TVP5158IPNPR [TI]

With Independent Scalers, Noise Reduction, Auto Contrast, and Flexible Output Formatter for Security and Other Multi-Channel Video Applications; 具有独立定标器,降噪,自动对比度,以及安全等多通道视频应用灵活的输出格式
TVP5158IPNPR
型号: TVP5158IPNPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

With Independent Scalers, Noise Reduction, Auto Contrast, and Flexible Output Formatter for Security and Other Multi-Channel Video Applications
具有独立定标器,降噪,自动对比度,以及安全等多通道视频应用灵活的输出格式

文件: 总111页 (文件大小:1553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVP5158, TVP5157, TVP5156  
Four-Channel NTSC/PAL Video Decoders  
With Independent Scalers, Noise Reduction, Auto  
Contrast, and Flexible Output Formatter for Security and  
Other Multi-Channel Video Applications  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SLES243F  
July 2009Revised July 2011  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Contents  
1
Introduction ........................................................................................................................ 9  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
Features ...................................................................................................................... 9  
Applications .................................................................................................................. 9  
Description ................................................................................................................. 10  
Related Products .......................................................................................................... 10  
Trademarks ................................................................................................................. 10  
Document Conventions ................................................................................................... 11  
Ordering Information ...................................................................................................... 11  
Functional Block Diagram ................................................................................................ 12  
2
3
Terminal Assignments ....................................................................................................... 13  
Pinout ....................................................................................................................... 13  
Functional Description ....................................................................................................... 16  
2.1  
3.1  
Analog Video Processing and A/D Converters ........................................................................ 16  
3.1.1  
3.1.2  
3.1.3  
Analog Video Input ............................................................................................. 16  
Analog Video Input Clamping ................................................................................. 17  
A/D Converter ................................................................................................... 17  
3.2  
Digital Video Processing .................................................................................................. 17  
3.2.1  
2x Decimation Filter ............................................................................................ 17  
3.2.2  
3.2.3  
Automatic Gain Control ........................................................................................ 17  
Composite Processor .......................................................................................... 17  
3.2.3.1 Color Low-Pass Filter .............................................................................. 18  
3.2.3.2 Y/C Separation ..................................................................................... 19  
Luminance Processing ......................................................................................... 20  
3.2.4  
3.3  
3.4  
3.5  
3.6  
AVID Cropping ............................................................................................................. 21  
Embedded Syncs .......................................................................................................... 21  
Scaler ....................................................................................................................... 22  
Noise Reduction ........................................................................................................... 22  
3.7  
3.8  
Auto Contrast .............................................................................................................. 22  
Output Formatter .......................................................................................................... 23  
3.8.1  
Non-Interleaved Mode ......................................................................................... 23  
Pixel-Interleaved Mode ......................................................................................... 23  
3.8.2  
3.8.2.1 2-Ch Pixel-Interleaved Mode ..................................................................... 24  
3.8.2.2 4-Ch Pixel-Interleaved Mode ..................................................................... 24  
3.8.2.3  
Metadata Insertion for Non-Interleave Mode and Pixel-Interleaved Mode ................. 25  
3.8.3  
Line-Interleaved Mode Support (TVP5158 only) ........................................................... 26  
3.8.3.1 2-Ch Line-Interleaved Mode ...................................................................... 26  
3.8.3.2 4-Ch Line-Interleaved Mode ...................................................................... 27  
3.8.3.3 8-Ch Line-Interleaved Mode ...................................................................... 27  
3.8.3.4 Hybrid Modes ....................................................................................... 29  
3.8.3.5 Metadata Insertion for Line-Interleaved Mode ................................................. 29  
3.9  
Audio Sub-System (TVP5157 and TVP5158 Only) ................................................................... 32  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
Features ......................................................................................................... 33  
Audio Sub-System Functional Diagram ..................................................................... 34  
Serial Audio Interface .......................................................................................... 34  
Analog Audio Input Clamping ................................................................................. 35  
2
Contents  
Copyright © 20092011, Texas Instruments Incorporated  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.9.5  
Audio Cascade Connection ................................................................................... 36  
3.10 I2C Host Interface .......................................................................................................... 38  
3.10.1 I2C Write Operation ............................................................................................. 39  
3.10.2 I2C Read Operation ............................................................................................ 39  
3.10.3 VBUS Access ................................................................................................... 41  
3.11 Clock Circuits .............................................................................................................. 42  
3.12 Reset Mode ................................................................................................................ 43  
4
5
Internal Control Registers ................................................................................................... 44  
4.1  
Overview .................................................................................................................... 44  
Register Definitions ........................................................................................................ 47  
4.2  
Electrical Specifications ..................................................................................................... 92  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Absolute Maximum Ratings .............................................................................................. 92  
Recommended Operating Conditions .................................................................................. 93  
Reference Clock Specifications .......................................................................................... 93  
Electrical Characteristics ................................................................................................. 94  
DC Electrical Characteristics ............................................................................................. 94  
Video A/D Converters Electrical Characteristics ...................................................................... 95  
5.7  
5.8  
Audio A/D Converters Electrical Characteristics ...................................................................... 95  
Video Output Clock and Data Timing ................................................................................... 96  
5.8.1  
Video Input Clock and Data Timing .......................................................................... 96  
I2C Host Port Timing ...................................................................................................... 97  
I2S Port Timing .................................................................................................. 98  
5.9  
5.9.1  
5.10 Miscellaneous Timings .................................................................................................... 98  
5.11 Power Dissipation Ratings ............................................................................................... 98  
Application Information ...................................................................................................... 99  
6
6.1  
6.2  
6.3  
6.4  
6.5  
4-Ch D1 Applications ..................................................................................................... 99  
8-Ch CIF Applications ..................................................................................................... 99  
16-Ch CIF Applications .................................................................................................. 100  
Application Circuit Examples ........................................................................................... 101  
Designing with PowerPADDevices ................................................................................. 102  
Revison History ........................................................................................................................ 103  
Copyright © 20092011, Texas Instruments Incorporated  
Contents  
3
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
List of Figures  
1-1  
Functional Block Diagram ....................................................................................................... 12  
Video Analog Processing and ADC Block Diagram ......................................................................... 16  
Anti-Aliasing Filter Frequency Response ..................................................................................... 17  
Composite Processor Block Diagram.......................................................................................... 18  
Color Low-Pass Filter Frequency Response ................................................................................. 19  
Color Low-Pass Filter with Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling................................. 19  
Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling .............................................. 20  
Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling ................................................ 20  
Luminance Edge-Enhancer Peaking Block Diagram ........................................................................ 21  
Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling ............................................................ 21  
2-Ch Pixel-Interleaved Mode Timing Diagram................................................................................ 24  
4-Ch Pixel-Interleaved Mode Timing Diagram................................................................................ 25  
Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview ............................................... 28  
Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview........................................... 29  
Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF Preview..................................... 29  
Start Code in 8-Bit BT.656 Interface........................................................................................... 30  
Start Code in 16-Bit YCbCr 4:2:2 Interface ................................................................................... 31  
Audio Sub-System Functional Diagram ....................................................................................... 34  
Serial Audio Interface Timing Diagram ........................................................................................ 35  
Audio Cascade Connection ..................................................................................................... 36  
VBUS Access ..................................................................................................................... 41  
Clock and Crystal Connectivity ................................................................................................. 42  
Reset Timing...................................................................................................................... 43  
Video Output Clock and Data Timing.......................................................................................... 96  
I2C Host Port Timing ............................................................................................................. 97  
4-Ch D1 Application (Single BT.656 Interface)............................................................................... 99  
4-Ch D1 Application (16-Bit YCbCr 4:2:2 Interface) ......................................................................... 99  
8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application ................................................... 100  
8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application ................................................... 100  
Video Input Connectivity ....................................................................................................... 102  
Audio Input Connectivity ....................................................................................................... 102  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
3-20  
3-21  
3-22  
5-1  
5-2  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
4
List of Figures  
Copyright © 20092011, Texas Instruments Incorporated  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
List of Tables  
1-1  
Device Options ................................................................................................................... 10  
Terminal Functions .............................................................................................................. 14  
EAV and SAV Sequence........................................................................................................ 21  
Standard Video Resolutions .................................................................................................... 22  
Video Resolutions Converted by the Scaler .................................................................................. 22  
Summary of Line Frequencies, Data Rates and Pixel Counts for Different Standards ................................. 23  
Output Ports Configuration for Non-Interleaved Mode ...................................................................... 23  
Output Ports Configuration for Pixel-Interleaved Mode ..................................................................... 24  
VDET Statues Insertion in SAV/EAV Codes.................................................................................. 25  
Channel ID Insertion in Horizontal Blanking Code........................................................................... 25  
Channel ID Insertion in SAV/EAV Code Sequence.......................................................................... 25  
Output Ports Configuration for Line-Interleaved Mode ...................................................................... 26  
Default Super-Frame Format and Timing ..................................................................................... 30  
Bit Assignment of 4-Byte Start Code for Active Video Line................................................................. 31  
Bit Field Definition of 4-Byte Start Code for Active Video Line............................................................. 31  
Bit Assignment of 4-Byte Start Code for the Dummy Line.................................................................. 32  
Serial Audio Output Channel Assignment..................................................................................... 37  
I2C Terminal Description ........................................................................................................ 38  
I2C Host Interface Device Addresses.......................................................................................... 38  
Reset Mode ....................................................................................................................... 43  
Reset Sequence.................................................................................................................. 43  
Registers Summary .............................................................................................................. 44  
Status 1 ........................................................................................................................... 47  
Status 2 ........................................................................................................................... 48  
Color Subcarrier Phase Status ................................................................................................ 48  
ROM Version ..................................................................................................................... 48  
RAM Version MSB .............................................................................................................. 49  
RAM Version LSB ............................................................................................................... 49  
Chip ID MSB ..................................................................................................................... 49  
Chip ID LSB ...................................................................................................................... 49  
Video Standard Status .......................................................................................................... 50  
Video Standard Select .......................................................................................................... 50  
CVBS Autoswitch Mask ......................................................................................................... 51  
Auto Contrast Mode ............................................................................................................. 51  
Luminance Brightness .......................................................................................................... 51  
Luminance Contrast ............................................................................................................. 52  
Brightness and Contrast Range Extender .................................................................................... 52  
Chrominance Saturation ........................................................................................................ 52  
Chrominance Hue ............................................................................................................... 53  
Color Killer ........................................................................................................................ 53  
Luminance Processing Control 1 .............................................................................................. 54  
Luminance Processing Control 2 .............................................................................................. 54  
Power Control .................................................................................................................... 55  
Chrominance Processing Control 1 ........................................................................................... 56  
Chrominance Processing Control 2 ........................................................................................... 56  
AGC Gain Status ................................................................................................................ 57  
Back-End AGC Status .......................................................................................................... 57  
2-1  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
Copyright © 20092011, Texas Instruments Incorporated  
List of Tables  
5
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
4-39  
4-40  
4-41  
4-42  
4-43  
4-44  
4-45  
4-46  
4-47  
4-48  
4-49  
4-50  
4-51  
4-52  
4-53  
4-54  
4-55  
4-56  
4-57  
4-58  
4-59  
4-60  
4-61  
4-62  
4-63  
4-64  
4-65  
4-66  
4-67  
4-68  
4-69  
4-70  
4-71  
4-72  
4-73  
4-74  
Status Request .................................................................................................................. 57  
AFE Gain Control ................................................................................................................ 57  
Luma ALC Freeze Upper Threshold .......................................................................................... 58  
Chroma ALC Freeze Upper Threshold ....................................................................................... 58  
AGC Increment Speed .......................................................................................................... 58  
AGC Increment Delay ........................................................................................................... 58  
AGC Decrement Speed ......................................................................................................... 59  
AGC Decrement Delay ......................................................................................................... 59  
AGC White Peak Processing .................................................................................................. 60  
Back-End AGC Control ......................................................................................................... 61  
AFE Fine Gain ................................................................................................................... 61  
AVID Start Pixel .................................................................................................................. 62  
AVID Pixel Width ................................................................................................................ 62  
Noise Reduction Max Noise .................................................................................................... 62  
Noise Reduction Control ........................................................................................................ 63  
Noise Reduction Noise Filter Beta ............................................................................................ 63  
Operation Mode Control ........................................................................................................ 64  
Color PLL Speed Control ....................................................................................................... 64  
Sync Height Low Threshold .................................................................................................... 65  
Sync Height High Threshold ................................................................................................... 65  
Clear Lost Lock Detect .......................................................................................................... 65  
VSYNC Filter Shift ............................................................................................................... 65  
656 Version/F-bit Control ....................................................................................................... 66  
F-Bit and V-Bit Decode Control ................................................................................................ 67  
F-Bit and V-Bit Control .......................................................................................................... 68  
Output Timing Delay ............................................................................................................ 68  
Auto Contrast User Table Index ............................................................................................... 69  
Blue Screen Y Control .......................................................................................................... 69  
Blue Screen Cb Control ........................................................................................................ 69  
Blue Screen Cr Control ......................................................................................................... 70  
Blue Screen LSB Control ....................................................................................................... 70  
Noise Measurement ............................................................................................................. 70  
Weak Signal High Threshold ................................................................................................... 70  
Weak Signal Low Threshold ................................................................................................... 70  
Noise Reduction Y/U/V T0 ..................................................................................................... 71  
Vertical Line Count Status ...................................................................................................... 71  
Output Formatter Control 1 ..................................................................................................... 71  
Output Formatter Control 2 ..................................................................................................... 72  
Interrupt Control ................................................................................................................. 72  
Embedded Sync Offset Control 1 ............................................................................................. 72  
Embedded Sync Offset Control 2 ............................................................................................. 73  
AVD Output Control 1 ........................................................................................................... 74  
AVD Output Control 2 ........................................................................................................... 75  
OFM Mode Control .............................................................................................................. 76  
OFM Channel Select 1 .......................................................................................................... 77  
OFM Channel Select 2 .......................................................................................................... 78  
OFM Channel Select 3 .......................................................................................................... 78  
OFM Super-Frame Size ........................................................................................................ 79  
6
List of Tables  
Copyright © 20092011, Texas Instruments Incorporated  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
4-75  
4-76  
4-77  
4-78  
4-79  
4-80  
4-81  
4-82  
4-83  
4-84  
4-85  
4-86  
4-87  
4-88  
4-89  
4-90  
4-91  
4-92  
4-93  
4-94  
4-95  
OFM EAV2SAV Duration ....................................................................................................... 79  
Misc OFM Control ............................................................................................................... 80  
Audio Sample Rate Control .................................................................................................... 80  
Analog Audio Gain Control 1 ................................................................................................... 81  
Analog Audio Gain Control 2 ................................................................................................... 82  
Audio Mode Control ............................................................................................................. 83  
Audio Mixer Select .............................................................................................................. 84  
Audio Mute Control .............................................................................................................. 85  
Analog Mixing Ratio Control 1 ................................................................................................. 85  
Analog Mixing Ratio Control 2 ................................................................................................. 86  
Audio Cascade Mode Control .................................................................................................. 86  
Super-Frame EAV2SAV Duration Status ..................................................................................... 86  
Super-Frame SAV2EAV Duration Status ..................................................................................... 87  
VBUS Data Access With No VBUS Address Increment ................................................................... 87  
VBUS Data Access With VBUS Address Increment ........................................................................ 87  
VBUS Address Access ......................................................................................................... 87  
Interrupt Status .................................................................................................................. 88  
Interrupt Mask .................................................................................................................... 89  
Interrupt Clear .................................................................................................................... 90  
Decoder Write Enable .......................................................................................................... 90  
Decoder Read Enable .......................................................................................................... 91  
Copyright © 20092011, Texas Instruments Incorporated  
List of Tables  
7
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
8
List of Tables  
Copyright © 20092011, Texas Instruments Incorporated  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Four-Channel NTSC/PAL Video Decoders  
Check for Samples: TVP5158, TVP5157, TVP5156  
1
Introduction  
1.1 Features  
1234  
Support crystal interface with on-chip  
Common Device Features  
oscillator and single clock input mode  
(TVP5156, TVP5157, TVP5158)  
Single 27-MHz clock input or crystal for all  
Four separate video decoder channels  
having the following features for each  
channel  
standards and all channels  
Internal phase-locked loop (PLL) for  
line-locked clock (separate for each channel)  
and sampling  
