL2 HRC_SL1 HRC_SL0  
Default Value  
0
0
0
0
0
0
0
0
Bit 7:  
Reserved, write 0.  
LRC_SL2~0 - Low Speed Remote IR mode select.  
Bit 6~4:  
These bits setup the operational mode of low speed remote IR front-end module when  
AM_FMT=1 and AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
Bit 3:  
Reserved, write 0.  
Bit 2~0:  
HRC_SL2~0 - High Speed Remote IR Mode Select.  
These bits setup the operational mode of high speed remote IR front-end module when  
AM_FMT=1 and .AD_MD2~0 are configured to Remote IR mode. These values will be  
automatically loaded to IR_SL2~0, respectively.  
7.9.8 Set7.Reg7 - Infrared Module Control Register (IRM_CR)  
REG.  
IRM_CR  
BIT 7  
BIT 6  
BIT 5  
IRSL0D  
0
BIT 4  
RXINV  
0
BIT 3  
TXINV  
0
BIT 2  
BIT 1  
BIT 0  
AM_FMT IRX_MSL  
-
-
-
Default Value  
0
0
0
0
0
Bit 7:  
Bit 6:  
AM_FMT - Automatic Format  
A write to 1 will enable automatic format IR front-end module. These bits will affect the  
output of IR_SL2~0 which is referred by IR front-end module selection (Set7.Reg4~6)  
IRX_MSL - IR Receiver Module Select  
Select the receiver input path from the IR front end module if IR module has a separated  
high speed and low speed receiver path. If the IR module has only one receiving path,  
then this bit should be set to 0.  
IRX_MSL  
Receiver Pin selected  
IRRX (Low/High Speed)  
IRRXH (High Speed)  
0
1
Bit 5:  
IRSL0D - Direction of IRSL0 Pin  
Select function for IRRXH or IRSL0 because they share common pin and have different  
input/output direction.  
IRSL0_D  
Function  
IRRXH (I/P)  
IRSL0 (O/P)  
0
1
Publication Release Date: May 2006  
Revision 0.6  
- 81 -  
W83977ATF/W83977ATG  
Table: IR receiver input pin selection  
IRSL0D  
IRX_MSL  
AUX_RX  
HIGH SPEED IR  
SELECTED IR PIN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
X
X
0
1
X
X
0
1
IRRX  
IRRXH  
IRRX  
X
X
0
IRRXH  
IRRX  
1
Reserved  
IRRX  
X
X
Reserved  
Note: that (1) AUX_RX is defined in Set5.Reg4.Bit4, (2) high speed IR includes MIR (1.152M or 0.576M bps) and FIR (4M bps),  
(3) IRRX is the input of the low speed or high speed IR receiver, IRRXH is the input of the high speed IR receiver.  
Bit 4:  
RXINV - Receiving Signal Invert  
A write to 1 will Invert the receiving signal.  
TXINV - Transmitting Signal Invert  
A write to 1 will Invert the transmitting signal.  
Reserved, write 0.  
Bit 3:  
Bit 2~0:  
- 82 -  
W83977ATF/W83977ATG  
8. PARALLEL PORT  
8.1 Printer Interface Logic  
The parallel port of the W83977ATF/ATG makes possible the attachment of various devices that  
accept eight bits of parallel data at standard TTL level. W83977ATF/ATG supports an IBM XT/AT  
compatible parallel port (SPP), bi-directional parallel port (BPP), Enhanced Parallel Port (EPP),  
Extended Capabilities Parallel Port (ECP), Extension FDD mode (EXTFDD), Extension 2FDD mode  
(EXT2FDD) on the parallel port. Refer to the configuration registers for more information on disabling,  
power-down, and on selecting the mode of operation.  
Table 8-1-1 and table 8-1-2 show the pin definitions for different modes of the parallel port.  
TABLE 8-1-1 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
HOST  
CONNECTOR  
PIN NUMBER  
OF  
PIN  
ATTRIBUTE  
SPP  
EPP  
ECP  
W83977ATF  
1
36  
O
nSTB  
nWrite  
2
nSTB, HostClk  
PD<0:7>  
2-9  
10  
31-26, 24-23  
22  
I/O  
I
PD<0:7>  
nACK  
PD<0:7>  
Intr  
2
nACK, PeriphClk  
11  
12  
13  
14  
15  
21  
19  
18  
35  
34  
I
I
BUSY  
PE  
nWait  
PE  
2
BUSY, PeriphAck  
2
PEerror, nAckReverse  
I
SLCT  
nAFD  
nERR  
Select  
nDStrb  
nError  
2
SLCT, Xflag  
O
I
2
nAFD, HostAck  
1
nFault ,  
2
nPeriphRequest  
16  
17  
33  
32  
O
O
nINIT  
nInit  
1
2
nINIT , nReverseRqst  
nSLIN  
nAStrb  
1
2
nSLIN , ECPMode  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
Publication Release Date: May 2006  
Revision 0.6  
- 83 -  
W83977ATF/W83977ATG  
TABLE 8-1-2 PARALLEL PORT CONNECTOR AND PIN DEFINITIONS  
PIN  
NUMBER OF  
W83977ATF  
HOST  
CONNECTOR  
PIN  
ATTRIBUTE  
PIN  
ATTRIBUTE  
EXT2FD  
D
PIN  
ATTRIBUTE  
SPP  
EXTFDD  
1
2
36  
31  
O
nSTB  
PD0  
---  
I
---  
---  
I
---  
I/O  
INDEX2  
TRAK02  
WP2  
INDEX2  
TRAK02  
WP2  
3
4
5
6
30  
29  
28  
27  
I/O  
I/O  
I/O  
I/O  
PD1  
PD2  
PD3  
PD4  
I
I
I
I
I
I
I
I
RDATA2  
DSKCHG2  
RDATA2  
DSKCHG2  
7
8
26  
24  
I/O  
I/O  
PD5  
PD6  
---  
---  
---  
---  
---  
---  
OD  
MOA2  
DSA2  
DSB2  
MOB2  
WD2  
9
23  
22  
21  
19  
18  
35  
34  
I/O  
PD7  
nACK  
BUSY  
PE  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
---  
---  
10  
11  
12  
13  
14  
15  
I
I
OD  
OD  
OD  
OD  
OD  
OD  
DSB2  
MOB2  
WD2  
I
I
SLCT  
nAFD  
nERR  
WE2  
WE2  
O
I
RWC2  
HEAD2  
DIR2  
RWC2  
HEAD2  
DIR2  
16  
17  
33  
32  
O
O
nINIT  
OD  
OD  
OD  
OD  
nSLIN  
STEP2  
STEP2  
8.2 Enhanced Parallel Port (EPP)  
TABLE 8-2 PRINTER MODE AND EPP REGISTER ADDRESS  
A2  
0
A1  
0
A0  
0
REGISTER  
NOTE  
Data port (R/W)  
1
1
1
1
2
2
2
2
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
Printer control swapper (Read)  
EPP address port (R/W)  
EPP data port 0 (R/W)  
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
EPP data port 1 (R/W)  
1
1
0
EPP data port 2 (R/W)  
1
1
1
EPP data port 2 (R/W)  
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
- 84 -  
W83977ATF/W83977ATG  
8.2.1 Data Swapper  
The system microprocessor can read the contents of the printer's data latch by reading the data  
swapper.  
8.2.2 Printer Status Buffer  
The system microprocessor can read the printer status by reading the address of the printer status  
buffer. The bit definitions are as follows:  
7
6
5
4
3
2
1
1
1
0
TMOUT  
ERROR  
SLCT  
PE  
ACK  
BUSY  
Bit 7: This signal is active during data entry, when the printer is off-line during printing, when the print  
head is changing position, or during an error state. When this signal is active, the printer is busy  
and cannot accept data.  
Bit 6: This bit represents the current state of the printer's  
signal. A 0 means the printer has  
ACK  
received a character and is ready to accept another. Normally, this signal will be active for  
approximately 5 microseconds before BUSY stops.  
Bit 5: Logical 1 means the printer has detected the end of paper.  
Bit 4: Logical 1 means the printer is selected.  
Bit 3: Logical 0 means the printer has encountered an error condition.  
Bit 1, 2: These two bits are not implemented and are logic one during a read of the status register.  
Bit 0: This bit is valid in EPP mode only. It indicates that a 10 μS time-out has occurred on the EPP  
bus. A logic 0 means that no time-out error has occurred; a logic 1 means that a time-out error  
has been detected. Writing a logic 1 to this bit will clear the time-out status bit; writing a logic 0  
has no effect.  
Publication Release Date: May 2006  
- 85 -  
Revision 0.6  
W83977ATF/W83977ATG  
8.2.3 Printer Control Latch and Printer Control Swapper  
The system microprocessor can read the contents of the printer control latch by reading the printer  
control swapper. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
STROBE  
AUTO FD  
INIT  
SLCT IN  
IRQ ENABLE  
DIR  
Bit 7, 6: These two bits are a logic one during a read. They can be written.  
Bit 5: Direction control bit  
When this bit is a logic 1, the parallel port is in input mode (read); when it is a logic 0, the  
parallel port is in output mode (write). This bit can be read and written. In SPP mode, this bit is  
invalid and fixed at zero.  
Bit 4: A 1 in this position allows an interrupt to occur when ACK changes from low to high.  
Bit 3: A 1 in this bit position selects the printer.  
Bit 2: A 0 starts the printer (50 microsecond pulse, minimum).  
Bit 1: A 1 causes the printer to line-feed after a line is printed.  
Bit 0: A 0.5 microsecond minimum high active pulse clocks data into the printer. Valid data must be  
present for a minimum of 0.5 microseconds before and after the strobe pulse.  
8.2.4 EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
operation. The leading edge of IOW causes an EPP address write cycle to be performed, and the  
trailing edge of IOW latches the data for the duration of the EPP write cycle.  
PD0-PD7 ports are read during a read operation. The leading edge of IOR causes an EPP address  
read cycle to be performed and the data to be output to the host CPU.  
- 86 -  
W83977ATF/W83977ATG  
8.2.5 EPP Data Port 0-3  
These four registers are available only in EPP mode. Bit definitions of each data port are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
When accesses are made to any EPP data port, the contents of DB0-DB7 are buffered (non-inverting)  
and output to the ports PD0-PD7 during a write operation. The leading edge of IOW causes an EPP  
data write cycle to be performed, and the trailing edge of IOW latches the data for the duration of the  
EPP write cycle.  
During a read operation, ports PD0-PD7 are read, and the leading edge of IOR causes an EPP read  
cycle to be performed and the data to be output to the host CPU.  
8.2.6 Bit Map of Parallel Port and EPP Registers  
REGISTER  
Data Port (R/W)  
7
6
5
4
3
2
PD2  
1
1
PD1  
1
0
PD7  
PD6  
PD5  
PE  
PD4  
SLCT  
PD3  
PD0  
Status Buffer (Read)  
TMOUT  
BUSY  
1
ACK  
1
ERROR  
SLIN  
Control Swapper  
(Read)  
1
IRQEN  
INIT  
AUTOFD  
STROBE  
Control Latch (Write)  
1
1
DIR  
IRQ  
PD4  
SLIN  
PD3  
INIT  
PD2  
AUTOFD  
PD1  
STROBE  
PD0  
EPP Address Port  
R/W)  
PD7  
PD6  
PD5  
EPP Data Port 0  
(R/W)  
PD7  
PD7  
PD7  
PD7  
PD6  
PD6  
PD6  
PD6  
PD5  
PD5  
PD5  
PD5  
PD4  
PD4  
PD4  
PD4  
PD3  
PD3  
PD3  
PD3  
PD2  
PD2  
PD2  
PD2  
PD1  
PD1  
PD1  
PD1  
PD0  
PD0  
PD0  
PD0  
EPP Data Port 1  
(R/W)  
EPP Data Port 2  
(R/W)  
EPP Data Port 3  
(R/W)  
Publication Release Date: May 2006  
Revision 0.6  
- 87 -  
W83977ATF/W83977ATG  
8.2.7 EPP Pin Descriptions  
EPP NAME  
nWrite  
TYPE  
EPP DESCRIPTION  
O
I/O  
I
Denotes an address or data read or write operation.  
PD<0:7>  
Intr  
Bi-directional EPP address and data bus.  
Used by peripheral device to interrupt the host.  
nWait  
I
Inactive to acknowledge that data transfer is completed. Active to indicate that the  
device is ready for the next transfer.  
PE  
I
I
Paper end; same as SPP mode.  
Select  
nDStrb  
nError  
nInits  
Printer selected status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
O
This signal is active low. When it is active, the EPP device is reset to its initial  
operating mode.  
nAStrb  
O
This signal is active low. It denotes an address read or write operation.  
8.2.8 EPP Operation  
When the EPP mode is selected in the configuration register, the standard and bi-directional modes  
are also available. The PDx bus is in the standard or bi-directional mode when no EPP read, write, or  
address cycle is currently being executed. In this condition all output signals are set by the SPP  
Control Port and the direction is controlled by DIR of the Control Port.  
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μS have  
elapsed from the start of the EPP cycle to the time  
is deasserted. The current EPP cycle is  
WAIT  
aborted when a time-out occurs. The time-out condition is indicated in Status bit 0.  
8.2.8.1 EPP Operation  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
8.2.8.2 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If the nWait is active low, when the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or  
write cycle (nWrite active low, nDStrb/nAStrb active low) starts, the read/write cycle proceeds normally  
and will be completed when nWait goes inactive high.  
b. If nWait is inactive high, the read/write cycle will not start. It must wait until nWait changes to active  
low, at which time it will start as described above.  
8.2.8.3 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it will not terminate until nWait changes from active low to inactive  
high.  
- 88 -  
W83977ATF/W83977ATG  
8.3 Extended Capabilities Parallel (ECP) Port  
This port is software and hardware compatible with existing parallel ports, so it may be used as a  
standard printer mode if ECP is not required. It provides an automatic high burst-bandwidth channel  
that supports DMA for ECP in both the forward (host to peripheral) and reverse (peripheral to host)  
directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the  
standard parallel port to improve compatibility mode transfer speed.  
The ECP port supports run-length-encoded (RLE) decompression (required) in hardware.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. Hardware support for compression is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA  
Interface Standard.  
8.3.1 ECP Register and Mode Definitions  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
FUNCTION  
Data Register  
000-001  
011  
All  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
ecpDFifo  
tFifo  
010  
011  
110  
111  
111  
All  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
cnfgA  
cnfgB  
ecr  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
Note: The base addresses are specified by CR60 & CR61, which are determined by configuration register or hardware setting.  
MODE  
000  
001  
010  
011  
100  
101  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CRF0 to select ECP/EPP mode)  
Reserved  
110  
111  
Test mode  
Configuration mode  
Note: The mode selection bits are bit 7-5 of the Extended Control Register.  
Publication Release Date: May 2006  
Revision 0.6  
- 89 -  
W83977ATF/W83977ATG  
8.3.2 Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input. The contents of this register are output to the PD0-PD7 ports. During a read operation, ports  
PD0-PD7 are read and output to the host. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. The operation of this  
register is defined only for the forward direction. The bit definitions are as follows:  
7
6
5
4
3
2
1
0
Address or RLE  
Address/RLE  
8.3.3 Device Status Register (DSR)  
These bits are at low level during a read of the Printer Status Register. The bits of this status register  
are defined as follows:  
7
6
5
4
3
2
1
0
1
1
1
nFault  
Select  
PError  
nAck  
nBusy  
- 90 -  
W83977ATF/W83977ATG  
Bit 7: This bit reflects the complement of the Busy input.  
Bit 6: This bit reflects the nAck input.  
Bit 5: This bit reflects the PError input.  
Bit 4: This bit reflects the Select input.  
Bit 3: This bit reflects the nFault input.  
Bit 2-0: These three bits are not implemented and are always logic one during a read.  
8.3.4 Device Control Register (DCR)  
The bit definitions are as follows:  
7
6
5
4
3
2
1
0
1
1
strobe  
autofd  
nInit  
SelectIn  
ackIntEn  
Direction  
Bit 6, 7: These two bits are logic one during a read and cannot be written.  
Bit 5: This bit has no effect and the direction is always out if mode = 000 or mode = 010. Direction is  
valid in all other modes.  
0
1
the parallel port is in output mode.  
the parallel port is in input mode.  
Bit 4: Interrupt request enable. When this bit is set to a high level, it may be used to enable interrupt  
requests from the parallel port to the CPU due to a low to high transition on the ACK input.  
Bit 3: This bit is inverted and output to the SLIN output.  
0
1
The printer is not selected.  
The printer is selected.  
Bit 2: This bit is output to the INIT output.  
Bit 1: This bit is inverted and output to the AFD output.  
Bit 0: This bit is inverted and output to the STB output.  
8.3.5 cFifo (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. The standard parallel port protocol is used by a  
hardware handshake to the peripheral to transmit bytes written or DMAed from the system to this  
FIFO. Transfers to the FIFO are byte aligned.  
Publication Release Date: May 2006  
- 91 -  
Revision 0.6  
W83977ATF/W83977ATG  
8.3.6 ecpDFifo (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed from the system to this FIFO are transmitted by a  
hardware handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are  
byte aligned.  
When the direction bit is 1, data bytes from the peripheral are read under automatic hardware  
handshake from ECP into this FIFO. Reads or DMAs from the FIFO will return bytes of ECP data to  
the system.  
8.3.7 tFifo (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in  
the tFIFO will not be transmitted to the parallel port lines. However, data in the tFIFO may be  
displayed on the parallel port data lines.  
8.3.8 cnfgA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates to the system that  
this is an 8-bit implementation.  
8.3.9 cnfgB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
7
6
5
4
3
2
1
1
0
1
1
IRQx 0  
IRQx 1  
IRQx 2  
intrValue  
compress  
Bit 7: This bit is read-only. It is at low level during a read. This means that this chip does not support  
hardware RLE compression.  
Bit 6: Returns the value on the ISA IRQ line to determine possible conflicts.  
- 92 -  
W83977ATF/W83977ATG  
