SI4463CDY-T1-GE3 [VISHAY]

Small Signal Field-Effect Transistor, 18.6A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN FREE AND ROHS COMPLIANT, MS-012, SOIC-8;
SI4463CDY-T1-GE3
型号: SI4463CDY-T1-GE3
厂家: VISHAY    VISHAY
描述:

Small Signal Field-Effect Transistor, 18.6A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN FREE AND ROHS COMPLIANT, MS-012, SOIC-8

开关 光电二极管 晶体管
文件: 总10页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
New Product  
Si4463CDY  
Vishay Siliconix  
P-Channel 2.5 V (G-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) ()  
ID (A)d  
- 18.6  
- 16.6  
- 14  
Qg (Typ.)  
Definition  
0.008 at VGS = - 10 V  
0.010 at VGS = - 4.5 V  
0.014 at VGS = - 2.5 V  
TrenchFET® Power MOSFET  
100 % Rg Tested  
100 % UIS Tested  
- 20  
54 nC  
Compliant to RoHS Directive 2002/95/EC  
APPLICATIONS  
Adaptor Switch  
High Current Load Switch  
Notebook  
SO-8  
S
S
S
S
G
1
8
7
6
5
D
D
2
3
4
G
D
D
Top View  
D
Ordering Information: Si4463CDY-T1-GE3 (Lead (Pb)-free and Halogen-free)  
P-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS (T = 25 °C, unless otherwise noted)  
A
Parameter  
Symbol  
Limit  
- 20  
Unit  
Drain-Source Voltage  
Gate-Source Voltage  
VDS  
V
VGS  
12  
TC = 25 °C  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
- 18.6  
- 15  
- 13.6a, b  
- 10.8a, b  
- 60  
Continuous Drain Current (TJ = 150 °C)  
ID  
A
Pulsed Drain Current  
IDM  
IS  
- 4.5  
- 2.4a, b  
TC = 25 °C  
Continuous Source-Drain Diode Current  
TA = 25 °C  
Avalanche Current  
IAS  
- 20  
L = 0.1 mH  
Single-Pulse Avalanche Energy  
EAS  
20  
mJ  
W
T
T
T
C = 25 °C  
C = 70 °C  
A = 25 °C  
5
3.2  
Maximum Power Dissipation  
PD  
2.7a, b  
1.7a, b  
- 55 to 150  
TA = 70 °C  
Operating Junction and Storage Temperature Range  
TJ, Tstg  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Maximum Junction-to-Ambienta, c  
Symbol  
Typical  
38  
Maximum  
Unit  
t 10 s  
Steady State  
RthJA  
RthJF  
46  
25  
°C/W  
Maximum Junction-to-Foot  
20  
Notes:  
a. Surface mounted on 1" x 1" FR4 board.  
b. t = 10 s.  
c. Maximum under steady state conditions is 85 °C/W.  
d. Based on TC = 25 °C.  
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
www.vishay.com  
1
New Product  
Si4463CDY  
Vishay Siliconix  
SPECIFICATIONS (T = 25 °C, unless otherwise noted)  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
Drain-Source Breakdown Voltage  
VDS Temperature Coefficient  
VGS(th) Temperature Coefficient  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
VDS  
VDS/TJ  
VGS(th)/TJ  
VGS(th)  
VGS = 0 V, ID = - 250 µA  
ID = - 250 µA  
- 20  
V
- 12  
3.5  
mV/°C  
VDS = VGS, ID = - 250 µA  
- 0.6  
- 30  
- 1.4  
100  
- 1  
V
IGSS  
VDS = 0 V, VGS  
=
12 V  
nA  
VDS = - 20 V, VGS = 0 V  
VDS = - 20 V, VGS = 0 V, TJ = 70 °C  
VDS - 10 V, VGS = - 10 V  
VGS = - 10 V, ID = - 13 A  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
IDSS  
µA  
A
- 10  
ID(on)  
0.006  
0.0073  
0.011  
60  
0.008  
0.0100  
0.014  
Drain-Source On-State Resistancea  
RDS(on)  
gfs  
VGS = - 4.5 V, ID = - 12 A  
VGS = - 2.5 V, ID = - 5 A  
Forward Transconductancea  
Dynamicb  
VDS = - 10 V, ID = - 13 A  
S
Input Capacitance  
Ciss  
Coss  
Crss  
4250  
840  
830  
108  
54  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = - 10 V, VGS = 0 V, f = 1 MHz  
pF  
V
DS = - 10 V, VGS = - 10 V, ID = - 10 A  
DS = - 10 V, VGS = - 4.5 V, ID = - 10 A  
f = 1 MHz  
162  
81  
Total Gate Charge  
Qg  
nC  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
Qgs  
Qgd  
Rg  
V
7.8  
18.5  
2.3  
12  
0.5  
4.6  
24  
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
10  
20  
VDD = - 10 V, RL = 2   
ID - 5 A, VGEN = - 10 V, Rg = 1   
Turn-Off DelayTime  
Fall Time  
70  
120  
22  
11  
ns  
Turn-On Delay Time  
Rise Time  
34  
65  
35  
65  
VDD = - 10 V, RL = 2   
ID - 5 A, VGEN = - 4.5 V, Rg = 1   
Turn-Off DelayTime  
Fall Time  
70  
120  
60  
30  
Drain-Source Body Diode Characteristics  
Continous Source-Drain Diode Current  
Pulse Diode Forward Current  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
- 4.5  
- 60  
- 1.1  
100  
120  
A
Body Diode Voltage  
IS = - 3 A, VGS = 0 V  
- 0.70  
54  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
ns  
nC  
Qrr  
ta  
60  
IF = - 2.3 A, dI/dt = 100 A/µs, TJ = 25 °C  
26  
ns  
Reverse Recovery Rise Time  
tb  
28  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
New Product  
Si4463CDY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
60  
10  
8
VGS = 10 V thru 3 V  
48  