Accepts NTSC (J, M, 4.43) and PAL (B, D,  
G, H, I, M, N, Nc, 60) video data  
Standard programmable video output format  
Composite video inputs,  
Pseudo-differential video inputs to  
improved noise immunity  
ITU-R BT.656, 8-bit 4:2:2 with embedded  
syncs  
High-speed 10-bit ADC  
Fully differential CMOS analog  
preprocessing channels with clamping  
YCbCr 16-bit 4:2:2 with embedded syncs  
Macrovisioncopy protection detection  
3.3-V compatible I/O  
Integrated Anti-Aliasing filter  
2D 5-line (5H) adaptive comb filter  
Noise reduction and auto contrast  
Robust automatic video standard  
detection (NTSC/PAL) and switching  
128-pin TQFP package  
Available in commercial (0°C to 70°C)  
temperature range  
Additional TVP5158/TVP5157 Specific Features  
Integrated four-channel audio ADC with  
Programmable hue, saturation,  
sharpness, brightness and contrast  
Luma-peaking processing  
Patented architecture for locking to weak,  
noisy, or unstable signals  
audio sample rate of 8 kHz or 16 kHz  
Support Master and Slave mode I2S Output  
Support audio cascade connection  
Additional TVP5158 Specific Features  
Enhanced channel multiplexing capability –  
Line-interleaved mode  
Four-channel D1 multiplexed output at 8 bit  
Four independent scalers support horizontal  
and/or vertical 2:1 downscaling  
Channel multiplexing capabilities with  
at 108 MHz  
metadata insertion  
Video cascade connection for 8-Ch CIF, 8-Ch  
Half-D1, and 8-Ch CIF + 1-Ch D1 outputs  
Also available in Industrial (-40°C to 85°C)  
Pixel-interleaved mode supports up to  
four-channel D1 multiplexed 8-bit output  
at 108 MHz  
Supports concurrent NTSC and PAL  
inputs  
temperature range  
Qualified for Automotive Applications  
(AEC-Q100 Rev G TVP5158IPNPQ1,  
TVP5158IPNPRQ1)  
1.2 Applications  
Security/surveillance digital video recorders/servers and PCI products  
Automotive infotainment video hub  
Large format video wall displays  
Game systems  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
DaVinci is a trademark of Texas Instruments.  
Macrovision is a trademark of Macrovision Corporation.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2011, Texas Instruments Incorporated  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
1.3 Description  
The TVP5158, TVP5157, and TVP5156 devices are 4-channel high-quality NTSC/PAL video decoders  
that digitize and decode all popular base-band analog video formats into digital video output. Each  
channel of this decoder includes 10-bit 27-MSPS A/D converter (ADC). Preceding each ADC in the  
device, the corresponding analog channel contains an analog circuit that clamps the input to a reference  
voltage and applies the gain.  
Composite input signal is sampled at 2x the ITU-R BT.601 clock frequency, line-locked alignment, and is  
then decimated to the 1x pixel rate. CVBS decoding uses five-line adaptive comb filtering for both the  
luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is  
also available. On CVBS inputs, the user can control video characteristics such as contrast, brightness,  
saturation, and hue via an I2C host port interface. Furthermore, luma peaking (sharpness) with  
programmable gain is included.  
All 4 channels are independently controllable. These decoders share a single clock input for all channels  
and for all supported standards.  
TVP5158 provides a glueless audio and video interface to TI DaVincivideo processors. Video output  
ports support 8-bit ITU-R BT.656 and 16-bit 4:2:2 YCbCr with embedded synchronization. TVP5158  
supports multiplexed pixel-interleaved and line-interleaved mode video outputs with metadata insertion.  
TVP5158 and TVP5157 integrate 4-Ch audio ADCs to reduce the BOM cost for surveillance market.  
Multiple TVP5158 devices can be cascade connected to support up to 8-Ch Video or 16-Ch audio  
processing.  
Noise reduction and auto contrast functions improve the video quality under low light condition which is  
very critical for surveillance products.  
The TVP5158, TVP5157, and TVP5156 can be programmed by using a single I2C serial interface. I2C  
commands can be sent to one or more decoder cores simultaneously, reducing the amount of I2C activity  
necessary to configure each core. This is especially useful for fast downloading modified firmware to the  
decoder cores.  
TVP5158, TVP5157, and TVP5156 use 1.1-V, 1.8-V, and 3.3-V power supplies for the analog/digital core  
and I/O. These devices are available in a 128-pin TQFP package.  
Table 1-1. Device Options  
Device Name  
TVP5156  
4-Ch Audio ADC  
Line-Interleaved Modes  
No  
No  
No  
TVP5157  
Yes  
Yes  
TVP5158  
Yes  
1.4 Related Products  
TVP5154A  
TVP5150AM1  
TVP5146M2  
TVP5147M1  
1.5 Trademarks  
DaVinci, PowerPAD are trademarks of Texas Instruments.  
Macrovision is a trademark of Macrovision Corporation.  
Other trademarks are the property of their respective owners.  
10  
Introduction  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
1.6 Document Conventions  
Throughout this data manual, several conventions are used to convey information. These conventions are  
as follows:  
To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit  
binary field.  
To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a  
12-bit hexadecimal field.  
All other numbers that appear in this document that do not have either a b or h following the number  
are assumed to be decimal format.  
If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates  
the logical NOT function. When asserted, this signal is a logic low, 0, or 0b.  
RSVD indicates that the referenced item is reserved.  
1.7 Ordering Information  
PACKAGED DEVICES(1) (2)  
TA  
PACKAGE OPTION  
TQFP 128-Pin PowerPADTM Package  
TVP5156PNP  
TVP5156PNPR  
TVP5157PNP  
Tray  
Tape and reel  
Tray  
0°C to 70°C  
TVP5157PNPR  
TVP5158PNP  
Tape and reel  
Tray  
TVP5158PNPR  
TVP5158IPNP  
Tape and reel  
Tray  
TVP5158IPNPR  
TVP5158IPNPQ1(3)  
TVP5158IPNPRQ1(3)  
Tape and reel  
Tray  
-40°C to 85°C  
Tape and reel  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) AEC-Q100 Rev G certified  
Copyright © 20092011, Texas Instruments Incorporated  
Introduction  
11  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
1.8 Functional Block Diagram  
VIN_1_P  
10-Bit  
ADC  
Y/C  
Separation  
Noise Reduction/  
Auto Contrast  
DVO_A_[7:0]  
Scaler  
Scaler  
Scaler  
Scaler  
VIN_1_N  
VIN_2_P  
VIN_2_N  
Y/C  
Separation  
10-Bit  
ADC  
Noise Reduction/  
Auto Contrast  
DVO_B_[7:0]  
Output  
Formattor  
VIN_3_P  
VIN_3_N  
Y/C  
Separation  
10-Bit  
ADC  
Noise Reduction/  
Auto Contrast  
DVO_C_[7:0]  
VIN_4_P  
VIN_4_N  
Y/C  
Separation  
DVO_D_[7:0]  
10-Bit  
ADC  
Noise Reduction/  
Auto Contrast  
ARM/Memory  
Registers  
Delay Match  
and Re-Sync  
I2C Host port  
Cascade  
Input  
I2C  
AIN_1  
AIN_2  
AIN_3  
AIN_4  
BCLK_R  
LRCLK_R  
Audio  
ADC  
Decimation Filter  
and Mixer  
I2S Encoder  
SD_R/SD_M  
SD_CO  
Audio Cascade Input  
Figure 1-1. Functional Block Diagram  
12  
Introduction  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
2
Terminal Assignments  
2.1 Pinout  
128-PIN TQFP PACKAGE  
(TOP VIEW)  
VDD_1_1  
DVO_B_0  
DVO_B_1  
VSS  
97  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
OSC_OUT  
98  
VSSA  
XTAL_IN  
99  
XTAL_REF  
XTAL_OUT  
VDDA_1_8  
VDDA_1_1  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
DVO_B_2  
DVO_B_3  
VDD_3_3  
DVO_B_4  
DVO_B_5  
VSS  
VSSA  
VSSA  
VDDA_1_1  
DVO_B_6  
DVO_B_7  
VDD_1_1  
OCLK_P  
OCLK_N/CLKIN  
VSS  
VDDA_1_8  
VIN_1_P  
VIN_1_N  
VSSA  
VSSA  
VIN_2_P  
I2CA2  
VIN_2_N  
VDDA_1_8  
VDDA_1_8  
REXT_2K  
VSS  
DVO_C_0  
DVO_C_1  
VDD_1_1  
DVO_C_2  
DVO_C_3  
VDD_3_3  
DVO_C_4  
DVO_C_5  
VSS  
VSSA  
VSSA  
VDDA_1_1  
VDDA_1_8  
VIN_3_P  
VIN_3_N  
VSSA  
DVO_C_6  
DVO_C_7  
VDD_1_1  
NC  
VSSA  
VIN_4_P  
VIN_4_N  
VDDA_1_8  
VDAA_3_3  
VSS  
Copyright © 20092011, Texas Instruments Incorporated  
Terminal Assignments  
13  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 2-1. Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
Analog Section  
VIN_1_P  
VIN_1_N  
VIN_2_P  
VIN_2_N  
VIN_3_P  
VIN_3_N  
VIN_4_P  
VIN_4_N  
REXT_2K  
AIN_1  
NO.  
108  
109  
112  
113  
121  
122  
125  
126  
116  
95  
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog video input for ADC channel 1.  
Common-mode reference input for ADC channel 1.  
Analog video input for ADC channel 2.  
Common-mode reference input for ADC channel 2.  
Analog video input for ADC channel 3.  
Common-mode reference input for ADC channel 3.  
Analog video input for ADC channel 4.  
Common-mode reference input for ADC channels.  
External resistor for AFE bias generator. Connect external 1.8kresistor to ground.  
Analog audio input for channel 1 (No Connect for TVP5156 Only)  
Analog audio input for channel 2 (No Connect for TVP5156 Only)  
Analog audio input for channel 3 (No Connect for TVP5156 Only)  
Analog audio input for channel 4 (No Connect for TVP5156 Only)  
AIN_2  
94  
AIN_3  
93  
AIN_4  
92  
External clock reference input. It may be connected to external oscillator with 1.8-V compatible  
clock signal or 27.0-MHz crystal oscillator.  
XTAL_IN  
99  
I
XTAL_REF  
XTAL_OUT  
100  
101  
G
O
Crystal reference. Connected to analog ground internally.  
External clock reference output. Not connected if XTAL_IN is driven by an external  
single-ended oscillator.  
Analog Power  
VDDA_1_1  
103, 106, 119  
P
P
P
1.1-V analog supply  
91, 102, 107,  
114, 115, 120,  
127  
VDDA_1_8  
VDDA_3_3  
1.8-V analog supply  
128  
3.3-V analog supply for all 4 video channels  
96, 98, 104,  
105, 110, 111,  
117, 118, 123,  
124  
VSSA  
G
Analog ground  
Digital ground  
Digital Power  
1, 6, 12, 14, 20,  
26, 33, 38, 47,  
49, 55, 61, 65,  
73, 79, 82, 87,  
90  
VSS  
G
13, 18, 23, 32,  
35, 44, 52, 64,  
67, 76, 84  
VDD_1_1  
VDD_3_3  
P
P
Digital core supply. Connect to 1.1-V digital supply.  
Digital I/O supply. Connect to 3.3-V digital supply.  
15, 29, 41, 58,  
70, 81  
Digital Section  
INTREQ  
RESETB  
SCL  
2
3
O
I
Interrupt request. Interrupt signal to host processor.  
Reset. An active low signal that controls the reset state.  
I2C serial clock (open drain)  
4
I/O  
I/O  
O
SDA  
5
I2C serial data (open drain)  
OSC_OUT  
OCLK_P  
97  
51  
Buffered crystal oscillator output. 1.8-V compatible.  
Output data clock+. All 4 digital video output ports are synchronized to this clock.  
O
Output data clock- for 2-Ch time-multiplexed mode or data clock input for 8-Ch video cascade  
mode  
OCLK_N/CLKIN  
DVO_A_[7:0]  
50  
I/O  
O
68, 69, 71, 72,  
74, 75, 77, 78  
Digital video output data bus.  
14  
Terminal Assignments  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 2-1. Terminal Functions (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
53, 54, 56, 57,  
59, 60, 62, 63  
DVO_B_[7:0]  
O
Digital video output data bus.  
36, 37, 39, 40,  
42, 43, 45, 46  
Digital video output data bus. In cascade mode, all pins operate as input from another  
TVP5158 device.  
DVO_C_[7:0]  
DVO_D_[7:0]  
I/O  
I/O  
21, 22, 24, 25,  
27, 28, 30, 31  
Digital video output data bus. In cascade mode, all pins operate as input from another  
TVP5158 device.  
I2CA0  
I2CA1  
I2CA2  
80  
66  
48  
I
I
I
I2C slave address bit 0  
I2C slave address bit 1  
I2C slave address bit 2  
Digital Audio Section (Not supported on TVP5156)  
I2S bit clock for recording. Also known as I2S serial clock (SCK). Supports master and slave  
modes.  
I2S left/right clock for recording. Also known as I2S word select (WS). Supports master and  
slave modes.  
BCLK_R  
85  
86  
I/O  
I/O  
LRCLK_R  
SD_R  
88  
89  
83  
16  
17  
19  
O
O
O
I
I2S serial data output for recording.  
I2S serial data output for mixed audio or recording.  
SD_M  
SD_CO  
Audio serial data output for cascade mode  
LRCLK_CI  
BCLK_CI  
SD_CI  
I2S left/right clock input for cascade mode. Also known as I2S word select (WS).  
I2S bit clock input for cascade mode. Also known as I2S serial clock (SCK).  
Audio serial data input for cascade mode.  
I
I
No Connect Pins  
T1, T2, T3, T4,  
T5, NC  
7, 8, 9, 10, 11,  
34  
NC  
For normal operation, no connect  
Copyright © 20092011, Texas Instruments Incorporated  
Terminal Assignments  
15  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3
Functional Description  
3.1 Analog Video Processing and A/D Converters  
Each video decoder accepts one composite video input and performs video clamping, anti-aliasing  
filtering, video amplification, A/D conversion, and gain and offset adjustments to center the digitized video  
signal. Figure 3-1 shows the video analog processing and ADC block diagram.  
Output to  
Digital  
Processing  
Analog  
CVBS Input  
Anti-Aliasing  
Filter  
ADC  
Clamp  
Reference & Bias  
Figure 3-1. Video Analog Processing and ADC Block Diagram  
3.1.1 Analog Video Input  
Supports NTSC (J, M, 4.43) and PAL (B, D, G, H, I, M, N, Nc, 60) video standards. Each video decoder  
channel supports a composite video input with a pseudo-differential pin which improves the noise  
immunity and analog performance.  
Each video decoder input should be ac-coupled through a 0.1-µF capacitor. The nominal parallel  
termination resistor before the input to the device is 75 .  
Each video decoder integrates an anti-aliasing filter to provide good stop-band rejection on the analog  
video input signal. Figure 3-2 shows the frequency response of the anti-aliasing filter.  
Frequency Response  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-
5
10  
15  
20  
25  
Frequency (MHz)  
Figure 3-2. Anti-Aliasing Filter Frequency Response  
16  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.1.2 Analog Video Input Clamping  
An internal clamping circuit provides dc restoration for all four analog composite video inputs. The dc  
restoration circuit (sync-tip clamp) restores sync-tip level of the ac-coupled composite video signal to a  
fixed dc level near the bottom of the A/D converter range.  
3.1.3 A/D Converter  
All ADCs have a resolution of 10 bits and can operate at 27 MSPS. Each A/D channel receives a clock  
from the on-chip phase-locked loop (PLL) at a nominal frequency of 27 MHz. All ADC reference voltages  
are generated internally.  
3.2 Digital Video Processing  
Digital Video Processing block receives digitized video signals from the ADCs and performs composite  
processing and YCbCr signal enhancements. The digital data output can be programmed to two formats:  
ITU-R BT.656 8-bit 4:2:2 with embedded syncs or 16-bit 4:2:2 with embedded syncs. The circuit also  
detects pseudo-sync pulses, AGC pulses, and color striping in Macrovision-encoded copy-protected  
material.  
3.2.1 2x Decimation Filter  
All input signals are over-sampled by a factor of 2 (by 27-MHz clock). The A/D outputs initially pass  
through decimation filters that reduce the data rate to 1x the pixel rate. The decimation filter is a half-band  
filter. Over-sampling and decimation filtering can effectively increase the overall signal-to-noise ratio by  
3 dB.  
3.2.2 Automatic Gain Control  
The automatic gain control (AGC) can be enabled and can adjust the signal amplitude controlled by 14-bit  
digital gain stage after the ADC. The AGC algorithms can use up to four amplitude references: sync  
height, color burst amplitude, composite peak, and luma peak.  
The specific amplitude references being used by the AGC algorithms can be controlled using the AGC  
white peak processing register located at subaddress 2Dh. The gain increment speed and gain increment  
delay can be controlled using the AGC increment speed register located at subaddress 29h and the AGC  
increment delay register located at subaddress 2Ah. The gain decrement speed and gain decrement delay  
can be controlled using the AGC decrement speed register located at subaddress 2Bh and the AGC  
decrement delay register located at subaddress 2Ch.  
3.2.3 Composite Processor  
This Composite Processor circuit receives a digitized composite signal from the ADCs and performs sync  
and Y/C separation, chroma demodulation for PAL/NTSC, and YUV signal enhancements. The slice levels  
of the sync separator are adaptive. The slice levels continually adapt to changes in the back-porch and  
sync-tip levels. The 10-bit composite video is multiplied by the sub carrier signals in the quadrature  
demodulator to generate U and V color difference signals. The U and V signals are then sent to low-pass  
filters to achieve the desired bandwidth. An adaptive 5-line comb filter separates UV from Y based on the  
unique property of color phase shifts from line to line. The chroma is re-modulated through a quadrature  
modulator and subtracted from line-delayed composite video to generate luma. This form of Y/C  
separation is completely complementary, thus there is no loss of information. However, in some  
applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters can be  
turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path.  
Contrast, brightness, sharpness, hue, and saturation controls are programmable through the I2C host port.  
Figure 3-3 shows the block diagram of Composite Processor.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
17  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Y
Delay  
CVBS  
Peaking  
Line  
Delay  
NTSC/PAL  
Remodulation  
Y
Contrast  
Brightness  
Saturation  
Cb  
Cr  
Notch  
Filter  
Notch  
Filter  
Adjust  
Color LPF  
2
Burst  
Accumulator  
(U)  
5 Line  
Adaptive  
U
V
Notch  
Filter  
Comb Filter  
Delay  
Burst  
Accumulator  
(V)  
NTSC/PAL  
Demodulation  
CVBS  
Color LPF  
2
Notch  
Filter  
Delay  
Figure 3-3. Composite Processor Block Diagram  
3.2.3.1 Color Low-Pass Filter  
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for  
nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter  
bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the  
three notch filters. Figure 3-4 and Figure 3-5 represent the frequency responses of the wideband color  
low-pass filters.  
18  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Figure 3-4. Color Low-Pass Filter Frequency Response  
Figure 3-5. Color Low-Pass Filter with Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling  
3.2.3.2 Y/C Separation  
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The  
comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the  
luma path, then chroma trap filters are used which are shown in Figure 3-6 and Figure 3-7. The TI  
patented adaptive comb filter algorithm reduces artifacts such as hanging dots at color boundaries. It  
detects and properly handles false colors in high-frequency luminance images such as a multiburst pattern  
or circle pattern.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
19  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Figure 3-6. Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling  
Figure 3-7. Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling  
3.2.4 Luminance Processing  
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter,  
either of which removes chrominance information from the composite signal to generate a luminance  
signal. The luminance signal is then fed into the input of a peaking circuit. Figure 3-8 shows the basic  
functions of the luminance data path. A peaking filter (edge enhancer) amplifies high-frequency  
components of the luminance signal. Figure 3-9 shows the characteristics of the peaking filter at four  
different gain settings that are user-programmable via the I2C interface.  
Gain  
Peak  
Bandpass  
Filter  
Peaking  
Filter  
IN  
x
Detector  
Delay  
+
OUT  
Figure 3-8. Luminance Edge-Enhancer Peaking Block Diagram  
20  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Figure 3-9. Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling  
3.3 AVID Cropping  
AVID or active video cropping provides a means to decrease the amount of video data output. This is  
accomplished by horizontally blanking a number of AVID pulses and by vertically blanking a number of  
lines per frame. Horizontal cropping can be enabled/disabled using bit-6 of address B1h. When line  
cropping is enabled, active video is reduced from 720 to 704 pixels for unscaled video and from 360 to  
352 pixels for down-scaled video.  
When line cropping is enabled, the TVP5158 crops an equal amount from both the start and end of active  
video. Register 8Ch can be used to delay both the start and end of active video. It allows selecting which  
704 pixels out of 720 are actually being used for active video when line cropping is enabled.  
3.4 Embedded Syncs  
Standards with embedded syncs insert SAV and EAV codes into the data stream at the beginning and end  
of horizontal blanking. These codes contain the V and F bits which also define vertical timing. F and V  
change on EAV. Table 3-1 gives the format of the SAV and EAV codes.  
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line  
and field counter varies depending on the standard. Please refer to ITU-R BT.656 for more information on  
embedded syncs.  
The P bits are protection bits:  
P3 = V xor H  
P2 = F xor H  
P1 = F xor V  
P0 = F xor V xor H  
Table 3-1. EAV and SAV Sequence  
8-BIT DATA  
D7 (MSB)  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Preamble  
Preamble  
Preamble  
Status word  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
21  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.5 Scaler  
Each video decoder has an independent horizontal and vertical scaler, which supports D1 to half-D1 or  
CIF conversion. Table 3-2 gives the details of video resolution including un-cropped and cropped.  
Table 3-3 shows the video resolutions converted by the scaler.  
Table 3-2. Standard Video Resolutions  
Uncropped  
Cropped  
Format  
NTSC  
PAL  
NTSC  
PAL  
D1  
Half-D1  
CIF  
720 x 480  
360 x 480  
360 x 240  
720 x 576  
360 x 576  
360 x 288  
704 x 480  
352 x 480  
352 x 240  
704 x 576  
352 x 576  
352 x 288  
Table 3-3. Video Resolutions Converted by the Scaler  
Active Output  
Resolution  
Scaling Ratio  
Format  
Horizontal Scaling  
Vertical Scaling  
Total Pixel  
NTSC  
PAL  
1:1  
1:1  
2:1  
2:1  
2:1  
2:1  
1:1  
1:1  
1:1  
1:1  
2:1  
2:1  
858 x 525  
864 x 625  
429 x 525  
432 x 625  
429 x 262  
432 x 312  
720 x 480  
720 x 576  
360 x 480  
360 x 576  
360 x 240  
360 x 288  
D1  
NTSC  
PAL  
D1 to Half-D1  
D1 to CIF  
NTSC  
PAL  
3.6 Noise Reduction  
A video sequence shot under low light condition, which is typical of video surveillance applications, can  
contain lots of noise. Human eyes are very sensitive to oscillating signals, the visual quality degenerates  
significantly even when the noise level is small.  
Each video decoder uses a TI proprietary spatial filter to reduce video noise. For each frame of image, the  
video noise filter (VNF) produces an estimate of the Y/U/V noise. Based on the noise estimates, the  
firmware adjusts the threshold for Y/U/V filtering. The filtered video shows improved video quality and  
lower compression bit-rate. The firmware can also utilize the Y/U/V noise estimates to make decisions to  
disable color if the video noise is determined to be too high. This "color killer" decision bit can be used to  
control another module that implements the color killing function.  
The Noise Reduction can be controlled using I2C registers from 50h to 5Fh. This module can also be set  
to bypass mode by I2C register 5Dh (Bit 0).  
3.7 Auto Contrast  
The Auto Contrast (AC) module can adjust the picture brightness automatically or manually (user  
programmable) for better image quality. The goal of AC processing is to make the dark area brighter and  
high-light area dimmer. This makes it possible for the viewer to see details hidden in the shadows. It also  
prevents loss of details in the washed-out high light area. The AC processing is mostly for video  
surveillance applications.  
For each frame of image, the auto contrast module collects the statistics of its Y (luminance) values. The  
AC algorithm implemented in the firmware processes the statistics and generates a look-up table (LUT).  
This LUT is used to map each incoming pixel Y value to an output pixel Y value for the next frame of  
image. The LUT is updated during the blanking period between two frames.  
The Auto Contrast Mode can be controlled by using I2C registers 0Fh. This module can also be set to  
disable mode by I2C register 0Fh (Bit 1:0).  
22  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.8 Output Formatter  
The output formatter is responsible for generating the output digital video stream. Table 3-4 provides a  
summary of line frequencies, data rates, and pixel counts for different input standards. TVP5158 supports  
non-interleaved output mode, pixel-interleaved output mode and line-interleaved output mode. The  
non-interleaved mode is similar to the TVP5154A device, except that a single fixed clock output is used. In  
the interleaved modes, the video output data from multiple decoder channels are multiplexed together and  
then output to a single 8-bit or 16-bit port. The video output data from selected channels can be  
interleaved on a pixel or line basis.  
Table 3-4. Summary of Line Frequencies, Data Rates and Pixel Counts for Different Standards  
Pixel  
Frequency  
(MHz)  
Color Subcarrier  
Frequency  
(MHz)  
Horizontal Line  
Rate  
Standards  
(ITU-R BT.601)  
Active Pixels  
per Line  
Lines per  
Frame  
Pixels per Line  
(kHz)  
NTSC-J, M  
NTSC-4.43  
PAL-M  
858  
858  
858  
858  
864  
864  
864  
720  
720  
720  
720  
720  
720  
720  
525  
525  
525  
525  
625  
625  
625  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
3.579545  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
15.625  
PAL-Nc  
15.625  
3.8.1 Non-Interleaved Mode  
In the non-interleaved mode, the YCbCr digital output is programmed as 8-bit ITU-R BT.656 parallel  
interface standard. Depending on which output mode is selected, the output for each channel can be  
un-scaled data or scaled data. Also each video output port can be selected to output the video data from  
any 1 of 4 video decoders. Table 3-5 shows the detailed information about non-interleaved mode.  
Table 3-5. Output Ports Configuration for Non-Interleaved Mode  
Video Output  
Format  
Cascade  
Stage  
I2C Address:  
B0h  
OCLK  
(MHz)  
Port A  
Port B  
Port C  
Port D  
1-Ch D1  
1-Ch Half-D1  
1-Ch CIF  
n/a  
n/a  
n/a  
00h  
02h  
03h  
27  
27  
27  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
Any 1 of 4 Ch  
3.8.2 Pixel-Interleaved Mode  
Each video decoder supports multiplexing two or four channels ITU-R BT.656 format data together on a  
pixel basis. The output from each video decoder channel is still ITU-R BT.656 format. After the processing  
in output formatter, two or four channels video data has been interleaved together by strictly one pixel  
from each channel.  
The pixel-interleaved mode is dedicated for the backend chip which has limited video input ports.  
Table 3-6 gives the output port configuration for pixel-interleaved mode.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
23  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Port D  
Table 3-6. Output Ports Configuration for Pixel-Interleaved Mode  
Video Output  
Format  
Cascade  
Stage  
I2C Address:  
B0h  
OCLK  
(MHz)  
Port A  
Port B  
Port C  
2-Ch D1  
4-Ch D1  
n/a  
n/a  
n/a  
n/a  
50h  
60h  
62h  
63h  
54  
108  
54  
Any 2 of 4 Ch  
All 4 Ch  
Any 2 of 4 Ch  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
4-Ch Half-D1  
4-Ch CIF  
All 4 Ch  
Hi-Z  
54  
All 4 Ch  
Hi-Z  
3.8.2.1 2-Ch Pixel-Interleaved Mode  
In 2-Ch pixel-interleaved mode, the video output data with D1 resolution from two video channels is  
multiplexed pixel by pixel at 54 MHz. The output ports DVO_A and DVO_B are used in this mode. The  
output clocks OCLK_P and OCLK_N are synchronized with each channel so that the backend chip can  
de-multiplexed each video channel data easily. The video output from each channel is compatible with  
ITU-R BT.656 format. Figure 3-10 shows the timing diagram for 2-Ch pixel-interleaved mode.  
CLK_P  
(27MHz)  
CLK_N  
(27MHz)  
CH1_D  
CH2_D  
FF  
00  
00  
XY  
Cb0  
Y0  
Cr0  
Y1  
Cb2  
Y2  
Cr2  
Y3  
Cb20  
Y20  
Y20  
Cr20  
Y21  
Cb22  
Y22  
Cr22  
Y23  
Y23  
Cb24  
Y24  
Y24  
Cr24  
Y25  
Y25  
DVO_A_  
[7:0]  
FF Cb20 00  
00 Cr20 XY  
Y21 Cb0 Cb22 Y0  
Y22 Cr0 Cr22 Y1  
Cb2 Cb24 Y2  
Cr2 Cr24 Y3  
Figure 3-10. 2-Ch Pixel-Interleaved Mode Timing Diagram  
3.8.2.2 4-Ch Pixel-Interleaved Mode  
In 4-Ch pixel-interleaved mode, the video output data with D1 resolution from four video channels is  
multiplexed pixel by pixel at 108 MHz. The output DVO_A is used in this mode. The output clock OCLK_P  
is synchronized with all four channels data. Each channel video data is compatible with ITU-R BT.656  
format. Figure 3-11 shows the timing diagram for 4-Ch pixel-interleaved mode.  
CLK (108MHz)  
CH1_D  
FF  
00  
00  
XY  
Cb0  
Y0  
Cb20  
Y 20  
Cr20  
Y21  
Cb22  
Y22  
CH2_D  
Cr50  
Y51  
Cb52  
Y52  
Cr52  
Y53  
CH3_D  
Cr94  
Cr94  
Cr92  
Y93  
Cb94  
Y94  
Y95  
CH4_D  
DVO_A_  
[7:0]  
FF Cb20 Cr50 Cr92 00  
Y 20 Y51 Y93  
00 Cr20 Cb52 Cb94 XY Y21 Y52 Y94 Cb0 Cb22 Cr52  
Y0  
Y22 Y53 Y95  
Figure 3-11. 4-Ch Pixel-Interleaved Mode Timing Diagram  
24  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
In 4-Ch pixel-interleaved mode, TVP5158 also supports Half-D1 and CIF format data multiplexed at 54  
MHz. The output DVO_A is used in this mode. The output clock OCLK_P is synchronized with all four  
channels data.  
3.8.2.3 Metadata Insertion for Non-Interleave Mode and Pixel-Interleaved Mode  
In non-interleaved mode and pixel-interleaved mode, the video detection status (VDET) has also been  
inserted in MSB of SAV/EAV control byte. Table 3-7 shows VDET status insertion in SAV/EAV codes.  
Table 3-7. VDET Statues Insertion in SAV/EAV Codes  
CONDITION  
V TIME  
FVH VALUE  
V
SAV/EAV CODE SEQUENCE  
4th  
FIELD  
H TIME  
F
H
1st  
2nd  
3rd  
VDET = 1 VDET = 0  
1
1
1
1
2
2
2
2
Active  
Active  
Blank  
Blank  
Active  
Active  
Blank  
Blank  
SAV  
EAV  
SAV  
EAV  
SAV  
EAV  
SAV  
EAV  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
80h  
9Dh  
ABh  
B6h  
C7h  
DAh  
ECh  
F1h  
00h  
1Dh  
2Bh  
36h  
47h  
5Ah  
6Ch  
71h  
In the pixel-interleaved mode, Channel ID is inserted in the horizontal blanking code as Table 3-8. The  
backend chip can easily identify the video data from which video decoder channel by inserted Channel ID.  
Table 3-8. Channel ID Insertion in Horizontal Blanking Code  
H BLANKING CODE WITH CHANNEL ID  
CHANNEL  
Y
Cb  
80h  
81h  
82h  
83h  
Cr  
Ch1  
Ch2  
Ch3  
Ch4  
10h  
11h  
12h  
13h  
80h  
81h  
82h  
83h  
In the pixel-interleaved mode, Channel ID can also be inserted in 4 LSBs of SAV/EAV control byte  
replacing protection bits as Table 3-9.  
Table 3-9. Channel ID Insertion in SAV/EAV Code Sequence  
CONDITION  
FVH VALUE  
V
SAV/EAV CODE SEQUENCE  
4th  
FIELD  
V TIME H TIME  
F
H
1st  
2nd  
3rd  
Ch1  
80h  
90h  
A0h  
B0h  
C0h  
D0h  
E0h  
F0h  
Ch2  
81h  
91h  
A1h  
B1h  
C1h  
D1h  
E1h  
F1h  
Ch3  
82h  
92h  
A2h  
B2h  
C2h  
D2h  
E2h  
F2h  
Ch4  
83h  
93h  
A3h  
B3h  
C3h  
D3h  
E3h  
F3h  
1
1
1
1
2
2
2
2
Active  
Active  
Blank  
Blank  
Active  
Active  
Blank  
Blank  
SAV  
EAV  
SAV  
EAV  
SAV  
EAV  
SAV  
EAV  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
25  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.8.3 Line-Interleaved Mode Support (TVP5158 only)  
The TVP5158 supports 2-Ch, 4-Ch, and 8-Ch line-interleaved modes. In the line-interleaved mode, the  
video channels are multiplexed together on a line-by-line basis. Compared to the pixel-interleaved mode,  
the line-interleaved mode significantly reduces the code complexity and MIPS consumption of the backend  