Bit 5-3: Reflect the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
000  
IRQ resource  
reflect other IRQ resources selected by PnP register (default)  
001  
IRQ7  
010  
IRQ9  
011  
100  
101  
110  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
111  
Bit 2-0: These five bits are at high level during a read and can be written.  
8.3.10 ecr (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
7
6
5
4
3
2
1
0
empty  
full  
service Intr  
dmaEn  
nErrIntrEn  
MODE  
MODE  
MODE  
Bit 7-5: These bits are read/write and select the mode.  
000  
001  
Standard Parallel Port mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as 000 except that direction may be used  
to tri-state the data lines and reading the data register returns the value on the data  
lines and not the value in the data register.  
010  
011  
Parallel Port FIFO mode. This is the same as 000 except that bytes are written or  
DMAed to the FIFO. FIFO data are automatically transmitted using the standard  
parallel port protocol. This mode is useful only when direction is 0.  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes placed  
into the ecpDFifo and bytes written to the ecpAFifo are placed in a single FIFO and  
auto transmitted to the peripheral using ECP Protocol. When the direction is 1  
(reverse direction), bytes are moved from the ECP parallel port and packed into  
bytes in the ecpDFifo.  
100  
101  
110  
Selects EPP Mode. In this mode, EPP is activated if the EPP mode is selected.  
Reserved.  
Test Mode. The FIFO may be written and read in this mode, but the data will not be  
transmitted on the parallel port.  
111  
Configuration Mode. The confgA and confgB registers are accessible at 0x400 and  
0x401 in this mode.  
Publication Release Date: May 2006  
- 93 -  
Revision 0.6  
W83977ATF/W83977ATG  
Bit 4: Read/Write (Valid only in ECP Mode)  
1
0
Disables the interrupt generated on the asserting edge of nFault.  
Enables an interrupt pulse on the high to low edge of nFault. If nFault is asserted  
(interrupt), an interrupt will be generated and this bit is written from a 1 to 0.  
Bit 3: Read/Write  
1
0
Enables DMA.  
Disables DMA unconditionally.  
Bit 2: Read/Write  
1
0
Disables DMA and all of the service interrupts.  
Enables one of the following cases of interrupts. When one of the service interrupts  
has occurred, the serviceIntr bit is set to a 1 by hardware. This bit must be reset to  
0 to re-enable the interrupts. Writing a 1 to this bit will not cause an interrupt.  
(a) dmaEn = 1: During DMA this bit is set to a 1 when terminal count is reached.  
(b) dmaEn = 0 direction = 0: This bit is set to 1 whenever there are writeIntr  
Threshold or more bytes free in the FIFO.  
(c) dmaEn = 0 direction = 1: This bit is set to 1 whenever there are readIntr  
Threshold or more valid bytes to be read from the FIFO.  
Bit 1: Read only  
0
The FIFO has at least 1 free byte.  
1
The FIFO cannot accept another byte or the FIFO is completely full.  
Bit 0: Read only  
0
1
The FIFO contains at least 1 byte of data.  
The FIFO is completely empty.  
8.3.11 Bit Map of ECP Port Registers  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
data  
ecpAFifo  
dsr  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Addr/RLE  
Address or RLE field  
2
1
1
2
2
2
nBusy  
1
nAck  
1
PError  
Select  
nFault  
1
1
1
SelectIn  
autofd  
strobe  
dcr  
Directio  
ackIntEn  
nInit  
cFifo  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
ecpDFifo  
tFifo  
cnfgA  
cnfgB  
ecr  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
compress intrValue  
MODE  
nErrIntrEn  
serviceIntr  
dmaEn  
full  
empty  
Notes:  
1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
- 94 -  
W83977ATF/W83977ATG  
8.3.12 ECP Pin Descriptions  
NAME  
TYPE  
DESCRIPTION  
nStrobe (HostClk)  
O
The nStrobe registers data or address into the slave on the asserting  
edge during write operations. This signal handshakes with Busy.  
PD<7:0>  
I/O  
I
These signals contain address or data or RLE data.  
nAck (PeriphClk)  
This signal indicates valid data driven by the peripheral when asserted.  
This signal handshakes with nAutoFd in reverse.  
Busy (PeriphAck)  
I
This signal deasserts to indicate that the peripheral can accept data. It  
indicates whether the data lines contain ECP command information or  
data in the reverse direction. When in reverse direction, normal data  
are transferred when Busy (PeriphAck) is high and an 8-bit command  
is transferred when it is low.  
PError (nAckReverse)  
I
This signal is used to acknowledge a change in the direction of the  
transfer (asserted = forward). The peripheral drives this signal low to  
acknowledge nReverseRequest. The host relies upon nAckReverse to  
determine when it is permitted to drive the data bus.  
Select (Xflag)  
I
Indicates printer on line.  
nAutoFd (HostAck)  
O
Requests a byte of data from the peripheral when it is asserted. This  
signal indicates whether the data lines contain ECP address or data in  
the forward direction. When in forward direction, normal data are  
transferred when nAutoFd (HostAck) is high and an 8-bit command is  
transferred when it is low.  
nFault (nPeriphRequest)  
I
Generates an error interrupt when it is asserted. This signal is valid  
only in the forward direction. The peripheral is permitted (but not  
required) to drive this pin low to request a reverse transfer during ECP  
Mode.  
nInit (nReverseRequest)  
nSelectIn (ECPMode)  
O
O
This signal sets the transfer direction (asserted = reverse, deasserted  
= forward). This pin is driven low to place the channel in the reverse  
direction.  
This signal is always deasserted in ECP mode.  
Publication Release Date: May 2006  
- 95 -  
Revision 0.6  
W83977ATF/W83977ATG  
8.3.13 ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits. The  
following are required:  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
8.3.13.1 Mode Switching  
Software will execute P1284 negotiation and all operation prior to a data transfer phase under  
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line handshake,  
moving data between the FIFO and the ECP port only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 or 001  
it can only be switched into mode 000 or 001. The direction can be changed only in mode 001.  
When in extended forward mode, the software should wait for the FIFO to be empty before switching  
back to mode 000 or 001. In ECP reverse mode the software waits for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
8.3.13.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal  
data are transferred when HostAck is high and an 8-bit command is transferred when HostAck is low.  
The most significant bits of the command indicate whether it is a run-length count (for compression) or  
a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
8.3.13.3 Data Compression  
The W83977ATF/ATG supports run length encoded (RLE) decompression in hardware and can  
transfer compressed data to a peripheral. Note that the odd (RLE) compression in hardware is not  
supported. In order to transfer data in ECP mode, the compression count is written to the ecpAFifo  
and the data byte is written to the ecpDFifo.  
8.3.14 FIFO Operation  
The FIFO threshold is set in configuration register 5. All data transfers to or from the parallel port can  
proceed in DMA or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO  
is used by selecting the Parallel Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is  
disabled.  
- 96 -  
W83977ATF/W83977ATG  
8.3.15 DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. The DMA uses the standard PC  
DMA services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
will empty or fill the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated and serviceIntr is asserted, which will disable the  
DMA.  
8.3.16 Programmed I/O (NON-DMA) Mode  
The ECP or parallel port FIFOs can also be operated using interrupt driven programmed I/O.  
Programmed I/O transfers are to the ecpDFifo at 400H and ecpAFifo at 000H or from the ecpDFifo  
located at 400H, or to/from the tFifo at 400H. The host must set the direction, state, dmaEn = 0 and  
serviceIntr = 0 in the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O will empty or fill the FIFO using the appropriate direction and mode.  
8.4 Extension FDD Mode (EXTFDD)  
In this mode, W83977ATF/ATG changes the printer interface pins to FDC input/output pins, allowing  
the user to install a second floppy disk drive (FDD B) through the DB-25 printer connector. The pin  
assignments for the FDC input/output pins are shown in Table 8-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOB and DSB will be forced to inactive state.  
(2) Pins DSKCHG, RDATA , WP, TRAK0, INDEX will be logically ORed with pins PD4-PD0 to serve  
as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXTFDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
8.5 Extension 2FDD Mode (EXT2FDD)  
In this mode, W83977ATF/ATG changes the printer interface pins to FDC input/output pins, allowing  
the user to install two external floppy disk drives through the DB-25 printer connector to replace  
internal floppy disk drives A and B. The pin assignments for the FDC input/output pins are shown in  
Table8-1.  
After the printer interface is set to EXTFDD mode, the following occur:  
(1) Pins MOA , DSA, MOB, and DSB will be forced to inactive state.  
(2) Pins DSKCHG, RDATA , WP, TRAK0, and INDEX will be logically ORed with pins PD4-PD0 to  
serve as input signals to the FDC.  
(3) Pins PD4-PD0 each will have an internal resistor of about 1K ohm to serve as pull-up resistor for  
FDD open drain/collector output.  
(4) If the parallel port is set to EXT2FDD mode after the system has booted DOS or another operating  
system, a warm reset is needed to enable the system to recognize the extension floppy drive.  
Publication Release Date: May 2006  
- 97 -  
Revision 0.6  
W83977ATF/W83977ATG  
9. KEYBOARD CONTROLLER  
The KBC (8042 with licensed KB BIOS) circuit of W83977ATF/ATG is designed to provide the  
functions needed to interface a CPU with a keyboard and/or a PS/2 mouse, and can be used with  
®-  
IBM compatible personal computers or PS/2-based systems. The controller receives serial data from  
the keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a  
byte of data in its output buffer. Then, the controller will assert an interrupt to the system when data  
are placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data  
transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an  
acknowledgement is received for the previous data byte.  
P24  
P25  
P21  
P20  
KIRQ  
MIRQ  
GATEA20  
KBRST  
KINH  
P17  
KDAT  
KCLK  
P27  
P10  
P26  
8042  
T0  
GP I/O PINS  
Multiplex I/O PINS  
MCLK  
MDAT  
P23  
T1  
P12~P16  
P22  
P11  
Keyboard and Mouse Interface  
9.1 Output Buffer  
The output buffer is an 8-bit read-only register at I/O address 60H (Default, PnP programmable I/O  
address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan  
code received from the keyboard and data bytes required by commands to the system. The output  
buffer can only be read when the output buffer full bit in the register is "1".  
9.2 Input Buffer  
The input buffer is an 8-bit write-only register at I/O address 60H or 64H (Default, PnP programmable  
I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60H sets a flag  
to indicate a data write; writing to address 64H sets a flag to indicate a command write. Data written  
to I/O address 60H is sent to keyboard (unless the keyboard controller is expecting a data byte)  
through the controller's input buffer only if the input buffer full bit in the status register is “0”.  
- 98 -  
W83977ATF/W83977ATG  
9.3 Status Register  
The status register is an 8-bit read-only register at I/O address 64H (Default, PnP programmable I/O  
address LD5-CR62 and LD5-CR63), that holds information about the status of the keyboard controller  
and interface. It may be read at any time.  
BIT  
BIT FUNCTION  
DESCRIPTION  
0
Output Buffer Full  
0: Output buffer empty  
1: Output buffer full  
1
2
Input Buffer Full  
System Flag  
0: Input buffer empty  
1: Input buffer full  
This bit may be set to 0 or 1 by writing to the system flag  
bit in the command byte of the keyboard controller. It  
defaults to 0 after a power-on reset.  
3
4
5
6
7
Command/Data  
Inhibit Switch  
0: Data byte  
1: Command byte  
0: Keyboard is inhibited  
1: Keyboard is not inhibited  
Auxiliary Device Output  
Buffer  
0: Auxiliary device output buffer empty  
1: Auxiliary device output buffer full  
General Purpose Time-  
out  
0: No time-out error  
1: Time-out error  
Parity Error  
0: Odd parity  
1: Even parity (error)  
9.4 Commands  
COMMAND  
20h  
FUNCTION  
Read Command Byte of Keyboard Controller  
Write Command Byte of Keyboard Controller  
60h  
BIT  
BIT DEFINITION  
7
6
Reserved  
IBM Keyboard Translate Mode  
Disable Auxiliary Device  
Disable Keyboard  
5
4
3
2
1
Reserve  
System Flag  
Enable Auxiliary Interrupt  
Enable Keyboard Interrupt  
0
Publication Release Date: May 2006  
Revision 0.6  
- 99 -  
W83977ATF/W83977ATG  
Commands, continued  
COMMAND  
FUNCTION  
A4h  
Test Password  
Returns 0Fah if Password is loaded  
Returns 0F1h if Password is not loaded  
Load Password  
A5h  
A6h  
Load Password until a "0" is received from the system  
Enable Password  
Enable the checking of keystrokes for a match with the password  
Disable Auxiliary Device Interface  
Enable Auxiliary Device Interface  
Interface Test  
A7h  
A8h  
A9h  
BIT  
BIT DEFINITION  
No Error Detected  
00  
01  
Auxiliary Device "Clock" line is stuck low  
Auxiliary Device "Clock" line is stuck high  
Auxiliary Device "Data" line is stuck low  
02  
03  
04  
Auxiliary Device "Data" line is stuck low  
AAh  
ABh  
Self-test  
Returns 055h if self test succeeds  
Interface Test  
BIT DEFINITION  
BIT  
00  
No Error Detected  
01  
Keyboard "Clock" line is stuck low  
02  
03  
04  
Keyboard "Clock" line is stuck high  
Keyboard "Data" line is stuck low  
Keyboard "Data" line is stuck high  
ADh  
AEh  
C0h  
C1h  
C2h  
D0h  
D1h  
Disable Keyboard Interface  
Enable Keyboard Interface  
Read Input Port(P1) and send data to the system  
Continuously puts the lower four bits of Port1 into STATUS register  
Continuously puts the upper four bits of Port1 into STATUS register  
Send Port2 value to the system  
Only set/reset GateA20 line based on the system data bit 1  
- 100 -  
W83977ATF/W83977ATG  
Commands, continued  
COMMAND  
FUNCTION  
D2h  
D3h  
D4h  
E0h  
FXh  
Send data back to the system as if it came from Keyboard  
Send data back to the system as if it came from Auxiliary Device  
Output next received byte of data from system to Auxiliary Device  
Reports the status of the test inputs  
Pulse only RC(the reset line) low for 6μS if Command byte is even  
9.5 HARDWARE GATEA20/KEYBOARD RESET CONTROL LOGIC  
The KBC implements a hardware control logic to speed-up GATEA20 and KBRESET. This control  
logic is controlled by LD5-CRF0 as follows:  
9.5.1 KB Control Register (Logic Device 5, CR-F0)  
BIT  
7
6
5
4
3
2
1
0
KCLKS1  
KCLKS0  
Reserved Reserved Reserved  
P92EN  
HGA20  
HKBRST  
NAME  
KCLKS1, KCLKS0  
This 2 bits are for the KBC clock rate selection.  
= 0 0  
KBC clock input is 6 Mhz  
KBC clock input is 8 Mhz  
KBC clock input is 12 Mhz  
KBC clock input is 16 Mhz  
= 0 1  
= 1 0  
= 1 1  
P92EN (Port 92 Enable)  
A "1" on this bit enables Port 92 to control GATEA20 and KBRESET.  
A "0" on this bit disables Port 92 functions.  
HGA20 (Hardware GATE A20)  
A "1" on this bit selects hardware GATEA20 control logic to control GATE A20 signal.  
A "0" on this bit disables hardware GATEA20 control logic function.  
HKBRST (Hardware Keyboard Reset)  
A "1" on this bit selects hardware KB RESET control logic to control KBRESET signal.  
A "0" on this bit disable hardware KB RESET control logic function.  
When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears  
GATE A20 according to the received data bit 1. Similarly, the hardware control logic sets or clears  
KBRESET depending on the received data bit 0. When the KBC receives a "FE" command, the  
KBRESET is pulse low for 6μS (Min.) with 14μS (Min.) delay.  
Publication Release Date: May 2006  
- 101 -  
Revision 0.6  
W83977ATF/W83977ATG  
GATEA20 and KBRESET are controlled by either the software control or the hardware control logic  
and they are mutually exclusive. Then, GATEA20 and KBRESET are merged along with Port92 when  
P92EN bit is set.  
9.5.2 Port 92 Control Register (Default Value = 0x24)  
BIT  
7
6
5
4
3
2
1
0
NAME  
Res. (0) Res. (0) Res. (1) Res. (0) Res. (0) Res. (1)  
SGA20 PLKBRST  
SGA20 (Special GATE A20 Control)  
A "1" on this bit drives GATE A20 signal to high.  
A "0" on this bit drives GATE A20 signal to low.  
PLKBRST (Pull-Low KBRESET)  