36  
6
VGS = 2 V  
24  
12  
4
TC = 25 °C  
2
TC = 125 °C  
TC - 55 °C  
=
VGS = 1 V  
2.0 2.5  
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
0.6  
1.2  
1.8  
2.4  
3.0  
VDS - Drain-to-Source Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
7000  
5600  
4200  
2800  
1400  
0
0.020  
0.016  
0.012  
0.008  
0.004  
0.000  
Ciss  
VGS = 2.5 V  
VGS = 4.5 V  
Coss  
Crss  
VGS = 10 V  
0
4
8
12  
16  
20  
0
10  
20  
30  
40  
50  
VDS - Drain-to-Source Voltage (V)  
ID - Drain Current (A)  
Capacitance  
On-Resistance vs. Drain Current  
10  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
ID = 13 A  
ID = 10 A  
8
6
4
2
0
VGS = 2.5 V  
VDS = 15 V  
VGS = 10 V  
VDS = 5 V  
VDS = 10 V  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0
23  
46  
69  
92  
115  
Qg - Total Gate Charge (nC)  
TJ - Junction Temperature (°C)  
Gate Charge  
On-Resistance vs. Junction Temperature  
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
www.vishay.com  
3
New Product  
Si4463CDY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
0.05  
100  
10  
ID = 13 A  
0.04  
0.03  
0.02  
0.01  
0.00  
TJ = 150 °C  
TJ = 25 °C  
1
0.1  
TJ = 125 °C  
0.01  
TJ = 25 °C  
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
2
4
6
8
10  
VGS - Gate-to-Source Voltage (V)  
VSD - Source-to-Drain Voltage (V)  
On-Resistance vs. Gate-to-Source Voltage  
Source-Drain Diode Forward Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
80  
60  
40  
20  
0
ID = 250 μA  
ID = 1 mA  
- 0.1  
- 0.2  
- 0.3  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.001  
0.01  
0.1  
1
10  
TJ - Temperature (°C)  
Time (s)  
Single Pulse Power, Junction-to-Ambient  
Threshold Voltage  
1000  
100  
10  
IDM Limited  
ID Limited  
1 ms  
10 ms  
1
100 ms  
Limited by RDS(on)  
*
1 s  
10 s  
DC  
0.1  
TC = 25 °C  
Single Pulse  
BVDSS Limited  
10  
0.01  
0.01  
0.1  
1
100  
VDS - Drain-to-Source Voltage (V)  
* VGS > minimum VGS at which RDS(on) is specified  
Safe Operating Area  
www.vishay.com  
4
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
New Product  
Si4463CDY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
20  
16  
12  
8
4
0
0
25  
50  
75  
100  
125  
150  
TC - Case Temperature (°C)  
Current Derating*  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
6.0  
4.8  
3.6  
2.4  
1.2  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
TA - Ambient Temperature (°C)  
TC - Case Temperature (°C)  
Power Derating, Junction-to-Ambient  
Power Derating, Junction-to-Foot  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
www.vishay.com  
5
New Product  
Si4463CDY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
1
Duty Cycle = 0.5  
0.2  
Notes:  
0.1  
0.1  
P
DM  
0.05  
t
1
t
2
t
1
1. Duty Cycle, D =  
t
0.02  
2
2. Per Unit Base = R  
= 85 °C/W  
thJA  
(t)  
3. T - T = P  
Z
JM  
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?67335.  
www.vishay.com  
6
Document Number: 67335  
S11-0242-Rev. A, 14-Feb-11  
Package Information  
Vishay Siliconix  
SOIC (NARROW): 8-LEAD  
JEDEC Part Number: MS-012  
8
6
7
2
5
4
E
H
1
3
S
h x 45  
D
C
0.25 mm (Gage Plane)  
A
All Leads  
0.101 mm  
q
e
B
A
1
L
0.004"  
MILLIMETERS  
Max  
INCHES  
DIM  
A
Min  
Min  
Max  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
1.75  
0.20  
0.51  
0.25  
5.00  
4.00  
0.053  
0.004  
0.014  
0.0075  
0.189  
0.150  
0.069  
0.008  
0.020  
0.010  
0.196  
0.157  
A1  
B
C
D
E
e
1.27 BSC  
0.050 BSC  
H
h
5.80  
0.25  
0.50  
0°  
6.20  
0.50  
0.93  
8°  
0.228  
0.010  
0.020  
0°  
0.244  
0.020  
0.037  
8°  
L
q
S
0.44  
0.64  
0.018  
0.026  
ECN: C-06527-Rev. I, 11-Sep-06  
DWG: 5498  
Document Number: 71192  
11-Sep-06  
www.vishay.com  
1
VISHAY SILICONIX  
TrenchFET® Power MOSFETs  
Application Note 808  
Mounting LITTLE FOOT®, SO-8 Power MOSFETs  
Wharton McDaniel  
0.288  
7.3  
Surface-mounted LITTLE FOOT power MOSFETs use  
integrated circuit and small-signal packages which have  
0.050  
1.27  
0.088  
2.25  
been been modified to provide the heat transfer capabilities  
required by power devices. Leadframe materials and  
design, molding compounds, and die attach materials have  
been changed, while the footprint of the packages remains  
the same.  
0.088  
2.25  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/ppg?72286), for the  
basis of the pad design for a LITTLE FOOT SO-8 power  
MOSFET. In converting this recommended minimum pad  
to the pad set for a power MOSFET, designers must make  