processor. The 8-Ch modes require connecting two TVP5158 devices together using a video cascade  
interface (see Section 3.8.3.3). The TVP5158 also supports different image resolutions (for example, D1,  
Half-D1, and CIF) in the line-interleaved mode. All supported line-interleaved modes are shown in  
Table 3-10.  
Table 3-10. Output Ports Configuration for Line-Interleaved Mode  
Cascade  
Stage  
I2C Address:  
B0h  
OCLK  
(MHz)  
Video Output Format  
Port A  
Port B  
Port C  
Port D  
2-Ch D1  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
90h  
92h  
80h  
A0h  
A2h  
A3h  
54  
27  
Any 2 of 4 Ch Any 2 of 4 Ch  
Any 2 of 4 Ch Any 2 of 4 Ch  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
2-Ch Half-D1  
3-Ch D1  
81/108  
108  
54  
Any 3 of 4 Ch  
All 4 Ch  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
4-Ch D1  
4-Ch Half-D1  
4-Ch CIF  
All 4 Ch  
27  
All 4 Ch  
All 4 Ch  
(Y data)  
All 4 Ch  
(C data)  
4-Ch D1 (16-bit)  
n/a  
n/a  
1st  
A8h  
AAh  
82h  
86h  
B2h  
B6h  
B3h  
B7h  
54  
27  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
All 4 Ch  
(Y data)  
All 4 Ch  
(C data)  
4-Ch Half-D1 (16-bit)  
6-Ch Half-D1  
Output  
2-Ch Half-D1  
Input  
81/108  
27  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
6-Ch Half-D1  
8-Ch Half-D1  
8-Ch CIF  
2-Ch Half-D1  
Output  
2nd  
1st  
Hi-Z  
8-Ch Half-D1  
Output  
4-Ch Half-D1  
Input  
108  
54  
4-Ch Half-D1  
Output  
2nd  
1st  
Hi-Z  
4-Ch CIF Input  
Hi-Z  
8-Ch CIF  
Output  
54  
4-Ch CIF  
Output  
2nd  
27  
4 Ch Half-D1  
+ Any 1 of 4  
D1  
4-Ch Half-D1 +  
1-Ch D1  
n/a  
n/a  
1st  
E2h  
E3h  
C2h  
81/108  
54  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
4-Ch CIF +  
Any 1 of 4 D1  
4-Ch CIF + 1-Ch D1  
6-Ch Half-D1  
+ Any 1 of 8  
D1  
2-Ch Half-D1  
Input  
108  
1-Ch D1 Input  
Hi-Z  
6-Ch Half-D1 +  
1-Ch D1  
2-Ch Half-D1  
Output  
1-Ch D1  
Output  
2nd  
1st  
C6h  
F3h  
F7h  
27  
81/108  
27  
Hi-Z  
8-Ch CIF +  
Any 1 of 8 D1  
Hi-Z  
1-Ch D1 Input 4-Ch CIF Input  
Hi-Z Hi-Z  
8-Ch CIF + 1-Ch D1  
4-Ch CIF  
Output  
1-Ch D1  
Output  
2nd  
3.8.3.1 2-Ch Line-Interleaved Mode  
TVP5158 supports 2-Ch line-interleaved mode at 54 MHz. The video output data with D1 resolution from  
any two video channels is multiplexed together on a line basis. The output ports DVO_A and DVO_B are  
used in this mode. The output clock OCLK_P is synchronized with both output ports.  
26  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.8.3.2 4-Ch Line-Interleaved Mode  
In 4-Ch line-interleaved mode, the video output data from all 4 channels is multiplexed together on a line  
basis. The output resolution of video data can be D1, Half-D1 or CIF. For D1 and Half-D1 output  
resolutions, the video output port can be configured to support 8-bit BT.656 or 16-Bit YCbCr 4:2:2 data  
with embedded sync. Port DVO_A is used for 8-bit output. Ports DVO_A and DVO_B are used for 16-Bit  
output. The output clock OCLK_P is synchronized with all four output ports.  
TVP5158 supports multiplexing 4-Ch CIF and 1-Ch D1 data together and then output through DVO_A at  
54 MHz. 1-Ch D1 can be from any one of 4 video channels. In typical surveillance applications, CIF  
resolution is used for recording and D1 resolution is used for video preview.  
TVP5158 also supports multiplexing 4-Ch Half-D1 and 1-Ch D1 data together and then output through  
DVO_A at 108 MHz. The backend chip can use Half-D1 to generate CIF format by dropped one field.  
Pleas note that the line-interleaved mode does NOT strictly output one line from each decoder channel  
sequentially. The order of multiplexed the video line data is based on the availability of video output data  
from each decoder channel. Therefore, it is possible to output two consecutive lines from the same  
decoder channel or to skip one decoder channel output.  
3.8.3.3 8-Ch Line-Interleaved Mode  
Two TVP5158 devices can be cascade connected and work as single 8-Ch video decoder. In cascade  
mode, the port DVO_C and DVO_D of master TVP5158 (first stage) can be configured as the video input  
interface. The DVO_A and DVO_B of master TVP5158 are configured as the output interface for two  
devices. This mode is dedicated for the backend chip with extremely limited input ports.  
In the video cascade mode, the open-drain interrupt request (INTREQ) outputs from the first and second  
stages can be combined using a wired-OR connection.  
Typical applications with cascade mode show in the following diagrams.  
Figure 3-12 shows the Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview.  
Figure 3-13 shows the Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview.  
Figure 3-14 shows the Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF  
Preview.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
27  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
8-Ch CIF  
DVO_A_[7:0]  
OCLK_P  
VIN_1  
VIN_2  
VPIF_A  
8Bit@54MHz  
TVP5158  
VIN_3  
VIN_4  
DVO_D_[7:0]  
OCLKN/CLKIN  
I2C  
VIN_1  
H.264  
DVO_A_[7:0]  
OCLK_P  
VIN_2  
VIN_3  
VIN_4  
16-Ch CIF Recording  
4-Ch CIF  
8Bit@27MHz  
TVP5158  
DM6467  
DaVinci HD  
VIN_1  
VIN_2  
8-Ch CIF  
DVO_A_[7:0]  
OCLK_P  
TVP5158  
VPIF_B  
8Bit@54MHz  
Multi-Ch CIF  
Preview  
VIN_3  
VIN_4  
DVO_D_[7:0]  
OCLKN/CLKIN  
I2C  
VIN_1  
VIN_2  
DVO_A_[7:0]  
OCLK_P  
4-Ch CIF  
8Bit@27MHz  
TVP5158  
VIN_3  
VIN_4  
Figure 3-12. Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview  
DVO_A_[7:0]  
OCLK_P  
VIN_1  
8-Ch Half-D1  
VPIF_A  
VIN_2  
VIN_3  
VIN_4  
8Bit@108MHz  
TVP5158  
DVO_D_[7:0]  
OCLKN/CLKIN  
I2C  
H.264  
VIN_1  
VIN_2  
DVO_A_[7:0]  
OCLK_P  
16-Ch CIF Recording  
4-Ch Half-D1  
8Bit@54MHz  
VIN_3 TVP5158  
VIN_4  
DM6467  
DaVinci HD  
VIN_1  
DVO_A_[7:0]  
OCLK_P  
8-Ch Half-D1  
VPIF_B  
VIN_2  
8Bit@108MHz  
TVP5158  
Multi-Ch Half-D1  
Preview  
VIN_3  
DVO_D_[7:0]  
VIN_4  
OCLKN/CLKIN  
I2C  
VIN_1  
VIN_2  
DVO_A_[7:0]  
OCLK_P  
4-Ch Half-D1  
8Bit@54MHz  
TVP5158  
VIN_3  
VIN_4  
Figure 3-13. Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview  
28  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
8-Ch CIF + 1-Ch D1  
8Bit@108MHz  
DVO_A_[7:0]  
OCLK_P  
VIN_1  
VPIF_A  
VIN_2  
VIN_3  
VIN_4  
TVP5158  
DVO_C_[7:0]  
DVO_D_[7:0]  
OCLKN/CLKIN  
I2C  
4-Ch CIF  
DVO_A_[7:0] 8Bit@ 27MHz  
OCLK_P  
VIN_1  
VIN_2  
VIN_3  
VIN_4  
DVO_B_[7:0]  
1-Ch D1  
H.264  
TVP5158  
16-Ch CIF Recording  
8Bit@27MHz  
DM6467  
DaVinci HD  
2-Ch D1/Multi-Ch CIF  
Preview  
8-Ch CIF + 1-Ch D1  
8Bit@108MHz  
DVO_A_[7:0]  
OCLK_P  
VIN_1  
VIN_2  
VIN_3  
VIN_4  
VPIF_B  
TVP5158  
DVO_C_[7:0]  
DVO_D_[7:0]  
OCLKN/CLKIN  
I2C  
4-Ch CIF  
DVO_A_[7:0] 8Bit@ 27MHz  
OCLK_P  
VIN_1  
VIN_2  
VIN_3  
VIN_4  
DVO_B_[7:0]  
1-Ch D1  
TVP5158  
8Bit@27MHz  
Figure 3-14. Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF Preview  
3.8.3.4 Hybrid Modes  
The TVP5158 also supports multiplexing both scaled and unscaled data streams in the line-interleaved  
mode. In these hybrid modes (4-Ch Half-D1 + 1-Ch D1, 4-Ch CIF + 1-Ch D1, and 8-Ch CIF + 1-Ch D1),  
the D1 line is split into two equal-length half lines and then multiplexed with the other CIF lines. Therefore,  
all video data is actually multiplexed by CIF line length. In these hybrid modes, the line cropping mode  
affects both the scaled and unscaled data streams. The line cropping mode is controlled by bit 6 of I2C  
register B1h.  
3.8.3.5 Metadata Insertion for Line-Interleaved Mode  
In the line-interleaved mode, the video data is rearranged on a line-by-line basis. There can be no  
guaranteed output line order, because all analog video inputs are not synchronized. To be compatible with  
general backend BT.656 decoder, the video data is encapsulated on TVP5158 output so that all input data  
is preserved and output data is understandable to a BT.656 decoder.  
To prevent confusion over image line count and vertical blanking appearing haphazardly, SAV/EAV codes  
have FID and V data stripped and replaced with FID = V = 0. Because vertical blanking in the input is  
being masked out, artificial vertical sync is inserted every encapsulated frame (a.k.a., super frame). Thus,  
to the unaware BT.656 decoder, the stream appears to be progressive data with two lines of vertical  
blanking. The default super-frame format and timing for each line-interleaved output format is shown in  
Table 3-11.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
29  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 3-11. Default Super-Frame Format and Timing  
OCLK  
(MHz)  
EAV  
(bytes)  
SAV  
(bytes)  
SF HSIZE SF VSIZE  
Video Output Formats  
EAV2SAV (bytes)  
SAV2EAV (bytes)  
(bytes)  
(bytes)  
Cropping Enable  
2-Ch D1  
n/a  
54  
n/a  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
0
n/a  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
0
n/a  
n/a  
280  
128  
848  
280  
280  
128  
128  
136  
60  
248  
112  
816  
248  
248  
112  
112  
120  
52  
1416  
712  
1416  
1416  
1416  
712  
712  
708  
356  
712  
712  
712  
712  
712  
712  
712  
712  
712  
712  
1448  
728  
1448  
1448  
1448  
728  
728  
724  
364  
728  
728  
728  
728  
728  
728  
728  
728  
728  
728  
1704  
848  
1052  
1052  
1577  
1577  
2102  
2102  
1054  
2102  
2102  
3152  
3152  
4095  
2106  
4095  
3152  
3152  
2104  
3156  
3156  
2-Ch Half-D1  
27  
108  
81  
2272  
1704  
1704  
848  
3-Ch D1(1)  
4-Ch D1  
4-Ch Half-D1  
108  
54  
4-Ch CIF  
27  
848  
4-Ch D1 (16 bit)  
4-Ch Half-D1 (16 bit)  
54  
852  
27  
424  
108  
81  
416  
128  
128  
128  
128  
416  
128  
128  
416  
128  
400  
112  
112  
1121  
112  
400  
112  
112  
400  
112  
1136  
848  
6-Ch Half-D1(1)  
8-Ch Half-D1  
8-Ch CIF  
108  
54  
848  
848  
6-Ch Half-D1 + 1-Ch D1  
108  
108  
81  
848  
1136  
848  
4-Ch Half-D1 + 1-Ch D1(1)  
4-Ch CIF + 1-Ch D1  
54  
848  
108  
81  
1136  
848  
8-Ch CIF + 1-Ch D1(1)  
(1) The output clock frequency for these output formats can be selected using bit 6 of I2C register B2h. The default clock frequency is 108  
MHz.  
4-Byte Start Code (SC3:SC0) is inserted immediately after SAV code for encapsulated frame. Figure 3-15  
and Figure 3-16 show the start code details.  
Horizontal Active Period (SAV2EAV)  
Horizontal Blanking Interval  
EAV  
EAV2SAV  
SAV  
Start Code  
Channel Data  
FFh 00h 00h XYh  
FFh 00h 00h XYh SC3 SC3 SC2 SC2 SC1 SC1 SC0 SC0  
Cb Cr  
Y
Y
Start code for  
channel data  
SAV for  
encapsulated  
frame  
64 clock cycles (fixed)  
EAV for  
encapsulated  
frame  
Figure 3-15. Start Code in 8-Bit BT.656 Interface  
Horizontal Blanking Interval  
Horizontal Active Period (SAV2EAV)  
EAV  
EAV2SAV  
SAV  
Start Code  
Channel Data  
FFh 00h 00h XYh  
FFh 00h 00h XYh  
FFh 00h 00h XYh SC3 SC2 SC1 SC0  
Y
Y
Y
Y
FFh 00h 00h XYh SC3 SC2 SC1 SC0  
Cb Cr Cb Cr  
SAV for  
encapsulated  
frame  
Start code for  
channel data  
64 clock cycles (fixed)  
EAV for  
encapsulated  
frame  
Figure 3-16. Start Code in 16-Bit YCbCr 4:2:2 Interface  
30  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 3-12 and Table 3-13 show the bit assignment and field definition of 4-Byte start code for Active  
Video Line.  
Table 3-12. Bit Assignment of 4-Byte Start Code for Active Video Line  
BYTE  
SC[3]  
SC[2]  
SC[1]  
SC[0]  
7
6
5
4
VDET  
H
3
2
1
0
1
BOP  
BOL  
EOP  
EOL  
RSVD  
VCS_ID  
CH_ID[1:0]  
LN_ID[8:7]  
0
~LD_ID[6]  
1
RSVD  
LN_ID[6:0]  
P3  
F
V
P2  
P1  
P0  
Table 3-13. Bit Field Definition of 4-Byte Start Code for Active Video Line  
BIT  
NAME  
FUNCTION  
31  
1
Always set to 1.  
Active-high beginning of period flag. Set high for first line of both active video and vertical blanking interval.  
In split-line mode, the BOP bit is the same for both halves of the same line.  
30  
BOP  
0: Not BOP  
1: BOP  
Active-high end of period flag. Set high for last line of both active video and vertical blanking interval. In  
split-line mode, the EOP bit is the same for both halves of the same line.  
29  
[28:27]  
26  
EOP  
RSVD  
0: Not EOP  
1: EOP  
Reserved  
Video cascade stage ID. Set to 0 for normal operation. In cascade mode, the back-end device (for example,  
TMS320DM6467) interfaces to the first stage.  
VCS_ID  
0: First stage (channels 1 to 4)  
1: Second stage (channels 5 to 8)  
2-bit Channel ID. Video decoder channel number.  
00: Channel 1  
[25:24]  
CH_ID[1:0]  
01: Channel 2  
10: Channel 3  
11: Channel 4  
23  
22  
0
Always set to 0.  
Active-high beginning of line flag. Used in split-line mode which may be required for hybrid formats (e.g.  
1-Ch D1 + 8-Ch CIF). Set high when the current encapsulated line of channel data includes the beginning of  
a video line.  
BOL  
0: BOL not included (2nd half of split line)  
1: BOL included (1st half of split line or full line)  
Active-high end of line flag. Used in split-line mode which may be required for hybrid formats (e.g. 1-Ch D1 +  
8-Ch CIF). Set high when the current line of channel data includes the end of a video line.  
21  
20  
EOL  
0: EOL not included (1st half of split line)  
1: EOL included (2nd half of split line or full line)  
Active-high video detection status  
0: Video not detected  
VDET  
1: Video detected  
[19:18]  
[17:16]  
15  
RSVD  
Reserved  
Two MSBs of 9-bit Line ID, active video line number. Line counter resets to 000h at beginning of active  
video (that is, resets once per field). During the vertical blanking interval, the line counter may either  
continue counting or hold the terminal count determined at the end of active video.  
LN_ID[8:7]  
~LN_ID[6]  
Always set to the complement of bit 14 (LN_ID[6]).  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
31  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 3-13. Bit Field Definition of 4-Byte Start Code for Active Video Line (continued)  
BIT  
[14:8]  
7
NAME  
LN_ID[6:0]  
1
FUNCTION  
Seven LSBs of 9-bit Line ID, active video line number. Line counter resets to 000h at beginning of active  
video (that is, resets once per field). During the vertical blanking interval, the line counter may either  
continue counting or hold the terminal count determined at the end of active video.  
Always set to 1.  
F-bit  
6
5
4
F
V
H
0: First field of frame  
1: Second field of frame  
V-bit  
0: when not in vertical blanking  
1: during vertical blanking  
H-bit. Always set to 0.  
0: SAV  
1: EAV (never used)  
3
2
1
0
P3  
P2  
P1  
P0  
P3 = V XOR H, Protection bits used for error detection/correction  
P2 = F XOR H, Protection bits used for error detection/correction  
P1 = F XOR V, Protection bits used for error detection/correction  
P0 = F XOR V XOR H, Protection bits used for error detection/correction  
NOTE  
For line-interleaved output mode, if none of video decoder channels has the data ready at a  
given time, TVP5158 outputs the dummy line until any one of video decoder channels is  
ready to output a line. The backend chip needs to keep only the active video line and ignore  
the dummy line.  
The start code of the dummy line is different with active video line. Table 3-14 shows the bit assignment  
and field definition of 4-Byte start code for the Dummy Line.  
Table 3-14. Bit Assignment of 4-Byte Start Code for the Dummy Line  
BYTE  
SC[3]  
SC[2]  
SC[1]  
SC[0]  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
0
4
0
0
0
0
3
0
0
0
0
2
0
0
0
0
1
0
0
0
0
0
1
1
1
1
NOTE  
The Dummy Line can be distinguished from active video line by looking at the MSB of byte  
SC[0].  
3.9 Audio Sub-System (TVP5157 and TVP5158 Only)  
The audio sub-system integrates a 4-Ch audio analog-to-digital converter, digital processing, and I2S  
encoder. TVP5158 audio sub-system supports 4-Ch mono analog audio input and standard/multiple I2S  
output. TVP5158 also supports audio cascade connection up to four devices cascade connected for 16-Ch  
audio input.  
32  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.9.1 Features  
Four mono analog audio input channels  
Requires external passive attenuator to support 2.828-Vpp analog audio input  
Programmable Gain Amplifier (PGA)  
Gain range: -12 ~ 0 dB, Gain Step: 1.5 dB  
Integrated Anti-Aliasing Filter (AAF)  
10-Bit Analog-to-Digital Converter  
Integrates Audio High-pass filter to eliminate low frequency hum  
Digital serial audio interface  
16-Bit Linear PCM, 8-Bit A-Law and 8-Bit µ-Law Data  
I2S or DSP Format  
Master and Slave mode operation  
Up to 16 slots TDM output  
64 fs or 256 fs system clock  
Sampling Rate : 16 kHz, 8 kHz  
Audio Cascade connection  
Up to 4 cascaded devices  
I2S format  
256 fs system clock  
Audio Mixing Output  
Audio ADC has one register to set mix ratio  
The Mixing output pin SD_M can also be used for recording. Combined with the recording output  
pin SD_R, two I2S bit-streams can be output simultaneously.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
33  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.9.2 Audio Sub-System Functional Diagram  
Figure 3-17. Audio Sub-System Functional Diagram  
3.9.3 Serial Audio Interface  
The timing for the TVP5158 serial audio interface is shown in Figure 3-18. The TVP5158 audio data  
output (SD_R) and frame sync pulse (LRCLK) are aligned with the falling edge of the bit clock (BCLK).  
The TVP5158 audio data is delayed one BCLK cycles from the falling edge of the frame sync pulse. In the  
DSP mode, the TVP5158 frame sync pulse is high for only one BCLK cycle.  
34  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
1/fs  
LRCLK_R  
BCLK_R  
SD_R  
LSB MSB  
LSB MSB  
LSB  
Data 1  
Data 2  
(a) I2S Format  
1/fs  
LRCLK_R  
BCLK_R  
SD_R  
LSB MSB  
LSB MSB  
LSB  
Data 1  
(b) DSP Format  
Figure 3-18. Serial Audio Interface Timing Diagram  
Data 2  
3.9.4 Analog Audio Input Clamping  
An internal clamping circuit provides mid-level clamping of all four analog audio inputs to a dc level of  
approximately 0.625 V.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
35  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.9.5 Audio Cascade Connection  
AIN_1  
SD_CO  
BCLK_R  
LRCLK_R  
SD_R  
Record Output  
(AIN_1-AN_16)  
Mix Output  
AIN_2  
AIN_3  
AIN_4  
TVP5158  
SD_M  
XTAL_IN  
XTAL  
XTAL_OUT  
First Stage  
BCLK_CI  
OSC_OUT  
LRCLK_CI  
SD_CI  
AIN_5  
AIN_6  
AIN_7  
AIN_8  
BCLK_R  
LRCLK_R  
SD_R  
SD_CO  
BCLK_R  
LRCLK_R  
SD_R  
Record Output  
(AIN_5-AN_16)  
SD_M  
SD_M  
TVP5158  
Second Stage  
XTAL_IN  
BCLK_CI  
OSC_OUT  
LRCLK_CI  
SD_CI  
AIN_9  
BCLK_R  
LRCLK_R  
SD_R  
BCLK_R  
LRCLK_R  
SD_R  
SD_CO  
Record Output  
AIN_10  
AIN_11  
AIN_12  
(AIN_9-AN_16)  
TVP5158  
SD_M  
SD_M  
Third Stage  
XTAL_IN  
BCLK_CI  
OSC_OUT  
LRCLK_CI  
SD_CI  
AIN_13  
SD_CO  
BCLK_R  
BCLK_R  
LRCLK_R  
SD_R  
Record Output  
AIN_14  
AIN_15  
AIN_16  
LRCLK_R  
SD_R  
(AIN_13-AN_16)  
TVP5158  
SD_M  
SD_M  
Last Stage  
XTAL_IN  
OSC_OUT  
SD_CI  
Figure 3-19. Audio Cascade Connection  
TVP5158 supports up to four devices cascaded together for audio cascade connection. The I2S output of  
master TVP5158 (1st stage) combines all audio channel data from cascaded TVP5158 devices.  
Key Features of Audio Cascade Connection  
16-Bit linear PCM data  
I2S format  
Bit Clock: 256 fs  
All cascade inputs are always in slave mode  
Second to fourth stage serial audio outputs are always in master mode  
First stage serial audio output can be in either master or slave mode  
Common clock source for all cascaded devices is required  
The Serial Audio Output Channel Assignment shown on Table 3-15.  
36  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 3-15. Serial Audio Output Channel Assignment  
I2S  
LRCLK_R Left  
Slot 4 Slot 5  
LRCLK_R Right  
tdm_ch  
tdm_out_pin  
0
Slot 1  
SD_R AIN_1  
SD_M  
Slot 2  
Slot 3  
Slot 6  
Slot 7  
Slot 8  
Slot 9 Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16  
AIN_2  
0 (2 channel)  
1 (4 channel)  
2 (8 channel)  
3 (12 channel)  
4 (16 channel)  
SD_R AIN_1  
SD_M AIN_2  
1
0
1
0
1
0
1
0
1
SD_R AIN_1 AIN_3  
SD_M  
AIN_2 AIN_4  
SD_R AIN_1  
SD_M AIN_3  
AIN_2  
AIN_4  
SD_R AIN_1 AIN_3 AIN_5 AIN_7  
SD_M  
AIN_2 AIN_4 AIN_6 AIN_8  
SD_R AIN_1 AIN_5  
SD_M AIN_3 AIN_7  
AIN_2 AIN_6  
AIN_4 AIN_8  
SD_R AIN_1 AIN_3 AIN_5 AIN_7 AIN_9 AIN_11  
SD_M  
AIN_2 AIN_4 AIN_6 AIN_8 AIN_10 AIN_12  
SD_R AIN_1 AIN_5 AIN_9  
SD_M AIN_3 AIN_7 AIN_11  
AIN_2 AIN_6 AIN_10  
AIN_4 AIN_8 AIN_12  
SD_R AIN_1 AIN_3 AIN_5 AIN_7 AIN_9 AIN_11 AIN_13 AIN_15 AIN_2 AIN_4 AIN_6 AIN_8 AIN_10 AIN_12 AIN_14 AIN_16  
SD_M  
SD_R AIN_1 AIN_5 AIN_9 AIN_13  
SD_M AIN_3 AIN_7 AIN_11 AIN_15  
AIN_2 AIN_6 AIN_10 AIN_14  
AIN_4 AIN_8 AIN_12 AIN_16  
DSP Format  
tdm_ch  
tdm_out_pin  
0
Slot 1  
Slot 2  
Slot 3  
Slot 4  
Slot 5  
Slot 6  
Slot 7  
Slot 8  
Slot 9 Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16  
SD_R AIN_1 AIN_2  
SD_M  
0 (2 channel)  
1 (4 channel)  
2 (8 channel)  
3 (12 channel)  
4 (16 channel)  
SD_R AIN_1  
SD_M AIN_2  
1
0
1
0
1
0
1
0
1
SD_R AIN_1 AIN_3 AIN_2 AIN_4  
SD_M  
SD_R AIN_1 AIN_2  
SD_M AIN_3 AIN_4  
SD_R AIN_1 AIN_3 AIN_5 AIN_7 AIN_2 AIN_4 AIN_6 AIN_8  
SD_M  
SD_R AIN_1 AIN_5 AIN_2 AIN_6  
SD_M AIN_3 AIN_7 AIN_4 AIN_8  
SD_R AIN_1 AIN_3 AIN_5 AIN_7 AIN_9 AIN_11 AIN_2 AIN_4 AIN_6 AIN_8 AIN_10 AIN_12  
SD_M  
SD_R AIN_1 AIN_5 AIN_9 AIN_2 AIN_6 AIN_10  
SD_M AIN_3 AIN_7 AIN_11 AIN_4 AIN_8 AIN_12  
SD_R AIN_1 AIN_3 AIN_5 AIN_7 AIN_9 AIN_11 AIN_13 AIN_15 AIN_2 AIN_4 AIN_6 AIN_8 AIN_10 AIN_12 AIN_14 AIN_16  
SD_M  
SD_R AIN_1 AIN_5 AIN_9 AIN_13 AIN_2 AIN_6 AIN_10 AIN_14  
SD_M AIN_3 AIN_7 AIN_11 AIN_15 AIN_4 AIN_8 AIN_12 AIN_16  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
37  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.10 I2C Host Interface  
The I2C standard consists of two signals, serial input/output data line (SDA) and input/output clock line  
(SCL), which carry information between the devices connected to the bus. The input pins I2CA0, I2CA1  
and I2CA2 are used to select the slave address to which the device responds. Although the I2C system  
can be multi-mastered, the TVP5158 decoder functions as a slave device only.  
Both SDA and SCL must be connected to IOVDD via pullup resistors. When the bus is free, both lines are  
high. The slave address select terminals (I2CA0, I2CA1 and I2CA2) enable the use of up to eight devices  
on the same I2C bus. At the trailing edge of reset, the status of the I2CA0, I2CA1 and I2CA2 lines are  
sampled to determine the device address used. Table 3-16 summarizes the terminal functions of the I2C  
host interface. Table 3-17 shows the device address selection options.  
Table 3-16. I2C Terminal Description  
SIGNAL  
I2CA0  
I2CA1  
I2CA2  
SCL  
TYPE  
DESCRIPTION  
I
Slave address selection  
Slave address selection  
Slave address selection  
Input/output clock line  
Input/output data line  
I
I
I/O (open drain)  
I/O (open drain)  
SDA  
Table 3-17. I2C Host Interface Device Addresses  
A6  
1
A5  
0
A4  
1
A3  
1
A2(I2CA2)  
A1(I2CA1)  
A0 (I2CA0)  
R/W  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
HEX  
B1/B0  
B3/B2  
B5/B4  
B7/B6  
B9/B8  
BB/BA  
BD/BC  
BF/BE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
Data transfer rate on the bus is up to 400 kbit/s. The number of devices connected to the bus is  
dependent on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the  
high period of the SCL except for start and stop conditions. The high or low state of the data line can only  
change with the clock signal on the SCL line being low. A high-to-low transition on the SDA line while the  
SCL is high indicates an I2C start condition. A low-to-high transition on the SDA line while the SCL is high  
indicates an I2C stop condition.  
Every byte placed on the SDA must be 8 bits long. The number of bytes which can be transferred is  
unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is  
generated by the I2C master.  
To simplify programming of each of the 4 decoder channels a single I2C write transaction can be  
transmitted to any one or more of the 4 cores in parallel. This reduces the time required to download  
firmware or to configure the device when all channels are to be configured in the same manner. It also  
enables the addresses for all registers to be common across all decoders.  
I2C subaddress FEh contains 4 bits with each bit corresponding to one of the decoder cores. If a decoder  
write enable bit is set, then I2C write transactions are sent to the corresponding decoder core. For  
multi-byte I2C write transactions, there are options to auto-increment the subaddress or to auto-increment  
through the selected decoders or both.  
38  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
I2C subaddress FFh contains 4 bits with each bit corresponding to one of the decoder cores. If a decoder  
read enable bit is set, then I2C read transactions are sent to the corresponding decoder core.  
If more than one decoder is enabled for reads, then the lowest numbered decoder that is enabled  
responds to the read transaction. For multi-byte I2C read transactions, there are options to auto-increment  
the subaddress or to auto-increment through the selected decoders or both.  
3.10.1 I2C Write Operation  
Data transfers occur utilizing the following formats.  
An I2C master initiates a write operation to the decoder by generating a start condition (S) followed by the  
decoder I2C address (as shown below), in MSB first bit order, followed by a 0 to indicate a write cycle.  
After receiving an acknowledge from the decoder, the master presents the subaddress of the register, or  
the first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The  
decoder acknowledges each byte after completion of each transfer. The I2C master terminates the write  
operation by generating a stop condition (P).  
Step 1  
0
I2C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
I2C General address (master)  
1
0
1
1
1
0
X
0
Step 3  
9
I2C Acknowledge (slave)  
A
Step 4  
7
6
5
4
3
2
1
0
I2C Write register address (master)  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Step 5  
9
I2C Acknowledge (slave)  
A
Step 6(1)  
7
6
5
4
3
2
1
0
I2C Write data (master)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 7(1)  
9
I2C Acknowledge (slave)  
A
Step 8  
0
I2C Stop (master)  
P
(1) Repeat steps 6 and 7 until all data have been written.  
3.10.2 I2C Read Operation  
The read operation consists of two phases. The first phase is the address phase. In this phase, an I2C  
master initiates a write operation to the decoder by generating a start condition (S) followed by the  
decoder slave address, in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving  
acknowledge from the decoder, the master presents the subaddress of the register or the first of a block of  
registers it wants to read. After the cycle is acknowledged, the master has the option of generating a stop  
condition or not.  
In the data phase, an I2C master initiates a read operation to the decoder by generating a start condition  
followed by the decoder I2C slave address (as shown below for a read operation), in MSB first bit order,  
followed by a 1 to indicate a read cycle. After an acknowledge from the decoder, the I2C master receives  
one or more bytes of data from the decoder. The I2C master acknowledges the transfer at the end of each  
byte. After the last data byte has been transferred from the decoder, the master generates a not  
acknowledge followed by a stop.  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
39  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Read Phase 1  
Step 1  
0
I2C Start (master)  
S
Step 2  
7
6
5
4
3
2
1
0
I2C General address (master)  
1
0
1
1
X
X
X
0
Step 3  
9
I2C Acknowledge (slave)  
A
Step 4  
7
6
5
4
3
2
1
0
I2C Read register address (master)  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Step 5  
9
I2C Acknowledge (slave)  
A
Step 6(1)  
0
I2C Stop (master)  
P
(1) Step 6 is optional.  
Read Phase 2  
Step 7  
0
I2C Start (master)  
S
Step 8  
7
6
5
4
3
2
1
0
I2C General address (master)  
1
0
1
1
X
X
X
1
Step 9  
9
I2C Acknowledge (slave)  
A
Step 10(1)  
7
6
5
4
3
2
1
0
I2C Read data (slave)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Step 11(1)  
9
I2C Not Acknowledge (master)  
A
Step 12  
0
I2C Stop (master)  
P
(1) Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.  
40  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.10.3 VBUS Access  
The TVP5158 video decoder has additional internal registers accessible through an indirect access to an  
internal 24-bit address wide VBUS. Figure 3-20 shows the VBUS registers access.  
I2C Registers  
VBUS Registers  
00h  
00 0000h  
40 3E50h  
40 3EEFh  
Comb  
Filter RAM  
I2C  
VBUS [23:0]  
Host  
Processor  
E0h  
VBUS  
Data  
E1h  
E8h  
VBUS  
Address  
EAh  
FFh  
A0 3FFFh  
Figure 3-20. VBUS Access  
VBUS Write  
Single Byte  
S
S
B8  
B8  
ACK  
ACK  
E8  
E0  
ACK  
VA0  
ACK  
VA1  
ACK  
ACK  
P
VA2  
VA2  
ACK  
ACK  
P
ACK  
Send Data  
Multiple Bytes  
S
S
B8  
B8  
ACK  
ACK  
E8  
E1  
ACK  
ACK  
VA0  
ACK  
VA1  
ACK  
ACK  
. . .  
P
Send Data  
Send Data  
ACK  
P
VBUS Read  
Single Byte  
S
S
B8  
B8  
ACK  
ACK  
E8  
E0  
ACK  
ACK  
VA0  
S
ACK  
B9  
VA1  
ACK  
ACK  
VA2  
ACK  
NAK  
P
P
Read Data  
Multiple Bytes  
S
S
B8  
B8  
ACK  
ACK  
E8  
E1  
ACK  
ACK  
VA0  
S
ACK  
B9  
VA1  
ACK  
ACK  
VA2  
ACK  
P
Read Data  
MACK  
. . .  
Read Data  
NAK  
P
NOTE: Examples use default I2C address  
ACK: Acknowledge generated by the slave  
MACK: Acknowledge generated by the master  
NAK: No Acknowledge generated by the master  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
41  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
3.11 Clock Circuits  
An analog clock multiplier PLL is used to generate a system clock from an external 27-MHz crystal  
(fundamental resonant frequency) or external clock reference input. A crystal can be connected across  
terminals 99 (XTAL_IN) and 101 (XTAL_OUT), or a 1.8-V external clock input can be connected to  
terminal 99. Four horizontal PLLs generate the line-locked sample clock for each video decoder core from  
the system clock. Four color PLLs generate the color subcarrier frequency for each video decoder core  
from the corresponding line-locked clock. Four vertical PLLs generate the field/frame sync for each video  
decoder core. A frequency synthesizer generates the 32.768-MHz audio oversampling clock for each  
analog audio input from the system clock.  
Figure 3-21 shows the reference clock configurations. For the example crystal circuit shown, the external  
capacitors must have the following relationship:  
CL1 = CL2 = 2CL CSTRAY  
Where,  
CSTRAY is the terminal capacitance with respect to ground  
CL is the crystal load capacitance specified by the crystal manufacturer  
27-MHz  
Crystal  
0 W  
VSSA  
27-MHz CLK  
Output to other TVP5158  
XTAL_IN pin  
27-MHz CLK  
Output to other TVP5158  
XTAL_IN pin  
Figure 3-21. Clock and Crystal Connectivity  
42  
Functional Description  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
3.12 Reset Mode  
Terminal 3 (RESETB) is active low signal to hold the decoder into reset. Table 3-18 shows the  
configuration of reset mode. Table 3-19 describes the status of the decoder signals during and  
immediately after reset. Figure 3-22 shows the reset timing.  
After power-up, the device is in an unknown state until properly reset. An active-low reset, Reset B, of  
greater than or equal to 20 ms is required following active and stable supply ramp-up. To avoid potential  
I2C issues, keep SCL and SDA inactive (high) for at least 260 µs after reset goes high. There are no  
power sequencing requirements except that all power supplies should become active and stable within  
500 ms of each other.  
Table 3-18. Reset Mode  
RESETB  
CONFIGURATION  
Resets the decoder  
Normal operation  
0