A "1" on this bit causes KBRESET to drive low for 6μS (Min.) with 14μS (Min.) delay. Before issuing  
another keyboard reset command, the bit must be cleared.  
- 102 -  
W83977ATF/W83977ATG  
10. GENERAL PURPOSE I/O  
W83977ATF/ATG provides 23 Input/Output ports that can be individually configured to perform a  
simple basic I/O function or a pre-defined alternate function. These 23 GP I/O ports are divided into  
three groups; the first group contains 8 ports, the second group contains only 7 ports, and the third  
group contains 8 ports. Each port in the first group corresponds to a configuration register in logical  
device 7, the second group in logical device 8, and the third group in logical device 9. Users can  
select these I/O ports functions by independently programming the configuration registers. Figure 7.1,  
7.2, and 7.3 show the GP I/O port's structure of logical device 7, 8, and 9 respectively. Right after  
Power-on reset, those ports default to perform basic I/O functions.  
Figure 10.1  
Publication Release Date: May 2006  
- 103 -  
Revision 0.6  
W83977ATF/W83977ATG  
Figure 10.2  
Figure 10.3  
- 104 -  
W83977ATF/W83977ATG  
10.1 Basic I/O functions  
The Basic I/O functions of W83977ATF/ATG provide several I/O operations, including driving a logic  
value to output port, latching a logic value from input port, inverting the input/output logic value, and  
steering Common Interrupt (only available in the second group of the GP I/O port). Common Interrupt  
is the ORed function of all interrupt channels in the second group of the GP I/O ports, and it also  
connects to a 1ms debounce filter which can reject a noise of 1 ms pulse width or less. There are  
three 8-bit registers (GP1, GP2, and GP3) which are directly connected to those GP I/O ports. Each  
GP I/O port is represented as a bit in one of three 8-bit registers. Only 6 bits of GP2 are implemented.  
Table 10.1.1 shows their combinations of Basic I/O functions, and Table 10.1.2 shows the register bit  
assignments of GP1, GP2, and GP3.  
Table 10.1.1  
I/O BIT  
ENABLE INT BIT  
POLARITY BIT  
BASIC I/O OPERATIONS  
0 = OUTPUT  
0 = DISABLE  
0 = NON INVERT  
1 = INPUT  
1 = ENABLE  
1 = INVERT  
0
0
0
0
0
1
0
1
0
Basic non-inverting output  
Basic inverting output  
Non-inverted output bit value of GP2 drive  
to Common Interrupt  
0
1
1
Inverted output bit value of GP2 drive to  
Common Interrupt  
1
1
1
0
0
1
0
1
0
Basic non-inverting input  
Basic inverting input  
Non-inverted input drive to Common  
Interrupt  
1
1
1
Inverted input drive to Common Interrupt  
Publication Release Date: May 2006  
Revision 0.6  
- 105 -  
W83977ATF/W83977ATG  
Table 10.1.2  
GP I/O PORT ACCESSED REGISTER  
REGISTER BIT ASSIGNMENT  
GP I/O PORT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP1  
BIT 7  
BIT 0  
GP17  
GP20  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
GP21  
GP22  
GP23  
GP24  
GP25  
GP2  
BIT 6  
BIT 0  
GP26  
GP30  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
GP31  
GP32  
GP33  
GP34  
GP35  
GP36  
GP37  
GP3  
- 106 -  
W83977ATF/W83977ATG  
10.2 Alternate I/O Functions  
W83977ATF/ATG provides several alternate functions which are scattered among the GP I/O ports.  
Table 10.2.1 shows their assignments. Polarity bit can also be set to alter their polarity.  
Table 10.2.1  
GP I/O PORT  
GP10  
GP11  
GP12  
GP13  
GP14  
GP15  
GP16  
GP17  
GP20  
GP21  
GP22  
GP23  
GP24  
GP25  
GP30  
GP31  
GP32  
GP33  
GP34  
ALTERNATE FUNCTION  
Interrupt Steering  
Interrupt Steering  
Watch Dog Timer Output/IRRX input  
Power LED output/IRTX output  
General Purpose Address Decoder/Keyboard Inhibit(P17)  
General Purpose Write Strobe/ 8042 P12  
Watch Dog Timer Output  
Power LED output  
Keyboard Reset (8042 P20)  
8042 P13  
8042 P14  
8042 P15  
8042 P16  
GATE A20 (8042 P21)  
Interrupt Steering  
Interrupt Steering  
General Purpose Address Decoder  
General Purpose Address Decoder  
Watch Dog Timer Output  
10.2.1 Interrupt Steering  
GP10, GP11, GP30, and GP31 can be programmed to map their own interrupt channels. The  
selection of IRQ channel can be done in configuration registers CR70 and CR72 of logical device 7  
and logical device 9. Each interrupt channel also has its own 1 ms debounce filter that is used to  
reject any noise whose width is equal to or less than 1 ms.  
Publication Release Date: May 2006  
- 107 -  
Revision 0.6  
W83977ATF/W83977ATG  
10.2.2 Watch Dog Timer Output  
Watch Dog Timer contains a one minute resolution down counter, CRF2 of Logical Device 8, and two  
watch Dog control registers, WDT_CTRL0 and WDT_CTRL1 of Logical Device 8. The down counter  
can be programmed within the range from 1 to 255 minutes. Writing any new non-zero value to CRF2  
or reset signal coming from a Mouse interrupt or Keyboard interrupt (CRF2 also contains non-zero  
value) will cause the Watch Dog Timer to reload and start to count down from the new value. As the  
counter reaches zero, (1) Watch Dog Timer time-out occurs and the bit 0 of WDT_CTRL1 will be set  
to logic 1; (2) Watch Dog interrupt output is asserted if the interrupt is enable in CR72 of logical device  
8; and (3) Power LED starts to toggle output if the bit 3 of WDT_CTRL0 is enabled. WDT_CTRL1 also  
can be accessed through GP2 I/O base address + 1.  
10.2.3 Power LED  
The Power LED function provides 1 Hertz rate toggle pulse output with 50 percent duty cycle. Table  
10.2.2 shows how to enable Power LED.  
Table 10.2.2  
WDT_CTRL1 BIT[1]  
WDT_CTRL0 BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
1 Hertz Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
Continuous high or low *  
Continuous high or low *  
1 Hertz Toggle pulse  
1
* Note: Continuous high or low depends on the polarity bit of GP13 or GP17 configuration registers.  
10.2.4 General Purpose Address Decoder  
General Purpose Address Decoder provides two addresses decode as AEN equal to logic 0. The  
address base is stored at CR62, CR63 of logical device 7 for GP14 and at CR62-65 of logical device 9  
for GP32 and GP33. The decoding output is normally active low. Users can alter its polarity through  
the polarity bit of the GP14, GP32, and GP33's configuration register.  
10.2.5 General Purpose Write Strobe  
General Purpose Write Strobe is an address decoder that performs like General Purpose Address  
Decoder, but it has to be qualified by IOW and AEN. Its output is normally active low. Users can alter  
its polarity through the polarity bit of the GP15's configuration register.  
- 108 -  
W83977ATF/W83977ATG  
11. PLUG AND PLAY CONFIGURATION  
W83977ATF/ATG uses Compatible PNP protocol to access configuration registers for setting up  
different types of configurations. In W83977ATF/ATG, there are nine Logical Devices (from Logical  
Device 0 to Logical Device A, with the exception of logical device 4 for compatibility) which correspond  
to ten individual functions: FDC (logical device 0), PRT (logical device 1), UART1 (logical device 2),  
UART2 (logical device 3), KBC (logical device 5), IR (logical device 6), GPIO1 (logical device 7),  
GPIO2 (logical device 8), GPIO3 (logical device 9), and ACPI ((logical device A). Each Logical Device  
has its own configuration registers (above CR30). Host can access those registers by writing an  
appropriate logical device number into logical device select register at CR7.  
11.1 Compatible PnP  
11.1.1 Extended Function Registers  
In Compatible PnP, there are two ways to enter Extended Function and read or write the configuration  
registers. HEFRAS (CR26 bit 6) can be used to select one of these two methods of entering the  
Extended Function mode as follows:  
HEFRAS  
ADDRESS AND VALUE  
write 87h to the location 3F0h twice  
write 87h to the location 370h twice  
0
1
After Power-on reset, the value on RTSA (pin 43) is latched by HEFRAS of CR26. In Compatible  
PnP, a specific value (87h) must be written twice to the Extended Functions Enable Register (I/O port  
address 3F0h or 370h). Secondly, an index value (02h, 07h-FFh) must be written to the Extended  
Functions Index Register (I/O port address 3F0h or 370h same as Extended Functions Enable  
Register) to identify which configuration register is to be accessed. The designer can then access the  
desired configuration register through the Extended Functions Data Register (I/O port address 3F1h  
or 371h).  
After programming of the configuration register is finished, an additional value (AAh) should be written  
to EFERs to exit the Extended Function mode, to prevent unintentional access to those configuration  
registers. The designer can also set bit 5 of CR26 (LOCKREG) to high to protect the configuration  
registers against accidental accesses.  
The configuration registers can be reset to their default or hardware settings only by a cold reset (pin  
MR = 1). A warm reset will not affect the configuration registers.  
Publication Release Date: May 2006  
- 109 -  
Revision 0.6  
W83977ATF/W83977ATG  
11.1.2 Extended Functions Enable Registers (EFERs)  
After power-on reset, W83977ATF/ATG enters the default operating mode. Before  
a
W83977ATF/ATG enters the extended function mode, a specific value must be programmed into the  
Extended Function Enable Register (EFER) so that the extended function register can be accessed.  
The Extended Function Enable Registers are write-only registers. On a PC/AT system, their port  
addresses are 3F0h or 370h (as described in previous section).  
11.1.3 Extended Function Index Registers (EFIRs), Extended Function Data Registers  
(EFDRs)  
After the extended function mode is entered, the Extended Function Index Register (EFIR) must be  
loaded with an index value (02h, 07h-FEh) to access Configuration Register 0 (CR0), Configuration  
Register 7 (CR07) to Configuration Register FE (CRFE), and so forth through the Extended Function  
Data Register (EFDR). The EFIRs are write-only registers with port address 3F0h or 370h on PC/AT  
systems; the EFDRs are read/write registers with port address 3F1h or 371h on PC/AT systems.  
11.2 Configuration Sequence  
To program W83977ATF/ATG configuration registers, the following configuration sequence must be  
followed:  
(1). Enter the extended function mode  
(2). Configure the configuration registers  
(3). Exit the extended function mode  
Enter the extended function mode  
To place the chip into the extended function mode, two successive writes of 0x87 must be applied to  
Extended Function Enable Registers (EFERs, i.e. 3F0h or 370h).  
Configurate the configuration registers  
The chip selects the logical device and activates the desired logical devices through Extended  
Function Index Register (EFIR) and Extended Function Data Register (EFDR). EFIR is located at the  
same address as EFER, and EFDR is located at address (EFIR+1).  
First, write the Logical Device Number (i.e., 0x07) to the EFIR and then write the number of the  
desired logical device to the EFDR. If accessing the Chip (Global) Control Registers, this step is not  
required.  
Secondly, write the address of the desired configuration register within the logical device to the EFIR  
and then write (or read) the desired configuration register through EFDR.  
Exit the extended function mode  
To exit the extended function mode, one write of 0xAA to EFER is required. Once the chip exits the  
extended function mode, it is in the normal running mode and is ready to enter the configuration  
mode.  
- 110 -  
W83977ATF/W83977ATG  
Software programming example  
The following example is written in Intel 8086 assembly language. It assumes that the EFER is located  
at 3F0h, so EFIR is located at 3F0h and EFDR is located at 3F1h. If HEFRAS (CR26 bit 6) is set,  
3F0h can be directly replaced by 370h and 3F1h replaced by 371h.  
;-----------------------------------------------------------------------------------  
; Enter the extended function mode, interruptible double-write  
;-----------------------------------------------------------------------------------  
MOV DX, 3F0H  
|
MOV AL, 87H  
OUT DX, AL  
OUT DX, AL  
;-----------------------------------------------------------------------------  
; Configurate logical device 1, configuration register CRF0 |  
;-----------------------------------------------------------------------------  
MOV DX, 3F0H  
MOV AL, 07H  
OUT DX, AL  
MOV DX, 3F1H  
MOV AL, 01H  
OUT DX, AL  
;
; point to Logical Device Number Reg.  
; select logical device 1  
MOV DX, 3F0H  
MOV AL, F0H  
OUT DX, AL  
MOV DX, 3F1H  
MOV AL, 3CH  
OUT DX, AL  
; select CRF0  
; update CRF0 with value 3CH  
;------------------------------------------  
; Exit extended function mode  
;------------------------------------------  
MOV DX, 3F0H  
|
MOV AL, AAH  
OUT DX, AL  
Publication Release Date: May 2006  
Revision 0.6  
- 111 -  
W83977ATF/W83977ATG  
12. ACPI REGISTERS FEATURES  
W83977ATF/ATG supports both ACPI and legacy power managements. The switch logic of the power  
management block generates an SMI interrupt in the legacy mode and an SCI interrupt in the ACPI  
mode. For the legacy mode, the SMI_EN bit is used. If it is set, it routes the power management  
events to the SMI interrupt logic. For the ACPI mode, the SCI_EN bit is used. If it is set, it routes the  
power management events to the SCI interrupt logic. The SMI_EN bit is located in the configuration  
register block of logical device A and the SCI_EN bit is located in the PM1 register block. See the  
following figure for illustration.  
SMI_EN  
IRQs  
from SCI to SMI  
SMI Logic  
SMI output  
SMI  
Logic  
0
IRQs  
PM Timer  
1
SCI output  
Logic  
SCI  
SCI_EN  
from SMI to SCI  
Bus Master SCI  
SCI Logic  
WAK_STS  
IRQs  
Sleep/Wake  
State machine  
Clock  
Control  
Device Idle  
Timers  
Device Trap  
Global STBY  
Timer  
The SMI interrupt is routed to pin SMI, which is dedicated for the SMI interrupt output. Another way  
to output the SMI interrupt is to route to pin IRQSER, which is the signal pin in the Serial IRQ mode.  
The SCI interrupt can be routed to pin SCI , which is dedicated for the SCI function. Or it can be  
routed to one interrupt request pin, which is selected through CR70 bit3-0 of logical device A. Another  
way is to output the SCI interrupt to pin IRQSER if Serial IRQ mode is enabled.  
- 112 -  
W83977ATF/W83977ATG  
12.1 SMI to SCI/SCI to SMI and Bus Master  
The following figure illustrates the process of generating an interrupt from SMI to SCI or from SCI to  
SMI.  
clear  
GBL_STS  
from SMI to SCI  
set  
BIOS_RLS  
To SCI Logic  
GBL_EN  
clear  
BIOS_STS  
from SCI to SMI  
set  
GBL_RLS  
To SMI Logic  
BIOS_EN  
clear  
BM_STS  
Bus Master SCI  
set  
BM_CNTPL  
To SCI Logic  
BM_RLD  
: Status bit  
: Enable bit  
For the BIOS software to raise an event to the ACPI software, BIOS_RLS, GBL_EN, and GBL_STS  
bits are involved. GBL_EN is the enable bit and the GBL_STS is the status bit. Both are controlled by  
the ACPI software. If BIOS_RLS is set by the BIOS software and GBL_EN is set by the ACPI  
software, an SCI interrupt is raised. Writing a 1 to BIOS_RLS sets it to logic 1 and also sets  
GBL_STS to logic 1. Writing a 0 to BIOS_RLS has no effect. Writing a 1 to GBL_STS clears it to logic  
0 and also clears BIOS_RLS to logic 0. Writing a 0 to GBL_STS has no effect.  
For the ACPI software to raise an event to the BIOS software, GBL_RLS, BIOS_EN, and BIOS_STS  
bits are involved. BIOS_EN is the enable bit and the BIOS_STS is the status bit. Both are controlled  
by the BIOS software. If GBL_RLS is set by the ACPI software and BIOS_EN is set by the BIOS  
software, a SMI is raised. Writing a 1 to GBL_RLS sets it to logic 1 and also sets BIOS_STS to logic  
Publication Release Date: May 2006  
- 113 -  
Revision 0.6  
W83977ATF/W83977ATG  
1. Writing a 0 to GBL_RLS has no effect. Writing a 1 to BIOS_STS clears it to logic 0 and also clears  
GBL_RLS to logic 0. Writing a 0 to BIOS_STS has no effect.  
For the bus master to raise an event to the ACPI software, BM_CNTRL, BM_RLD, and BM_STS bits  
are involved. Both BM_RLD and BM_STS are controlled by the ACPI software. If BM_CNTRL is set  
by the BIOS software and BM_RLD is set by the ACPI software, an SCI interrupt is raised. Writing a 1  
to BM_CNTRL sets it to logic 1 and also sets BM_STS to logic 1. Writing a 0 to BM_CNTRL has no  
effect. Writing a 1 to BM_STS clears it to logic 0 and also clears BM_CNTRL to logic 0. Writing a 0 to  
BM_STS has no effect.  
12.2 Power Management Timer  
In the ACPI specification, a power management timer is required. The power management timer is a  
24-bit fixed rate free running up-count timer that runs off a 3.579545MHZ clock. The power  
management timer corresponds to status bit (TMR_STS) and enable bit (TMR_EN). The TMR_STS  
bit is set any time the last bit of the timer (bit 23) goes from 0 to 1 or from 1 to 0. If the TMR_EN bit is  
set, the setting of the TMR_STS bit will generate an SCI interrupt. Three registers are used to read  