two connections: an electrical connection and a thermal  
connection, to draw heat away from the package.  
Figure 2. Dual MOSFET SO-8 Pad Pattern  
With Copper Spreading  
The minimum recommended pad patterns for the  
single-MOSFET SO-8 with copper spreading (Figure 1) and  
dual-MOSFET SO-8 with copper spreading (Figure 2) show  
the starting point for utilizing the board area available for the  
heat-spreading copper. To create this pattern, a plane of  
copper overlies the drain pins. The copper plane connects  
the drain pins electrically, but more importantly provides  
planar copper to draw heat from the drain leads and start the  
process of spreading the heat so it can be dissipated into the  
ambient air. These patterns use all the available area  
underneath the body for this purpose.  
In the case of the SO-8 package, the thermal connections  
are very simple. Pins 5, 6, 7, and 8 are the drain of the  
MOSFET for a single MOSFET package and are connected  
together. In a dual package, pins 5 and 6 are one drain, and  
pins 7 and 8 are the other drain. For a small-signal device or  
integrated circuit, typical connections would be made with  
traces that are 0.020 inches wide. Since the drain pins serve  
the additional function of providing the thermal connection  
to the package, this level of connection is inadequate. The  
total cross section of the copper may be adequate to carry  
the current required for the application, but it presents a  
large thermal impedance. Also, heat spreads in a circular  
fashion from the heat source. In this case the drain pins are  
the heat sources when looking at heat spread on the PC  
board.  
Since surface-mounted packages are small, and reflow  
soldering is the most common way in which these are  
affixed to the PC board, “thermal” connections from the  
planar copper to the pads have not been used. Even if  
additional planar copper area is used, there should be no  
problems in the soldering process. The actual solder  
connections are defined by the solder mask openings. By  
combining the basic footprint with the copper plane on the  
drain pins, the solder mask generation occurs automatically.  
0.288  
7.3  
0.050  
1.27  
0.196  
5.0  
A final item to keep in mind is the width of the power traces.  
The absolute minimum power trace width must be  
determined by the amount of current it has to carry. For  
thermal reasons, this minimum width should be at least  
0.020 inches. The use of wide traces connected to the drain  
plane provides a low impedance path for heat to move away  
from the device.  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
Figure 1. Single MOSFET SO-8 Pad  
Pattern With Copper Spreading  
Document Number: 70740  
Revision: 18-Jun-07  
www.vishay.com  
1
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SO-8  
0.172  
(4.369)  
0.028  
(0.711)  
0.022  
0.050  
(0.559)  
(1.270)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
22  
Document Number: 72606  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Material Category Policy  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the  
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council  
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment  
(EEE) - recast, unless otherwise specified as non-compliant.  
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that  
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free  
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference  
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21  
conform to JEDEC JS709A standards.  
Revision: 02-Oct-12  
Document Number: 91000  
1

相关型号:

SI4463DY

P-Channel 2.5V Specified PowerTrench MOSFET
FAIRCHILD

SI4463DY

Transistor,
VISHAY

SI4463DY-E3

Transistor
VISHAY

SI4463DY-T1-E3

Transistor
VISHAY

SI4463DYF011

Small Signal Field-Effect Transistor, 11.5A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

SI4463DYL86Z

Small Signal Field-Effect Transistor, 11.5A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

SI4463DYL99Z

Small Signal Field-Effect Transistor, 11.5A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

SI4463DYS62Z

Small Signal Field-Effect Transistor, 11.5A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

SI4463DY_NL

Small Signal Field-Effect Transistor, 11.5A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

SI4464

HIGH-PERFORMANCE
SILICON

Si4464-B1B-FM

Version 1.2 of the Si4464-63-61-60 datasheet is now available
SILICON

Si4464-Bxx-FM

HIGH-PERFORMANCE, LOW-CURRENT TRANSCEIVER
SILICON