1
Table 3-19. Reset Sequence  
SIGNAL NAME  
DURING RESET  
RESET COMPLETED  
DVO_A_[7:0], DVO_B_[7:0], DVO_C_[7:0], DVO_D_[7:0], OCLK_P, OCLK_N,  
INTREQ, I2CA[2:0], BCLK_R, LRCLK_R, SD_R, SD_M, SD_CO  
Input  
High-impedance  
RESETB, SDA, SCL, LRCLK_CI, BCLK_CI, SD_CI, XTAL_IN  
XTAL_OUT, OSC_OUT  
Input  
Input  
Output  
Output  
20 ms (min)  
Normal operation  
RESETB  
(Terminal 3)  
Reset  
260 µs (min)  
Invalid I2C Cycle  
Valid  
Figure 3-22. Reset Timing  
Copyright © 20092011, Texas Instruments Incorporated  
Functional Description  
43  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
4
Internal Control Registers  
4.1 Overview  
The decoder is initialized and controlled by a set of internal registers which set all device operating  
parameters. Communication between the external controller and the decoder is through I2C. Table 4-1  
shows the summary of these registers. The reserved registers must not be written. Reserved bits in the  
defined registers must be written with 0s, unless otherwise noted. The detailed programming information  
of each register is described in the following sections.  
I2C register FEh controls which of the four decoders will receive I2C commands. I2C register FFh controls  
which decoder core responds to I2C reads. Note that for a read operation, it is necessary to perform a  
write first to set the desired subaddress for reading.  
Compared to previous video decoder, TVP5154A, the TVP5158, TVP5157, and TVP5156 add decoder  
auto increment and address auto increment bits control. If decoder auto increment bit is set, the next  
read/write is from/to the next decoder that is enabled. If address auto-increment bit is set, the address  
increments after all the decoders enabled read/writes are completed. The detail of I2C registers FEh and  
FFh is shown in their register section.  
Table 4-1. Registers Summary  
I2C  
REGISTER NAME  
DEFAULT  
R/W(1)  
SUBADDRESS  
Status 1  
00h  
R
R
R
Status 2  
01h  
Color Subcarrier Phase Status  
Reserved  
02h  
03h  
ROM Version  
04h  
R
R
R
RAM Version MSB  
RAM Version LSB  
Reserved  
05h  
06h  
07h  
Chip ID MSB  
08h  
51h  
58h  
R
R
Chip ID LSB  
09h  
Reserved  
0Ah - 0Bh  
0Ch  
0Dh  
0Eh  
Video Standard Status  
Video Standard Select  
CVBS Autoswitch Mask  
Auto Contrast Mode  
Luminance Brightness  
Luminance Contrast  
R
00h  
03h  
03h  
80h  
80h  
00h  
80h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0Fh  
10h  
11h  
Brightness and Contrast Range Extender  
Chrominance Saturation  
Chrominance Hue  
12h  
13h  
14h  
Reserved  
15h  
Color Killer  
16h  
10h  
R/W  
Reserved  
17h  
Luminance Processing Control 1  
Luminance Processing Control 2  
Power Control  
18h  
40h  
00h  
00h  
00h  
0Ch  
R/W  
R/W  
R/W  
R/W  
R/W  
19h  
1Ah  
Chrominance Processing Control 1  
Chrominance Processing Control 2  
1Bh  
1Ch  
(1) R = Read only, W = Write only, R/W = Read and write  
44  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-1. Registers Summary (continued)  
I2C  
REGISTER NAME  
DEFAULT  
R/W(1)  
SUBADDRESS  
1Dh - 1Fh  
20h  
Reserved  
AGC Gain Status 1  
AGC Gain Status 2  
Reserved  
R
R
21h  
22h  
Back-End AGC Status  
Status Request  
23h  
R
24h  
00h  
F5h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
AFE Gain Control  
Luma ALC Freeze Upper Threshold  
Chroma ALC Freeze Upper Threshold  
Reserved  
25h  
26h  
27h  
28h  
AGC Increment Speed  
AGC Increment Delay  
AGC Decrement Speed  
AGC Decrement Delay  
AGC White Peak Processing  
Back-End AGC Control  
Reserved  
29h  
06h  
1Eh  
04h  
00h  
F2h  
08h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh - 33h  
34h - 35h  
36h - 47h  
48h  
AFE Fine Gain  
086Ah  
R/W  
Reserved  
AVID Start Pixel LSBs  
AVID Start Pixel MSBs  
AVID Pixel Width  
7Ah/84h  
00h/00h  
R/W  
R/W  
R/W  
49h  
4Ah - 4Bh  
4Ch - 5Bh  
5Ch  
02D0h/02D0h  
Reserved  
NR_Max_Noise  
28h  
09h  
R/W  
R/W  
R/W  
R/W  
R/W  
NR_Control  
5Dh  
NR_Noise_Filter  
5Eh - 5Fh  
60h  
0330h  
00h  
Operation Mode Control  
Color PLL Speed Control  
Reserved  
61h  
09h  
62h - 7Bh  
7Ch  
Sync Height Low Threshold  
Sync Height High Threshold  
Reserved  
02h  
08h  
03h  
00h  
R/W  
R/W  
R/W  
R/W  
7Dh  
7Eh - 80h  
81h  
Clear Lost Lock Detect  
Reserved  
82h - 84h  
85h  
V-Sync Filter Shift  
Reserved  
03h  
R/W  
86h  
656 Version/F Bit Control  
F- and V-Bit Decode Control  
F- and V-Bit Control  
Reserved  
87h  
00h  
00h  
16h  
R/W  
R/W  
R/W  
88h  
89h  
8Ah - 8Bh  
8Ch  
Output Timing Delay  
Reserved  
00h  
R/W  
8Dh - 8Fh  
8Fh  
Auto Contrast User Table Index  
Blue Screen Y Control  
Blue Screen Cb Control  
Blue Screen Cr Control  
Blue Screen LSB Control  
04h  
10h  
80h  
80h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
90h  
91h  
92h  
93h  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
45  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-1. Registers Summary (continued)  
I2C  
REGISTER NAME  
DEFAULT  
R/W(1)  
SUBADDRESS  
Noise Measurement LSB  
Noise Measurement MSB  
Weak Signal High Threshold  
Weak Signal Low Threshold  
Reserved  
94h  
R
95h  
R
96h  
60h  
50h  
R/W  
R/W  
97h  
98h - 9Dh  
9Eh  
NR_Y_T0  
0Ah  
BCh  
BCh  
R/W  
R/W  
R/W  
NR_U_T0  
9Fh  
NR_V_T0  
A0h  
Reserved  
A1h  
Vertical Line Count Status  
Reserved  
A2h - A3h  
A4h - A7H  
A8h  
R
Output Formatter Control 1 (write to all four decoder cores)  
Output Formatter Control 2 (write to all four decoder cores)  
Reserved  
44h  
40h  
R/W  
R/W  
A9h  
AAh - ACh  
ADh  
Interrupt Control  
00h  
01h  
00h  
00h  
10h  
20h  
E4h  
E4h  
00h  
1Bh  
04h  
40h  
00h  
00h  
00h  
00h  
88h  
88h  
C9h  
01h  
00h  
00h  
00h  
00h  
A5h  
FFh  
7Eh  
01h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Embedded Sync Offset Control 1 (write to all four decoder cores)  
Embedded Sync Offset Control 2 (write to all four decoder cores)  
AVD Output Control 1  
AEh  
AFh  
B0h  
AVD Output Control 2  
B1h  
OFM Mode Control  
B2h  
OFM Channel Select 1  
B3h  
OFM Channel Select 2  
B4h  
OFM Channel Select 3  
B5h  
OFM Super-Frame Size LSBs  
OFM Super-Frame Size MSBs  
OFM H-Blank Duration LSBs  
OFM H-Blank Duration MSBs  
Misc Ofm Control  
B6h  
B7h  
B8h  
B9h  
BAh  
Reserved  
BBh - BFh  
C0h  
Audio Sample Rate Control  
Analog Audio Gain Control 1  
Analog Audio Gain Control 2  
Audio Mode Control  
C1h  
C2h  
C3h  
Audio Mixer Select  
C4h  
Audio Mute Control  
C5h  
Audio Mixing Ratio Control 1  
Audio Mixing Ratio Control 2  
Audio Cascade Mode Control  
Reserved  
C6h  
C7h  
C8h  
C9h  
Reserved  
CAh  
Reserved  
CBh  
Reserved  
CCh  
Reserved  
CDh - CFh  
D0h  
Super-frame EAV2SAV duration status LSBs  
Super-frame EAV2SAV duration status MSBs  
Super-frame SAV2EAV duration status LSBs  
Super-frame SAV2EAV duration status MSBs  
R
R
R
R
D1h  
D2h  
D3h  
46  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-1. Registers Summary (continued)  
I2C  
REGISTER NAME  
DEFAULT  
R/W(1)  
SUBADDRESS  
D4h - DFh  
E0h  
Reserved  
VBUS Data Access With No VBUS Address Increment  
R/W  
R/W  
VBUS Data Access With VBUS Address Increment  
Reserved  
E1h  
E2h - E7h  
E8h - EAh  
EBh - F1h  
F2h  
VBUS Address Access  
Reserved  
00 0000h  
R/W  
R/W  
R
Interrupt Status  
Reserved  
F3h  
Interrupt Mask  
F4h  
00h  
R/W  
Reserved  
F5h  
Interrupt Clear  
F6h  
00h  
0Fh  
01h  
R/W  
R/W  
R/W  
Decoder Write Enable  
Decoder Read Enable  
FEh  
FFh  
4.2 Register Definitions  
Table 4-2. Status 1  
Subaddress  
Default  
00h  
Read only  
7
6
5
4
3
2
1
0
Color  
Line-alternating  
status  
Field rate  
status  
Vertical sync  
lock status  
Horizontal sync  
lock status  
Reserved  
Lost lock detect subcarrier lock  
status  
TV/VCR status  
Line-alternating status  
0
Non line alternating  
1
Line alternating  
Field rate status  
0
60 Hz  
50 Hz  
1
Lost lock detect  
0
1
No lost lock since this bit was last cleared  
Lost lock since this bit was last cleared  
Color subcarrier lock status  
0
1
Color subcarrier is not locked  
Color subcarrier is locked  
Vertical sync lock status  
0
1
Vertical sync is not locked  
Vertical sync is locked  
Horizontal sync lock status  
0
Horizontal sync is not locked  
1
Horizontal sync is locked  
TV/VCR status  
0
1
TV  
VCR  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
47  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-3. Status 2  
Subaddress  
Default  
01h  
Read only  
7
6
5
4
3
2
1
0
Weak signal  
detection  
PAL switch  
polarity  
Field sequence  
status  
Signal present  
Color killed  
Macrovision detection [2:0]  
Signal present  
0
1
Signal is not present  
Signal is present  
Weak signal detection  
0
1
No weak signal  
Weak signal mode  
PAL switch polarity  
0
1
PAL switch is zero  
PAL switch is one  
Field sequence status  
0
Even field  
Odd field  
1
Color killed  
0
1
Color killer is not active  
Color killer is active  
Macrovision detection [2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
No copy protection  
AGC pulses/pseudo syncs present (Type 1)  
2-line colorstripe only present  
AGC pulses/pseudo syncs and 2-line colorstripe present (Type 2)  
Reserved  
Reserved  
4-line colorstripe only present  
AGC pulses/pseudo syncs and 4-line colorstripe present (Type 3)  
Table 4-4. Color Subcarrier Phase Status  
Subaddress  
Default  
02h  
Read only  
7
6
5
4
3
2
1
0
Color subcarrier phase [7:0]  
This register shows the color subcarrier phase.  
Table 4-5. ROM Version  
Subaddress  
Default  
04h  
Read only  
7
6
5
4
3
2
1
0
ROM version [7:0]  
ROM Version [7:0]  
ROM revision number = 02h for PG 1.1  
48  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-6. RAM Version MSB  
Subaddress  
Default  
05h  
Read only  
7
6
5
4
3
2
1
0
RAM version MSB [7:0]  
RAM version MSB [7:0]  
This register identifies the MSB of the RAM code revision number.  
Table 4-7. RAM Version LSB  
Subaddress  
Default  
06h  
Read only  
7
6
5
4
3
2
1
0
RAM version LSB [7:0]  
RAM version LSB [7:0]  
This register identifies the LSB of the RAM code revision number.  
Example:  
Patch Release = v02.01.22  
ROM Version = 02h  
RAM Version MSB = 01h  
RAM Version LSB = 22h  
Table 4-8. Chip ID MSB  
Subaddress  
Default  
08h  
Read only  
7
6
5
4
3
2
1
0
Chip ID MSB [7:0]  
Chip ID MSB[7:0]  
This register identifies the MSB of device ID. Value = 51h  
Table 4-9. Chip ID LSB  
Subaddress  
Default  
09h  
Read only  
7
6
5
4
3
2
1
0
Chip ID LSB [7:0]  
Chip ID LSB [7:0]  
This register identifies the LSB of device ID. This value equals 58h for TVP5158, 57h for TVP5157, and 56h for  
TVP5156.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
49  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-10. Video Standard Status  
Subaddress  
Default  
0Ch  
Read only  
7
6
5
4
3
2
1
0
Autoswitch  
Reserved  
Video standard [2:0]  
This register contains information about the detected video standard that the device is currently operating. When in autoswitch mode, this  
register can be tested to determine which video standard as has been detected. See subaddress: 0Dh.  
Autoswitch Mode  
0
1
Single standard set  
Autoswitch mode enabled  
Video Standard [2:0]  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
Reserved  
(M, J) NTSC  
(B, D, G, H, I, N) PAL  
(M) PAL  
(Combination-N) PAL  
NTSC 4.43  
Reserved  
PAL 60  
Table 4-11. Video Standard Select  
Subaddress  
Default  
0Dh  
00h  
7
6
5
4
3
2
1
0
Reserved  
CVBS Standard [2:0]  
The user can force the device to operate in a particular video standard mode by writing the appropriate value into this register. Changing  
these bits causes some register settings to be reset to their defaults. See subaddress: 0Ch.  
CVBS Standard [2:0]  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
CVBS Autoswitch mode (default)  
(M, J) NTSC  
(B, D, G, H, I, N) PAL  
(M) PAL  
(Combination-N) PAL  
NTSC 4.43  
Reserved  
PAL 60  
50  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-12. CVBS Autoswitch Mask  
Subaddress  
Default  
0Eh  
03h  
7
6
5
4
3
2
1
0
Reserved  
PAL 60  
Reserved  
NTSC 4.43  
(Nc) PAL  
(M) PAL  
PAL  
(M, J) NTSC  
Autoswitch mode mask  
Limits the video formats between which autoswitch is possible.  
PAL 60  
0
1
0
1
0
1
0
1
0
1
0
1
Autoswitch does not include PAL 60 (default)  
Autoswitch includes PAL 60  
NTSC 4.43  
(Nc) PAL  
(M) PAL  
PAL  
Autoswitch does not include NTSC 4.43 (default)  
Autoswitch includes NTSC 4.43  
Autoswitch does not include (Nc) PAL (default)  
Autoswitch includes (Nc) PAL  
Autoswitch does not include (M) PAL (default)  
Autoswitch includes (M) PAL  
Reserved  
Autoswitch includes (B, D, G, H, I, N) PAL (default)  
Reserved  
(M, J) NTSC  
Autoswitch includes (M, J) NTSC (default)  
Table 4-13. Auto Contrast Mode  
Subaddress  
Default  
0Fh  
03h  
7
6
5
4
3
2
1
0
Reserved  
Auto Contrast Mode [1:0]  
Auto Contrast Mode [1:0]  
00h  
01h  
02h  
03h  
Enabled  
Reserved  
User Mode  
Disabled (default)  
Table 4-14. Luminance Brightness  
Subaddress  
Default  
10h  
80h  
7
6
5
4
3
2
1
0
Brightness [7:0]  
Brightness [7:0]  
This register works for the luminance. See subaddress 12h.  
0000 0000 0 (dark)  
1000 0000 128 (default)  
1111 1111 255 (bright)  
The output black level relative to the nominal black level (64 out of 1024) as a function of the Brightness[7:0] setting is as follows:  
Black Level = nominal_black_level + (MB + 1) × (Brightness[7:0] - 128)  
Where MB is the brightness multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 12h.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
51  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-15. Luminance Contrast  
Subaddress  
Default  
11h  
80h  
7
6
5
4
3
2
1
0
Contrast [7:0]  
Contrast [7:0]  
This register works for the luminance. See subaddress 12h.  
0000 0000 0 (minimum contrast)  
1000 0000 128 (default)  
1111 1111 255 (maximum contrast)  
The total luminance gain relative to the nominal luminance gain as a function of the Contrast [7:0] setting is as follows:  
Luminance Gain = (nominal_luminance_gain) × [Contrast[7:0] / 64 / (2MC) + MC - 1]  
Where MC is the contrast multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 12h.  
Table 4-16. Brightness and Contrast Range Extender  
Subaddress  
Default  
12h  
00h  
7
6
5
4
3
2
1
0
Contrast  
multiplier  
Reserved  
Brightness multiplier [3:0]  
Contrast multiplier [4] (MC)  
Increases the contrast control range.  
0
1
2x contrast control range (default), Gain = n/64 1 where n is the contrast control and 64 n 255  
Normal contrast control range, Gain = n/128 where n is the contrast control and 0 n 255  
Brightness multiplier [3:0] (MB)  
Increases the brightness control range from 1x to 16x.  
0h 1x (default)  
1h 2x  
3h  
7h  
Fh  
4x  
8x  
16x  
NOTE: The brightness multiplier should be set to 3h for 8-bit outputs.  
Table 4-17. Chrominance Saturation  
Subaddress  
Default  
13h  
80h  
7
6
5
4
3
2
1
0
Saturation [7:0]  
Saturation [7:0]  
This register works for the chrominance.  
0000 0000 0 (no color)  
1000 0000 128 (default)  
1111 1111 255 (maximum)  
The total chrominance gain relative to the nominal chrominance gain as a function of the Saturation [7:0] setting is as follows:  
Chrominance Gain = (nominal_chrominance_gain) × (Saturation[7:0] / 128)  
52  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-18. Chrominance Hue  
Subaddress  
Default  
14h  
80h  
7
6
5
4
3
2
1
0
Hue [7:0]  
Saturation [7:0]  
This register works for the chrominance.  
0000 0000 -180°  
1000 0000 0° (default)  
1111 1111 +180°  
Table 4-19. Color Killer  
Subaddress  
Default  
16h  
10h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold [4:0]  
Automatic color killer  
00  
01  
Automatic mode (default)  
Reserved  
Color killer enabled, The UV terminals are forced to a zero  
color state.  
10  
11  
Color killer disabled  
Color killer threshold [4:0]:  
Controls the upper and lower color killer hysteresis thresholds.  
NTSC-M,J(1)(2)  
PAL-B,D,G,H,I,M,N(1)(2)  
Lower Threshold  
Upper Threshold  
1.4%  
Lower Threshold  
Upper Threshold  
1.2%  
0 0000  
0 1000  
1 0000  
1 1000  
1 1111  
1.0%  
3.0%  
5.0%  
7.0%  
8.8%  
0.8%  
2.4%  
4.0%  
5.6%  
7.0%  
4.3%  
3.5%  
7.2%  
5.8%  
10.0%  
8.0%  
12.6%  
10.0%  
(1) Expressed as a percent of the nominal color burst amplitude (measured after front-end AGC).  
(2) For proper color killer operation, the color PLL must be locked to the color burst frequency.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Internal Control Registers  
53  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-20. Luminance Processing Control 1  
Subaddress  
Default  
18h  
40h  
7
6
5
4
3
2
1
0
NTSC_Ped  
Reserved  
Luminance signal delay [2:0]  
NTSC_Ped  
Specifies whether NTSC composite video inputs are compliant with NTSC-M or NTSC-J.  
0
1
NTSC-M (714/286 ratio, w/ pedestal) - default  
NTSC-J (714/286 ratio, w/o pedestal)  
Luminance signal delay [2:0]  
Luminance signal delays respect to chroma signal in 1x pixel clock increments.  
011  
010  
001  
000  
111  
110  
101  
100  
3 pixel clocks delay  
2 pixel clocks delay  
1 pixel clocks delay  
0 pixel clocks delay (default)  
-1 pixel clocks delay  
-2 pixel clocks delay  
-3 pixel clocks delay  
0 pixel clocks delay  
Table 4-21. Luminance Processing Control 2  
Subaddress  
Default  
19h  
00h  
7
6
5
4
3
2
1
0
Luma filter select [1:0]  
Reserved  
Peaking gain [1:0]  
Trap filter select [1:0]  
Luma filter selected [1:0]  
00  
01  
10  
11  
Luminance adaptive comb enable (default)  
Luminance adaptive comb disable (trap filter selected)  
Luma comb/trap filter bypassed  
Reserved  
Peaking gain [1:0]  
00  
01  
10  
11  
0 (default)  
0.5  
1
2
Trap filter select [1:0]  
Selects one of the four trap filters to produce the luminance signal by removing the chrominance signal from the composite video  
signal. The stop band of the chroma trap filter is centered at the chroma subcarrier frequency with the stop-band bandwidth  
controlled by the two control bits.  
Trap filter stop-band bandwidth (MHz)  
Filter select [1:0]  
NTSC ITU-R BT.601  
1.2129  
PAL ITU-R BT.601  
1.2129  
00 = (default)  
01  
10  
11  
0.8701  
0.8701  
0.7183  
0.7383  
0.5010  
0.5010  
54  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-22. Power Control  
Subaddress  
Default  
1Ah  
00h  
7
6
5
4
3
2
1
0
Pwd_ach4  
Pwd_ach3  
Pwd_ach2  
Pwd_ach1  
Pwd_vpll  
Pwd_ref  
Pwd_ofm_clk  
Pwd_video  
Pwd_ach4  
Power down audio channel 4, active high  
0
1
Normal operation (default)  
Audio channel 4 power down  
Pwd_ach3  
Power down audio channel 3, active high  
0
1
Normal operation (default)  
Audio channel 3 power down  
Pwd_ach2  
Power down audio channel 2, active high  
0
1
Normal operation (default)  
Audio channel 2 power down  
Pwd_ach1  
Power down audio channel 1, active high  
0
1
Normal operation (default)  
Audio channel 1 power down  
Pwd_vpll  
Power down video PLL, active high  
0
1
Normal operation (default)  
Video PLL power down  
Pwd_ref  
Power down bandgap reference, active high  
0
1
Normal operation (default)  
Bandgap reference power down  
Pwd_ofm_clk  
Power down OFM clock, active high  
0
1
Normal operation (default)  
OFM clock power down  
Pwd_video  
Power down video channel corresponding to current decoder core, active high  
0
1
Normal operation (default)  
Power down video channel corresponding to current decoder core  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
55  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-23. Chrominance Processing Control 1  
Subaddress  
Default  
1Bh  
00h  
7
6
5
4
3
2
1
0
Chroma  
Reserved  
Color PLL reset adaptive comb  
enable  
Reserved  
Automatic color gain control [1:0]  
Color PLL reset  
0
1
Color subcarrier PLL not reset (default)  
Color subcarrier PLL reset  
Chrominance adaptive comb enable  
This bit is effective on composite video only.  
0
1
Enabled (default)  
Disabled  
Automatic color gain control (ACGC) [1:0]  
00  
01  
10  
11  
ACGC enabled (default)  
Reserved  
ACGC disabled, ACGC set to the nominal value  
ACGC frozen to the previously set value  
Table 4-24. Chrominance Processing Control 2  
Subaddress  
Default  
1Ch  
0Ch  
7
6
5
4
3
2
1
0
PAL  
compensation  
Reserved  
WCF  
Chrominance filter select [1:0]  
PAL compensation  
This bit is not effective to NTSC mode.  
0
1
Disabled  
Enabled (default)  
Wideband chroma LPF filter (WCF)  
0
1
Disabled  
Enabled (default)  
Chrominance filter select [1:0]  
This register trades chroma bandwidth for less false color.  
00  
01  
10  
11  
Disabled (default)  
Notch 1  
Notch 2  
Notch 3  
56  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-25. AGC Gain Status  
Subaddress  
Default  
20h-21h  
Read Only  
Subaddress  
20h  
7
6
5
4
3
2
1
0
Fine Gain [7:0]  
21h  
Reserved  
Fine Gain [13:8]  
These AGC gain status registers are updated automatically when the AGC is enabled; in manual gain control mode these register values  
are not updated.  
Because this register is a multi-byte register, it is necessary to "capture" the setting into the register to ensure that the value is not updated  
between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register 24h (Status  
Request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared, indicating that both  
bytes of the AGC gain status register have been updated and can be read. Either byte may be read first, because no further update occurs  
until bit 0 of 24h is set to 1 again.  
Table 4-26. Back-End AGC Status  
Subaddress  
Default  
23h  
Read Only  
7
6
5
4
3
2
1
0
Gain [7:0]  
Current back-end AGC ratio = Gain/128.  
Table 4-27. Status Request  
Subaddress  
Default  
24h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Capture  
Capture  
Setting a 1 in this register causes the inter processor to capture the current settings of the AGC status, noise measurement, and  
the vertical line count registers. Because this capture is not immediate, it is necessary to check for completion of the capture by  
reading the "capture" bit repeatedly after setting it and waiting for it to be cleared by the internal processor. After the "capture" bit is  
0, the AGC status, noise measurement, and vertical line counters (20h/21h, 94h/95h, and A2h/A3h) have been updated, and can  
be safely read in any order.  
Table 4-28. AFE Gain Control  
Subaddress  
Default  
25h  
F5h  
7
6
5
4
3
2
1
0
Reserved  
ALC  
Reserved  
AGC  
Reserved  
For future compatibility, all reserved bits must be set to logic 1.  
ALC  
Active-high automatic level control (ALC) enable  
0
1
ALC disabled (manual level control)  
ALC enabled (default)  
AGC  
Active-high automatic gain control (AGC) enable  
0
1
AGC disabled (manual gain control)  
AGC enabled (default)  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
57  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-29. Luma ALC Freeze Upper Threshold  
Subaddress  
Default  
26h  
00h  
7
6
5
4
3
2
1
0
Luma ALC freeze [7:0]  
Upper hysteresis threshold for luma ALC freeze function. The lower hysteresis threshold for the ALC freeze function is fixed at 1 count out  
of 4096. Setting the upper threshold to 00h (default condition) disables the ALC freeze function.  
Table 4-30. Chroma ALC Freeze Upper Threshold  
Subaddress  
Default  
27h  
00h  
7
6
5
4
3
2
1
0
Chroma ALC freeze [7:0]  
Upper hysteresis threshold for chroma ALC freeze function. The lower hysteresis threshold for the ALC freeze function is fixed at 1 count  
out of 4096. Setting the upper threshold to 00h (default condition) disables the ALC freeze function. Recommend a setting of 02h or greater  
when enabled.  
Table 4-31. AGC Increment Speed  
Subaddress  
Default  
29h  
06h  
7
6
5
4
3
2
1
0
Reserved  
AGC increment speed [3:0]  
AGC increment speed  
Controls the filter coefficient of the first-order, recursive automatic gain control (AGC) algorithm whenever incrementing the gain.  
000  
110  
111  
0 (fastest)  
6 (default)  
7 (slowest)  
Table 4-32. AGC Increment Delay  
Subaddress  
Default  
2Ah  
1Eh  
7
6
5
4
3
2
1
0
AGC increment delay [7:0]  
AGC increment delay [7:0]  
Number of frames to delay gain increments. Also see AGC decrement delay at subaddress 2Ch.  
00000000  
0
00011110 30 frames (default)  
11111111 255 frames  
58  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-33. AGC Decrement Speed  
Subaddress  
Default  
2Bh  
04h  
7
6
5
4
3
2
1
0
Reserved  
AGC decrement speed [2:0]  
AGC decrement speed  
Controls the filter coefficient of the first-order recursive automatic gain control (AGC) algorithm when decrementing the gain.  
NOTE: This register affects the decrement speed only when the amplitude reference used by the AGC is either the composite peak  
or the luma peak.  
Also see AGC increment speed at subaddress 29h.  
111  
110  
000  
7 (slowest)  
6 (default)  
0 (fastest)  
Table 4-34. AGC Decrement Delay  
Subaddress  
Default  
2Ch  
00h  
7
6
5
4
3
2
1
0
AGC decrement delay [7:0]  
AGC decrement delay [7:0]  
Number of frames to delay gain decrements.  
NOTE: This register affects the decrement delay only when the amplitude reference used by the AGC is either the composite peak  
or the luma peak.  
Also see AGC increment delay at subaddress 2Ah.  
111  
110  
000  
0
30 (default)  
255  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
59  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-35. AGC White Peak Processing  
Subaddress  
Default  
2Dh  
F2h  
7
6
5
4
3
2
1
0
Composite  
peak  
Luma peak A  
Reserved  
Color burst A  
Sync height A  
Luma peak B  
Color burst B  
Sync height B  
If all four bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected), then the front-end analog and digital gains are  
automatically set to nominal values.  
If all four bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then the back-end gain is set automatically to  
unity. If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%, then the  
back-end scale factor attempts to increase the contrast in the back-end to restore the video amplitude to 100%.  
Luma peak A  
Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC algorithm  
0
1
Enabled (default)  
Disabled  
Color burst A  
Use of the color burst amplitude as a video amplitude reference for the back-end  
0
1
Enabled (default)  
Disabled  
Sync height A  
Use of the sync-height as a video amplitude reference for the back-end feed-forward type AGC algorithm  
0
1
Enabled (default)  
Disabled  
Luma peak B  
Use of the luma peak as a video amplitude reference for front-end feedback type AGC algorithm  
0
Enabled (default)  
Disabled  
1
Composite peak  
Use of the composite peak as a video amplitude reference for front-end feedback type AGC algorithm  
0
1
Enabled (default)  
Disabled  
Color burst B  
Use of the color burst amplitude as a video amplitude reference for front-end feedback type AGC algorithm  
0
1
Enabled (default)  
Disabled  
Sync height B  
Use of the sync-height as a video amplitude reference for front-end feedback type AGC algorithm  
0
1
Enabled (default)  
Disabled  
60  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-36. Back-End AGC Control  
Subaddress  
Default  
2Eh  
08h  
7
6
5
4
3
1
2
1
0
Reserved  
Peak  
Color  
Sync  
This register allows disabling the back-end AGC when the front-end AGC uses specific amplitude references (sync-height, color burst or  
composite peak) to decrement the front-end gain. For example, writing 09h to this register disables the back-end AGC whenever the  
front-end AGC uses the sync-height to decrement the front-end gain.  
Peak  
Disables back-end AGC when the front-end AGC uses the composite peak as an amplitude reference.  
0
1
Enabled (default)  
Disabled  
Color  
Sync  
Disables back-end AGC when the front-end AGC uses the color burst as an amplitude reference.  
0
1
Enabled (default)  
Disabled  
Disables back-end AGC when the front-end AGC uses the sync height as an amplitude reference.  
0
1
Enabled (default)  
Disabled  
Table 4-37. AFE Fine Gain  
Subaddress  
Default  
34h-35h  
086Ah  
Subaddress  
34h  
7
6
5
4
3
2
1
0
FGAIN [7:0]  
35h  
Reserved  
FGAIN [13:8]  
FGAIN [13:0]  
This fine gain applies to CVBS. Fine Gain = (1/2048) × FGAIN where 0 FGAIN 16383. This register works only in manual gain  
control mode. When AGC is active, writing to any value is ignored.  
00 0000 0000 0000 to  
Reserved  
00 0011 1111 1111  
00 0100 0000 0000  
00 1000 0000 0000  
00 1000 0110 1010  
00 1100 0000 0000  
11 1111 1111 1111  
0.5  
1
1.052 (default)  
1.5  
7.9995  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
61  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-38. AVID Start Pixel  
Subaddress  
Default  
48h-49h  
007Ah/0084h  
Subaddress  
48h  
7
6
5
4
3
2
1
0
AVID start [7:0]  
AVID active  
49h  
Reserved  
Reserved  
AVID start [9:8]  
AVID start [9:0]  
AVID start pixel number, this is a absolute pixel location from HS start pixel 0.  
The TVP5158 updates the AVID start only when the AVID start MSB byte is written to. AVID start pixel register also controls the  
position of SAV code. If these registers are modified, then the TVP5158 retains the values for each video standard until the device  
is reset. The values for a particular video standard should be set by forcing the TVP5158 to the desired video standard first using  
register 0Dh then setting this register. This should be repeated for each video standard where the default values need to be  
changed.  
AVID active  
0
AVID out active in VBLK (default)  
AVID out inactive in VBLK  
1
Table 4-39. AVID Pixel Width  
Subaddress  
Default  
4Ah-4Bh  
02D0h  
Subaddress  
4Ah  
7
6
5
4
3
2
1
0
AVID Width [7:0]  
4Bh  
Reserved  
AVID Width [9:8]  
AVID Width [9:0]  
AVID pixel width. The number of pixels width of active video must be an even number. This is an absolute pixel location from HS  
start pixel 0.  
The TVP5158 updates the AVID pixel width only when the AVID pixel width MSB byte is written to. AVID Pixel Width register also  
controls the position of EAV code. If these registers are modified, then the TVP5158 retains the values for each video standard  
until the device is reset. The values for a particular video standard should be set by forcing the TVP5158 to the desired video  
standard first using register 0Dh then setting this register. This should be repeated for each video standard where the default  
values need to be changed.  
Table 4-40. Noise Reduction Max Noise  
Subaddress  
Default  
5Ch  
28h  
7
6
5
4
3
2
1
0
Reserved  
NR_Max_Noise [6:0]  
NR_Max_Noise [6:0]  
User-defined maximum noise level  
0010 1000 40 (default)  
62  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-41. Noise Reduction Control  
Subaddress  
Default  
5Dh  
09h  
7
6
5
4
3
2
1
0
NR_Color_  
Killer_En  
Block_Width_  
UV  
Reserved  
Block_Width_Y Test_ Bypass  
NR_ Bypass  
NR_Color_Killer_En  
Noise reduction color killer enabled  
0
Disabled (default)  
Enabled  
1
Block_Width_UV  
Number of UV pixel values which the algorithm uses to generate the noise average.  
0
128 pixels  
1
256 pixels (default)  
Block_Width_Y  
Number of Y pixel values which the algorithm uses to generate the noise average.  
0
1
256 pixels (default)  
512 pixels  
Test_Bypass  
Test mode bypass. This test bypass mode bypasses the Noise Reduction module completely via hard wires and has zero delay for  
processing.  
0
1
Bypass disabled (default)  
Bypass enabled  
NR_Bypass  
Noise reduction module bypass. The noise reduction module has a bypass capability which enables it to pass through the incoming  
data during the output active video period, while matching the delay in operation mode.  
0
1
Bypass disabled  
Bypass enabled (default)  
Table 4-42. Noise Reduction Noise Filter Beta  
Subaddress  
Default  
5Eh-5Fh  
0330h  
Subaddress  
5Eh  
7
6
5
4
3
2
1
0