the timer value which are located in the PM1 register block. The power management timer has one  
enable bit (TMR_ON) to turn it on or off. The TMR_ON is located in GPE register block. If it is cleared  
to 0, the power management timer function will not work. There are no timer reset requirements,  
except that the timer should function after power-up. See the following figure for illustration.  
TMR_STS  
TMR_EN  
TMR_ON  
24 bit  
counter  
To SCI Logic  
Bits (23-0)  
3.579545 MHz  
24  
TMR_VAL  
- 114 -  
W83977ATF/W83977ATG  
12.3 ACPI Registers (ACPIRs)  
The ACPI register model consists of the fixed register blocks that perform the ACPI functuions. A  
register block may be an event register block which deals with ACPI events or a control register block  
which deals with control features. The order in the event register block is a status register followed by  
an enable register.  
Each event register, if implemented, contains two registers: a status register and an enable register, of  
16 bits wide each. The status register indicates which event triggers the ACPI System Control  
Interrupt ( SCI ). When the hardware event occurs, the corresponding status bit will be set. However,  
the corresponding enable bit is also required to be set before an SCI interrupt can be raised. If the  
enable bit is not set, the software can examine the state of the hardware event by reading the status  
bit without generating an SCI interrupt.  
Any status bit, unless otherwise noted, can only be set by specific hardware events. It is cleared by  
writing a 1 to its bit position, and writing a 0 has no effect. Except for some special status bits, every  
status bit has a corresponding enable bit on the same bit position in the enable register. Those status  
bits which have no corresponding enable bit are read for special purpose. Reversed or  
unimplemented enable bits always return zero, and writing to these bits should have no effect.  
The control bit in the control register provides some special control functions over hardware events, or  
some special control over SCI event. Reserved or unimplemented control bits always return zero,  
and writing to those bits should have no effect.  
Table 12-1 lists the PM1 register block and the registers within it. The base address of PM1 register  
block is named as PM1a_EVT_BLK in the ACPI specification and is specified in CR60, CR61 of  
logical device A.  
Table 12-2 lists the GPE register block and the register within it. The base address of general-purpose  
event block GPE0 is named as GPE0_BLK in the ACPI specification and is specified in CR62, CR63  
of logical device A. The base address of general-purpose event block GPE1 is named as GPE1_BLK  
in the ACPI specification and is specified in CR64, CR65 of logical device A.  
12.3.1 Power Management 1 Status Register 1 (PM1STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
TMR_STS  
Reserved  
Reserved  
Reserved  
BM_STS  
GBL_STS  
Reserved  
Reserved  
Publication Release Date: May 2006  
Revision 0.6  
- 115 -  
W83977ATF/W83977ATG  
BIT  
NAME  
DESCRIPTION  
0
TMR_STS  
This bit is the timer carry status bit. This bit is set anytime the bit 23 of the  
24-bit counter changes (whenever the MSB changes from low to high or  
high to low). When TMR_EN and TMR_STS are set, a power management  
event is raised. This bit is only set by hardware and can only be cleared by  
writing a 1 to this bit position. Writing a 0 has no effect.  
1-3  
4
Reserved  
BM_STS  
Reserved.  
This is the bus master status bit. Writing a 1 to BM_CNTRL also sets  
BM_STS. Writing a 1 clears this bit and also clears BM_CNTRL. Writing a  
0 has no effect.  
5
GBL_STS  
Reserved  
This is the global status bit. This bit is set when the BIOS wants the  
attention of the SCI handler. BIOS sets this bit by setting BIOS_RLS and  
can only be cleared by writing a 1 to this bit position. Writing a 1 to this bit  
position also clears BIOS_RLS. Writing a 0 has no effect.  
6-7  
Reserved. These bits always return zeros.  
12.3.2 Power Management 1 Status Register 2 (PM1STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 1H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
WAK_STS  
BIT  
0-6  
7
NAME  
Reserved  
WAK_STS  
DESCRIPTION  
Reserved.  
This bit is set when the system is in the sleeping state and an enabled  
resume event occurs. Upon setting this bit, the sleeping/working state  
machine will transition the system to the working state. This bit is only set by  
hardware and is cleared by writing a 1 to this bit position, or by the  
sleeping/working state machine automatically when the global standby timer  
expires. Writing a 0 has no effect. When the WAK_STS is cleared and all  
devices are in sleeping state, the whole chip enters the sleeping state.  
- 116 -  
W83977ATF/W83977ATG  
12.3.3 Power Management 1 Enable Register 1(PM1EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 2H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
TMR_EN  
Reserved  
Reserved  
Reserved  
GBL_EN  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0
TMR_EN  
This is the timer carry interrupt enable bit. When this bit is set, an SCI event  
is generated whenever the TMR_STS bit is set. When this bit is reset, no  
interrupt is generated even when the TMR_STS bit is set.  
1-4  
5
Reserved  
GBL_EN  
Reserved. These bits always return a value of zero.  
The global enable bit. When both the GBL_EN bit and the GBL_STS bit are  
set, an SCI interrupt is raised.  
6-7  
Reserved  
Reserved.  
12.3.4 Power Management 1 Enable Register 2 (PM1EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 3H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0-7  
Reserved Reserved. These bits always return zeros.  
Publication Release Date: May 2006  
Revision 0.6  
- 117 -  
W83977ATF/W83977ATG  
12.3.5 Power Management 1 Control Register 1 (PM1CTL1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 4H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
SCI_EN  
BM_RLD  
GBL_RLD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
SCI_EN  
DESCRIPTION  
0
Selects whether the power management event triggers a SCI or an SMI  
interrupt. When this bit is set, the power management events will generate  
an SCI interrupt. When this bit is reset and SMI_EN bit is set, the power  
management events will generate an SMI interrupt.  
1
2
BM_RLD  
This is the bus master reload enable bit. If this bit is set and BM_CNTRL is  
set, an SCI interrupt is raised.  
GBL_RLS  
The global release bit. This bit is used by the ACPI software to raise an  
event to the BIOS software. The BIOS software has a corresponding enable  
and status bit to control its ability to receive the ACPI event. Setting  
GBL_RLS sets BIOS_STS, and it generates an SMI interrupt if BIOS_EN is  
also set.  
3-7  
Reserved  
Reserved. These bits always return zeros.  
12.3.6 Power Management 1 Control Register 2 (PM1CTL2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 5H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0-7  
Reserved Reserved. These bits always return zeros.  
- 118 -  
W83977ATF/W83977ATG  
12.3.7 Power Management 1 Control Register 3 (PM1CTL3)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 6H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0-7  
Reserved Reserved. These bits always return zeros.  
12.3.8 Power Management 1 Control Register 4 (PM1CTL4)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 7H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0-7  
Reserved Reserved. These bits always return zeros.  
Publication Release Date: May 2006  
Revision 0.6  
- 119 -  
W83977ATF/W83977ATG  
12.3.9 Power Management 1 Timer 1 (PM1TMR1)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 8H System I/O Space  
00h  
Read only  
8 bits  
Size:  
2
1
7
6
5
4
3
0
TMR_VAL0  
TMR_VAL1  
TMR_VAL2  
TMR_VAL3  
TMR_VAL4  
TMR_VAL5  
TMR_VAL6  
TMR_VAL7  
BIT  
0-7  
NAME  
DESCRIPTION  
TMR_VAL  
This read-only field returns the running count of the power management timer. This is  
a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in the working  
state. The timer is reset and then continues counting until the CLKIN input to the chip  
is stopped. If the clock is restarted without an MR reset, then the counter will resume  
counting from where it stopped. The TMR_STS bit is set any time the last bit of the  
timer (bit 23) goes from 0 to 1 or from 1 to 0. If the TMR_EN bit is set, the setting of  
the TMR_STS bit will generate an SCI interrupt.  
12.3.10 Power Management 1 Timer 2 (PM1TMR2)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + 9H System I/O Space  
00h  
Read only  
8 bits  
Size:  
2
1
7
6
5
4
3
0
TMR_VAL8  
TMR_VAL9  
TMR_VAL10  
TMR_VAL11  
TMR_VAL12  
TMR_VAL13  
TMR_VAL14  
TMR_VAL15  
BIT  
0-7  
NAME  
DESCRIPTION  
TMR_VAL  
This read-only field returns the running count of the power management timer. This is  
a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in the working  
state. The timer is reset and then continues counting until the CLKIN input to the chip  
is stopped. If the clock is restarted without an MR reset, then the counter will resume  
counting from where it stopped. The TMR_STS bit is set any time the last bit of the  
timer (bit 23) goes from 0 to 1 or from 1 to 0. If the TMR_EN bit is set, the setting of  
the TMR_STS bit will generate an SCI interrupt.  
- 120 -  
W83977ATF/W83977ATG  
12.3.11 Power Management 1 Timer 3 (PM1TMR3)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + AH System I/O Space  
00h  
Read only  
8 bits  
Size:  
2
1
7
6
5
4
3
0
TMR_VAL16  
TMR_VAL17  
TMR_VAL18  
TMR_VAL19  
TMR_VAL20  
TMR_VAL21  
TMR_VAL22  
TMR_VAL23  
BIT  
0-7  
NAME  
DESCRIPTION  
TMR_VAL  
This read-only field returns the running count of the power management timer. This is  
a 24-bit counter that runs off of a 3.579545 MHZ clock, and counts in the working  
state. The timer is reset and then continues counting until the CLKIN input to the chip  
is stopped. If the clock is restarted without an MR reset, then the counter will resume  
counting from where it stopped. The TMR_STS bit is set any time the last bit of the  
timer (bit 23) goes from 0 to 1 or from 1 to 0. If the TMR_EN bit is set, the setting of  
the TMR_STS bit will generate an SCI interrupt.  
12.3.12 Power Management 1 Timer 4 (PM1TMR4)  
Register Location:  
Default Value:  
Attribute:  
<CR60, 61> + BH System I/O Space  
00h  
Read only  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
0-7  
NAME  
DESCRIPTION  
Reserved  
Reserved. These bits always return zeros.  
Publication Release Date: May 2006  
Revision 0.6  
- 121 -  
W83977ATF/W83977ATG  
12.3.13 General Purpose Event 0 Status Register 1 (GP0STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
0
7
6
5
4
3
URBSCISTS  
URASCISTS  
FDCSCISTS  
PRTSCISTS  
KBCSCISTS  
MOUSCISTS  
IRSCISTS  
Reserved  
These bits indicate the status of the SCI input, which is set when the device's IRQ is raised. If the  
corresponding enable bit in the SCI interrupt enable register (in GP0EN1) is set, an SCIinterrupt is  
raised and routed to the output pin. Writing a 1 clears the bit, and writing a 0 has no effect. If the bit is  
not cleared, new IRQ to the SCI logic input is ignored and no SCI interrupt will be raised.  
BIT  
NAME  
DESCRIPTION  
UART B SCI status, which is set by the UART B IRQ.  
UART A SCI status, which is set by the UART A IRQ.  
FDC SCI status, which is set by the FDC IRQ.  
PRT SCI status, which is set by the printer port IRQ.  
KBC SCI status, which is set by the KBC IRQ.  
MOUSE SCI status, which is set by the MOUSE IRQ.  
0
URBSCISTS  
1
2
3
4
5
6
7
URASCISTS  
FDCSCISTS  
PRTSCISTS  
KBCSCISTS  
MOUSCISTS  
IRSCISTS  
IR SCI status, which is set by the IR IRQ.  
Reserved.  
Reserved  
12.3.14 General Purpose Event 0 Status Register 2 (GP0STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 1H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
- 122 -  
W83977ATF/W83977ATG  
2
1
0
7
6
5
4
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
0-7  
NAME  
DESCRIPTION  
Reserved  
Reserved. These bits always return zeros.  
12.3.15 General Purpose Event 0 Enable Register 1 (GP0EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 2H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
URBSCIEN  
URASCIEN  
FDCSCIEN  
PRTSCIEN  
KBCSCIEN  
MOUSCIEN  
IRSCIEN  
Reserved  
These bits are used to enable the device's IRQ sources into the SCI logic. The SCI logic output for  
the IRQs is as follows:  
SCI logic output = (URBSCIEN and URBSCISTS) or (URASCIEN and URASCISTS) or (FDCSCIEN  
and FDCSCISTS) or (PRTSCIEN and PRTSCISTS) or (KBCSCIEN and KBCSCISTS) or (MOUSCIEN  
and MOUSCISTS) or (IRSCIEN and IRSCISTS)  
BIT  
0
NAME  
URBSCIEN  
URASCIEN  
FDCSCIEN  
PRTSCIEN  
KBCSCIEN  
MOUSCIEN  
IRSCIEN  
DESCRIPTION  
UART B SCI enable, which controls the UART B IRQ.  
UART A SCI enable, which controls the UART A IRQ.  
FDC SCI enable, which controls the FDC IRQ.  
Printer port SCI enable, which controls the printer port IRQ.  
KBC SCI enable, which controls the KBC IRQ.  
MOUSE SCI enable, which controls the MOUSE IRQ.  
IR SCI enable, which controls the IR IRQ.  
1
2
3
4
5
6
7
Reserved  
Reserved.  
Publication Release Date: May 2006  
Revision 0.6  
- 123 -  
W83977ATF/W83977ATG  
12.3.16General Purpose Event 0 Enable Register 2 (GP0EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR62, 63> + 3H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
0-7  
NAME  
DESCRIPTION  
Reserved. These bits always return zeros.  
Reserved  
12.3.17 General Purpose Event 1 Status Register 1 (GP1STS1)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> System I/O Space  
00h  
Read/write  
Size:  
8 bits  
2
1
7
6
5
4
3
0
BIOS_STS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0
BIOS_STS  
The BIOS status bit. This bit is set when GBL_RLS is set. If BIOS_EN is set, setting  
GBL_RLS will raise an SMI event. Writing a 1 to its bit location clears BIOS_STS  
and also clears GBL_RLS. Writing a 0 has no effect.  
1-7  
Reserved  
Reserved.  
- 124 -  
W83977ATF/W83977ATG  
12.3.18 General Purpose Event 1 Status Register 2 (GP1STS2)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 1H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
0-7  
NAME  
DESCRIPTION  
Reserved. These bits always return zeros.  
Reserved  
12.3.19 General Purpose Event 1 Enable Register 1 (GP1EN1)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 2H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
BIOS_EN  
TMR_ON  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0
BIOS_EN  
This bit raises the SMI event. When this bit is set and the ACPI software writes a 1  
to the GBL_RLS bit, an SMI event is raised on the SMI logic output.  
This bit is used to turn on the power management timer.  
1 = timer on; 0 = timer off.  
1
TMR_ON  
Reserved  
2-7  
Reserved.  
Publication Release Date: May 2006  
- 125 -  
Revision 0.6  
W83977ATF/W83977ATG  
12.3.20 General Purpose Event 1 Enable Register 2 (GP1EN2)  
Register Location:  
Default Value:  
Attribute:  
<CR64, 65> + 3H System I/O Space  
00h  
Read/write  
8 bits  
Size:  
2
1
7
6
5
4
3
0
BIOS_RLS  
BM_CNTRL  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BIT  
NAME  
DESCRIPTION  
0
BIOS_RLS  
The BIOS release bit. This bit is used by the BIOS software to raise an event to the  
ACPI software. The ACPI software has a corresponding enable and status bit to  
control its ability to receive the ACPI event. Setting BIOS_RLS sets GBL_STS, and it  
generates an SCI interrupt if GBL_EN is also set. Writing a 1 to its bit position sets  
this bit and also sets the BM_STS bit. Writing a 0 has no effect. This bit is cleared by  
writing a 1 to the GBL_STS bit.  
1
BM_CNTRL  
Reserved  
This bit is used to set the BM_STS bit and if the BM_RLD bit is also set, then an SCI  
interrupt is generated. Writing a 1 sets BM_CNTRL to 1 and also sets BM_STS.  
Writing a 0 has no effect. Writing a 1 to BM_STS clears BM_STS and also clears  
BM_CNTRL.  
2-7  
Reserved.  
- 126 -  
W83977ATF/W83977ATG  
12.3.21 Bit Map Configuration Registers  
Table 12-1: Bit Map of PM1 Register Block  
Register Address Power-  
On  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reset  
Value  
PM1STS1 <CR60,  
61>  
0000  
0000  
0
0
0
0
0
0
0
0
0
GBL_STS  
BM_STS  
0
0
0
0
0
0
0
0
0
0
TMR_STS  
PM1STS2 <CR60,  
61>+1H  
0000  
0000  
WAK_STS  
0
0
0
0
0
0
0
0
0
0
0
PM1EN1 <CR60,  
61>+2H  
0000  
0000  
0
0
0
0
0
0
GBL_EN  
0
0
TMR_EN  
PM1EN2 <CR60,  
61>+3H  
0000  
0000  
0
0
0
0
0
0
0
0
PM1CTL1 <CR60,  
61>+4H  
0000  
0000  
GBL_RLS  
BM_RLD  
SCI_EN  
PM1CTL2 <CR60,  
61>+5H  
0000  
0000  
0
0
0
0
0
0
0
0
0
PM1CTL3 <CR60,  
61>+6H  
0000  
0000  
PM1CTL4 <CR60,  
61>+7H  
0000  
0000  
PM1TMR1 <CR60,  
61>+8H  
0000  
0000  
TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL1 TMR_VAL0  
7
6
5
4
3
2