NR_NoiseFilter [7:0]  
5Fh  
Reserved  
NR_NoiseFilter [9:8]  
NR_NoiseFilter [9:0]  
Noise reduction noise filter setting  
0000 0011 0011 0000  
816 (default)  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
63  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-43. Operation Mode Control  
Subaddress  
Default  
60h  
00h  
7
6
5
4
3
2
1
0
V-PLL free run  
Reserved  
H-PLL Response Time  
V-bit control  
Freeze C-PLL  
Reserved  
V-PLL free run mode  
0
1
Disabled (default)  
Enabled  
H-PLL Response Time  
When in the Normal mode, the horizontal PLL (H-PLL) response time is set to its slowest setting. This mode improves noise  
immunity and provides a more stable output line frequency for standard TV signal sources (for example, TV tuners, DVD players,  
video surveillance cameras, etc.).  
When in the Fast mode, the H-PLL response time is set to its fastest setting. This mode enables the H-PLL to respond more  
quickly to large variations in the horizontal timing (for example, VCR head switching intervals). This mode is recommended for  
VCRs and also cameras locked to the AC power-line frequency.  
When in the Adaptive mode, the H-PLL response time is automatically adjusted based on the measured horizontal phase error. In  
this mode, the H-PLL response time typically approaches its slowest setting for most standard TV signal sources and approaches  
its fastest setting for most VCR signal sources.  
00  
01  
10  
11  
Adaptive (default)  
Reserved  
Fast  
Normal  
V-bit control mode  
0
Vertical blanking interval remains constant as total number of lines per frame varies (default)  
1
Active video interval remains constant as total number of lines per frame varies  
Freeze C-PLL  
0
1
Normal operation (default)  
Freeze color PLL  
Table 4-44. Color PLL Speed Control  
Subaddress  
Default  
61h  
09h  
7
6
5
4
3
2
1
0
Reserved  
CPLL speed [3:0]  
CPLL speed [3:0]  
Color PLL speed control  
0000  
to  
Reserved  
1000  
1001  
1010  
1011  
9: Faster (default)  
10  
11: Slower  
1100  
to  
Reserved  
1111  
64  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-45. Sync Height Low Threshold  
Subaddress  
Default  
7Ch  
02h  
7
6
5
4
3
2
1
1
1
0
0
0
VSync upper thres [7:0]  
Lower hysteresis threshold for vertical sync-height detection (value/32×target sync height).  
Table 4-46. Sync Height High Threshold  
Subaddress  
Default  
7Dh  
08h  
7
6
5
4
3
2
VSync upper thres [7:0]  
Upper hysteresis threshold for vertical sync-height detection (value/32×target sync height).  
Table 4-47. Clear Lost Lock Detect  
Subaddress  
Default  
81h  
00h  
7
6
5
4
3
2
Clear lost lock  
detect  
Reserved  
Clear lost lock detect  
Clear bit 4 (lost lock detect) in the status 1 register at subaddress 00h  
0
1
No effect (default)  
Clears bit 4 in the status 1 register (00h)  
Table 4-48. VSYNC Filter Shift  
Subaddress  
Default  
85h  
03h  
7
6
5
4
3
2
1
0
Reserved  
VSYNC filter shift [1:0]  
VSYNC filter shift [1:0]  
Used for adaptation of VPLL time constant  
00  
01  
10  
11  
0 (fast)  
1
2
3 (slow)  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
65  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-49. 656 Version/F-bit Control  
Subaddress  
Default  
87h  
00h  
7
6
5
4
3
2
1
0
Reserved  
656 version  
F-control  
656 version  
0
Timing confirms to ITU-R BT.656-4 specifications (default)  
Timing confirms to ITU-R BT.656-3 specifications  
1
F-control  
0
1
Odd field causes 0 1 transition in F-bit when in TVP5146 F/V mode (see register 88h)  
Even field causes 0 1 transition in F-bit when in TVP5146 F/V mode (see register 88h)  
66  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-50. F-Bit and V-Bit Decode Control  
Subaddress  
Default  
88h  
03h  
7
6
5
4
3
2
1
0
Reserved  
VPLL  
Adaptive  
Reserved  
F-Mode [1:0]  
VPLL  
VPLL time constant control  
0
1
VPLL adapts time constants to input signal  
VPLL time constants fixed  
Adaptive  
0
1
Enable F and V bit adaptation to detected lines per frame  
Disable F and V bit adaptation to detected lines per frame  
F-Mode [1:0]  
F-bit control mode  
Auto: If lines per frame is standard decode F and V bits as per 656 standard from line count else decode F bit from  
VSYNC input and set V bit = 0  
00  
01  
10  
11  
Decode F and V from input syncs  
Reserved  
Always decode F and V bits from line count (TVP5146 compatible)  
This register is used in conjunction with register 89h as shown:  
Reg 88h  
Reg 89h  
Standard LPF  
Non-standard LPF  
Mode  
Bit 1  
Bit 0  
0
Bit 3  
Bit 2  
0
F
V
F
V
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Reserved  
TVP5158  
TVP5158  
Reserved  
Reserved  
Reserved  
656  
Reserved  
656  
Reserved  
Toggle  
Reserved  
Switch9  
0
0
1
0
0
656  
656  
Pulse  
0
1
Reserved  
Reserved  
656  
Reserved  
Reserved  
656  
Reserved  
Reserved  
Toggle  
Reserved  
Reserved  
Switch9  
0
1
0
1
1
1
0
656  
656  
Pulse  
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
1
0
0
0
1
Even = 1  
Odd = toggle  
1
1
0
0
TVP5146  
656  
656  
Switch  
1
1
1
1
1
1
0
1
1
1
0
1
TVP5146  
TVP5146  
Reserved  
656  
656  
656  
656  
Toggle  
Pulse  
Switch  
Switch  
Reserved  
Reserved  
Reserved  
Reserved  
656  
ITU-R BT.656 standard  
Toggles from field to field  
Toggle  
Pulse  
Pulses low for 1 line prior to field transition  
Switch  
V bit switches high before the F bit transition and low after the F bit transition  
V bit switches high 1 line prior to F bit transition, then low after 9 lines  
Not used  
Switch9  
Reserved  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
67  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-51. F-Bit and V-Bit Control  
Subaddress  
Default  
89h  
16h  
7
6
5
4
3
2
1
0
Rabbit  
Reserved  
Fast lock  
F and V [1:0]  
Phase Det  
HPLL  
Rabbit  
Enable "rabbit ear"  
0
1
Disabled (default)  
Enabled  
Fast lock  
Enable fast lock where vertical PLL is reset and a 2 second timer is initialized when vertical lock is lost; during timeout the detected  
input VS is output.  
0
1
Disabled  
Enabled (default)  
F and V [1:0]  
F and V control bits are only enabled for F-bit control mode 01 and 10 (see register 88h)  
F and V Lines Per Frame F Bit  
V Bit  
Standard  
ITU-R BT.656  
Forced to 1  
Toggles  
ITU-R BT.656  
00  
Non standard-even  
Non standard-odd  
Standard  
Switch at field boundary  
Switch at field boundary  
ITU-R BT.656  
ITU-R BT.656  
Toggles  
01 (default)  
10  
Non standard  
Standard  
Switch at field boundary  
ITU-R BT.656  
ITU-R BT.656  
Pulsed mode  
Non standard  
Reserved  
Switch at field boundary  
11  
Phase Det  
Enable integral-window phase detector  
0
1
Disabled  
Enabled (default)  
HPLL  
Enable horizontal PLL to free run  
0
1
Disabled (default)  
Enabled  
Table 4-52. Output Timing Delay  
Subaddress  
Default  
8Ch  
00h  
7
6
5
4
3
2
1
0
Output timing delay [7:0]  
Output timing delay [7:0]  
Adjusts delay for AVID start and stop.  
0000 1111  
0000 0001  
0000 0000  
1111 1111  
1111 0000  
+15 pixel delay  
+1 pixel delay  
0 pixel delay (default)  
-1 pixel delay  
-16 pixel delay  
68  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-53. Auto Contrast User Table Index  
Subaddress  
Default  
8Fh  
04h  
7
6
5
4
3
2
1
0
Reserved  
AC_User_Mode_Table [2:0]  
Reserved  
AC_User_Mode_Table [2:0]  
User table selection for auto contrast user mode when the register 0Fh sets to 02h.  
000  
001  
010  
011  
100  
101  
Brighter 1  
Brighter 2  
Brighter 3 (Brightest)  
Darker 1  
Darker 2  
Darker 3 (Darkest)  
110 to  
111  
Reserved  
Table 4-54. Blue Screen Y Control  
Subaddress  
Default  
90h  
10h  
7
6
5
4
3
2
1
0
Y value [9:2]  
The Y value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.  
The 8 MSBs, bits [9:2], are represented in this register. The remaining two LSB are found in the Blue Screen LSB register. The default color  
screen output is black.  
The following table shows the values for registers 90h, 91h, 92h and 93h for several different screen colors.  
Screen Color  
Black (default)  
Blue  
Reg 90h  
10h  
Reg 91h  
80h  
Reg 92h  
80h  
Reg 93h  
00h  
29h  
F0h  
6Eh  
00h  
Green  
91h  
36h  
22h  
00h  
Cyan  
AAh  
51h  
A6h  
10h  
00h  
Red  
5Ah  
F0h  
00h  
Magenta  
Yellow  
6Ah  
CAh  
10h  
DEh  
92h  
00h  
D2h  
EBh  
00h  
White  
80h  
80h  
00h  
NOTE: The blue screen output mode can be enabled or disabled using bits 3:2 of I2C register A9h.  
Table 4-55. Blue Screen Cb Control  
Subaddress  
Default  
91h  
80h  
7
6
5
4
3
2
1
0
Cb value [9:2]  
The Cb value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.  
The 8 MSBs, bits[9:2], are represented in this register. The remaining two LSB are found in the Blue screen LSB register. The default color  
screen output is black. See Table 4-54 for example colors.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
69  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-56. Blue Screen Cr Control  
Subaddress  
Default  
92h  
80h  
7
6
5
4
3
2
1
0
Cr value [9:2]  
The Cr value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.  
The 8 MSBs, bits[9:2], are represented in this register. The remaining two LSB are found in the Blue Screen LSB register. The default color  
screen output is black. See Table 4-54 for example colors.  
Table 4-57. Blue Screen LSB Control  
Subaddress  
Default  
93h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Y value LSB [1:0]  
Cb value LSB [1:0]  
Cr value LSB [1:0]  
The two LSBs for the Blue screen Y, Cb, and Cr values are represented in this register. See Table 4-54 for example colors.  
Table 4-58. Noise Measurement  
Subaddress  
Default  
94h-95h  
Read Only  
Subaddress  
94h  
7
6
5
4
3
2
1
0
Noise Measurement [7:0]  
Noise Measurement [15:8]  
95h  
Noise measurement [15:0]  
Used by the weak signal detection algorithm.  
Because this register is a double-byte register, it is necessary to "capture" the setting into the register to ensure that the value is  
not updated between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register  
24h (status request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared,  
indicating that both bytes of the noise measurement register have been updated and can be read. Either byte may be read first,  
because no further update occurs until bit 0 of 24h is set to 1 again.  
Table 4-59. Weak Signal High Threshold  
Subaddress  
Default  
96h  
60h  
7
6
5
4
3
2
1
0
Level [7:0]  
This register controls the upper threshold of the noise measurement used to determine whether the input signal should be considered a  
weak signal.  
Table 4-60. Weak Signal Low Threshold  
Subaddress  
Default  
97h  
50h  
7
6
5
4
3
2
1
0
Level [7:0]  
This register controls the lower threshold of the noise measurement used to determine whether the input signal should be considered a  
weak signal.  
70  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-61. Noise Reduction Y/U/V T0  
Subaddress  
Default  
9Eh  
0Ah  
9Fh  
A0h  
BCh  
BCh  
Subaddress  
9Eh  
7
6
5
4
3
2
1
0
Noise Reduction Y T0 [7:0]  
Noise Reduction U T0 [7:0]  
Noise Reduction V T0 [7:0]  
9Fh  
A0h  
These registers control how much noise filtering is done for Y/U/V channels. The higher the value is, the more noise filtering at the expense  
of video details.  
Table 4-62. Vertical Line Count Status  
Subaddress  
Default  
A2h-A3h  
Read Only  
Subaddress  
A2h  
7
6
5
4
3
2
1
0
Vertical line [7:0]  
A3h  
Reserved  
Vertical line [9:8]  
This status register is only updated when a status request is initiated via bit 0 of subaddress 24h.  
Vertical line [9:0] represent the detected a total number of lines from the previous frame. This can be used with nonstandard video signals  
such as a VCR in trick mode to synchronize downstream video circuitry.  
NOTE: This register is not double buffered.  
Because this register is a double-byte register, it is necessary to "capture" the setting into the register to ensure that the value is not  
updated between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register 24h (Status  
Request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared, indicating that both  
bytes of the vertical line count register have been updated and can be read. Either byte may be read first, because no further update occurs  
until bit 0 of 24h is set to 1 again.  
Table 4-63. Output Formatter Control 1  
Subaddress  
Default  
A8h  
44h  
7
6
5
4
3
2
1
0
YCbCr code  
range  
Reserved  
CbCr range  
Reserved  
This register should be written to all four video decoder cores.  
YCbCr output code range  
0
1
ITU-R BT.601 coding range (Y ranges from 16 to 235. Cb and Cr range from 16 to 240.)  
Extended coding range (Y, Cb and Cr range from 1 to 254.) (default)  
CbCr range format  
0
1
Offset binary code (2's complement + 512) (default)  
Straight binary code (2's complement)  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
71  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-64. Output Formatter Control 2  
Subaddress  
Default  
A9h  
40h  
7
6
5
4
3
2
1
0
Reserved  
Blue screen output [1:0]  
Reserved  
This register should be written to all four video decoder cores.  
Blue screen output [1:0]  
Fully programmable color of "blue screen" to support clean input/channel switching. When enabled, in case of lost lock, or when  
forced, the TVP5158 waits until the end of the current frame, then switches the output data to a programmable color. Once  
displaying the "blue screen", the inputs can be switched without causing snow or noise to be displayed on the digital output data.  
Once the inputs have settled the "blue screen" can be disabled, where the TVP5158 then waits until the end of the current video  
frame before re-enabling the video stream data to the output ports.  
00  
01  
10  
11  
Normal operation (default)  
Blue screen out when TVP5158 detects lost lock  
Force Blue screen out  
Reserved  
Table 4-65. Interrupt Control  
Subaddress  
Default  
ADh  
00h  
7
6
5
4
3
2
1
0
Int_Pol  
Int_Type  
Reserved  
Int_Pol  
Interrupt polarity  
0
1
Active low (default)  
Active high (do not use with open-drain output)  
NOTE: Active-high output should be used only when push-pull output type is selected (Int_Type = 1).  
Int_Type  
Interrupt output type  
0
Open-drain output (default)  
Push-pull output  
1
NOTE: An external pullup resistor is required when open drain output is selected (Int Type = 0).  
Table 4-66. Embedded Sync Offset Control 1  
Subaddress  
Default  
AEh  
01h  
7
6
5
4
3
2
1
0
Offset [7:0]  
Offset [7:0]  
This register allows the line position of the embedded F and V bit signals to be offset from the 656 standard positions. This register  
is only applicable to input video signals with a standard number of lines per frame.  
01111111  
+127 lines  
00000001  
00000000  
11111111  
+1 line (default)  
0 line  
-1 line  
10000000  
-128 lines  
72  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-67. Embedded Sync Offset Control 2  
Subaddress  
Default  
AFh  
00h  
7
6
5
4
3
2
1
0
Offset [7:0]  
Offset [7:0]  
This register allows the line relationship between the embedded F and V bit signals to be offset from the 656 standard positions,  
and moves F relative to V. This register is only applicable to input video signals with a standard number of lines per frame.  
0000 0010  
+2 lines (maximum setting for NTSC and PAL)  
0000 0001  
0000 0000  
1111 1111  
+1 line  
0 line  
-1 line  
1111 0001  
-15 lines (minimum setting for NTSC)  
-21 lines (minimum setting for PAL)  
1110 1011  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
73  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-68. AVD Output Control 1  
Subaddress  
Default  
B0h  
00h  
7
6
5
4
3
2
1
0
Interleave_mode  
Channel_Mux_Number  
Output_ type  
VCS_ID  
Video_Res_Sel  
This register should be written to all four video decoder cores.  
Interleave_mode  
Interleave mode for multi-channel formats  
00  
01  
10  
11  
Non-interleaved (a.k.a. 1-Ch mode) (default)  
Pixel-interleaved mode (2-Ch and 4-Ch only)  
Line-interleaved mode  
Line-interleaved, hybrid mode (adds 1-Ch D1 to selected 4-Ch Half-D1, 4-Ch CIF or 8-Ch CIF format)  
Channel_Mux_Number  
Number of time-multiplexed channels  
00  
01  
10  
1-Ch (reserved)  
2-Ch  
4-Ch (or 4-Ch Half-D1 or CIF + 1-Ch D1 for line-interleaved, hybrid mode)  
8-Ch cascade (format depends on VCS_ID, line-interleaved mode only)  
Line-interleaved mode  
1st stage: 8-Ch Half-D1 or 8-Ch CIF (video port A)  
2nd stage: 4-Ch Half-D1 or 4-Ch CIF (video port A)  
11  
Line-interleaved, hybrid mode  
1st stage: 8-Ch CIF + 1-Ch D1 (video port A)  
2nd stage: 4-Ch CIF (video port A) and 1-Ch D1 (video port B)  
Output_type  
Output interface type  
0
1
8-bit ITU-R BT.656 interface (default)  
16-bit ITU-R BT.601 interface (4-Ch D1 and 4-Ch Half-D1 line-interleaved modes only)  
VCS_ID  
Video cascade stage ID. Set to 0 for normal operation. For line-interleaved mode only.  
0
1
1st stage (channels 1 to 4) (default)  
2nd stage (channels 5 to 8)  
Video_Res_Sel  
Video resolution select. Effects multi-channel OFM only.  
00  
01  
10  
11  
D1 (default)  
Reserved  
Half-D1  
CIF  
74  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-69. AVD Output Control 2  
Subaddress  
Default  
B1h  
10h  
7
6
5
4
3
2
1
0
Chan_ID_  
SAVEAV_En  
Chan_ID_  
Blank_En  
Video_Det_  
SAVEAV_En  
LLC_En  
Line_Crop_En  
Quan_Ctrl  
Line_ID_Ctrl  
This register should be written to all four video decoder cores.  
LLC_En  
Line-locked clock enable, active high. For non-interleaved mode only. For use with Port A only. For D1 resolution only.  
0
Line-locked clock disabled (default)  
Line-locked clock enabled  
1
Line_ Crop_En  
AVD line cropping enable, active high. Effects both scaled and unscaled AVD outputs.  
0
1
Cropping disabled (unscaled: 720 pixels/line, down-scaled: 360 pixels/line) (default)  
Cropping enabled (unscaled: 704 pixels/line, down-scaled: 352 pixels/line)  
Quan_Ctrl  
10-bit to 8-bit quantization control. Dithering algorithm based on truncation error from previous pixel.  
00  
Enable simple truncation  
Enable dithering (default)  
Enable simple rounding  
Reserved  
01  
10  
11  
Line_ID_Ctrl  
Line ID control. For line-interleaved mode only.  
0
1
Line ID continues counting through the vertical blanking interval - (default)  
Line ID holds the terminal count from the end of active video through the vertical blanking interval  
Chan_ID_SAVEAV_En  
Channel ID inserted in SAV/EAV codes enable, active high. For pixel-interleaved mode only. Always disabled for  
non-interleaved and line-interleaved modes.  
0
1
Disabled (default)  
Enabled  
Chan_ID_Blank_En  
Channel ID inserted in blanking level enable, active high. For pixel-interleaved mode only. Always disabled for non-interleaved and  
line-interleaved modes.  
0
1
Disabled (default)  
Enabled  
Video_Det_SAVEAV_En  
Video detection status inserted in SAV/EAV codes enable, active high. For non-interleaved and pixel-interleaved  
modes. Always enabled for line-interleaved mode.  
0
1
VDET insertion disabled (default)  
VDET insertion enabled  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
75  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-70. OFM Mode Control  
Subaddress  
Default  
B2h  
20h  
7
6
5
4
3
2
1
0
Video_Port_B_  
En  
Out_CLK_  
Freq_Ctl  
Out_CLK_  
Pol_Sel  
Out_CLK_  
Freq_Sel  
Out_CLK_N_E  
n
OSC_OUT_En  
Out_CLK_P_En  
Video_Port_En  
This register only needs to be written to video decoder core 0.  
Video_Port_B_En  
Video port B output enable for 6-Ch Half-D1 (2nd stage), active high  
0
1
Video Port B disabled (default)  
Video Port B enabled  
Out_CLK_Freq_Ctl  
Output clock frequency control for 4-Ch Half-D1 + 1-Ch D1 and 8-Ch CIF + 1-Ch D1 line-interleaved, hybrid output formats only.  
Affects both OCLK_P and OCLK_N.  
0
108 MHz (default)  
81 MHz  
1
OSC_OUT_En  
Oscillator output enable, active high  
0
1
OSC_OUT disabled  
OSC_OUT enabled (default)  
Out_CLK_Pol_Sel  
Output clock polarity select. Affects both OCLK_P and OCLK_N.  
0
1
Non-inverted (default)  
Inverted  
Out_CLK_Freq_Sel  
Output clock frequency select for 2-ch pixel-interleaved mode only. Affects both OCLK_P and OCLK_N.  
0
54 MHz (default)  
27 MHz  
1
Out_CLK_P_En  
Output data clock+ (OCLK_P) enable, active high  
0
OCLK_P disabled (default)  
OCLK_P enabled  
1
Out_CLK_N_En  
Output data clock- (OCLK_N) enable, active high  
0
OCLK_N disabled (default)  
1
OCLK_N enabled (for 2-Ch mode only)  
Video_Port_En  
Video port output enable, active high  
0
1
All four video ports disabled (default)  
All video ports required for selected output format enabled  
76  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-71. OFM Channel Select 1  
Subaddress  
Default  
B3h  
E4h  
7
6
5
4
3
2
1
0
Chan_Sel_Port_D  
Chan_Sel_Port_C  
Chan_Sel_Port_B  
Chan_Sel_Port_A  
This register only needs to be written to video decoder core 0. OFM channel select by video port in 1-Ch mode.  
Chan_Sel_Port_D  
Channel select for port D  
00  
01  
10  
11  
Ch 1  
Ch 2  
Ch 3  
Ch 4 (default)  
Chan_Sel_Port_C  
Channel select for port C  
00  
01  
10  
11  
Ch 1  
Ch 2  
Ch 3 (default)  
Ch 4  
Chan_Sel_Port_B  
Channel select for port B  
00  
01  
10  
11  
Ch 1  
Ch 2 (default)  
Ch 3  
Ch 4  
Chan_Sel_Port_A  
Channel select for port A  
00  
01  
10  
11  
Ch 1 (default)  
Ch 2  
Ch 3  
Ch 4  
NOTE: Each video port must be set to a different channel.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
77  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-72. OFM Channel Select 2  
Subaddress  
Default  
B4h  
E4h  
7
6
5
4
3
2
1
0
2nd_Chan_Sel_Port_B  
1st_Chan_Sel_Port_B  
2nd_Chan_Sel_Port_A  
1st_Chan_Sel_Port_A  
This register only needs to be written to video decoder core 0. OFM channel select by video port in 2-Ch mode.  
2nd_Chan_Sel_Port_B  
Second channel select for port B  
00  
01  
10  
11  
Ch 1  
Ch 2  
Ch 3  
Ch 4 (default)  
1st_Chan_Sel_Port_B  
First channel select for port B  
00 Ch 1  
01 Ch 2  
10  
11  
Ch 3 (default)  
Ch 4  
2nd_Chan_Sel_Port_A  
Second channel select for port A  
00 Ch 1  
01 Ch 2 (default)  
10  
11  
Ch 3  
Ch 4  
1st_Chan_Sel_Port_A  
First channel select for port A  
00  
01  
10  
11  
Ch 1 (default)  
Ch 2  
Ch 3  
Ch 4  
NOTE: Each video port must be set to a different channel.  
Table 4-73. OFM Channel Select 3  
Subaddress  
Default  
B5h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Hybrid_Chan_Sel [2:0]  
This register only needs to be written to video decoder core 0.  
Hybrid_Chan_Sel [2:0]  
OFM channel select for 1-Ch D1 channel in video cascade mode and hybrid format mode.  
000  
001  
010  
011  
100  
101  
110  
111  
Ch 1 (default)  
Ch 2  
Ch 3  
Ch 4  
Cascade input from Port C (for video cascade 1st stage only)  
Reserved  
Reserved  
Reserved  
78  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-74. OFM Super-Frame Size  
Subaddress  
Default  
B6h-B7h  
041Bh  
Subaddress  
B6h  
7
6
5
4
3
2
1
0
Super_Frame_Size [7:0]  
Ctrl_Mode [1:0]  
B7h  
Reserved  
Super_Frame_Size [11:8]  
These registers write to decoder core 0 only.  
Ctrl_Mode [1:0]  
Super-frame size control mode  
00  
01  
10  
11  
Super-frame size based on 525-line standard (default)  
Super-frame size based on 625-line standard  
Reserved  
Super-frame size based on manual setting (see subaddress B6h/B7h)  
Super_Frame_Size [11:0]  
Total number of lines per super-frame. For line-interleaved mode only.  
0100 0001 1011 1051 (default)  
NOTE: Has no effect on port B in the video cascade interface.  
Table 4-75. OFM EAV2SAV Duration  
Subaddress  
Default  
B8h-B9h  
0040h  
Subaddress  
B8h  
7
6
5
4
3
2
1
0
OFM_EAV2SAV_Duration [7:0]  
EAV2SAV_  
OFM_EAV2SAV_ Duration  
[9:8]  
B9h  
Horizontal_Freq_Tol  
Duration_  
Mode  
Reserved  
These registers only need to be written to video decoder core 0.  
Horizontal_Freq_Tol  
Nominal horizontal frequency tolerance (%). Only has an affect when bit 4 is set to 0.  
000  
001  
010  
011  
100  
101  
110  
111  
0.5% (longest EAV2SAV duration) (default)  
1.0%  
1.5%  
2.0%  
2.5%  
3.0%  
3.5%  
4.0% (shortest EAV2SAV duration)  
EAV2SAV_Duration_Mode  
EAV2SAV duration control mode.  
0
1
EAV2SAV duration automatically controlled  
EAV2SAV duration based on manual setting (see subaddress B8h/B9h)  
OFM_EAV2SAV_Duration [9:0]  
EAV2SAV duration in OCLK_P clock cycles. For non-interleaved and line-interleaved modes.  
00 0100 0000 64 (default)  
NOTE  
See result of automatic EAV2SAV duration algorithm at status registers D0h-D1h.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
79  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-76. Misc OFM Control  
Subaddress  
Default  
BAh  
00h  
7
6
5
4
3
2
1
0
OFM_Soft_  
Reset  
Reserved  
OFM_Soft_Reset  
Soft reset for OFM logic.  
NOTE: This bit is automatically cleared by firmware when the reset is completed.  
0
1
Normal operation (default)  
Reset output formatter logic  
NOTE: In cascade mode, the OFM reset of the 1st stage should be asserted after the OCLK_N output of the 2nd stage is enabled.  
Table 4-77. Audio Sample Rate Control  
Subaddress  
Default  
C0h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Aud_SamRate_Set[2:0]  
Reserved  
Aud_SamRate_Set[2:0]  
Audio sample rate control bits  
000  
001  
010  
011  
100  
101  
110  
111  
16 kHz (default)  
8 kHz  
22.05 kHz  
11.025 kHz  
24 kHz  
12 kHz  
Reserved  
Reserved  
80  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-78. Analog Audio Gain Control 1  
Subaddress  
Default  
C1h  
88h  
7
6
5
4
3
2
1
0
Audio_Gain_Ctrl_CH2  
Audio_Gain_Ctrl_CH1  
Audio_Gain_Ctrl_CH2  
Analog audio gain control for audio Ch 2. See values below.  
Audio_Gain_Ctrl_CH1  
Analog audio gain control for audio Ch 1  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-12.0 dB  
-10.5 dB  
-9 dB  
-7.5 dB  
-6 dB  
-4.5 dB  
-3 dB  
-1.5 dB  
0 dB (default)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
81  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-79. Analog Audio Gain Control 2  
Subaddress  
Default  
C2h  
88h  
7
6
5
4
3
2
1
0
Audio_Gain_Ctrl_CH4  
Audio_Gain_Ctrl_CH3  
Audio_Gain_Ctrl_CH4  
Analog audio gain control for audio Ch 4. See values below.  
Audio_Gain_Ctrl_CH3  
Analog audio gain control for audio Ch 3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-12.0 dB  
-10.5 dB  
-9 dB  
-7.5 dB  
-6 dB  
-4.5 dB  
-3 dB  
-1.5 dB  
0 dB (default)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
82  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-80. Audio Mode Control  
Subaddress  
Default  
C3h  
C9h  
7
6
5
4
3
2
1
0
Serial_IF_Form  
at  
SD_M_En  
SD_R_En  
I2S_Mode  
BCLK_R_Freq  
Audio_Data_Format  
TDM_Pin_Sel  
SD_M_En  
SD_M output enable, active high  
0
1
SD_M output disabled  
SD_M output enabled (default)  
SD_R_En  
SD_R output enable, active high.  
0
1
SD_R output disabled  
SD_R output enabled (default)  
I2S_Mode  
Audio serial I2S interface mode  
0
Slave mode (default)  
Master mode  
1
Serial_IF_Format  
Audio serial interface format  
0
1
I2S justified mode (default)  
DSP justified mode  
BCLK_R_Freq  
Audio serial interface BCLK_R clock frequency  
0
1
256 fs  
64 fs (stand alone operation only) (default)  
Audio_Data_Format  
Audio serial interface data format  
00  
16-bit PCM (default)  
8-bit µ-Law  
01  
10  
11  
8-bit A-Law  
Reserved  
TDM_Pin_Sel  
TDM output pin select  
0
1
SD_R only  
SD_R and SD_M (default)  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
83  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-81. Audio Mixer Select  
Subaddress  
Default  
C4h  
01h  
7
6
5
4
3
2
1
0
Audio_Mixer_Sel [4:0]  
TDM_Chan_Number [2:0]  
Audio_Mixer_Sel [4:0]  
Audio mixer output select  
00000 Mix channel (default)  
00001 Ch 1  
00010 Ch 2  
00011 Ch 3  
00100 Ch 4  
00101 Ch 5  
00110 Ch 6  
00111 Ch 7  
01000 Ch 8  
01001 Ch 9  
01010 Ch 10  
01011 Ch 11  
01100 Ch 12  
01101 Ch 13  
01110 Ch 14  
01111 Ch 15  
10000 Ch 16  
10001  
to  
Reserved  
11111  
TDM_Chan_Number [2:0]  
Number of Audio channels to TDM  
000 2 channels  
001 4 channels (default)  
010  
011  
100  
101  
110  
111  
8 channels  
12 channels  
16 channels  
Reserved  
Reserved  
Reserved  
84  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-82. Audio Mute Control  
Subaddress  
Default  
C5h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Ch4_Mute  
Ch3_Mute  
Ch2_Mute  
Ch1_Mute  
Ch4_Mute  
Ch 4 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).  
0
1
Disabled (default)  
Enabled  
Ch3_Mute  
Ch 3 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).  
0
1
Disabled (default)  
Enabled  
Ch2_Mute  
Ch 2 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).  
0
1
Disabled (default)  
Enabled  
Ch1_Mute  
Ch 1 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).  
0
1
Disabled (default)  
Enabled  
Table 4-83. Analog Mixing Ratio Control 1  
Subaddress  
Default  
C6h  
00h  
7
6
5
4
3
2
1
0
Audio_Mixing_Ratio_CH2  
Audio_Mixing_Ratio_CH2  
Audio mixing ratio for audio channel 2. See values below.  
Audio_Mixing_Ratio_CH1  
Audio mixing ratio for audio channel 1  
Audio_Mixing_Ratio_CH1  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.25 (default)  
0.31  
0.38  
0.44  
0.5  
0.63  
0.75  
0.88  
1.00  
1.25  
1.5  
1.75  
2.00  
2.25  
2.5  
2.75  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
85  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-84. Analog Mixing Ratio Control 2  
Subaddress  
Default  
C7h  
00h  
7
6
5
4
3
2
1
0
Audio_Mixing_Ratio_CH4  
Audio_Mixing_Ratio_CH4  
Audio mixing ratio for audio channel 4. See values below.  
Audio_Mixing_Ratio_CH3  
Audio mixing ratio for audio channel 3  
Audio_Mixing_Ratio_CH3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.25 (default)  
0.31  
0.38  
0.44  
0.5  
0.63  
0.75  
0.88  
1.00  
1.25  
1.5  
1.75  
2.00  
2.25  
2.5  
2.75  
Table 4-85. Audio Cascade Mode Control  
Subaddress  
Default  
C8h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Audio_Cas_Mode_Ctrl  
Audio_Cas_Mode_Ctrl  
Audio Cascade Mode control which is cascade stage ID. Set to 00 for standalone operation.  
00  
01  
10  
11  
First stage (channels 1 to 4) (default)  
Second stage (channels 5 to 8)  
Third stage (channels 9 to 12)  
Fourth stage (channels 13 to 16)  
Table 4-86. Super-Frame EAV2SAV Duration Status  
Subaddress  
Default  
D0h-D1h  
Read Only  
Subaddress  
D0h  
7
6
5
4
3
2
1
0
EAV2SAV [7:0]  
D1h  
Reserved  
EAV2SAV [9:8]  
EAV2SAV [9:0]  
Super-frame EAV2SAV duration (bytes). For line-interleaved mode only.  
86  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-87. Super-Frame SAV2EAV Duration Status  
Subaddress  
Default  
D2h-D3h  
Read Only  
Subaddress  
D2h  
7
6
5
4
3
2
1
0
SAV2EAV [7:0]  
D3h  
Reserved  
EAV2SAV [10:8]  
SAV2EAV [10:0]  
Super-frame SAV2EAV duration (bytes). For line-interleaved mode only.  
Table 4-88. VBUS Data Access With No VBUS Address Increment  
Subaddress  
Default  
E0h  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]  
VBUS data register for VBUS single-byte read/write transaction  
Table 4-89. VBUS Data Access With VBUS Address Increment  
Subaddress  
Default  
E1h  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]  
VBUS data register for VBUS multi-byte read/write transaction. VBUS address is auto-incremented after each data byte read/write.  
Table 4-90. VBUS Address Access  
Subaddress  
Default  
E8h  
00h  
E9h  
00h  
EAh  
00h  
Subaddress  
E8h  
7
6
5
4
3
2
1
0
VBUS address [7:0]  
VBUS address [15:8]  
VBUS address [23:16]  
E9h  
EAh  
VBUS access address [23:0]  
VBUS is a 24-bit wide internal bus. The user needs to program the 24-bit address of the internal register to be accessed via host  
port indirect access mode.  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
87  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
 
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-91. Interrupt Status  
Subaddress  
Default  
F2h  
Read Only  
7
6
5
4
3
2
1
0
Reserved  
Sig_Present  
Weak_Sig  
V_Lock  
Macrovision  
Vid_Std  
Reserved  
The host interrupt status register represents the interrupt status after applying mask bits. Therefore, the status bits are the result of a logical  
AND between the raw status and mask bits. The external interrupt pin is derived from this register as an OR function of all non-masked  
interrupts in this register.  
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset using the corresponding  
bits in the interrupt clear register.  
Sig_Present  
Signal present change interrupt. This interrupt is asserted whenever there is a change in the signal present status (bit 7 of register  
01h).  
0
1
Not available  
Available  
Weak_Sig  
Weak signal change interrupt. This interrupt is asserted whenever there is a change in the weak signal status (bit 6 of register 01h).  
0
1
Not available  
Available  
V_Lock  
Vertical lock change interrupt. This interrupt is asserted whenever there is a change in the vertical lock status (bit 2 of register 00h).  
0
1
Not available  
Available  
Macrovision  
Macrovision change interrupt. This interrupt is asserted whenever there is a change in the Macrovision detection status (bits 2:0 of  
register 01h).  
0
1
Not available  
Available  
Vid_Std  
Video standard change interrupt. This interrupt is asserted whenever there is a change in the detected video standard (bits 2:0 of  
register 0Ch).  
0
1
Not available  
Available  
88  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-92. Interrupt Mask  
Subaddress  
Default  
F4h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Sig_Present  
Weak_Sig  
V_Lock  
Macrovision  
Vid_Std  
Reserved  
The host interrupt mask register can be used by the external processor to mask unnecessary interrupt sources for the interrupt status  
register bits, and for the external interrupt pin. The external interrupt is generated from all non-masked interrupt flags.  
Sig_Present  
Signal present change interrupt mask  
0
1
Interrupt disabled (default)  
Interrupt enabled  
Weak_Sig  
Weak signal change interrupt mask  
0
1
Interrupt disabled (default)  
Interrupt enabled  
V_Lock  
Vertical lock change interrupt mask  
0
1
Interrupt disabled (default)  
Interrupt enabled  
Macrovision  
Macrovision change interrupt mask  
0
1
Interrupt disabled (default)  
Interrupt enabled  
Vid_Std  
Video standard change interrupt mask  
0
1
Interrupt disabled (default)  
Interrupt enabled  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
89  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
Table 4-93. Interrupt Clear  
Subaddress  
Default  
F6h  
00h  
7
6
5
4
3
2
1
0
Reserved  
Sig_Present  
Weak_Sig  
V_Lock  
Macrovision  
Vid_Std  
Reserved  
The host interrupt clear register is used by the external processor to clear the interrupt status bits in the host interrupt status register. When  
no non-masked interrupts remain set in the register, the external interrupt pin also becomes inactive.  
Sig_Present  
Signal present change interrupt clear  
0
1
No effect (default)  
Clear interrupt bit  
Weak_Sig  
Weak signal change interrupt clear  
0
1
No effect (default)  
Clear interrupt bit  
V_Lock  
Vertical lock change interrupt clear  
0
1
No effect (default)  
Clear interrupt bit  
Macrovision  
Macrovision change interrupt clear  
0
1
No effect (default)  
Clear interrupt bit  
Vid_Std  
Video standard change interrupt clear  
0
1
No effect (default)  
Clear interrupt bit  
Table 4-94. Decoder Write Enable  
Subaddress  
Default  
FEh  
0Fh  
7
6
5
4
3
2
1
0
Decoder Auto  
Incr  
Reserved  
Addr Auto Incr  
Decoder 4  
Decoder 3  
Decoder 2  
Decoder 1  
This register controls which of the four decoder cores receives I2C write transactions. A 1 in the corresponding Decoder bit enables the  
decoder to receive write commands. Any combination of decoders can be configured to receive write commands, allowing all four decoders  
to be programmed concurrently.  
The following table shows how the address auto-increment and decoder auto-increment functions operate when a multi-byte I2C write  
transaction occurs. For this example, decoders 2, 3 and 4 are enabled for writes, the subaddress is 0xA0 and 8 bytes of data are written.  
Decoder Auto Incr  
0
0
0
1
1
0
1
1
Addr Auto Incr  
Data  
1st  
Dec  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
Addr  
A0  
Dec  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
Addr  
A0  
Dec  
2
Addr  
A0  
Dec  
2
Addr  
A0  
2nd  
3rd  
4th  
5th  
6th  
7th  
8th  
A0  
A1  
3
A0  
3
A0  
A0  
A2  
4
A0  
4
A0  
A0  
A3  
2
A0  
2
A1  
A0  
A4  
3
A0  
3
A1  
A0  
A5  
4
A0  
4
A1  
A0  
A6  
2
A0  
2
A2  
A0  
A7  
3
A0  
3
A2  
90  
Internal Control Registers  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Table 4-95. Decoder Read Enable  
Subaddress  
Default  
FFh  
01h  
7
6
5
4
3
2
1
0
Decoder Auto  
Incr  
Reserved  
Addr Auto Incr  
Decoder 4  
Decoder 3  
Decoder 2  
Decoder 1  
This register controls which of the four decoder cores responds to I2C read transactions. A 1 in the corresponding bit position enables the  
decoder to respond to read commands. A 1 in Decoder Auto Increment reads the next byte from the next enabled decoder. If Decoder Auto  
Increment is 0 and more than one decoder is enabled for reading, then only the lowest numbered decoder responds. A 1 in Address Auto  
Increment causes the subaddress to increment after read(s) of the current subaddress are completed.  
The following table shows how the address auto-increment and decoder auto-increment functions operate when a multi-byte I2C read  
transaction occurs. For this example, decoders 2, 3 and 4 are enabled for reads, the subaddress is 0xA0, and 8 bytes of data are read.  
Decoder Auto Incr  
0
0
0
1
1
0
1
1
Addr Auto Incr  
Data  
1st  
Dec  
2
Addr  
A0  
Dec  
2
Addr  
A0  
Dec  
2
Addr  
A0  
Dec  
2
Addr  
A0  
2nd  
3rd  
4th  
5th  
6th  
7th  
8th  
2
A0  
2
A1  
3
A0  
3
A0  
2
A0  
2
A2  
4
A0  
4
A0  
2
A0  
2
A3  
2
A0  
2
A1  
2
A0  
2
A4  
3
A0  
3
A1  
2
A0  
2
A5  
4
A0  
4
A1  
2
A0  
2
A6  
2
A0  
2
A2  
2
A0  
2
A7  
3
A0  
3
A2  
Copyright © 20092011, Texas Instruments Incorporated  
Internal Control Registers  
91  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
5
Electrical Specifications  
5.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VDD_3_3 to VSS_3_3  
0.5 V to 4.0 V  
VDD_1_1 to VSS_1_1  
-0.2 V to 1.2 V  
-0.3 V to 3.6 V  
-0.2 V to 2.0 V  
-0.2 V to 1.2 V  
-0.5 V to 4.5 V  
-0.5 V to 4.5 V  
-0.2 V to 2.5 V  
-0.2 V to 2.0 V  
0°C to 70°C  
VDD  
Supply voltage range  
VDDA_3_3 to VSSA_3_3  
VDDA_1_8 to VSSA_1_8  
VDDA_1_1 to VSSA_1_1  
VI to DGND  
VI  
Digital input voltage range  
VO  
Digital output voltage range  
Analog video input voltage range  
Analog audio input voltage range  
VO to DGND  
AIN to AGND  
AIN to AGND  
Commercial range  
Industrial range  
TA  
Operating free-air temperature range  
Storage temperature range  
-40°C to 85°C  
-65°C to 150°C  
>500 V  
Tstg  
All pins  
JEDEC(3)  
Excluding VSSA, VDD1_1,  
XTAL_REF pins  
>1000 V  
>500 V  
>1000 V  
>250 V  
>500 V  
>400 V  
Human-body model  
(HBM)  
All pins  
AEC-Q100(4)  
Excluding VSSA, VDD1_1,  
XTAL_REF pins  
VESD  
ESD stress voltage(2)  
All pins  
JEDEC(5)  
Charged-device  
model (CDM)  
Excluding VSSA, VDD1_1,  
XTAL_REF pins  
AEC-Q100(6)  
All pins  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(3) Level listed is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe  
manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions  
are taken. Pins listed as 1000V may actually have higher performance.  
(4) Tested per AEC Q100-002 rev D  
(5) Level listed is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process. Pins listed s 250V may actually have higher performance.  
(6) Tested per AEC Q100-011 rev B  
92  
Electrical Specifications  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
5.2 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
VDD_3_3  
VDD_1_1  
VDDA_3_3  
VDDA_1_8  
VDDA_1_1  
VI(pp)  
Supply voltage, digital  
3
1
3.3  
1.1  
3.3  
1.8  
1.1  
1.2  
0.8  
3.6  
1.2  
V
V
Supply voltage, digital  
Supply voltage, analog  
3
3.6  
V
Supply voltage, analog  
1.65  
1
1.95  
1.2  
V
Supply voltage, analog  
V
Analog video input voltage (ac-coupling necessary)(1)  
Analog audio input voltage (ac-coupling necessary)  
Input voltage high, digital(2) (3)  
Input voltage low, digital(4) (3)  
Output current: DVO outputs/OCLK_N(3)  
Output current: DVO outputs/OCLK_N(3)  
Output current, OCLK_P(3)  
V
VI(pp)  
V
VIH  
0.7 VDD_3_3  
V
VIL  
0.3 VDD_3_3  
V
IOH  
VOUT = 2.4 V  
VOUT = 0.4 V  
VOUT = 2.4 V  
VOUT = 0.4 V  
Commercial  
Industrial  
-4  
4
mA  
mA  
mA  
mA  
°C  
°C  
IOL  
IOH  
-8  
8
IOL  
Output current, OCLK_P(3)  
0
70  
85  
TA  
Operating free-air temperature  
-40  
(1) Specified based on a typical 100% Color Bar Signal  
(2) Exception: 0.7 VDDA_1_8 for XTAL_IN terminal  
(3) Specified by design  
(4) Exception: 0.3 VDDA_1_8 for XTAL_IN terminal  
5.3 Reference Clock Specifications  
MIN NOM  
MAX UNIT  
MHz  
Frequency  
27  
(1)  
Frequency tolerance  
-50  
50 ppm  
(1) This number is the required specification for the external crystal/oscillator and is not tested.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Electrical Specifications  
93  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
5.4 Electrical Characteristics  
5.5 DC Electrical Characteristics  
For minimum/maximum values: VDD_1_1 = 1.0 to 1.2 V, VDD_3_3 = 3.0 V to 3.6 V, VDDA_1_1 = 1.0 V to 1.2 V,  
VDDA_1_8 = 1.65 V to 1.95 V, VDDA_3_3 = 3.0 V to 3.6 V  
For typical values (TA = 25°C): VDD_1_1 = 1.1 V, VDD_3_3 = 3.3 V, VDDA_1_1 = 1.1 V, VDDA_1_8 = 1.8 V,  
VDDA_3_3 = 3.3 V(1)  
PARAMETER  
TEST CONDITIONS  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
2-Ch D1 mode at 54 MHz  
4-Ch D1 mode at 108 MHz  
MIN  
TYP  
33  
MAX UNIT  
mA  
IDD(33D)  
IDD(11D)  
IDD(33A)  
IDD(18A)  
IDD(11A)  
PTOT  
3.3-V I/O digital supply current  
41  
mA  
143  
156  
4.5  
4.5  
172  
168  
14  
mA  
1.1-V core digital supply current  
3.3-V analog supply current  
1.8-V analog supply current  
1.1-V analog supply current  
mA  
mA  
mA  
mA  
mA  
mA  
17  
mA  
606  
643  
mW  
mW  
Total power dissipation, normal  
operation  
Power dissipation with audio powered  
down  
PAPWD  
PDOWN  
4-Ch D1 mode at 108 MHz  
619  
90  
mW  
mW  
Total power dissipation with power  
down (I2C register 1Ah set to FFh)  
Ilkg  
Input leakage current  
Input capacitance(2)  
Output voltage high  
Output voltage low  
20  
8
µA  
pF  
V
CI  
VOH  
VOL  
IOH = -4 mA  
IOL = 4 mA  
0.8 VDD_3_3  
0.2 VDD_3_3  
V
(1) Typical current measurements made with 4-Ch D1 video output at 108 MHz with 4-Ch audio.  
(2) Specified by design  
94  
Electrical Specifications  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
5.6 Video A/D Converters Electrical Characteristics  
ADC sample rate = 27 MSPS for video Ch 1, Ch 2, Ch 3, Ch 4  
PARAMETER  
TEST CONDITIONS  
MIN  
200  
1.4  
TYP  
MAX UNIT  
Video ADC conversion rate  
27  
MHz  
Zi  
Input impedance, analog video inputs(1)  
Input capacitance, analog video inputs(1)  
Full-scale input range of ADC(2)  
Nominal analog video gain(1)  
Absolute differential non-linearity(3)  
Absolute integral non-linearity  
Frequency response  
kΩ  
Ci  
10  
pF  
V
Vi(PP)  
G
Ccoupling = 0.1 µF  
-2.9  
0.75  
1
dB  
LSB  
LSB  
dB  
dB  
dB  
dB  
deg  
%
DNL  
INL  
FR  
AFE only  
1
AFE only  
2.5  
Multiburst (60 IRE)  
1 MHz  
-0.9  
-50  
54  
XTALK Input crosstalk(1)  
SNR  
NS  
Signal-to-noise ratio (all channels)(4)  
Fin = 1 MHz, 1.0 Vpp  
Luma ramp (100 kHz to full, tilt null)  
Modulated ramp  
Modulated ramp  
Noise spectrum  
Differential phase  
Differential gain  
-51  
0.5  
±1.5  
DP  
DG  
(1) Specified by design  
(2) Full range video  
(3) No missing codes  
(4) Based on 10-bit internal ADC test mode  
5.7 Audio A/D Converters Electrical Characteristics  
ADC sample rate = 32.768 MSPS for audio Ch 1, Ch 2, Ch 3, Ch 4  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
1
TYP  
MAX UNIT  
Audio ADC conversion rate  
fS = 16 kHz  
32.768  
MHz  
Zi  
Input impedance, analog audio inputs(1)  
Input capacitance, analog audio inputs(1)  
Full-scale input voltage range of ADC  
Absolute differential non-linearity(2)  
Absolute integral non-linearity  
0-dB PGA gain  
kΩ  
Ci  
10  
pF  
V
Vi(PP)  
DNL  
INL  
Ccoupling = 2.2 µF, 0-dB PGA gain  
AFE only  
AFE only  
0.75  
1
1
LSB  
LSB  
dB  
2.5  
XTALK Crosstalk between any two channels  
-50  
SNR  
Signal-to-noise ratio (all channels)  
System clock frequency per channel  
fS = 16 kHz, VIN = -60 dB, 1 kHz  
56  
dB  
512 fS  
Hz  
(1) Specified by design  
(2) No missing codes  
Copyright © 20092011, Texas Instruments Incorporated  
Electrical Specifications  
95  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
MAX UNIT  
5.8 Video Output Clock and Data Timing  
10-pF load for 27 MHz and 54 MHz, 6-pF load for 108 MHz  
NO.  
PARAMETER  
TEST CONDITIONS  
50%, OCLK_P/OCLK_N = 108 MHz  
90% to 10%, OCLK_P/OCLK_N = 27 MHz  
90% to 10%, OCLK_P/OCLK_N = 108 MHz  
10% to 90%, OCLK_P/OCLK_N = 27 MHz  
10% to 90%, OCLK_P/OCLK_N = 108 MHz  
90% to 10%, Data = 27 MHz  
MIN  
TYP  
Duty cycle, OCLK_P/OCLK_N  
44  
50  
55  
1.4  
%
ns  
ns  
ns  
ns  
ns  
t3  
t4  
t1  
t2  
t5  
Fall time, OCLK_P/OCLK_N  
Rise time, OCLK_P/OCLK_N  
Fall time, Data  
1.15  
1.4  
1.15  
3.4  
90% to 10%, Data = 108 MHz  
2.9  
10% to 90%, Data = 27 MHz  
4.2  
ns  
Rise time, Data  
10% to 90%, Data = 108 MHz  
3.4  
50%, OCLK_P/OCLK_N = 27 MHz  
50%, OCLK_P/OCLK_N = 108 MHz  
1.9  
4.86  
1.5  
ns  
ns  
Propagation delay from falling edge of  
OCLK_P/OCLK_N  
0.22  
t3  
t4  
90%  
OCLK_P  
10%  
t5  
t1,t2  
90%  
10%  
DVO_x_[7:0]  
Valid Data  
Valid Data  
Figure 5-1. Video Output Clock and Data Timing  
5.8.1 Video Input Clock and Data Timing  
NOTE  
Video Cascade Modes: Timing is ensured by design at 27/54MHz input frequency with input trace  
delays < 2 ns.  
96  
Electrical Specifications  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
5.9 I2C Host Port Timing(1)  
NO.  
PARAMETER  
Bus free time between STOP and START  
MIN  
1.3  
0
TYP  
MAX UNIT  
t1  
t2  
µs  
Data Hold time  
Data Setup time  
0.9  
µs  
ns  
t3  
100  
0.6  
0.6  
0.6  
t4  
Setup time for a (repeated) START condition  
Setup time for a STOP condition  
Hold time (repeated) START condition  
Rise time SDA and SCL signal  
Fall time SDA and SCL signal  
Capacitive load for each bus line  
I2C clock frequency  
µs  
t5  
ns  
t6  
µs  
t7  
250  
250  
400  
400  
ns  
t8  
ns  
Cb  
fI2C  
pF  
kHz  
(1) Specified by design  
Stop  
Start  
Stop  
Data  
SDA  
t1  
t4  
t2  
t3  
t5  
Change  
Data  
SCL  
t6  
t7  
t8  
t6  
Figure 5-2. I2C Host Port Timing  
Copyright © 20092011, Texas Instruments Incorporated  
Electrical Specifications  
97  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
5.9.1 I2S Port Timing  
NOTE  
Philips I2S bus compliant (specified by design) See the Philips I2S bus specification  
5.10 Miscellaneous Timings  
PARAMETER  
tRESET RESETB Signal Low Time for valid reset  
tvalid  
I2C valid time, Initialization time after reset until I2C ready  
MIN  
20  
TYP  
MAX UNIT  
ms  
260  
µs  
5.11 Power Dissipation Ratings  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX UNIT  
Thermal PAD soldered to 4-layer  
High-K PCB  
θJA  
θJC  
Junction-to-ambient thermal resistance, still air  
Junction-to-case thermal resistance, still air  
17.17  
°C/W  
Thermal PAD soldered to 4-layer  
High-K PCB  
0.12  
°C/W  
TJ (max) Maximum junction temperature for reliable operation  
(1) Exposed thermal pad must be soldered to JEDEC High-K PCB with adequate ground plane (see Section 6.5).  
105  
°C  
98  
Electrical Specifications  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
 