PM1TMR2 <CR60,  
61>+9H  
0000  
0000  
TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL9 TMR_VAL8  
15 14 13 12 11 10  
PM1TMR3 <CR60,  
61>+AH  
0000  
0000  
TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL TMR_VAL1 TMR_VAL16  
23  
22  
21  
20  
19  
18  
7
PM1TMR4 <CR60,  
61>+BH  
0000  
0000  
0
0
0
0
0
0
0
Table 12-2: Bit Map of GPE Register Block  
Register Address  
Power-  
On  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reset  
Value  
GP0STS1 <CR62,  
63>  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MOUSCISTS KBCSCIST PRTSCISTS FDCSCISTS URASCISTS URBSCISTS  
S
GP0STS2 <CR62,  
63>+1H  
0
0
0
0
0
0
GP0EN1 <CR62,  
63>+2H  
MOUSCIEN KBCSCIEN PRTSCIEN  
FDCSCIEN  
URASCIEN  
URBSCIEN  
0
GP0EN2 <CR62,  
63>+3H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GP1STS1 <CR64,  
65>  
0
BIOS_STS  
0
GP1STS2 <CR64,  
65>+1H  
0
GP1EN1 <CR64,  
65>+2H  
TMR_ON  
BM_CNTRL  
BIOS_EN  
BIOS_RLS  
GP1EN2 <CR64,  
65>+3H  
Publication Release Date: May 2006  
Revision 0.6  
- 127 -  
W83977ATF/W83977ATG  
13. SERIAL IRQ  
W83977ATF/ATG supports a Serial IRQ scheme. This allows a signal line to be used to report the  
legacy ISA interrupt requests. Because more than one device may need to share the signal serial IRQ  
signal line, an open drain signal scheme is used. The clock source is the PCI clock. The serial  
interrupt is transferred on the IRQSER signal, one cycle consisting of three frame types: a start frame,  
several IRQ/Data frames, and one Stop frame. The serial interrupt scheme adheres to the Serial IRQ  
Specification for PCI System, Version 6.0.  
Timing Diagrams for IRQSER Cycle  
Start Frame timing with source sampled a low pulse on IRQ1  
START FRAME  
IRQ0 FRAME  
IRQ1 FRAME  
IRQ2 FRAME  
SL  
or  
H
H
R
T
S
R
T
S
R
T
S
R
T
PCICLK  
IRQSER  
1
START  
Drive Source  
Host Controller  
SL=Slave Control  
1. Start Frame pulse can be 4-8 clocks wide.  
None  
IRQ1  
T=Turn-around  
None  
S=Sample  
IRQ1  
H=Host Control  
R=Recovery  
Stop Frame Timing with Host using 17 IRQSER sampling period  
IRQ14  
FRAME  
IRQ15  
FRAME  
IOCHCK  
FRAME  
STOP FRAME  
H
NEXT CYCLE  
2
S
R
T
S
R
T
S
R
T
I
R
T
PCICLK  
IRQSER  
1
3
STOP  
START  
Drive  
None  
IRQ15  
None  
Host Controller  
S=Sample  
H=Host Control  
R=Recovery  
T=Turn-around  
I=Idle  
1. Stop pulse is 2 clocks wide for Quiet mode, 3 clocks wide for Continuous mode.  
2. There may be none, one or more Idle states during the Stop Frame.  
3. The next IRQSER cycle's Start Frame pulse may or may not start immediately after the turn-around clock of the Stip Frame.  
- 128 -  
W83977ATF/W83977ATG  
13.1 Start Frame  
There are two modes of operation for the IRQSER Start frame: Quiet mode and Continuous mode.  
In the Quiet mode, the peripheral drives the SERIRQ signal active low for one clock, and then tri-  
states it. This brings all the states machines of the peripherals from idle to active states. The host  
controller will then take over driving IRQSER signal low in the next clock, and will continue driving the  
IRQSER low for programmable 3 to 7 clock periods. This makes the total number of clocks low for 4 to  
8 clock periods. After these clocks, the host controller will drive the IRQSER high for one clock and  
then tri-states it.  
In the Continuous mode, only the host controller initiates the START frame to update IRQ/Data line  
information. The host controller drives the IRQSER signal low for 4 to 8 clock periods. Upon a reset,  
the IRQSER signal is defaulted to the Continuous mode for the host controller to initiate the first Start  
frame.  
13.2 IRQ/Data Frame  
Once the start frame has been initiated, all the peripherals must start counting frames based on the  
rising edge of the start pulse. Each IRQ/Data Frame is three clocks: Sample phase, Recovery phase,  
and Turn-around phase.  
During the Sample phase, the peripheral drives SERIRQ low if the corresponding IRQ is active. If the  
corresponding IRQ is inactive, then IRQSER must be left tri-stated. During the Recovery phase, the  
peripheral device drives the IRQSER high. During the Turn-around phase, the peripheral device  
leaves the IRQSER tri-stated.  
The IRQ/Data Frame has a number of specific order, as shown in Table 13-1.  
Table 13-1 IRQSER Sampling periods  
IRQ/DATA FRAME  
SIGNAL SAMPLED  
# OF CLOCKS PAST START  
1
2
3
IRQ0  
IRQ1  
2
5
8
SMI  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
IRQ10  
IRQ11  
IRQ12  
4
5
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
6
7
8
9
10  
11  
12  
13  
Publication Release Date: May 2006  
Revision 0.6  
- 129 -  
W83977ATF/W83977ATG  
Continued.  
IRQ/DATA FRAME  
SIGNAL SAMPLED  
# OF CLOCKS PAST START  
14  
15  
IRQ13  
IRQ14  
IRQ15  
41  
44  
16  
17  
47  
50  
IOCHCK  
INTA  
18  
19  
53  
56  
59  
62  
95  
INTB  
20  
INTC  
21  
INTD  
Unassigned  
32:22  
13.3 Stop Frame  
After all IRQ/Data Frames have completed, the host controller will terminate IRQSER by a Stop frame.  
Only the host controller can initiate the Stop frame by driving IRQSER low for 2 or 3 clocks. If the Stop  
Frame is low for 2 clocks, the next IRQSER cycle's Sample mode is the Quiet mode. If the Stop  
Frame is low for 3 clocks, the next IRQSER cycle's Sample mode is the Continuous mode.  
13.4 Reset and Initialization  
After MR reset, IRQSER Slaves are put into the Continuous (Idle) mode. The Host Controller is  
responsible for starting the initial IRQSER Cycle to collect the system's IRQ/Data default values. The  
system then follows with the Continuous/Quiet mode protocol (Stop Frame pulse width) for  
subsequent IRQSER cycles. It's the Host Controller's responsibility to provide the default values to  
8259's and other system logic before the first IRQSER cycle is performed. For IRQSER system  
suspend, insertion, or removal application, the Host controller should be programmed into Continuous  
(Idle) mode first. This is to guarantee IRQSER bus in the Idle state before the system configuration  
changes.  
- 130 -  
W83977ATF/W83977ATG  
14. CONFIGURATION REGISTER  
14.1 Chip (Global) Control Register  
CR02 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
: SWRST --> Soft Reset.  
CR07  
Bit 7 - 0  
: LDNB7 - LDNB0 --> Logical Device Number Bit 7 - 0  
CR20  
Bit 7 - 0  
: DEVIDB7 - DEBIDB0 --> Device ID Bit 7 - Bit 0 = 0x97 (read only).  
: DEVREVB7 - DEBREVB0 --> Device Rev Bit 7 - Bit 0 = 0x74 (read only).  
CR21  
Bit 7 - 0  
CR22 (Default 0xff)  
Bit 7 - 6  
Bit 5  
: Reserved.  
: URBPWD  
= 0  
= 1  
Power down  
No Power down  
Bit 4  
Bit 3  
Bit 2  
: URAPWD  
= 0  
= 1  
Power down  
No Power down  
: PRTPWD  
= 0  
= 1  
Power down  
No Power down  
: IRPWD  
= 0  
= 1  
Power down  
No Power down  
Bit 1  
Bit 0  
: Reserved.  
: FDCPWD  
= 0  
= 1  
Power down  
No Power down  
CR23 (Default 0xFE)  
Bit 7 - 1  
Bit 0  
: Reserved.  
: IPD (Immediate Power Down). When set to 1, it will put the whole chip into power  
down  
mode immediately.  
Publication Release Date: May 2006  
- 131 -  
Revision 0.6  
W83977ATF/W83977ATG  
CR24 (Default 0b1s000s0s)  
Bit 7  
: EN16SA  
= 0  
12 bit Address Qualification  
16 bit Address Qualification  
= 1  
Bit 6  
: EN48  
= 0  
The clock input on Pin 1 should be 24 Mhz.  
The clock input on Pin 1 should be 48 Mhz.  
= 1  
The corresponding power-on setting pin is SOUTB (pin 53).  
Bit 5 - 3  
Bit 2  
: Reserved.  
: ENKBC  
= 0  
= 1  
KBC is disabled after hardware reset.  
KBC is enabled after hardware reset.  
This bit is read only, and set/reset by power-on setting pin. The corresponding power-  
on  
setting pin is SOUTA (pin 46).  
: Reserved  
Bit 1  
Bit 0  
: PNPCSV  
= 0  
= 1  
The Compatible PnP address select registers have default values.  
The Compatible PnP address select registers have no default value.  
When trying to make a change to this bit, new value of PNPCSV must be  
complementary to the old one to make an effective change. For example, the user  
must set PNPCSV to 0 first and then reset it to 1 to reset these PnP registers if the  
present value of PNPCSV is 1. The corresponding power-on setting pin is NDTRA  
(pin 44).  
CR25 (Default 0x00)  
Bit 7 - 6  
Bit 5  
: Reserved  
: URBTRI  
: URATRI  
: PRTTRI  
: IRTRI  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
: Reserved  
: FDCTRI.  
Bit 0  
CR26 (Default 0b0s000000)  
Bit 7 : SEL4FDD  
= 0  
= 1  
Select two FDD mode.  
Select four FDD mode.  
- 132 -  
W83977ATF/W83977ATG  
Bit 6  
: HEFRAS  
These two bits define how to enable Configuration mode. The corresponding power-on  
setting pin is NRTSA (pin 43). HEFRAS Address and Value  
= 0  
= 1  
Write 87h to the location 3F0h twice.  
Write 87h to the location 370h twice.  
Bit 5  
Bit 4  
: LOCKREG  
= 0  
= 1  
Enable R/W Configuration Registers.  
Disable R/W Configuration Registers.  
: DSIRLGRQ  
= 0  
Enable IR legacy mode IRQ selecting, then MCR bit 3 is effective on selecting  
IRQ  
= 1  
Disable IR legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
: DSFDLGRQ  
= 0  
Enable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is  
effective on selecting IRQ  
= 1  
Disable FDC legacy mode on IRQ and DRQ selection, then DO register bit 3 is  
not effective on selecting IRQ  
: DSPRLGRQ  
= 0  
Enable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is  
effective on selecting IRQ  
= 1  
Disable PRT legacy mode on IRQ and DRQ selection, then DCR bit 4 is not  
effective on selecting IRQ  
: DSUALGRQ  
= 0  
Enable UART A legacy mode IRQ selecting, then MCR bit 3 is effective on  
selecting IRQ  
= 1  
Disable UART A legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
: DSUBLGRQ  
= 0  
Enable UART B legacy mode IRQ selecting, then MCR bit 3 is effective on  
selecting IRQ  
= 1  
Disable UART B legacy mode IRQ selecting, then MCR bit 3 is not effective on  
selecting IRQ  
CR28 (Default 0x00)  
Bit 7 - 5  
Bit 4  
: Reserved.  
: IRQ Sharing selection.  
= 0  
= 1  
Disable IRQ Sharing  
Enable IRQ Sharing  
Bit 3  
:Reserved  
Publication Release Date: May 2006  
Revision 0.6  
- 133 -  
W83977ATF/W83977ATG  
Bit 2 - 0  
: PRTMODS2 - PRTMODS0  
= 0xx  
= 100  
= 101  
= 110  
Parallel Port Mode  
Reserved  
External FDC Mode  
Reserved  
= 111 External two FDC Mode  
CR2A (Default 0x00)  
Bit 7  
: PIN57S  
= 0  
= 1  
KBRST  
GP12  
Bit 6  
: PIN56S  
= 0  
= 1  
GA20  
GP11  
Bit 5 - 4  
: PIN40S1, PIN40S0  
= 00 CIRRX  
= 01 GP24  
= 10 8042 P13  
= 11 Reserved  
: PIN39S1, PIN39S0  
Bit 3 - 2  
Bit 1 - 0  
= 00  
= 01  
= 10  
=11  
IRRXH  
IRSL0  
GP25  
Reserved  
: PIN3S1, PIN3S0  
= 00 DRVDEN1  
= 01 GP10  
= 10  
8042 P12  
= 11  
SCI  
CR2B (Default 0x00)  
Bit 7 - 6 : PIN73S1, PIN73S0  
= 00 PANSWIN  
= 01 GP23  
= 10 Reserved  
= 11 Reserved  
- 134 -  
W83977ATF/W83977ATG  
Bit 5  
: PIN72S  
= 0  
= 1  
PANSWOUT  
GP22  
Bit 4 - 3  
: PIN70S1, PIN70S0  
= 00 SMI  
= 01 GP21  
= 10 8042 P16  
= 11 Reserved  
: Reserved.  
Bit 2 - 1  
Bit 0  
: PIN58S  
= 0  
= 1  
KBLOCK  
GP13  
CR2C (Default 0x00)  
Bit 7 - 6  
: PIN121S1, PIN121S0  
= 00 DRQ0  
= 01 GP17  
= 10 8042 P14  
= 11  
SCI  
Bit 5 - 4  
Bit 3 - 2  
Bit 1 - 0  
: PIN119S1, PIN119S0  
= 00 NDACK0  
= 01 GP16  
= 10 8042 P15  
= 11 Reserved  
: PIN104S1, PIN104S0  
= 00 IRQ15  
= 01 GP15  
= 10 WDTO  
= 11 Reserved  
: PIN103S1, PIN103S0  
= 00 IRQ14  
= 01 GP14  
= 10 PLEDO  
= 11 Reserved  
CR2D (Default 0x00)  
Test Modes: Reserved for Winbond.  
Publication Release Date: May 2006  
- 135 -  
Revision 0.6  
W83977ATF/W83977ATG  
CR2E (Default 0x00)  
Test Modes: Reserved for Winbond.  
CR2F (Default 0x00)  
Test Modes: Reserved for Winbond.  
14.2 Logical Device 0 (FDC)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1  
Bit 0:  
: Reserved.  
= 1 Activates the logical device.  
= 0 Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xf0 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select FDC I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x06 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for FDC.  
CR74 (Default 0x02 if PNPCSV = 0 during POR, default 0x04 otherwise)  
Bit 7 - 3  
Bit 2 - 0  
: Reserved.  
: These bits select DRQ resource for FDC.  
= 0x00  
= 0x01  
= 0x02  
DMA0  
DMA1  
DMA2  
= 0x03  
DMA3  
= 0x04 - 0x07 No DMA active  
CRF0 (Default 0x0E)  
FDD Mode Register  
Bit 7  
: FIPURDWN  
This bit controls the internal pull-up resistors of the FDC input pins RDATA, INDEX,  
TRAK0, DSKCHG, and WP.  
= 0  
= 1  
The internal pull-up resistors of FDC are turned on.(Default)  
The internal pull-up resistors of FDC are turned off.  
- 136 -  
W83977ATF/W83977ATG  
Bit 6  
: INTVERTZ  
This bit determines the polarity of all FDD interface signals.  
= 0  
= 1  
FDD interface signals are active low.  
FDD interface signals are active high.  
Bit 5  
Bit 4  
: DRV2EN (PS2 mode only)  
When this bit is a logic 0, indicates a second drive is installed and is reflected in status  
register A.  
: Swap Drive 0, 1 Mode  
= 0  
= 1  
No Swap (Default)  
Drive and Motor sel 0 and 1 are swapped.  
Bit 3 - 2  
: Interface Mode  
= 11 AT Mode (Default)  
= 10 (Reserved)  
= 01 PS/2  
= 00 Model 30  
: FDC DMA Mode  
Bit 1  
Bit 0  
= 0  
= 1  
Burst Mode is enabled  
Non-Burst Mode (Default)  
: Floppy Mode  
= 0  
= 1  
Normal Floppy Mode (Default)  
Enhanced 3-mode FDD  
CRF1 (Default 0x00)  
Bit 7 - 6  
: Boot Floppy  
= 00 FDD A  
= 01 FDD B  
= 10 FDD C  
= 11 FDD D  
Bit 5, 4  
: Media ID1, Media ID0. These bits will be reflected on FDC's Tape Drive Register bit  
7, 6.  
Bit 3 - 2  
: Density Select  
= 00 Normal (Default)  
= 01 Normal  
= 10 1 ( Forced to logic 1)  
= 11 0 ( Forced to logic 0)  
Publication Release Date: May 2006  
- 137 -  
Revision 0.6  
W83977ATF/W83977ATG  
Bit 1  
Bit 0  
: DISFDDWR  
= 0  
= 1  
Enable FDD write.  
Disable FDD write (forces pins WE, WD stay high).  
: SWWP  
= 0  
= 1  
Normal, use WP to determine whether the FDD is write protected or not.  
FDD is always write-protected.  
CRF2 (Default 0xFF)  
Bit 7 - 6  
Bit 5 - 4  
Bit 3 - 2  
Bit 1,0  
: FDD D Drive Type  
: FDD C Drive Type  
: FDD B Drive Type  
: FDD A Drive Type  
When FDD is in enhanced 3-mode (CRF0.bit0=1),these bits determine SELDEN value in TABLE A of  
CRF4 and CRF5 as follows.  
DTYPE1  
DPYTE0  
DRATE1  
DRATE0  
SELDEN  
0
0
0
0
0
1
0
1
1
0
0
1
X
X
0
1
0
1
0
X
X
1
1
1
0
0
0
1
0
0
0
0
0
1
1
Note: X means don't care.  
CRF4 (Default 0x00)  
FDD0 Selection:  
Bit 7  
Bit 6  
: Reserved.  
: Precomp. Disable.  
= 1  
= 0  
Disable FDC Precompensation.  
Enable FDC Precompensation.  
Bit 5  
: Reserved.  
Bit 4 - 3  
: DRTS1, DRTS0: Data Rate Table select (Refer to TABLE A).  
= 00 Select Regular drives and 2.88 format  
= 01  
Specifical application  
= 10 2 Meg Tape  
= 11 Reserved  
- 138 -  
W83977ATF/W83977ATG  
Bit 2  
: Reserved.  
: DMOD0, DMOD1: Drive Model select (Refer to TABLE B).  
Bit 1,0  
CRF5 (Default 0x00)  
FDD1 Selection: Same as FDD0 of CRF4.  
TABLE A  
DRIVE RATE TABLE  
SELECT  
DATA RATE  
SELECTED DATA RATE  
SELDEN  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
CRF0 BIT 0=0  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
250K  
150K  
125K  
---  
0
1
1
0
250K  
250K  
125K  
---  
250K  
---  
125K  
Note: Refer to CRF2 for SELDEN value in the cases when CRF0, bit0=1.  
TABLE B  
DMOD0  
DMOD1  
DRVDEN0(PIN 2)  
DRVDEN1(PIN 3)  
DRIVE TYPE  
0
0
SELDEN  
DRATE0  
4/2/1 MB 3.5”“  
2/1 MB 5.25”  
2/1.6/1 MB 3.5” (3-MODE)  
0
1
1
0
DRATE1  
DRATE0  
DRATE0  
SELDEN  
DRATE0  
1
1
DRATE1  
Publication Release Date: May 2006  
Revision 0.6  
- 139 -  
W83977ATF/W83977ATG  
14.3 Logical Device 1 (Parallel Port)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1  
Bit 0:  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0x78 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Parallel Port I/O base address.  
[0x100:0xFFC] on 4 byte boundary (EPP not supported) or  
[0x100:0xFF8] on 8 byte boundary (all modes supported, EPP is only available when the base  
address is on 8 byte boundary).  
CR70 (Default 0x07 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit [3:0]  
: Reserved.  
: These bits select IRQ resource for Parallel Port.  
CR74 (Default 0x04)  
Bit 7 - 3  
Bit 2 - 0  
: Reserved.  
: These bits select DRQ resource for Parallel Port.  
0x00=DMA0  
0x01=DMA1  
0x02=DMA2  
0x03=DMA3  
0x04 - 0x07= No DMA active  
CRF0 (Default 0x3F)  
Bit 7  
: PP Interrupt Type:  
Not valid when the parallel port is in the printer Mode (100) or the standard & Bi-  
directional Mode (000).  
= 1  
= 0  
Pulsed Low, released to high-Z.  
IRQ follows nACK when parallel port in EPP Mode or [Printer, SPP, EPP]  
under ECP.  
Bit [6:3]  
Bit 2 - 0  
: ECP FIFO Threshold.  
: Parallel Port Mode  
= 100 Printer Mode (Default)  
= 000 Standard and Bi-direction (SPP) mode  
= 001 EPP - 1.9 and SPP mode  
= 101 EPP - 1.7 and SPP mode  
- 140 -  
W83977ATF/W83977ATG  
= 010 ECP mode  
= 011 ECP and EPP - 1.9 mode  
= 111 ECP and EPP - 1.7 mode.  
14.4 Logical Device 2 (UART A)¢)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x03, 0xF8 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 1 I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x04 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for Serial Port 1.  
CRF0 (Default 0x00)  
Bit 7 - 2  
Bit 1 - 0  
: Reserved.  
: SUACLKB1, SUACLKB0  
= 00 UART A clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART A clock source is 2 Mhz (24MHz/12)  
= 10 UART A clock source is 24 Mhz (24MHz/1)  
= 11 UART A clock source is 14.769 Mhz (24MHz/1.625)  
14.5 Logical Device 3 (UART B)  
CR30 (Default 0x01 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x02, 0xF8 if PNPCSV = 0 during POR, default 0x00, 0x00 otherwise)  
These two registers select Serial Port 2 I/O base address [0x100:0xFF8] on 8 byte boundary.  
Publication Release Date: May 2006  
- 141 -  
Revision 0.6  
W83977ATF/W83977ATG  
CR70 (Default 0x03 if PNPCSV = 0 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit [3:0]  
: Reserved.  
These bits select IRQ resource for Serial Port 2.  
CRF0 (Default 0x00)  
Bit 7 - 2  
Bit 1 - 0  
: Reserved.  
: SUBCLKB1, SUBCLKB0  
= 00 UART B clock source is 1.8462 Mhz (24MHz/13)  
= 01 UART B clock source is 2 Mhz (24MHz/12)  
= 10 UART B clock source is 24 Mhz (24MHz/1)  
= 11 UART B clock source is 14.769 Mhz (24MHz/1.625)  
14.6 Logical Device 5 (KBC)  
CR30 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x60 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the first KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x64 if PENKBC= 1 during POR, default 0x00 otherwise)  
These two registers select the second KBC I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR70 (Default 0x01 if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit [3:0]  
: Reserved.  
: These bits select IRQ resource for KINT (keyboard).  
CR72 (Default 0x0C if PENKBC= 1 during POR, default 0x00 otherwise)  
Bit 7 - 4  
Bit [3:0]  
: Reserved.  
: These bits select IRQ resource for MINT (PS2 Mouse)  
CRF0 (Default 0x83)  
Bit 7 - 6 : KBC clock rate selection  
= 00 Select 6MHz as KBC clock input.  
= 01 Select 8MHz as KBC clock input.  
= 10 Select 12Mhz as KBC clock input.  
= 11 Select 16Mhz as KBC clock input.  
- 142 -  
W83977ATF/W83977ATG  
Bit 5 - 3  
Bit 2  
: Reserved.  
= 0  
= 1  
= 0  
= 1  
= 0  
= 1  
Port 92 disable.  
Port 92 enable.  
Bit 1  
Bit 0  
Gate20 software control.  
Gate20 hardware speed up.  
KBRST software control.  
KBRST hardware speed up.  
14.7 Logical Device 6 (IR)  
CR30 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select IR I/O base address [0x100:0xFF8] on 8 byte boundary.  
CR70 (Default 0x00)  
Bit 7 - 4  
Bit [3:0]  
: Reserved.  
:These bits select IRQ resource for IR  
CR74 (Default 0x04)  
Bit 7-3  
Bit 2-0  
: Reserved.  
: These bits select DRQ resource for RX of UART C.  
= 0x00  
DMA0  
= 0x01  
DMA1  
= 0x02  
DMA2  
= 0x03  
DMA3  
= 0x04-0x07  
No DMA active  
CR75 (Default 0x04)  
Bit 7-3  
Bit 2-0  
: Reserved.  
: These bits select DRQ resource for TX of UART C.  
= 0x00  
DMA0  
= 0x01  
DMA1  
= 0x02  
DMA2  
= 0x03  
DMA3  
= 0x04-0x07  
No DMA active  
Publication Release Date: May 2006  
Revision 0.6  
- 143 -  
W83977ATF/W83977ATG  
CRF0 (Default 0x00)  
Bit 7 - 4  
Bit 3  
: Reserved.  
: RXW4C  
= 0  
No reception delay when SIR is changed from TX mode to RX mode.  
= 1  
TX  
Reception delays 4 characters-time (40 bit-time) when SIR is changed from  
mode to RX mode.  
Bit 2  
: TXW4C  
= 0  
No transmission delay when SIR is changed from RX mode to TX mode.  
= 1  
Transmission delays 4 characters-time (40 bit-time) when SIR is changed  
from RX mode to TX mode.  
: APEDCRC  
Bit 1  
Bit 0  
= 0  
= 1  
No append hardware CRC value as data in FIR/MIR mode.  
Append hardware CRC value as data in FIR/MIR mode.  
: ENBNKSEL; Bank select enable  
= 0  
= 1  
Disable IR Bank selection.  
Enable IR Bank selection.  
14.8 Logical Device 7 (GP I/O Port I)  
CR30 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP1 I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP14 alternate function Primary I/O base address [0x100:0xFFE] on 2  
byte boundary; they are available as you set GP14 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP15 alternate function Primary I/O base address [0x100:0xFFF] on 1  
byte boundary; they are available as you set GP15 to be an alternate function (General  
Purpose Write Decode).  
CR70 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for GP10 as you set GP10 to be an alternate function  
(Interrupt Steering).  
- 144 -  
W83977ATF/W83977ATG  
CR72 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for GP11 as you set GP11 to be an alternate function  
(Interrupt Steering).  
CRE0 (GP10, Default 0x01)  
Bit 7 - 5  
Bit 4  
: Reserved.  
: IRQ Filter Select  
= 1  
= 0  
Debounce Filter Enabled  
Debounce Filter Bypassed  
Bit 3  
: Select Function.  
= 1  
= 0  
Select Alternate Function: Interrupt Steering.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
: Reserved.  
: Polarity.  
= 1  
= 0  
Invert.  
No Invert.  
Bit 0  
: In/Out selection.  
= 1  
= 0  
Input.  
Output.  
CRE1 (GP11, Default 0x01)  
Bit 7 - 5  
Bit 4  
: Reserved.  
: IRQ Filter Select  
= 1  
= 0  
Debounce Filter Enabled  
Debounce Filter Bypassed  
Bit 3  
: Select Function.  
= 1  
= 0  
Select Alternate Function: Interrupt Steering.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
: Reserved.  
: Polarity.  
= 1  
= 0  
Invert.  
No Invert.  
Bit 0  
: In/Out selection.  
= 1  
= 0  
Input.  
Output.  
Publication Release Date: May 2006  
Revision 0.6  
- 145 -  
W83977ATF/W83977ATG  
CRE2 (GP12, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 10 Reserved  
= 11 Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE3 (GP13, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output.  
= 10 Reserved  
= 11 Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE4 (GP14, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: General Purpose Address Decoder(Active Low  
when  
Bit 1= 0, Decode two byte address).  
= 10 Select 2nd alternate function: Keyboard Inhibit (P17).  
= 11 Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE5 (GP15, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
- 146 -  
W83977ATF/W83977ATG  
= 01 General Purpose Write Strobe (Active Low when Bit 1 = 0).  
= 10 8042 P12.  
= 11 Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE6 (GP16, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Watch Dog Timer Output.  
= 1x  
Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE7 (GP17, Default 0x01)  
Bit 7 - 4  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Select 1st alternate function: Power LED output. Please refer to TABLE C  
= 1x  
Reserved  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
TABLE C  
WDT_CTRL1* BIT[1]*  
WDT_CTRL0* BIT[3]  
WDT_CTRL1 BIT[0]  
POWER LED STATE  
1 Hertz Toggle pulse  
Continuous high or low*  
Continuous high or low*  
1 Hertz Toggle pulse  
1
0
0
0
X
0
1
1
X
X
0
1
*Note: 1). Regarding to the contents of WDT_CTR1 and WDT_CTRL0, please refer to CRF3 and CRF4 in Logic Device 8.  
2). Continuous high or low depends on the polarity bit of GP13 or GP17 configure registers.  
Publication Release Date: May 2006  
- 147 -  
Revision 0.6  
W83977ATF/W83977ATG  
CRF1 (Default 0x00)  
General Purpose Read/Write Enable*  
Bit 7 - 2  
Bit 1  
: Reserved  
= 1  
= 0  
= 1  
= 0  
Enable General Purpose Write Strobe  
Disable General Purpose Write Strobe  
Bit 0  
Enable General Purpose Address Decode  
Disable General Purpose Address Decode  
*Note: If the logical device's activate bit is not set then bit 0 and 1 have no effect.  
14.9 Logical Device 8 (GP I/O Port II)  
CR30 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP2 & Watch Dog I/O base address [0x100:0xFFE] on 2 byte  
boundary. I/O base address + 1: Watch Dog I/O base address.  
CR70 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for Common IRQ of GP20~GP26 at Logic Device 8.  
CR72 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for Watch Dog.  
CRE8 (GP20, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select basic I/O function  
= 01 Reserved  
= 10 Select alternate function: Keyboard Reset (connected to KBC P20)  
= 11 Reserved  
: Int En  
Bit 2  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
- 148 -  
W83977ATF/W83977ATG  
CRE9 (GP21, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved  
: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P13 I/O  
= 11 Reserved  
Bit 2  
: Int En  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CREA (GP22, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function.  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P14 I/O.  
= 11 Reserved  
Bit 2  
: Int En  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output¡@¡@  
CREB (GP23, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P15 I/O  
= 11 Reserved  
Bit 2  
: Int En  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
Publication Release Date: May 2006  
Revision 0.6  
- 149 -  
W83977ATF/W83977ATG  
CREC (GP24, Default 0x01)  
Bit 7 - 5  
Bit 4 - 3  
: Reserved.  
: Select Function.  
= 00 Select Basic I/O function  
= 01 Reserved  
= 10 Select 2nd alternate function: Keyboard P16 I/O  
= 11 Reserved  
: Int En  
Bit 2  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRED (GP25, Default 0x01)  
Bit 7 - 4  
Bit 3  
: Reserved.  
: Select Function.  
= 1  
Select alternate function: GATE A20 (Connect to KBC P21).  
= 0  
Select basic I/O function  
Bit 2  
: Int En  
= 1  
Enable Common IRQ  
Disable Common IRQ  
= 0  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CREE (GP26, Default 0x01)  
Bit 7 - 3  
Bit 2  
: Reserved.  
: Int En  
= 1  
= 0  
Enable Common IRQ  
Disable Common IRQ  
Bit 1  
Bit 0  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRF0 (Default 0x00)  
Debounce Filter Enable or Disable for General Purpose I/O Combined Interrupt. The Debounce Filter  
can reject a pulse with 1ms width or less.  
Bit 7 - 4  
Bit 3  
: Reserved  
: GP Common IRQ Filter Select  
- 150 -  
W83977ATF/W83977ATG  
= 1  
= 0  
Debounce Filter Enabled  
Debounce Filter Bypassed  
Bit 2 - 0  
: Reserved  
CRF1 (Reserved)  
CRF2 (Default 0x00)  
Watch Dog Timer Time-out value. Writing a non-zero value to this register causes the counter to load  
the value to Watch Dog Counter and start to count down. If the Bit2 and Bit 1 are set, any Mouse  
Interrupt or Keyboard Interrupt will also cause reloading of the non-zero value to Watch Dog Counter  
and count down. Reading this register can not access Watch Dog Timer Time-out value, but can  
access the current value in Watch Dog Counter.  
= 0x00 Time-out Disable  
Bit 7 - 0  
= 0x01 Time-out occurs after 1 minute  
= 0x02 Time-out occurs after 2 minutes  
= 0x03 Time-out occurs after 3 minutes  
................................................  
= 0xFF Time-out occurs after 255 minutes  
CRF3 (WDT_CTRL0, Default 0x00)  
Watch Dog Timer Control Register #0  
Bit 7 - 4  
Bit 3  
: Reserved  
: When Time-out occurs, Enable or Disable Power LED with 1 Hz and 50% duty  
cycle output.  
= 1  
= 0  
Enable  
Disable  
Bit 2  
Bit 1  
Bit 0  
: Mouse interrupt reset Enable or Disable  
= 1  
= 0  
Watch Dog Timer is reset upon a Mouse interrupt  
Watch Dog Timer is not affected by Mouse interrupt  
: Keyboard interrupt reset Enable or Disable  
= 1  
= 0  
Watch Dog Timer is reset upon a Keyboard interrupt  
Watch Dog Timer is not affected by Keyboard interrupt  
: Reserved.  
CRF4 (WDT_CTRL1, Default 0x00)  
Watch Dog Timer Control Register #1  
Bit 7 - 4  
Bit 3  
: Reserved  
: Enable the rising edge of Keyboard Reset(P20) to force Time-out event, R/W*  
= 1  
= 0  
Enable  
Disable  
Publication Release Date: May 2006  
Revision 0.6  
- 151 -  
W83977ATF/W83977ATG  
Bit 2  
Bit 1  
: Force Watch Dog Timer Time-out, Write only*  
= 1 Force Watch Dog Timer time-out event; this bit is self-clearing.  
: Enable Power LED 1Hz rate toggle pulse with 50% duty cycle , R/W  
= 1  
= 0  
Enable  
Disable  
Bit 0  
: Watch Dog Timer Status, R/W  
= 1  
= 0  
Watch Dog Timer time-out occurred.  
Watch Dog Timer counting  
*Note: 1). Internal logic provides an 1us Debounce Filter to reject the width of P20 pulse less than 1us.  
2). The P20 signal that coming from Debounce Filter is ORed with the signal generated by the Force Time-out bit and  
then connect to set the Bit 0(Watch Dog Timer Status). The ORed signal is self-clearing.  
14.10 Logical Device 9 (GP I/O Port III)  
CR30 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select GP3 I/O base address [0x100:0xFFF] on 1 byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GP32 alternate function Primary I/O base address [0x100:0xFFE] on 2-  
byte boundary; they are available as you set GP32 to be an alternate function (General  
Purpose Address Decode).  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GP33 alternate function Primary I/O base address [0x100:0xFFF] on 2-  
byte boundary; they are available as you set GP33 to be an alternate function (General  
Purpose Address Decode).  
CR70 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for GP30 as you set GP30 to be an alternate function  
(Interrupt Steering).  
CR72 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for GP31 as you set GP31 to be an alternate function  
(Interrupt Steering).  
- 152 -  
W83977ATF/W83977ATG  
CRE0 (GP30, Default 0x01)  
Bit 7 - 5  
Bit 4  
: Reserved.  
: IRQ Filter Select  
= 1  
= 0  
Debounce Filter Enabled.  
Debounce Filter Bypassed.  
Bit 3  
: Select Function.  
= 1  
= 0  
Select Alternate Function: Interrupt Steering.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
: Reserved.  
: Polarity.  
= 1  
= 0  
Invert.  
No Invert.  
Bit 0  
: In/Out selection.  
= 1  
= 0  
Input.  
Output.  
CRE1 (GP31, Default 0x01)  
Bit 7 - 5  
Bit 4  
: Reserved.  
: IRQ Filter Select  
= 1  
= 0  
Debounce Filter Enabled  
Debounce Filter Bypassed  
Bit 3  
: Select Function.  
= 1  
= 0  
Select Alternate Function: Interrupt Steering.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
: Reserved.  
: Polarity.  
= 1  
= 0  
Invert.  
No Invert.  
Bit 0  
: In/Out selection.  
= 1  
= 0  
Input.  
Output.  
CRE2 (GP32, Default 0x01)  
Bit 7 - 4  
Bit 3  
: Reserved.  
: Select Function.  
= 1  
= 0  
Select Alternate Function: General Purpose Address Decode.  
Select Basic I/O Function.  
Publication Release Date: May 2006  
- 153 -  
Revision 0.6  
W83977ATF/W83977ATG  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE3 (GP33, Default 0x01)  
Bit 7 - 4  
Bit 3  
: Reserved.  
: Select Function.  
= 1  
= 0  
Select Alternate Function: General Purpose Address Decode.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE4 (GP34, Default 0x01)  
Bit 7 - 4  
Bit 3  
: Reserved.  
: Select Function.  
= 1  
= 0  
Select Alternate Function: Watch Dog Timer output.  
Select Basic I/O Function.  
Bit 2  
Bit 1  
Bit 0  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
CRE5 (GP35, Default 0x01)  
Bit 7 - 2  
Bit 1  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
Bit 0  
CRE6 (GP36, Default 0x01)  
Bit 7 - 2  
Bit 1  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
Bit 0  
CRE7 (GP37, Default 0x01)  
Bit 7 - 2  
Bit 1  
: Reserved.  
: Polarity: 1: Invert, 0: No Invert  
: In/Out: 1: Input, 0: Output  
Bit 0  
- 154 -  
W83977ATF/W83977ATG  
CRF1 (Default 0x00)  
Bit 7 - 3  
Bit 2  
: Reserved  
: SERIRQ  
= 0  
= 1  
= 1  
= 0  
= 1  
= 0  
The IRQ system is in normal mode.  
The IRQ system is in serial IRQ mode.  
Bit 1  
Bit 0  
Enable GP33 General Purpose Address Decode.  
Disable GP33 General Purpose Address Decode.  
Enable GP32 General Purpose Address Decode.  
Disable GP32 General Purpose Address Decode.  
*Note: If the logical device's activate bit is not set then bit 0 and 1 have no effect.  
14.11 Logical Device A (ACPI)  
CR30 (Default 0x00)  
Bit 7 - 1  
Bit 0  
: Reserved.  
= 1  
= 0  
Activates the logical device.  
Logical device is inactive.  
CR60, CR 61 (Default 0x00, 0x00)  
These two registers select PM1 register block base address [0x100:0xFFF] on 16-byte boundary.  
CR62, CR 63 (Default 0x00, 0x00)  
These two registers select GPE0 register block base address [0x100:0xFFF] on 4-byte boundary.  
CR64, CR 65 (Default 0x00, 0x00)  
These two registers select GPE1 register block base address [0x100:0xFFF] on 4-byte boundary.  
CR70 (Default 0x00)  
Bit 7 - 4  
Bit 3 - 0  
: Reserved.  
: These bits select IRQ resource for SCI .  
CRE0 (Default 0x00)  
Bit 7  
: DIS-PANSWIN. Disable panel switch input to turn system power supply on.  
= 0  
= 1  
PANSWIN is wire-ANDed and connected to PANSWOUT .  
PANSWIN is blocked and can not affect PANSWOUT .  
Bit 6  
: ENKBWAKEUP. Enable Keyboard to wake-up system via PANSWOUT .  
= 0  
= 1  
Disable Keyboard wake-up function.  
Enable Keyboard wake-up function.  
Publication Release Date: May 2006  
Revision 0.6  
- 155 -  
W83977ATF/W83977ATG  
Bit 5  
Bit 4  
Bit 3  
: ENMSWAKEUP. Enable Mouse to wake-up system via PANSWOUT .  
= 0  
= 1  
Disable Mouse wake-up function.  
Enable Mouse wake-up function.  
: MSRKEY. Select Mouse Left/Right Botton to wake-up system via PANSWOUT .  
= 0  
= 1  
Select click on Mouse Left-button twice to wake the system up.  
Select click on Mouse right-button twice to wake the system up.  
: CIRKEY. Select CIR wake-up system via PANSWOUT .  
= 0  
= 1  
Disable CIR wake-up function.  
Enable CIR wake-up function.  
Bit 2  
Bit 1  
: KB/MS Swap. Enable Keyboard/Mouse port-swap.  
= 0  
= 1  
Keyboard/Mouse ports are not swapped.  
Keyboard/Mouse ports are swapped.  
: MSXKEY. Enable any character received from Mouse to wake-up the system.  
= 0  
Just clicking Mouse left/right-button twice can wake the system up.  
= 1  
4
Any character received from Mouse can wake the system up (the setting of Bit  
is ignored).  
Bit 0  
: KBXKEY. Enable any character received from Keyboard to wake-up the system.  
= 0  
= 1  
Only predetermined specific key combination can wake up the system.  
Any character received from Keyboard can wake up the system.  
CRE1 (Default 0x00) Keyboard Wake-up Index Register  
This register is used to indicate which Keyboard Wake-up Shift register or Predetermined key Register  
is to be read/written via CRE2. The range of Keyboard wake-up index register is 0x00-0x19, and the  
range of CIR wake-up index range register is 0x20-0x2F.  
CRE2 Keyboard Wake-up Data Register  
This register holds the value of wake-up key register indicated by CRE1. This register can be  
read/write.  
CRE3 (Read only) Keyboard/Mouse Wake-up Status Register  
Bit 7-4  
Bit 3  
: Reserved.  
: CIR_STS. The Panel switch event is caused by CIR wake-up event. This bit is cleared  
by reading this register  
Bit 2  
: PANSW_STS. The Panel switch event is caused by PANSWIN . This bit is cleared by  
reading this register.  
Bit 1  
Bit 2  
: Mouse_STS. The Panel switch event is caused by Mouse wake-up event. This bit is  
cleared by reading this register.  
: Keyboard_STS. The Panel switch event is caused by Keyboard wake-up event. This bit  
is cleared by reading this register.  
- 156 -  
W83977ATF/W83977ATG  
CRE4 This Register is reserved for test.  
CRE5 (Default 0x00)  
Bit 7  
: Reserved.  
Bit 6-0  
: Compared Code Length. When the compared codes are storage in the data register,  
these data length should be written to this register.  
CRE6 (Default 0x00)  
Bit 7-6  
Bit 5-0  
: Reserved.  
: CIR Baud Rate Dividor. The clock base of CIR is 32KHz, so that the baud rate is 32KHZ  
divided by (CIR Baud Rate Divisor+1).  
CRE7 (Default 0x00)  
Bit 7-3  
Bit 2  
: Reserved.  
: Reset CIR Power-On function. After used CIR power-on, the software should be write  
logical 1 to restart CIR power-on function.  
Bit 1  
Bit 0  
: Invert RX Data, When set 1, invert received data.  
: Enable Demodulation. When set 1, enable received signal to demodulation. When set  
0, disable  
CRF0 (Default 0x00)  
Bit 7  
: CHIPPME. Chip level power management enable.  
= 0  
= 1  
disable the ACPI/Legacy and the auto power management functions  
enable the ACPI/Legacy and the auto power management functions.  
Bit 6  
: IRPME. IR power management enable.  
= 0  
= 1  
disable the auto power management function.  
enable the auto power management function provided CRF0.bit7  
(CHIPPME) is also set to 1.  
Bit 5 - 4  
Bit 3  
: Reserved. Return zero when read.  
: PRTPME. Printer port power management enable.  
= 0  
disable the auto power management functions.  
= 1  
is  
enable the auto power management functions provided CRF0.bit7 (CHIPPME)  
also set to 1.  
Bit 2  
Bit 1  
: FDCPME. FDC power management enable.  
= 0  
disable the auto power management functions.  
= 1  
is  
enable the auto power management functions provided CRF0.bit7 (CHIPPME)  
also set to 1.  
: URAPME. UART A power management enable.  
= 0  
disable the auto power management functions.  
Publication Release Date: May 2006  
Revision 0.6  
- 157 -  
W83977ATF/W83977ATG  
= 1  
is  
enable the auto power management functions provided CRF0.bit7 (CHIPPME)  
also set to 1.  
Bit 0  
: URBPME. UART B power management enable.  
= 0  
disable the auto power management functions.  
= 1  
is  
enable the auto power management functions provided CRF0.bit7 (CHIPPME)  
also set to 1.  
CRF1 (Default 0x00)  
These bits indicate that the individual device's idle timer expires due to no I/O access, no IRQ, and no  
external input to the device. These 5 bits are controlled by the IR, printer port, FDC, UART A, and  
UART B power down machines individually. Writing a 1 clears this bit, and writing a 0 has no effect.  
Note that the user is not supposed to change the status while the power management function is  
enabled.  
Bit 7  
Bit 6  
: Reserved. Return zero when read.  
: IRIDLSTS. IR idle status  
= 0  
= 1  
IR is now in the working state.  
IR is now in the sleeping state due to no IR access, no IRQ, the receiver is  
now waiting for a start bit, and the transmitter shift register is now empty in a  
preset expiry time period.  
Bit 5 - 4  
Bit 3  
: Reserved. Return zero when read.  
: PRTIDLSTS. Printer port idle status.  
= 0  
= 1  
printer port is now in the working state.  
printer port is now in the sleeping state due to no printer port access, no IRQ, no  
DMA acknowledge, and no transition on BUSY, ACK , PE, SLCT, and ERR  
in a preset expiry time period.  
pins  
Bit 2  
Bit 1  
Bit 0  
: FDCIDLSTS. FDC idle status.  
= 0  
= 1  
FDC is now in the working state.  
FDC is now in the sleeping state due to no FDC access, no IRQ, no DMA  
acknowledge, and no enabling of the motor enable bits in the DOR register in a  
preset expiry time period  
: URAIDLSTS. UART A idle status.  
= 0  
= 1  
UART A is now in the working state.  
UART A is now in the sleeping state due to no UART A access, no IRQ, the  
receiver is now waiting for a start bit, the transmitter shift register is now empty,  
and no transition on MODEM control input lines in a preset expiry time period.  
: URBIDLSTS. UART B idle status.  
= 0  
= 1  
UART B is now in the working state.  
UART B is now in the sleeping state due to no UART A access, no IRQ, the  
receiver is now waiting for a start bit, the transmitter shift register is now empty,  
and no transition on MODEM control input lines in a preset expiry time period.  
- 158 -  
W83977ATF/W83977ATG  
CRF2 (Default 0x00)  
These bits indicate that the individual device wakes up due to any I/O access, IRQ, and external input  
to the device. The device's idle timer reloads the preset expiry depending on which device wakes up.  
These 5 bits are controlled by IR, the printer port, FDC, UART A, and UART B power down machines  
respectively. Writing a 1 clears this bit, and writing a 0 has no effect. Note that the user is not  
supposed to change the status while power management function is enabled.  
Bit 7  
Bit 6  
: Reserved. Return zero when read.  
: IRTRAPSTS. IR trap status.  
= 0  
= 1  
IR is now in the sleeping state.  
IR is now in the working state due to any IR access, any IRQ, the receiver  
begins receiving a start bit, and the transmitter shift register begins  
transmitting a  
start bit.  
Bit 5 - 4  
Bit 3  
: Reserved. Return zero when read.  
: PRTTRAPSTS. Printer port trap status.  
= 0  
= 1  
the printer port is now in the sleeping state.  
the printer port is now in the working state due to any printer port access, any  
IRQ, any DMA acknowledge, and any transition on BUSY, ACK , PE, SLCT,  
ERR pins.  
and  
Bit 2  
Bit 1  
Bit 0  
: FDCTRAPSTS. FDC trap status.  
= 0  
= 1  
FDC is now in the sleeping state.  
FDC is now in the working state due to any FDC access, any IRQ, any DMA  
acknowledge, and any enabling of the motor enable bits in the DOR  
register.  
: URATRAPSTS. UART A trap status.  
= 0  
= 1  
UART A is now in the sleeping state.  
UART A is now in the working state due to any UART A access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins  
transmitting a start bit, and any transition on MODEM control input lines.  
: URBTRAPSTS. UART B trap status.  
= 0  
= 1  
UART B is now in the sleeping state.  
UART B is now in the working state due to any UART B access, any IRQ, the  
receiver begins receiving a start bit, the transmitter shift register begins  
transmitting a start bit, and any transition on MODEM control input lines.  
CRF3 (Default 0x00)  
These bits indicate the IRQ status of the individual device. The device's IRQ status bit is set by their  
source device and is cleared by writing a 1. Writing a 0 has no effect.  
Bit 7  
Bit 6  
Bit 5  
: Reserved. Return zero when read.  
: IRIRQSTS. IR IRQ status.  
: MOUIRQSTS. MOUSE IRQ status.  
Publication Release Date: May 2006  
Revision 0.6  
- 159 -  
W83977ATF/W83977ATG  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
: KBCIRQSTS. KBC IRQ status.  
: PRTIRQSTS. Printer port IRQ status.  
: FDCIRQSTS. FDC IRQ status.  
: URAIRQSTS. UART A IRQ status.  
: URBIRQSTS. UART B IRQ status.  
CRF4 (Default 0x00)  
Reserved. Return zero when read.  
CRF5 (Default 0x00)  
Reserved. Return zero when read.  
CRF6 (Default 0x00)  
These bits enable the generation of an SMI interrupt due to any IRQ of the devices. These 4 bits  
control the printer port, FDC, UART A, and UART B SMI logics respectively. The SMI logic output for  
the IRQs is as follows:  
SMI logic output = (URBIRQEN and URBIRQSTS) or (URAIRQEN and URAIRQSTS) or (FDCIRQEN  
and FDCIRQSTS) or (PRTIRQEN and PRTIRQSTS) or (KBCIRQEN and KBCIRQSTS) or  
(MOUIRQEN and MOUIRQSTS) or (IRIRQEN and IRIRQSTS)  
Bit 7  
Bit 6  
: Reserved. Return zero when read.  
: IRIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to IR's IRQ.  
enable the generation of an SMI interrupt due to IR's IRQ.  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
: MOUIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to MOUSE's IRQ.  
enable the generation of an SMI interrupt due to MOUSE's IRQ.  
: KBCIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to KBC's IRQ.  
enable the generation of an SMI interrupt due to KBC's IRQ.  
: PRTIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to printer port's IRQ.  
enable the generation of an SMI interrupt due to printer port's IRQ.  
: FDCIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to FDC's IRQ.  
enable the generation of an SMI interrupt due to FDC's IRQ.  
- 160 -  
W83977ATF/W83977ATG  
Bit 1  
Bit 0  
: URAIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to UART A's IRQ.  
enable the generation of an SMI interrupt due to UART A's IRQ.  
: URBIRQEN.  
= 0  
= 1  
disable the generation of an SMI interrupt due to UART B's IRQ.  
enable the generation of an SMI interrupt due to UART B's IRQ.  
CRF7 (Default 0x00)  
Bit 7 - 2  
Bit 1  
: Reserved. Return zero when read.  
: FSLEEP.  
This bit selects the fast expiry time of individual devices.  
= 0  
= 1  
1 second  
8 milli-seconds  
Bit 0  
: SMI_EN.  
This bit is the SMI output pin enable bit. When an SMI event is raised on the output of  
the SMIlogic, setting this bit enables the SMI interrupt to be generated on the pin SMI.  
If this bit is cleared, only the IRQ status bit in CRF3 is set and no SMI interrupt is  
generated on the pin SMI.  
= 0  
= 1  
Disable SMI  
Enable SMI  
CRFE, FF (Default 0x00)  
Reserved. Reserved for Winbond test.  
Publication Release Date: May 2006  
Revision 0.6  
- 161 -  
W83977ATF/W83977ATG  
15. SPECIFICATIONS  
15.1 Absolute Maximum Ratings  
PARAMETER  
Power Supply Voltage  
Input Voltage  
RATING  
-0.5 to 7.0  
UNIT  
V
-0.5 to VDD+0.5  
4.0 to 1.8  
V
Battery Voltage VBAT  
Operating Temperature  
Storage Temperature  
V
0 to +70  
° C  
° C  
-55 to +150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
15.2 DC CHARACTERISTICS  
(Ta = 0° C to 70° C, VDD = 5V ± 10%, VSS = 0V)  
PARAMETER  
SYM. MIN.  
IBAT  
TYP.  
MAX.  
2.4  
UNIT  
uA  
CONDITIONS  
VBAT = 2.5 V  
Battery Quiescent Current  
Stand-by Power Supply  
Quiescent Current  
IBAT  
2.0  
mA  
VSB = 5.0 V, All ACPI pins are  
not connected.  
I/O8t - TTL level bi-directional pin with source-sink capability of 8 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.8  
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 8 mA  
IOH = - 8 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
μA  
μA  
I/O6t - TTL level bi-directional pin with source-sink capability of 6 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.8  
V
V
2.0  
2.4  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 6 mA  
IOH = - 6 mA  
VIN = VDD  
VIN = 0V  
V
+10  
-10  
μA  
μA  
- 162 -  
W83977ATF/W83977ATG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O12 - CMOS level bi-directional pin with source-sink capability of 12 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.3xVDD  
0.4  
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
ILIL  
V
IOL = 12 mA  
V
IOH = - 12 mA  
VIN = VDD  
VIN = 0V  
+ 10  
- 10  
μA  
μA  
I/O16u - CMOS level bi-directional pin with source-sink capability of 16 mA, with internal pull-  
up resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.3xVDD  
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
VIN = 0V  
V
+ 10  
- 10  
μA  
μA  
I/OD16u - CMOS level Open-Drain pin with source-sink capability of 16 mA, with internal pull-  
up resistor  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
0.3xVDD  
V
V
0.7xVDD  
3.5  
VOL  
VOH  
ILIH  
ILIL  
0.4  
V
IOL = 16 mA  
IOH = - 16 mA  
VIN = VDD  
VIN = 0V  
V
+ 10  
- 10  
μA  
μA  
I/O12t - TTL level bi-directional pin with source-sink capability of 12 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
V
V
2.0  
2.4  
0.4  
V
IOL = 12 mA  
IOH = - 12 mA  
VIN = VDD  
V
+ 10  
- 10  
μA  
μA  
VIN = 0V  
Publication Release Date: May 2006  
Revision 0.6  
- 163 -  
W83977ATF/W83977ATG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
I/O24t - TTL level bi-directional pin with source-sink capability of 24 mA  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
0.4  
V
V
2.0  
2.4  
V
IOL = 24 mA  
V
IOH = - 24 mA  
VIN = VDD  
VIN = 0V  
+ 10  
- 10  
μA  
μA  
OUT8t - TTL level output pin with source-sink capability of 8 mA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 8 mA  
2.4  
IOH = - 8 mA  
OUT12t - TTL level output pin with source-sink capability of 12 mA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
V
V
IOL = 12 mA  
IOH = -12 mA  
2.4  
OD12 - Open-drain output pin with sink capability of 12 mA  
Output Low Voltage 0.4  
OD24 - Open-drain output pin with sink capability of 24 mA  
VOL  
V
V
IOL = 12 mA  
IOL = 24 mA  
Output Low Voltage  
VOL  
0.4  
INt - TTL level input pin  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
0.8  
V
V
VIH  
ILIH  
ILIL  
2.0  
+10  
-10  
VIN = VDD  
VIN = 0 V  
μA  
μA  
INc  
- CMOS level input pin  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
Vt-  
V
V
0.3×VDD  
0.7×VDD  
+10  
-10  
1.7  
VIN = VDD  
VIN = 0 V  
VDD = 5 V  
μA  
μA  
V
Input Low  
Threshold Voltage  
1.3  
3.2  
1.5  
1.5  
3.5  
2
Input High  
Threshold Voltage  
Vt+  
3.8  
V
VDD = 5 V  
Hystersis  
VTH  
ILIH  
ILIL  
V
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
- 164 -  
W83977ATF/W83977ATG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
INcs  
- CMOS level Schmitt-triggered input pin  
INcu - CMOS level input pin with internal pull-up resistor  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
0.7xVDD  
V
V
0.7xVDD  
+10  
-10  
VIN = VDD  
VIN = 0 V  
μA  
μA  
INts  
- TTL level Schmitt-triggered input pin  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
VTH  
ILIH  
ILIL  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
INtsu  
- TTL level Schmitt-triggered input pin with internal pull-up resistor  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
VTH  
ILIH  
ILIL  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VDD = 5 V  
VDD = 5 V  
VDD = 5 V  
VIN = VDD  
VIN = 0 V  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
Publication Release Date: May 2006  
Revision 0.6  
- 165 -  
W83977ATF/W83977ATG  
15.3 AC Characteristics  
15.3.1 FDC: Data rate = 1 MB, 500 KB, 300 KB, 250 KB/sec.  
PARAMETER  
SYM.  
TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
TAR  
25  
nS  
SA9-SA0, AEN, DACK , CS,  
setup time to IOR¡õ  
TAR  
0
nS  
SA9-SA0, AEN, DACK , hold  
time for IOR¡ô  
TRR  
TFD  
TDH  
TDF  
TRI  
80  
nS  
nS  
nS  
nS  
nS  
IOR width  
CL = 100 pf  
CL = 100 pf  
CL = 100 pf  
80  
50  
Data access time from IOR¡õ  
Data hold from IOR¡õ  
SD to from IOR ¡ô  
10  
10  
360/570  
/675  
IRQ delay from IOR¡ô  
TAW  
TWA  
25  
0
nS  
nS  
SA9-SA0, AEN, DACK , setup  
time to IOW ¡õ  
SA9-SA0, AEN, DACK , hold  
time for IOW ¡ô  
TWW  
TDW  
TWD  
TWI  
60  
60  
0
nS  
nS  
nS  
nS  
IOW width  
Data setup time to IOW ¡ô  
Data hold time from IOW ¡ô  
IRQ delay from IOW ¡ô  
360/570  
/675  
DRQ cycle time  
TMCY  
TAM  
27  
0
μS  
50  
nS  
DRQ delay time DACK ¡õ  
DRQ to DACK delay  
DACK width  
TMA  
TAA  
nS  
nS  
260/430  
/510  
TMR  
TMW  
0
0
nS  
nS  
μS  
IOR delay from DRQ  
IOW delay from DRQ  
TMRW  
6/12  
/20/24  
IOW  
IOR  
response time  
or  
from DRQ  
TC width  
TTC  
135/220  
/260  
nS  
RESET width  
TRST  
1.8/3/3.5  
μS  
- 166 -  
W83977ATF/W83977ATG  
AC Characteristics, FDC continued  
PARAMETER  
SYM.  
TIDX  
TDST  
TEST  
CONDITIONS  
MIN.  
TYP.  
(NOTE 1)  
MAX.  
UNIT  
0.5/0.9  
/1.0  
μS  
μS  
INDEX width  
1.0/1.6  
/2.0  
DIR setup time to STEP  
TSTD  
TSTP  
24/40/48  
μS  
μS  
DIR hold time from STEP  
STEP pulse width  
6.8/11.5  
/13.8  
7/11.7  
/14  
7.2/11.9  
/14.2  
TSC  
Note 2  
Note 2  
Note 2  
μS  
μS  
STEP cycle width  
WD pulse width  
TWDD  
100/185  
/225  
125/210  
/250  
150/235  
/275  
Write precompensation  
TWPC  
100/138  
/225  
125/210  
/250  
150/235  
/275  
μS  
Notes:1. Typical values for T = 25° C and normal supply voltage.  
2. Programmable from 2 mS through 32 mS in 2 mS increments.  
15.3.2 UART/Parallel Port  
PARAMETER  
SYMBOL  
TEST  
MIN.  
MAX.  
UNIT  
CONDITIONS  
Delay from Stop to Set Interrupt  
TSINT  
9/16  
Baud  
Rate  
TRINT  
TIRS  
100 pf Loading  
1
μS  
Delay from IOR Reset Interrupt  
Delay from Initial IRQ Reset to Transmit  
Start  
1/16  
9/16  
8/16  
Baud  
Rate  
Delay from to Reset interrupt  
THR  
TSI  
100 pf Loading  
175  
nS  
16/16  
Baud  
Rate  
Delay from Initial IOW to interrupt  
Delay from Stop to Set Interrupt  
TSTI  
1/2  
Baud  
Rate  
TIR  
100 pF Loading  
100 pF Loading  
250  
200  
nS  
nS  
Delay from IOR to Reset Interrupt  
TMWO  
Delay from IOR to Output  
Set Interrupt Delay from Modem Input  
TSIM  
TRIM  
250  
250  
nS  
nS  
Reset Interrupt Delay from IOR  
Interrupt Active Delay  
Interrupt Inactive Delay  
Baud Divisor  
TIAD  
TIID  
N
100 pF Loading  
100 pF Loading  
100 pF Loading  
25  
30  
16  
nS  
nS  
2
-1  
Publication Release Date: May 2006  
Revision 0.6  
- 167 -  
W83977ATF/W83977ATG  
15.3.3 Parallel Port Mode Parameters  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
t1  
100  
nS  
PD0-7, INDEX, STROBE, AUTOFD Delay from  
IOW  
t2  
t3  
60  
nS  
nS  
IRQ Delay from ACK, nFAULT  
105  
IRQ Delay from IOW  
IRQ Active Low in ECP and EPP Modes  
t4  
t5  
200  
300  
105  
nS  
nS  
ERROR Active to IRQ Active  
15.3.4 EPP Data or Address Read Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOR Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
40  
0
nS  
t2  
t3  
t4  
t5  
nS  
nS  
IOCHRDY Deasserted to IOR Deasserted  
IOR Deasserted to Ax Valid  
10  
40  
0
10  
24  
IOR Deasserted to  
or IOR Asserted  
IOW  
nS  
IOR Asserted to IOCHRDY Asserted  
PD Valid to SD Valid  
t6  
t7  
0
0
75  
40  
nS  
μS  
IOR Deasserted to SD Hi-Z (Hold Time)  
SD Valid to IOCHRDY Deasserted  
t8  
t9  
0
85  
nS  
nS  
60  
160  
WAIT Deasserted to IOCHRDY Deasserted  
PD Hi-Z to PDBIR Set  
t10  
t13  
0
0
nS  
nS  
WRITE Deasserted to IOR Asserted  
WAIT Asserted to WRITE Deasserted  
Deasserted to WRITE Modified  
IOR Asserted to PD Hi-Z  
t14  
t15  
t16  
t17  
0
60  
0
185  
190  
50  
nS  
nS  
nS  
nS  
60  
180  
WAIT Asserted to PD Hi-Z  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
t18  
t19  
t20  
0
0
nS  
nS  
nS  
60  
190  
WAIT Deasserted to PD Drive  
t21  
1
nS  
WRITE Deasserted to Command  
PBDIR Set to Command  
t22  
t23  
t24  
t25  
0
0
20  
30  
nS  
nS  
nS  
nS  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
0
195  
180  
60  
WAIT Deasserted to Command Deasserted  
Time out  
t26  
t27  
10  
0
12  
nS  
nS  
PD Valid to WAIT Deasserted  
PD Hi-Z to WAIT Deasserted  
t28  
0
μS  
- 168 -  
W83977ATF/W83977ATG  
15.3.5 EPP Data or Address Write Cycle Timing Parameters  
PARAMETER  
Ax Valid to IOW Asserted  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
40  
nS  
SD Valid to Asserted  
t2  
t3  
10  
10  
nS  
nS  
IOW Deasserted to Ax Invalid  
t4  
t5  
0
10  
40  
0
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
WAIT Deasserted to IOCHRDY Deasserted  
Command Asserted to WAIT Deasserted  
IOW Deasserted to IOW or IOR Asserted  
IOCHRDY Deasserted to IOW Deasserted  
WAIT Asserted to Command Asserted  
IOW Asserted to WAIT Asserted  
PBDIR Low to WRITE Asserted  
WAIT Asserted to WRITE Asserted  
WAIT Asserted to WRITE Change  
IOW Asserted to PD Valid  
t6  
t7  
24  
160  
70  
t8  
60  
0
t9  
t10  
t11  
t12  
t13  
t14  
0
60  
60  
0
185  
185  
50  
0
WAIT Asserted to PD Invalid  
PD Invalid to Command Asserted  
t15  
t16  
10  
5
nS  
nS  
35  
210  
190  
10  
IOW to Command Asserted  
t17  
t18  
t19  
60  
60  
0
nS  
nS  
μS  
WAIT Asserted to Command Asserted  
WAIT Deasserted to Command Deasserted  
Command Asserted to WAIT Deasserted  
Time out  
t20  
t21  
10  
0
12  
μS  
nS  
Command Deasserted to WAIT Asserted  
t22  
0
nS  
IOW Deasserted to WRITE Deasserted and PD invalid  
Publication Release Date: May 2006  
Revision 0.6  
- 169 -  
W83977ATF/W83977ATG  
15.3.6 Parallel Port FIFO Timing Parameters  
PARAMETER  
DATA Valid to nSTROBE Active  
nSTROBE Active Pulse Width  
SYMBOL  
MIN.  
600  
600  
450  
80  
MAX.  
UNIT  
nS  
t1  
t2  
t3  
t4  
t5  
t6  
nS  
DATA Hold from nSTROBE Inactive  
BUSY Inactive to PD Inactive  
nS  
nS  
BUSY Inactive to nSTROBE Active  
nSTROBE Active to BUSY Active  
680  
nS  
500  
nS  
15.3.7 ECP Parallel Port Forward Timing Parameters  
PARAMETER  
nAUTOFD Valid to nSTROBE Asserted  
PD Valid to nSTROBE Asserted  
SYMBOL  
MIN.  
0
MAX.  
60  
UNIT  
nS  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
60  
nS  
BUSY Deasserted to nAUTOFD Changed  
BUSY Deasserted to PD Changed  
80  
80  
0
180  
180  
nS  
nS  
nSTROBE Deasserted to BUSY Deasserted  
BUSY Deasserted to nSTROBE Asserted  
nSTROBE Asserted to BUSY Asserted  
BUSY Asserted to nSTROBE Deasserted  
nS  
80  
0
200  
180  
nS  
nS  
80  
nS  
15.3.8 ECP Parallel Port Reverse Timing Parameters  
PARAMETER  
PD Valid to nACK Asserted  
SYMBOL  
MIN.  
0
MAX.  
UNIT  
nS  
t1  
t2  
t3  
t4  
t5  
t6  
nAUTOFD Deasserted to PD Changed  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
nACK Deasserted to nAUTOFD Asserted  
PD Changed to nAUTOFD Deasserted  
0
nS  
0
nS  
0
nS  
80  
80  
200  
200  
nS  
nS  
- 170 -  
W83977ATF/W83977ATG  
15.3.9 KBC Timing Parameters  
NO.  
T1  
DESCRIPTION  
MIN.  
0
MAX.  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
μS  
μS  
μS  
μS  
μS  
μS  
μS  
mS  
μS  
nS  
Address Setup Time from WRB  
Address Setup Time from RDB  
WRB Strobe Width  
T2  
0
T3  
20  
20  
0
T4  
RDB Strobe Width  
T5  
Address Hold Time from WRB  
Address Hold Time from RDB  
Data Setup Time  
T6  
0
T7  
50  
0
T8  
Data Hold Time  
T9  
Gate Delay Time from WRB  
RDB to Drive Data Delay  
RDB to Floating Data Delay  
Data Valid After Clock Falling (SEND)  
K/B Clock Period  
10  
30  
40  
20  
4
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
0
20  
10  
4
K/B Clock Pulse Width  
Data Valid Before Clock Falling (RECEIVE)  
K/B ACK After Finish Receiving  
RC Fast Reset Pulse Delay (8 Mhz)  
RC Pulse Width (8 Mhz)  
Transmit Timeout  
20  
2
3
2
6
Data Valid Hold Time  
0
83  
30  
30  
5
167  
50  
Input Clock Period (612 Mhz)  
Duration of CLK inactive  
Duration of CLK active  
μS  
μS  
μS  
50  
Time from inactive CLK transition, used to time when  
the auxiliary device sample DATA  
25  
T25  
T26  
T27  
T28  
T29  
Time of inhibit mode  
100  
5
300  
T28-5  
50  
μS  
μS  
μS  
μS  
μS  
Time from rising edge of CLK to DATA transition  
Duration of CLK inactive  
30  
30  
5
Duration of CLK active  
50  
Time from DATA transition to falling edge of CLK  
25  
Publication Release Date: May 2006  
Revision 0.6  
- 171 -  
W83977ATF/W83977ATG  
15.3.10 GPIO Timing Parameters  
SYMBOL  
tWGO  
PARAMETER  
MIN.  
MAX.  
UNIT  
ns  
Write data to GPIO update  
SWITCH pulse width  
300(Note 1)  
tSWP  
16  
msec  
Note: Refer to Microprocessor Interface Timing for Read Timing.  
- 172 -  
W83977ATF/W83977ATG  
16. TIMING WAVEFORMS  
16.1 FDC  
Write Date  
Processor Read Operation  
WD  
SA0-SA9  
AEN  
TWDD  
CS  
TAR  
TRA  
DACK  
TRR  
IOR  
TDH  
Index  
TFD  
TDF  
D0-D7  
IRQ  
INDEX  
TR  
TIDX  
TIDX  
Processor Write Operation  
Terminal Count  
SA0-SA9  
AEN  
TC  
TAW  
TWA  
DACK  
IOW  
TTC  
TWW  
TWD  
Reset  
TDW  
D0-D7  
IRQ  
RESET  
TWI  
TRST  
DMA Operation  
Drive Seek operation  
TAM  
DRQ  
DIR  
TMCY  
TAA  
DACK  
TMA  
TSTP  
TSTD  
TDST  
TMRW  
IOW or  
IOR  
STEP  
TMW (IOW)  
TMR (IOR)  
TSC  
Publication Release Date: May 2006  
Revision 0.6  
- 173 -  
W83977ATF/W83977ATG  
16.2 UART/Parallel  
Receiver Timing  
SIN  
(RECEIVER  
STAR  
INPUT DATA)  
DATA BITS  
(5-8)  
PARITY  
STOP  
TSINT  
IRQ3 or IRQ4  
IOR  
TRINT  
(READ RECEIVER  
BUFFER REGISTER)  
Transmitter Timing  
SERIAL OUT  
(SOUT)  
STAR  
STAR  
DATA  
(5-8)  
PARITY  
STOP  
(1-2)  
THRS  
TSTI  
IRQ3 or IRQ4  
THR  
THR  
IOW  
TSI  
(WRITE THR)  
TIR  
IOR  
(READ TIR)  
- 174 -  
W83977ATF/W83977ATG  
16.2.1 Modem Control Timing  
MODEM Control Timing  
IOW  
(WRITE MCR)  
TMWO  
TMWO  
→ ←  
RTS,DTR  
?
CTS,DSR  
DCD  
TSIM  
TSIM  
IRQ3 or  
IRQ4  
TRIM  
TRIM  
IOR  
(READ MSR)  
TSIM  
?
RI  
Printer Interrupt Timing  
ACK  
TLAD  
TLID  
IRQ7  
Publication Release Date: May 2006  
Revision 0.6  
- 175 -  
W83977ATF/W83977ATG  
16.3 Parallel Port  
16.3.1 Parallel Port Timing  
IOW  
t1  
INIT, STROBE  
AUTOFD, SLCTIN  
PD<0:7>  
ACK  
t2  
IRQ (SPP)  
IRQ  
t3  
t4  
(EPP or ECP)  
nFAULT  
(ECP)  
ERROR  
(ECP)  
t5  
t2  
t4  
IRQ  
- 176 -  
W83977ATF/W83977ATG  
16.3.2 EPP Data or Address Read Cycle (EPP Version 1.9)  
t3  
A<0:10>  
IOR  
t1  
t2  
t4  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
t26  
WAIT  
Publication Release Date: May 2006  
Revision 0.6  
- 177 -  
W83977ATF/W83977ATG  
16.3.3 EPP Data or Address Write Cycle (EPP Version 1.9)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t6  
t2  
IOW  
IOCHRDY  
t7  
t8  
t9  
t10  
t11  
t12  
t14  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t21  
t20  
WAIT  
t22  
PBDIR  
- 178 -  
W83977ATF/W83977ATG  
16.3.4 EPP Data or Address Read Cycle (EPP Version 1.7)  
t3  
A<0:10>  
IOR  
t1  
t2  
t4  
t6  
t7  
SD<0:7>  
t8  
t9  
t5  
IOCHRDY  
t10  
t13  
t14  
t15  
WRITE  
t16  
t18  
t19  
t20  
t17  
t21  
PD<0:7>  
t22  
t23  
t25  
ADDRSTB  
DATASTB  
t24  
t26  
t28  
t27  
WAIT  
Publication Release Date: May 2006  
Revision 0.6  
- 179 -  
W83977ATF/W83977ATG  
16.3.5 EPP Data or Address Write Cycle (EPP Version 1.7)  
t3  
t4  
A10-A0  
SD<0:7>  
t5  
t1  
t6  
t2  
IOW  
t7  
t8  
IOCHRDY  
t9  
t10  
t11  
t22  
t22  
WRITE  
t13  
PD<0:7>  
t15  
t16  
t17  
t18  
DATAST  
ADDRSTB  
t19  
t20  
WAIT  
16.3.6 Parallel Port FIFO Timing  
t4  
>|  
>|  
t3  
PD<0:7>  
t1  
t2  
t5  
>|  
>
>|  
nSTROBE  
t6  
>|  
BUSY  
- 180 -  
W83977ATF/W83977ATG  
16.3.7 ECP Parallel Port Forward Timing  
t3  
t4  
nAUTOFD  
PD<0:7>  
t1  
t2  
t6  
t8  
nSTROBE  
t5  
t5  
t7  
BUSY  
16.3.8 ECP Parallel Port Reverse Timing  
t2  
PD<0:7>  
t1  
t3  
t4  
nACK  
t5  
t5  
t6  
nAUTOFD  
Publication Release Date: May 2006  
Revision 0.6  
- 181 -  
W83977ATF/W83977ATG  
16.4 KBC  
16.4.1 Write Cycle Timing  
A2, CSB  
WRB  
T1  
T5  
T3  
ACTIVE  
T8  
T7  
D0~D7  
DATA IN  
T9  
GA20  
OUTPUT PORT  
T17  
T18  
FAST RESET PULSE RC  
FE COMMAND  
16.4.2 Read Cycle Timing  
A2,CSB  
AEN  
T2  
T6  
T4  
RDB  
ACTIVE  
T10  
T11  
D0-D7  
DATA OUT  
16.4.3 Send Data to K/B  
CLOCK  
(KCLK)  
T12  
T13  
T16  
T14  
SERIAL DATA  
D5  
START  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
(KDAT)  
T19  
- 182 -  
W83977ATF/W83977ATG  
16.4.4 Receive Data from K/B  
CLOCK  
(KCLK)  
T15  
T14  
T13  
SERIAL DATA  
D5  
START  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
(T1)  
T20  
16.4.5 Input Clock  
CLOCK  
CLOCK  
T21  
16.4.6 Send Data to Mouse  
MCLK  
T25  
T23  
T24  
T22  
MDAT  
START  
Bit  
D5  
D1  
D2  
D3  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
16.4.7 Receive Data from Mouse  
MCLK  
T29  
T26  
D1  
T27  
T28  
D3  
MDAT  
D5  
START  
D2  
D4  
D0  
D6  
D7  
P
STOP  
Bit  
Publication Release Date: May 2006  
Revision 0.6  
- 183 -  
W83977ATF/W83977ATG  
16.5 GPIO Write Timing Diagram  
VALID  
VALID  
A0-A15  
IOW  
D0-7  
GPIO10-17  
GPIO20-25  
PREVIOUS STATE  
VALID  
tWGO  
16.6 Master Reset (MR) Timing  
Vcc  
MR  
tVMR  
- 184 -  
W83977ATF/W83977ATG  
17. APPLICATION CIRCUITS  
17.1 Parallel Port Extension FDD  
JP13  
13  
WE2/SLCT  
25  
12  
JP 13A  
WD2/PE  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
15  
2
14  
1
DCH2  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2/BUSY  
HEAD2  
RDD2  
WP2  
DSB2/ACK  
TRK02  
WE2  
PD7  
WD2  
PD6  
STEP2  
DIR2  
PD5  
MOB2  
DSB2  
IDX2  
DCH2/PD4  
RDD2/PD3  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension FDD Mode Connection Diagram  
Publication Release Date: May 2006  
Revision 0.6  
- 185 -  
W83977ATF/W83977ATG  
17.2 Parallel Port Extension 2FDD  
JP13  
13  
25  
12  
WE2/SLCT  
JP 13A  
WD2/PE  
DCH2  
24  
11  
23  
10  
22  
9
21  
8
20  
7
19  
6
18  
5
17  
4
16  
3
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
MOB2/BUSY  
HEAD2  
RDD2  
WP2  
DSB2/ACK  
TRK02  
DSA2/PD7  
MOA2/PD6  
WE2  
WD2  
STEP2  
DIR2  
PD5  
MOB2  
DSA2  
DSB2  
MOA2  
IDX2  
DCH2/PD4  
RDD2/PD3  
7
5
3
1
STEP2/SLIN  
WP2/PD2  
6
4
2
RWC2  
DIR2/INIT  
TRK02/PD1  
15  
2
14  
1
EXT FDC  
HEAD2/ERR  
IDX2/PD0  
RWC2/AFD  
STB  
PRINTER PORT  
Parallel Port Extension 2FDD Connection Diagram  
17.3 Four FDD Mode  
74LS139  
G1  
7407(2)  
W83977ATF  
1Y0  
1Y1  
DSA  
DSB  
DSC  
DSD  
MOA  
DSA  
DSB  
A1  
B1  
1Y2  
1Y3  
2Y0  
2Y1  
MOA  
MOB  
MOB  
MOC  
MOD  
G2  
2Y2  
2Y3  
A2  
B2  
- 186 -  
W83977ATF/W83977ATG  
18. ORDERING INFORMATION  
PART NO.  
KBC FIRMWARE  
AMIKEYTM-2  
AMIKEYTM-2  
REMARKS  
W83977ATF-AW  
W83977ATG-AW  
Lead-free package  
Publication Release Date: May 2006  
Revision 0.6  
- 187 -  
W83977ATF/W83977ATG  
19. HOW TO READ THE TOP MARKING  
The top marking of W83977ATF-AW  
inbond  
W83977ATF-AW  
AM. MEGA. 87-96  
719AC27039520  
©
1st line: Winbond logo  
2nd line: the type number: W83977ATF-AW  
3rd line: the source of KBC F/W -- American Megatrends Incorporated TM  
4th line: Tracking code  
719 A B 2 7039530  
719: packages made in '97, week 19  
A: assembly house ID; A means ASE, S means SPIL  
C: IC revision; B means version B, C means version C  
2: wafers manufactured in Winbond FAB 2  
7039530: wafer production series lot number  
The top marking of W83977ATG-AW  
inbond  
W83977ATG-AW  
AM. MEGA. 87-96  
719AC27039520  
©
1st line: Winbond logo  
2nd line: the type number: W83977ATG-AW; G means lead-free package.  
3rd line: the source of KBC F/W -- American Megatrends Incorporated TM  
4th line: Tracking code  
719 A B 2 7039530  
719: packages made in '97, week 19  
A: assembly house ID; A means ASE, S means SPIL  
C: IC revision; B means version B, C means version C  
2: wafers manufactured in Winbond FAB 2  
7039530: wafer production series lot number  
- 188 -  
W83977ATF/W83977ATG  
20. PACKAGE DIMENSIONS  
(128-pin QFP)  
Dimension in mm  
Dimension in inch  
HE  
E
Symbol  
Min  
0.25  
2.57  
Nom  
0.35  
Max  
0.45  
2.87  
Min Nom Max  
65  
102  
1
A
0.010  
0.101  
0.014  
0.107  
0.018  
0.113  
2.72  
A
2
64  
103  
0.10  
0.10  
0.20  
0.15  
0.30  
0.20  
0.004 0.008 0.012  
0.004 0.006 0.008  
0.547 0.551 0.555  
b
c
D
E
e
13.90  
19.90  
14.00  
20.00  
0.50  
14.10  
20.10  
0.783 0.787  
0.020  
0.791  
HD  
D
H
D
17.20  
23.20  
0.669  
0.677 0.685  
0.921  
17.40  
23.40  
0.95  
17.00  
23.00  
0.905 0.913  
HE  
L
0.80  
1.60  
0.025 0.031 0.037  
0.063  
0.65  
39  
128  
1
L
0.08  
7
y
0.003  
1
38  
e
b
0
7
0
0
c
Note:  
A
1.Dimension D & E do not include interlead  
flash.  
2
A
2.Dimension b does not include dambar  
protrusion/intrusion  
.
3.Controlling dimension : Millimeter  
4.General appearance spec. should be based  
on final visual inspection spec.  
1
A
See Detail F  
Seating Plane  
L
y
L 1  
Detail F  
5. PCB layout please use the "mm".  
Publication Release Date: May 2006  
Revision 0.6  
- 189 -  
W83977ATF/W83977ATG  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
- 190 -  

相关型号:

W83977ATG-AW

WINBOND I/O
WINBOND

W83977CTF

WINBOND I/O
WINBOND

W83977CTF-AW

WINBOND I/O
WINBOND

W83977CTF-PW

WINBOND I/O
WINBOND

W83977EF

WINBOND I/O
WINBOND

W83977EF-AW

WINBOND I/O
WINBOND

W83977EF-PW

WINBOND I/O
WINBOND

W83977EG

WINBOND ISA I/O
WINBOND

W83977EG-AW

These products are not designed for use in life support appliances
NUVOTEM TALEM

W83977F

PLUG & PLAY 1.0A COMPLIANT
WINBOND

W83977F-A

WINBOND I/O
WINBOND

W83977F-P

WINBOND I/O
WINBOND