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
6
Application Information  
6.1 4-Ch D1 Applications  
4-Ch D1  
8Bit@108MHz  
Figure 6-1. 4-Ch D1 Application (Single BT.656 Interface)  
4-Ch D1  
DVO_A_[7:0]  
DVO_B_[7:0]  
OCLK_P  
VPIF-A  
VPIF-B  
VIN_1  
VIN_2  
H.264/MPEG-4  
16Bit@54MHz  
4-Ch D1 Recording  
TVP5158  
Multi-Ch  
Video Decoder  
I2C  
DM6467  
DaVinci HD  
VIN_3  
VIN_4  
Multi-Ch D1  
Preview  
Figure 6-2. 4-Ch D1 Application (16-Bit YCbCr 4:2:2 Interface)  
6.2 8-Ch CIF Applications  
VIN_1  
VIN_2  
VIN_3  
4-Ch CIF + 1-Ch D1  
8Bit@54MHz  
DVO_A_[7:0]  
OCLK_P  
VPIF-A  
H.264/MPEG-4  
TVP5158  
I2C  
VIN_4  
8-Ch CIF Recording  
I2C  
DM6467  
DaVinci HD  
Multi-Ch D1  
Preview  
VIN_1  
VIN_2  
4-Ch CIF + 1-Ch D1  
8Bit@54MHz  
DVO_A_[7:0]  
OCLK_P  
VPIF-B  
VIN_3  
VIN_4  
TVP5158  
Figure 6-3. 8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application  
Copyright © 20092011, Texas Instruments Incorporated  
Application Information  
99  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
4-Ch Half-D1 + 1-Ch D1  
8Bit@108MHz  
4-Ch Half-D1 + 1-Ch D1  
8Bit@108MHz  
NOTE: The backend DSP drops one field of Half-D1 to get CIF format video  
Figure 6-4. 8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application  
6.3 16-Ch CIF Applications  
See Section 3.8.3.3 for the details of 16-Ch CIF applications.  
100  
Application Information  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
6.4 Application Circuit Examples  
U1A  
78  
DVO_A_0  
77  
DVO_A_1  
75  
C70  
0.1 µF  
DVO_A_2  
74  
DVO_A_3  
72  
108  
109  
VIN_1_P  
VIN_1_N  
DVO_A_4  
DVO_A_5  
DVO_A_6  
DVO_A_7  
71  
69  
68  
R54  
R50  
J1B  
37.4 W  
C71  
0.1 µF  
75 W  
9
112  
113  
VIN_2_P  
VIN_2_N  
3
63  
62  
60  
59  
57  
56  
54  
53  
R55  
DVO_B_0  
DVO_B_1  
DVO_B_2  
DVO_B_3  
DVO_B_4  
DVO_B_5  
DVO_B_6  
DVO_B_7  
R51  
10  
37.4 W  
75 W  
C72  
0.1 µF  
11  
121  
122  
VIN_3_P  
VIN_3_N  
4
R56  
R52  
75 W  
12  
37.4 W  
C73  
0.1 µF  
RCA_Octal_stack  
125  
126  
46  
45  
43  
42  
40  
39  
37  
36  
VIN_4_P  
VIN_4_N  
DVO_C_0  
DVO_C_1  
DVO_C_2  
DVO_C_3  
DVO_C_4  
DVO_C_5  
DVO_C_6  
DVO_C_7  
R57  
R53  
75 W  
37.4 W  
116  
REXT_2K  
Place R50, R51, R52 and R53 close to J1  
Place R54, R55, R56 and R57 close to J1  
R58  
1.8 kW  
31  
30  
28  
27  
25  
24  
22  
21  
DVO_D_0  
DVO_D_1  
DVO_D_2  
DVO_D_3  
DVO_D_4  
DVO_D_5  
DVO_D_6  
DVO_D_7  
51  
50  
OCLK_P  
OCLK_N/CLKIN  
TVP5158  
NOTE: System level ESD protection is not included in above application circuit but is recommended.  
Figure 6-5. Video Input Connectivity  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Application Information  
101  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
U1B  
C65  
J1A  
95  
94  
93  
92  
AIN_1  
AIN_2  
AIN_3  
AIN_4  
2.2 µF  
C66  
R60  
5
89  
88  
86  
85  
SD_M  
SD_R  
1
2
5.6 kW  
R61  
6
7
8
2.2 µF  
C67  
5.6 kW  
R62  
LRCLK_R  
BCLK_R  
2.2 µF  
C68  
5.6 kW  
R63  
5.6 kW  
2.2 µF  
RCA_Octal_stack  
83  
SD_CO  
16  
17  
19  
R64  
R65  
R66  
R67  
LRCLK_CI  
BCLK_CI  
SD_CI  
5.6 kW 5.6 kW 5.6 kW 5.6 kW  
TVP5158  
NOTE: System level ESD protection is not included in above application circuit but is recommended.  
NOTE: Resistor divider may vary dependent on expected max input audio levels. Desired analog audio input levels should  
not exceed 1Vpp.  
Figure 6-6. Audio Input Connectivity  
6.5 Designing with PowerPADDevices  
The TVP5158 device is housed in a high-performance, thermally enhanced, 128-terminal PowerPAD  
package. Use of the PowerPAD package does not require any special considerations except to note that  
the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and  
electrical conductor. Therefore, if not implementing the PowerPAD PCB features, the use of solder masks  
(or other assembly techniques) can be required to prevent any inadvertent shorting by the exposed  
thermal pad of connection etches or vias under the package. The recommended option, however, is not to  
run any etches or signal vias under the device, but to have only a grounded thermal land as in the  
following explanation. Although the actual size of the exposed die pad may vary, the minimum size  
required for the keep-out area for the 128-terminal PFP PowerPAD package is 9mm x 9mm.  
It is recommended that there be a thermal land, which is an area of solder-tinned-copper, underneath the  
PowerPAD package. The thermal land varies in size, depending on the PowerPAD package being used,  
the PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may  
or may not contain numerous thermal vias depending on PCB construction.  
Other requirements for using thermal lands and thermal vias are detailed in the TI application note  
PowerPAD Thermally Enhanced Package application report (SLMA002).  
For the TVP5158 device, this thermal land must be grounded to the low-impedance ground plane of the  
device. This improves not only thermal performance but also the electrical grounding of the device. It is  
also recommended that the device ground terminal landing pads be connected directly to the grounded  
thermal land. The land size should be as large as possible without shorting device signal terminals. The  
thermal land can be soldered to the exposed thermal pad using standard reflow soldering techniques.  
While the thermal land can be electrically floated and configured to remove heat to an external heat sink, it  
is recommended that the thermal land be connected to the low-impedance ground plane for the device.  
More information can be obtained from the TI application note PHY Layout (SLLA020).  
102  
Application Information  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
www.ti.com  
SLES243FJULY 2009REVISED JULY 2011  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
REVISION  
COMMENTS  
SLES243  
Initial release  
SLES243A  
Table 2-1, XTAL_REF description change.  
Figure 3-21, 0-Ω resistor added inline between XTAL_REF pin and VSSA.  
YUV references changed to YCbCr.  
SLES243B  
SLES243C  
Section 1, Trademarks added.  
Table 2-1, XTAL_IN, XTAL_REF, and XTAL_OUT terminal descriptions moved to Analog Section.  
Section 3.1.2, Analog Video Input Clamping description changed.  
Section 3.9.4, Analog Audio Input Clamping description added.  
Section 3.11, Clock Circuit description changed.  
Section 1.5, Trademarks added.  
Section 1.6, Document Conventions added.  
Section 1.7, Package options added.  
Section 3.9.3, Serial Audio Interface added.  
Figure 3-18, Serial Audio Interface Timing Diagram added.  
Table 4-14, Luminance Brightness description modified.  
Table 4-15, Luminance Contrast description modified.  
Table 4-16, Brightness and Contrast Range Extender register added.  
Table 4-17, Chrominance Saturation description modified.  
Table 4-65, Interrupt Control register added.  
Minor editorial changes throughout.  
SLES243D  
AEC-Q100 qualification added.  
Section 3.8.3.3, Added comment about INTREQ outputs in video cascade mode  
Section 3.10.3, Added VBUS access information.  
Table 4-1, Added VBUS data and address registers.  
Table 4-89, Added VBUS data register description.  
Table 4-90, Added VBUS address register description.  
Table 3-5, Added output format settings for I2C address B0h.  
Table 3-6, Added output format settings for I2C address B0h.  
Table 3-10, Combined original Table 3-11 with Table 3-10.  
Table 3-10, Added output format settings for I2C address B0h.  
Section 3.8.3.4, Added Hybrid Mode section.  
Table 3-11, Added default super-frame output format table.  
Figure 3-15, Made minor editorial changes.  
Figure 3-16, Made minor editorial changes.  
Table 4-1, Added super-frame EAV2SAV and SAV2EAV duration status (D0h-D3h)  
Table 4-43, Modified TV/VCR mode detection description.  
Table 4-19, Modified definition for color killer threshold control.  
Table 4-43, Deleted obsolete stable sync control bits.  
Table 4-50, Changed the default value for I2C address 88h from 00h to 03h.  
Table 4-86, Added super-frame EAV2SAV duration status (subaddress: D0h-D1h)  
Table 4-87, Added super-frame SAV2EAV duration status (subaddress: D2h-D3h)  
Section 5.11, Modified package thermal specifications.  
Minor editorial changes throughout  
Copyright © 20092011, Texas Instruments Incorporated  
Application Information  
103  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
TVP5158, TVP5157, TVP5156  
SLES243FJULY 2009REVISED JULY 2011  
www.ti.com  
REVISION  
COMMENTS  
SLES243E  
SLES243F  
Table 4-1, Added RAM version MSB and LSB registers (subaddress: 05h-06h).  
Table 4-6, Added RAM version MSB register (subaddress: 05h).  
Table 4-7, Added RAM version LSB register (subaddress: 06h).  
Section 5.1, Updated VESD limits.  
Table 3-11, Super-frame format and timing information modified.  
Table 3-10, 6-Ch Half-D1, 6-Ch Half-D1 + 1-Ch D1 and 3-Ch D1 formats added  
Table 3-12, Added BOP and EOP bits.  
Table 3-13, Added definitions for BOP and EOP bits.  
Table 4-1, Changed default setting for I2C register AEh from 00h to 01h.  
Table 4-1, Corrected register name for I2C register 06h.  
Table 4-43, Definitions for bits 7 and 3 of I2C register 60h added.  
Table 4-52, Output timing delay control range modified.  
Table 4-54, Register settings for several different screen colors provided.  
Table 4-63, YCbCr output code range modified.  
Table 4-67, Embedded sync offset control range modified.  
Table 4-69, Definition for bit 7 of I2C register B1h modified.  
Table 4-70, Definition for bit 7 of I2C register B2h added.  
Table 4-75, Definition for bits 7:5 of I2C register B9h added.  
Table 4-77, 11.025kHz, 12kHz, 22.05kHz and 24kHz audio sample rates added.  
Table 4-82, Definition for bits 3:0 of I2C register C5h modified.  
Table 4-91, Definition for bits 5:0 of I2C register F2h modified.  
Table 4-92, Definition for bits 5:0 of I2C register F4h modified.  
Table 4-93, Definition for bits 5:0 of I2C register F6h modified.  
104  
Application Information  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TVP5158 TVP5157 TVP5156  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TVP5156PNP  
TVP5156PNPR  
TVP5157PNP  
TVP5157PNPR  
TVP5158IPNP  
TVP5158IPNPR  
TVP5158PNP  
TVP5158PNPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PNP  
PNP  
PNP  
PNP  
PNP  
PNP  
PNP  
PNP  
128  
128  
128  
128  
128  
128  
128  
128  
90  
1000  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
1000  
90  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
1000  
90  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
1000  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2011  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVP5156PNPR  
TVP5157PNPR  
TVP5158IPNPR  
TVP5158PNPR  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PNP  
PNP  
PNP  
PNP  
128  
128  
128  
128  
1000  
1000  
1000  
1000  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
17.0  
1.5  
1.5  
1.5  
1.5  
20.0  
20.0  
20.0  
20.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TVP5156PNPR  
TVP5157PNPR  
TVP5158IPNPR  
TVP5158PNPR  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PNP  
PNP  
PNP  
PNP  
128  
128  
128  
128  
1000  
1000  
1000  
1000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
55.0  
55.0  
55.0  
55.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TVP5158IPNPRQ1

With Independent Scalers, Noise Reduction, Auto Contrast, and Flexible Output Formatter for Security and Other Multi-Channel Video Applications
TI

TVP5158PNP

With Independent Scalers, Noise Reduction, Auto Contrast, and Flexible Output Formatter for Security and Other Multi-Channel Video Applications
TI

TVP5158PNPR

With Independent Scalers, Noise Reduction, Auto Contrast, and Flexible Output Formatter for Security and Other Multi-Channel Video Applications
TI

TVP5160

TVP5160: 3D Comb-Filter NTSC/PAL/SECAM Video Decoder
TI

TVP5160PNP

NTSC/PAL/SECAM/Component 2x10-Bit Digital Video Decoder
TI

TVP5160PNPG4

COLOR SIGNAL DECODER, PQFP128, PLASTIC, HTQFP-128
TI

TVP5160_11

NTSC/PAL/SECAM/Component 2x10-Bit Digital Video Decoder
TI

TVP5200PFP

COLOR SIGNAL DECODER, PQFP144, POWER, PLASTIC, TQFP-144
TI

TVP5200PZP

SPECIALTY CONSUMER CIRCUIT, PQFP100, POWER, PLASTIC, TQFP-100
TI

TVP6000C

NTSC/PAL Digital Video Encoder
TI

TVP6000CPFP

NTSC/PAL Digital Video Encoder
TI

TVP7000

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI