TVP7000 [TI]

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL; 888 /10- BIT,一百十分之一百五十零MSPS ,视频和图形数字化仪,模拟PLL
TVP7000
型号: TVP7000
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
888 /10- BIT,一百十分之一百五十零MSPS ,视频和图形数字化仪,模拟PLL

文件: 总37页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO  
AND GRAPHICS DIGITIZER WITH ANALOG PLL  
FEATURES  
APPLICATIONS  
LCD TV/Monitors/Projectors  
DLP TV/Projectors  
PDP TV/Monitors  
PCTV Set-Top Boxes  
Digital Image Processing  
Video Capture/Video Editing  
Scan Rate/Image Resolution Converters  
Video Conferencing  
Analog Channels  
– -6 dB to 6 dB Analog Gain  
– Analog Input MUXs  
– Auto Video Clamp  
– Three Digitizing Channels, Each With  
Independently Controllable Clamp, PGA,  
and ADC  
– Clamping: Selectable Clamping Between  
Bottom Level and Mid-level  
Video/Graphics Digitizing Equipment  
– Offset: 1024-Step Programmable RGB or  
YPbPr Offset Control  
DESCRIPTION  
TVP7000 is a complete solution for digitizing video  
and graphic signals in RGB or YPbPr color spaces.  
The device supports pixel rates up to 150 MHz.  
Therefore, it can be used for PC graphics digitizing  
up to the VESA standard of SXGA (1280 × 1024)  
resolution at 75 Hz screen refresh rate, and in video  
environments for the digitizing of digital TV formats,  
including HDTV up to 1080p. TVP7000 can be used  
to digitize CVBS and S-Video signal with 10-bit  
ADCs.  
– PGA: 8-Bit Programmable Gain Amplifier  
– ADC: 8/10-Bit 150/110 MSPS A/D Converter  
– Automatic Level Control Circuit  
– Composite Sync: Integrated Sync-on-Green  
Extraction From GreenLuminance Channel  
– Support for DC and AC-Coupled Input  
Signals  
PLL  
– Fully Integrated Analog PLL for Pixel Clock  
Generation  
The TVP7000 is powered from 3.3-V and 1.8-V  
supply and integrates a triple high-performance A/D  
converter with clamping functions and variable gain,  
independently programmable for each channel. The  
clamping timing window is provided by an external  
pulse or can be generated internally. The TVP7000  
includes analog slicing circuitry on the Y or G input to  
support sync-on-luminance or sync-on-green extrac-  
tion. In addition, TVP7000 can extract discrete  
HSYNC and VSYNC from composite sync using a  
sync slicer.  
– 12-150 MHz Pixel Clock Generation From  
HSYNC Input  
– Adjustable PLL Loop Bandwidth for  
Minimum Jitter  
– 5-Bit Programmable Subpixel Accurate  
Positioning of Sampling Phase  
Output Formatter  
– Support for RGB/YCbCr 4:4:4 and YCbCr  
4:2:2 Output Modes to Reduce Board Traces  
TVP7000 also contains a complete analog PLL block  
to generate a pixel clock from the HSYNC input. Pixel  
clock output frequencies range from 12 MHz to 150  
MHz.  
– Dedicated DATACLK Output for Easy  
Latching of Output Data  
System  
All programming of the part is done via an indus-  
try-standard I2C interface, which supports both read-  
ing and writing of register settings. The TVP7000 is  
available in a space-saving TQFP 100-pin PowerPAD  
package.  
– Industry-Standard Normal/Fast I2C Interface  
With Register Readback Capability  
– Space-Saving TQFP-100 Pin Package  
– Thermally-Enhanced PowerPAD™ Package  
for Better Heat Dissipation  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005, Texas Instruments Incorporated  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
ORDERING INFORMATION  
PACKAGED DEVICES  
TA  
100-PIN PLASTIC FLATPACK PowerPAD™  
0°C to 70°C  
TVP7000PZP  
FUNCTIONAL BLOCK DIAGRAM  
RIN_1  
RIN_2  
RIN_3  
10−bit  
ADC  
Clamp  
Clamp  
Clamp  
PGA  
PGA  
PGA  
ROUT[9:0]  
GOUT[9:0]  
BOUT[9:0]  
GIN_1  
GIN_2  
GIN_3  
GIN_4  
10−bit  
ADC  
Output  
Formatter  
BIN_1  
BIN_2  
BIN_3  
10−bit  
ADC  
SOGIN_1  
SOGIN_2  
SOGIN_3  
DATACLK  
SOGOUT  
HSOUT  
HSYNC_A  
HSYNC_B  
VSOUT  
VSYNC_A  
VSYNC_B  
COAST  
Timing Processor  
and Clock generation  
CLAMP  
EXT_CLK  
FILT1  
FILT2  
PWDN  
RESETB  
SCL  
SDA  
Host  
Interface  
I2CA  
2
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TERMINAL ASSIGNMENTS  
SOGIN_1  
GIN_1  
1
2
3
4
5
6
7
8
75  
SDA  
SCL  
I2CA  
TMS  
RESETB  
PWDN  
DVDD  
GND  
IOGND  
IOVDD  
R_0  
R_1  
R_2  
R_3  
R_4  
IOGND  
R_5  
R_6  
R_7  
R_8  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A18GND  
A18VDD  
A18GND  
A18VDD  
A18VDD  
A18GND  
RIN_3  
9
RIN_2  
RIN_1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
TVP7000  
A33GND  
A33VDD  
A33VDD  
A33GND  
BIN_3  
BIN_2  
BIN_1  
A18VDD  
A18GND  
NSUB  
100Pin TQFP Package  
(Top View)  
R_9  
TEST  
IOGND  
IOVDD  
G_0  
VSOUT  
HSOUT  
SOGOUT  
G_1  
3
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
ANALOG VIDEO  
Analog video input for R/Pr 1  
RIN_1  
RIN_2  
RIN_3  
GIN_1  
GIN_2  
GIN_3  
GIN_4  
BIN_1  
BIN_2  
BIN_3  
11  
10  
9
I
I
I
I
I
I
I
I
I
I
Analog video input for R/Pr 2  
Analog video input for R/Pr 3  
Analog video input for G/Y 1  
Analog video input for G/Y 2  
Analog video input for G/Y 3  
Analog video input for G/Y 4  
Analog video input for B/Pb 1  
Analog video input for B/Pb 2  
Analog video input for B/Pb 3  
2
100  
98  
96  
18  
17  
16  
The inputs must be AC coupled. The recommended coupling capacitor is 0.1 µF. Unused analog  
inputs should be connected to ground using a 10 nF capacitor.  
CLOCK SIGNALS  
DATACLK  
28  
80  
22  
O
I
Data clock output  
EXT_CLK  
External clock input for free running mode  
Internal 5 MHz clock output, coast output, high-Z, or SOG output  
TEST  
O
DIGITAL VIDEO  
ROUT [9:0]  
GOUT [9:0]  
BOUT [9:0]  
55–59, 61–65  
43-52  
O
O
O
Digital video output of R/Cr, ROUT [9] is MSB.  
Digital video output of G/Y, GOUT [9] is MSB.  
Digital video output of B/Cb, BOUT [9] is MSB. For a 4:2:2 mode BOUT outputs CbCr data.  
29-38  
Unused outputs can be left unconnected.  
MISCELLANEOUS SIGNALS  
PWDN  
70  
71  
I
I
Power down input. 1: Power down 0: Normal mode  
Reset input, active low  
RESETB  
Test Mode Select input. Used to enable JTAG test mode. Active high. Normal mode, this terminal  
should be connected to a ground.  
TMS  
72  
I
FILT1  
87  
88  
O
O
External filter connection for PLL. The recommended capacitor is 0.1 µF. see Figure 4  
FILT2  
External filter connection for PLL. The recommended capacitor is 4.7 nF. See Figure 4  
HOST INTERFACE  
I2C A  
73  
74  
75  
I
I
I2C Address input  
I2C Clock input  
SCL  
SDA  
I/O I2C Data bus  
POWER SUPPLIES  
NSUB  
21, 91  
I
I
I
I
I
I
I
I
I
I
Substrate ground. Connect to analog ground.  
A33VDD  
A33GND  
A18GND  
A18VDD  
PLL_A18VDD  
PLL_F  
13, 14, 93, 94  
12, 15, 92, 95  
3, 5, 8, 20  
4, 6, 7, 19  
84, 85  
Analog power. Connect to 3.3 V.  
Analog 3.3 V return. Connect to Ground.  
Analog 1.8V return. Connect to Ground  
Analog power. Connect to 1.8 V.  
PLL analog power. Connect to 1.8 V.  
PLL filter internal supply connection  
PLL analog power return. Connect to Ground.  
Digital return. Connect to Ground.  
Digital power. Connect to 1.8 V  
89  
PLL_A18GND  
GND  
83, 86, 90  
40, 68  
DVDD  
39, 69  
27, 42, 54, 60,  
67  
Digital power return. Connect to Ground.  
IOGND  
I
I
IOVDD  
26, 41, 53, 66  
Digital power. Connect to 3.3 V or less for reduced noise.  
SYNC SIGNALS  
CLAMP  
76  
77  
I
I
External Clamp input. Unused inputs can be connected to ground.  
COAST  
External PLL COAST signal input. Unused inputs can be connected to ground  
4
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
VSYNC_A  
VSYNC_B  
78  
79  
I
I
Vertical sync input A  
Vertical sync input B. Unused inputs can be connected to ground.  
HSYNC_A  
HSYNC_B  
81  
82  
I
I
Horizontal Sync input A  
Horizontal Sync input B. Unused inputs can be connected to ground.  
SOGIN1  
SOGIN2  
SOGIN3  
1
99  
97  
I
I
i
Sync-on-green input 1  
Sync-on-green input 2  
Sync-on-green input 3. Unused inputs should be connected to ground using a 10 nF capacitor.  
VSOUT  
HSOUT  
SOGOUT  
23  
24  
25  
O
O
O
Vertical sync output  
Horizontal sync output  
Sync-on-green slicer output  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
IOVDD to IOGND  
–0.5 V to 4.5 V  
–0.5 V to 2.3 V  
–0.5 V to 2.3 V  
– 0.5 V to 4.5 V  
–0.5 V to 4.5 V  
–0.2 V to 2.3 V  
–0.5 V to 4.5 V  
0°C to 70°C  
DVDD to GND  
Supply voltage range  
PLL_A18VDD to PLL_A18GND and A18VDD to A18GND  
A33VDD to A33GND  
VI to GND  
Digital input voltage range  
Analog input voltage range  
Digital output voltage range  
Operating free-air temperature  
AI to A33GND  
VO to GND  
TA  
Tstg Storage temperature  
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range, TA = 0°C to 70°C (unless otherwise noted)  
MIN  
3.0  
NOM  
3.3  
MAX  
3.6  
1.9  
1.9  
1.9  
3.6  
2.0  
UNIT  
V
IOVDD  
DVDD  
Digital I/O supply voltage  
Digital supply voltage  
1.70  
1.8  
V
PLL_A18VDD Analog PLL supply voltage  
1.70  
1.8  
V
A18VDD  
A33VDD  
VI(P–P)  
VIH  
Analog supply voltage  
1.70  
1.8  
V
Analog supply voltage  
3.0  
3.3  
V
Analog input voltage (ac–coupling necessary)  
Digital input voltage high  
0.5  
V
0.7 IOVDD  
V
VIL  
Digital input voltage low  
0.3 IOVDD  
V
IOH  
High–level output current  
2
–2  
4
mA  
mA  
mA  
mA  
°C  
IOL  
Low–level output current  
IOH_DATACLK  
IOL_DATACLK  
TA  
DATACLK high–level output current  
DATACLK low–level output current  
Operating free–air temperature  
–4  
70  
0
5
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS  
IOVDD = 3.3 V, DVDD = 1.8 V, PLL_A18VDD = 1.8 V, A18VDD = 1.8 V, A33VDD = 3.3 V, TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX(2)  
UNIT  
POWER SUPPLY  
IIOVDDD  
IDVDD  
PTOT  
3.3-V supply current  
1.8-V supply current  
78.75 MHz  
80  
253  
719  
101  
261  
803  
128  
250  
872  
1
130  
mA  
78.75 MHz  
78.75 MHz  
108 MHz  
260  
897  
mA  
mW  
mA  
mA  
mW  
mA  
mA  
mW  
mW  
Total power dissipation, normal mode  
3.3-V supply current  
IIOVDDD  
IDVDD  
PTOT  
160  
1.8-V supply current  
108 MHz  
275  
Total power dissipation, normal mode  
3.3-V supply current  
108 MHz  
1023  
240  
IIOVDDD  
IDVDD  
PTOT  
148.5 MHz  
148.5 MHz  
148.5 MHz  
1.8-V supply current  
280  
Total power dissipation, normal mode  
Total power dissipation, power–down mode  
1296  
PDOWN  
(1) SMPTE color bar RGB input pattern used.  
(2) Worst case vertical line RGB input pattern used.  
6
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
ELECTRICAL CHARACTERISTICS  
IOVDD = 3.3 V, DVDD = 1.8 V±0.1, PLL_A18VDD = 1.8 V±0.1, A18VDD = 1.8 V±0.1, A33VDD = 3.3 V, TA = 0°C to 70°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INTERFACE  
Input voltage range  
Input impedance, analog video inputs  
DIGITAL LOGIC INTERFACE  
By design  
0.5  
1.0  
2.0  
Vpp  
ZI  
By design  
500  
kΩ  
Ci  
Input capacitance  
By design  
By design  
IOH = 2 mA  
IOL = –2 mA  
IOH = 4 mA  
IOH = –2 mA  
By design  
By design  
10  
pF  
kΩ  
V
Zi  
Input impedance  
500  
VOH  
Output voltage high  
0.8 IOVDD  
0.8 IOVDD  
0.7 IOVDD  
VOL  
Output voltage low  
0.2 IOVDD  
0.2 IOVDD  
0.3 IOVDD  
V
VOH_SCLK  
VOL_SCLK  
VIH  
DATACLK output voltage high  
DATACLK output voltage low  
High-level input voltage  
Low-level input voltage  
V
V
V
VIL  
V
A/D CONVERTERS  
Conversion rate  
12  
-1  
-1  
-4  
-4  
150  
+1  
+1  
+4  
+4  
MSPS  
LSB  
10 bit, 110 MHz  
8 bit, 150 MHz  
10 bit, 110 MHz  
8 bit, 150 MHz  
8 bit, 150 MHz  
±0.5  
±0.5  
±1  
DNL  
INL  
DC differential nonlinearity  
DC integral nonlinearity  
LSB  
±1  
Missing code  
none  
52  
SNR  
Signal-to-noise ratio  
10 MHz, 1.0 VP–P at 110  
MSPS  
dB  
Analog bandwidth  
By design  
500  
MHz  
PLL  
Clock jitter  
500  
ps  
Phase adjustment  
VCO frequency range  
11.6  
degree  
MHz  
12  
150  
7
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TIMING REQUIREMENTS  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
CLOCKS, VIDEO DATA, SYNC TIMING  
Duty cycle DATACLK  
50%  
t1  
t2  
t3  
DATACLK rise time  
DATACLK fall time  
Output delay time  
10% to 90%  
1
1
ns  
ns  
ns  
90% to 10%  
1.5  
3.5  
(1) Measured with a load of 15 pF.  
t1  
DATACLK  
t2  
R, R, B, HSOUT  
Valid Data  
Valid Data  
t3  
Figure 1. Clock, Video Data, and Sync Timing  
8
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
TIMING REQUIREMENTS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C HOST PORT TIMING  
t1  
Bus free time between STOP and START  
Specified by design  
1.3  
0.6  
0.6  
0.6  
100  
0
µs  
µs  
µs  
ns  
t2  
Setup time for a (repeated) START condition  
Hold time (repeated) START condition  
Setup time for a STOP condition  
Data setup time  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
Specified by design  
t3  
t4  
t5  
ns  
t6  
Data hold time  
0.9  
250  
250  
400  
400  
µs  
ns  
t7  
Rise time SDA and SCL signal  
Fall time SDA and SCL signal  
Capacitive load for each bus line  
I2C clock frequency  
t8  
ns  
Cb  
f12C  
pF  
kHz  
Stop Start  
Stop  
SDA  
SCL  
Data  
t7  
t1  
t6  
t3  
t6  
t2  
t5  
t4  
t8  
Figure 2. I2C Host Port Timing  
9
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
FUNCTIONAL DESCRIPTION  
Analog Channel  
The TVP7000 contains three identical analog channels that are independently programmable. Each channel  
consists of a clamping circuit, a programmable gain amplifier, automatic offset control and an A/D converter.  
Analog Input Switch Control  
TVP7000 has 3 analog channels that accept up to 10 video inputs. The user can configure the internal analog  
video switches via the I2C interface. The 10 analog video inputs can be used for different input configurations  
some of which are:  
Up to 10 selectable individual composite video inputs  
Up to 2 selectable RGB graphics inputs  
Up to 3 selectable YPbPr video HD/SD inputs  
The input selection is performed by the input select register at I2C subaddress 0×19 and 0×1A (see Input Mux  
Select 1 and Input Mux Select 2)  
Analog Input Clamping  
An internal clamping circuit restores the AC-coupled video/graphic signal to a fixed DC level. The clamping circuit  
provides line-by-line restoration of the signal black level to a fixed DC reference voltage. The selection between  
bottom and mid level clamping is performed by I2C subaddress 0×10 (see Sync On_Green Threshold)  
The internal clamping time can be adjusted by I2C clamp start and width registers at subaddress 0×05 and 0×06  
(see Clamp Start and Clamp Width)  
Programmable Gain Amplifier (PGA)  
The TVP7000 PGA can scale a signal with a voltage-input compliance of 0.5-Vpp to 2-Vpp to a full-scale 10-bit  
A/D output code range. A 4-bit code sets the coarse gain (Red Coarse Gain, Green Coarse Gain, Blue Coarse  
Gain) with individual adjustment per channel. Minimum gain corresponds to a code 0×0 (2-Vpp full-scale input,  
–6 dB gain) while maximum gain corresponds to code 0×F (0.5-Vpp full-scale, +6 dB gain). TVP7000 also has  
8-bit fine gain control (Red Fine Gain, Green Fine Gain, Blue Fine Gain) for RGB independently ranging from 1  
to 2. For a normal PC graphics input, the fine gain will be used mostly.  
Programmable Offset Control and Automatic Level Control (ALC)  
The TVP7000 supports a programmable offset control for RGB independently. A 6-bit code sets the coarse offset  
(Red Coarse Offset, Green Coarse Offset, Blue Coarse Offset) with individual adjustment per channel. The  
coarse offset ranges from –32 LSB to +31 LSB. The coarse offset registers apply before the ADC. A 10-bit fine  
offset registers (Red Fine Offset, Green Fine Offset, Blue Fine Offset) apply after the ADC. The fine offset ranges  
from –512 LSB to +511 LSB.  
ALC circuit maintains the level of the signal to be set at a value which is programmed at fine offset I2C register. It  
consists of pixel averaging filter and feedback loop. This ALC function can be enabled or disabled by I2C register  
address at 0×26. ALC circuit needs a timing pulse generated internally but user should program the position  
properly. The ALC pulse must be positioning after the clamp pulse. The position of ALC pulse is controlled by  
ALC placement I2C register at address 0×31. This is available only for internal ALC pulse timing. For external  
clamp, the timing control of clamp is not applicable so the ALC pulse control is also not applicable. Therefore it is  
suggested to keep the external clamp pulse as long as possible. ALC is applied as same position of external  
clamp pulse.  
A/D Converters  
All ADCs have a resolution of 10-bits and can operate up to 150 MSPS. All A/D channels receive an identical  
clock from the on-chip phase-locked loop (PLL) at a frequency between 12 MHz and 150 MHz. All ADC  
reference voltages are generated internally. Also the external sampling clock can be used.  
10  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Analog PLL  
The analog PLL generates a high-frequency internal clock used by the ADC sampling and data clocking out to  
derive the pixel output frequency with programmable phase. The reference signal for this PLL is the horizontal  
sync signal supplied on the HSYNC input or from extracted horizontal sync of sync slicer block for embedded  
sync signals. The analog PLL consisted of phase detector, loop filter, voltage controlled oscillator (VCO), divider  
and phase select. The analog block diagram is shown at Figure 3.  
PLL Control  
Register 0x03  
Bit [5:3]  
PLL Control  
Register 0x03  
Bit [7:6]  
Phase Select  
Register 0x04  
Bit [7:3]  
COAST  
HSYNC  
Phase  
Detector  
Charge  
Pump  
Loop  
Filter  
Phase  
Select  
VCO  
÷ N  
ADC  
Sampling  
CLK  
N = 1 or 2  
Divider  
External  
Clock  
PLL Divide  
Register 0x01  
and 0x02  
Bit [11:0]  
Figure 3. PLL Block Diagram  
The COAST signal is used to allow the PLL to keep running at the same frequency, in the absence of the  
incoming HSYNC signal or disordered HSYNC period. This is useful during the vertical sync period, or any other  
time that the HSYNC is not available.  
There are several PLL controls to produce the correct sampling clock. The 12-bit divider register is  
programmable to select exact multiplication number to generate the pixel clock in the range of 12 MHz to 150  
MHz. The 3-bit loop filter current control register is to control the charge pump current that drives the low-pass  
loop filter. The applicable current values are listed in the Table 1.  
The 2-bit VCO range control is to improve the noise performance of the TVP7000. The frequency ranges for the  
VCO are shown in Table 1. The phase of the PLL generated clock can be programmed in 32 uniform steps over  
a single clock period (360/32=11.25 degrees phase resolution) so that the sampling phase of the ADC can be  
accurately controlled.  
In addition to sourcing the ADC channel clock from the PLL, an external pixel clock can be used (from pin 80).  
The PLL characteristics are determined by the loop filter design, by the PLL charge pump current, and by the  
VCO range setting. The loop filter design is shown in Figure 4. Supported settings of VCO range and charge  
pump current for VESA standard display modes are listed in Table 1.  
11  
 
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
89  
PLL_F  
4.7 nF  
88  
87  
1.5 k  
FILT2  
FILT1  
0.1 µF  
TVP7000  
Figure 4. PLL Loop Filter  
Table 1. Recommended VCO Range and Charge Pump Current Settings for Supporting Standard Display  
Formats  
STANDARD  
RESOL-  
UTION  
REFRESH  
RATE  
HORIZON-  
TAL  
FRE-  
PIXEL RATE PLL Divider  
PLLDIV  
MSB Reg  
01h  
PLLDIV LSB  
Reg 02h  
[11:4]  
Reg 03h  
Output Div-  
ider Reg  
04h [0]  
VCO  
RANGE Reg  
03h [7:6]  
CP CUR-  
RENT Reg  
03h [5:3]  
(MHz)  
Total  
pix/line  
QUENCY  
(kHz)  
VGA  
640 × 480  
800 × 600  
60 Hz  
72 Hz  
75 Hz  
85 Hz  
56 Hz  
60 Hz  
72 Hz  
75 Hz  
85 Hz  
60 Hz  
70 Hz  
75 Hz  
85 Hz  
60 Hz  
75 Hz  
60 Hz  
50 Hz  
60 Hz  
50 Hz  
60 Hz  
50 Hz  
60 Hz  
31.5  
37.9  
37.5  
43.3  
35.1  
37.9  
48.1  
46.9  
53.7  
48.4  
56.5  
60  
25.175  
31.5  
31.5  
36  
1600(2×)  
1664(2×)  
1680(2×)  
832  
64h  
68h  
69h  
34h  
40h  
42h  
41h  
42h  
41h  
54h  
53h  
52h  
56h  
69h  
69h  
6Bh  
6Ch  
67h  
7Bh  
89h  
A5h  
89h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
80h  
00h  
00h  
00h  
00h  
80h  
80h  
40h  
00h  
20h  
C0h  
80h  
00h  
80h  
68h  
58h  
58h  
68h  
68h  
68h  
68h  
68h  
68h  
58h  
A8h  
A8h  
A8h  
A8h  
98h  
68h  
68h  
A8h  
A8h  
A8h  
A8h  
D8h  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Low (01b)  
Med (10b)  
Med (10b)  
Med (10b)  
Med (10b)  
Med (10b)  
Low (01b)  
Low (01b)  
Med (10b)  
Med (10b)  
Med (10b)  
Med (10b)  
High (11b)  
101b  
011b  
011b  
101b  
101b  
101b  
101b  
101b  
101b  
011b  
101b  
101b  
101b  
101b  
011b  
101b  
101b  
101b  
101b  
101b  
101b  
011b  
SVGA  
36  
1024  
40  
1056  
50  
1040  
49.5  
56.25  
65  
1056  
1048  
XGA  
1024 × 768  
1344  
75  
1328  
78.75  
94.5  
108  
1312  
68.7  
64  
1376  
SXGA  
Video  
1280 × 1024  
1688  
80  
135  
1688  
720 × 480p  
720 × 576p  
31.468  
31.25  
45  
27  
1716(2×)  
1728(2×)  
1650  
27  
1280 × 720p  
1280 × 720p  
1920 × 1080i  
1920 × 1080i  
74.25  
74.25  
74.25  
74.25  
148.5  
37.5  
33.75  
28.125  
67.5  
1980  
2200  
2640  
1920 ×  
2200  
1080p  
1920 ×  
50 Hz  
56.25  
148.5  
2640  
A5h  
00h  
D8h  
0
High (11b)  
011b  
1080p  
Sync Slicer  
TVP7000 includes a circuit that compares the input signal on Green channel to a level 150mV (typical value)  
above the clamped level (sync tip). The slicing level is programmable by I2C register subaddress at 0x10. The  
digital output of the composite sync slicer is available on the SOGOUT pin.  
Sync Separator  
The sync separator automatically extracts VSYNC and HSYNC from the sliced composite sync input supplied at  
the SOG input. The G or Y input containing the composite sync must be AC coupled to the SOG input pin using  
a 10-nF capacitor. Support for PC graphics, SDTV, and HDTV up to 1080p is provided.  
12  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Activity  
Detect  
SOGOUT  
SYNC  
Slicer  
SOG  
SYNC  
Separator  
Activity  
Detect  
5MHz  
CLK  
HSYNC  
VSYNC  
COAST  
Activity  
Detect  
VSOUT  
Polarity  
Detect  
HSYNC  
Clock  
Generation  
HSOUT  
COAST  
DATACLK  
Phase  
Select  
DIV  
ADC  
Figure 5. Sync Processing  
Timing  
The TVP7000 supports RGB/YCbCr 4:4:4 and YCbCr 4:2:2 modes. Output timing is shown in Figure 6. All timing  
diagrams are shown for operation with internal PLL clock at phase 0. For a 4:2:2 mode, CbCr data outputs at  
BOUT[9:0] pins.  
13  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
RGBin  
P0  
P1  
P3  
P10 P11  
P12  
HSYNC  
DATACLK  
13 clocks latency  
D0  
D1  
D3  
D4  
D5  
RGBout  
HSOUT  
Programmable Width  
4:4:4: RGB/YCbCr Output Timing  
RGBin  
P0  
P1  
P3  
P10 P11  
P12  
HSYNC  
DATACLK  
13 clocks latency  
GOUT  
Y0  
Y1  
Y2  
Y3  
Y4  
BOUT  
Cb0 Cr0 Cb2 Cr2 Cb4  
Programmable Width  
HSOUT  
4:2:2 YCbCr Output Timing  
Figure 6. Output Timing Diagram  
14  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
I2C Host Interface  
Communication with the TVP7000 device is via an I2C host interface. The I2C standard consists of two signals,  
serial input/output data (SDA) line and input clock line (SCL), which carry information between the devices  
connected to the bus. A third signal (I2CA) is used for slave address selection. Although an I2C system can be  
multi-mastered, the TVP7000 can function as a slave device only.  
Since SDA and SCL are kept open-drain at logic high output level or when the bus is not driven, the user should  
connect SDA and SCL to a positive supply voltage via a pull up resistor on the board. SDA is implemented  
bi-directional. The slave addresses select, terminal 73 (I2CA), enables the use of two TVP7000 devices tied to  
the same I2C bus since it controls the least significant bit of the I2C device address  
Table 2. I2C Host Interface Terminal Description  
SIGNAL  
I2C A  
SCL  
TYPE  
DESCRIPTION  
Slave address selection  
Input clock line  
I
I
SDA  
I/O  
Input/output data line  
Reset and I2C Bus Address Selection  
TVP7000 can respond to two possible chip addresses. The address selection is made at reset by an externally  
supplied level on the I2C A pin. The TVP7000 device samples the level of terminal 73 at power- up or at the  
trailing edge of RESETB and configures the I2C bus address bit A0. The I2C A terminal has an internal pull-down  
resistor to pull the terminal low to set a zero.  
Table 3. I2C Host Interface Device Addresses  
A6  
1
A5  
0
A4  
1
A3  
1
A2  
1
A1  
0
A0 (I2C A)  
0 (default)  
1(1)  
R/W  
1/0  
HEX  
B9/B8  
BB/BA  
1
0
1
1
1
0
1/0  
(1) If terminal 73 strapped to DVDD via a 2.2 kresistor, I2C device address A0 is set to 1.  
I2C Operation  
Data transfers occur utilizing the following illustrated formats.  
S
10111000  
ACK  
subaddress  
ACK  
send data  
ACK  
P
Read from I2C control registers  
S
10111000  
ACK  
subaddress  
ACK  
S
10111001  
ACK  
receive data  
NAK  
P
S =  
I2C Bus Start condition  
I2C Bus Stop condition  
P =  
ACK =  
NAK =  
Acknowledge generated by the slave  
Acknowledge generated by the master, for multiple byte read master with ACK each byte except last byte  
Subaddress byte  
Subaddress =  
Data =  
Data byte, if more than one byte of DATA is transmitted (read and write), the subaddress pointer is automatically  
incremented  
I2C bus address = Example shown that I2C A is in default mode. Write (B8h), Read (B9h)  
Power-up, Reset, and Initialization  
No specific power-up sequence is required, but all power supplies should be active and stable within 500 ms of  
each other. Reset may be low during power-up, but must remain low for at least 1 µs after the power supplies  
become stable. Alternately reset may be asserted any time with minimum 5 ms delay after power-up and must  
remain asserted for at least 1 µs. Reset timing is shown in Figure 7. It is also recommended that any I2C  
operation starts 1 µs after reset ended. Table 4 describes the status of the TVP7000 terminals during and  
immediately after reset.  
15  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Table 4. Reset Sequence  
SIGNAL NAME  
DURING RESET  
RESET COMPLETED  
ROUT[9:0], BOUT[9:0], BOUT[9:0]  
HSOUT, VSOUT, SOGOUT  
DATACLK  
High impedence  
High impedence  
High impedence  
Output  
Output  
Output  
5 ms  
1 µs  
1 µs  
Power  
Reset  
I2C  
Figure 7. Reset Timing  
Control Registers  
The TVP7000 is initialized and controlled by a set of internal registers that define the operating parameters of the  
entire device. Communication between the external controller and the TVP7000 is through a standard I2C host  
port interface, as described earlier.  
Table 5 shows the summary of these registers. Detailed programming information for each register is described  
in the following sections.  
Table 5. Control Registers Summary(1)(2)  
Register Name  
I2C Subaddress  
Default  
R/W  
R
Chip Revision  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
PLL Divide MSB  
PLL Divide LSB  
PLL Control  
69h  
D0h  
48h  
80h  
80h  
80h  
20h  
80h  
80h  
80h  
80h  
80h  
80h  
40h  
4Eh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Phase Select  
Clamp Start  
Clamp Width  
HSYNC Output Width  
Blue Fine Gain  
Green Fine Gain  
Red Fine Gain  
Blue Fine Offset  
Green Fine Offset  
Red Fine Offset  
Sync Control 1  
PLL and Clamp Control  
(1) Register addresses not shown in the register map summary are reserved and must not be written to.  
(2) Writing to or reading from any value labeled “Reserved” register may cause erroneous operation of the TVP7000. For registers with  
reserved bits, a 0b must be written to reserved bit locations unless otherwise stated.  
16  
 
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Table 5. Control Registers Summary (continued)  
Register Name  
I2C Subaddress  
Default  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Sync On Green Threshold  
Sync Separator Threshold  
Pre-Coast  
10h  
B8h  
20h  
00h  
00h  
11h  
12h  
Post-Coast  
13h  
Sync Detect Status  
Output Formatter  
Test Register  
14h  
15h  
00h  
00h  
R/W  
R/W  
16h  
Reserved  
17h–18h  
19h  
Input Mux Select 1  
Input Mux Select 2  
Blue and Green Coarse Gain  
Red Coarse Gain  
Fine Offset LSB  
Blue Coarse Offset  
Green Coarse Offset  
Red Coarse Offset  
HSOUT Output Start  
MISC Control  
00h  
00h  
55h  
05h  
00h  
20h  
20h  
20h  
09h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
Reserved  
23h–25h  
26h  
Automatic Level Control Enable  
Reserved  
00h  
00h  
00h  
R/W  
R/W  
R/W  
27h  
Automatic Level Control Filter  
Reserved  
28h  
29h  
Fine Clamp Control  
Power Control  
2Ah  
2Bh  
ADC Setup  
2Ch  
00h  
00h  
00h  
R/W  
R/W  
R/W  
Coarse Clamp Control 1  
SOG Clamp  
2Dh  
2Eh  
Reserved  
2Fh–30h  
31h  
ALC Placement  
00h  
R/W  
R = Read only  
W = Write only  
R/W = Read Write  
Register Definitions  
Chip Revision  
Subaddress  
00h  
Read Only  
0
7
6
5
4
3
2
1
Chip revision [7:0]  
Chip revision [7:0]: Chip revision number  
17  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
PLL Divide  
Subaddress  
01h–02h  
Default (69D0h)  
0
7
6
5
4
3
2
1
PLL divide MSB [11:4]  
PLL divide LSB [3:0]  
Reserved  
PLL divide [11:0]: PLL divide number sets the number of pixels per line. Controls the PLL feedback divider. MSB [11:4] bits should be  
loaded first whenever a change is required  
PLL Control  
Subaddress  
03h  
Default (48h)  
7
6
5
4
3
2
1
0
VCO[1:0]  
Charge Pump Current [3:1]  
Reserved  
Reserved  
Reserved  
VCO [1:0]: Selects VCO frequency range  
00 = Ultra low  
01 = Low (default)  
10 = Medium  
11 = High  
Charge Pump Current [3:0]: Selects charge current of PLL LPF  
000 = Small (default)  
111 = Large  
Phase Select  
Subaddress  
04h  
Default (80h)  
7
6
5
4
3
2
1
0
Phase Select [4:0]  
Reserved  
DIV2  
Phase Select [4:0]: ADC Sampling clock phase select. (1 LSB = 360/32 = 11.25°)  
DATACLK Divide-by-2  
0 = DATACLK/1  
1 = DATACLK/2  
Clamp Start  
Subaddress  
05h  
Default (80h)  
0
7
6
5
4
3
2
1
Clamp Start [7:0]  
Clamp Start [7:0]: Positions the clamp signal an integer number of clock periods after the HSYNC signal. If external clamping is selected  
this value has no meaning  
Clamp Width  
Subaddress  
06h  
Default (80h)  
0
7
6
5
4
3
2
1
Clamp Width [7:0]  
Clamp Width [7:0]: Sets the width in pixels for clamp. See register Clamp Start.  
18  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Table 6. Recommended Fine Clamp Settings  
VIDEO STANDARD  
CLAMP START  
50 (32h)  
CLAMP WIDTH  
HDTV (tri-level)  
SDTV (bi-level)  
PC Graphics  
32 (20h)  
16 (10h)  
16 (10h)  
6 (06h)  
6 (06h)  
HSYNC Output Width  
Subaddress  
07h  
Default (20h)  
0
7
6
5
4
3
2
1
HSOUT Width [7:0]  
HSOUT Width [7:0]: Sets the width in pixels for HSYNC output.  
Blue Fine Gain  
Subaddress  
08h  
Default (80h)  
0
7
6
5
4
3
2
1
Blue Gain [7:0]  
Blue Gain [7:0]: PGA digital gain (contrast) for Blue channel applied after the ADC. Gain = 1 + Blue Gain[7:0]/256  
80h = Recommended setting for 700 mVp-p input and default Coarse Gain (default).  
Green Fine Gain  
Subaddress  
09h  
Default (80h)  
0
7
6
5
4
3
2
1
Green Gain [7:0]  
Green Gain [7:0]: PGA digital gain (contrast) for Green channel applied after the ADC. Gain = 1 + Green Gain[7:0]/256  
80h = Recommended setting for 700 mVp-p input and default Coarse Gain (default).  
Red Fine Gain  
Subaddress  
0Ah  
Default (80h)  
0
7
6
5
4
3
2
1
Red Gain [7:0]  
Red Gain [7:0]: Sets PGA digital gain (contrast) for Red channel applied after the ADC. Gain = 1 + Red Gain[7:0]/256  
80h = Recommended setting for 700 mVp-p input and default Coarse Gain (default).  
19  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Blue Fine Offset  
Subaddress  
0Bh  
Default (80h)  
0
7
6
5
4
3
2
1
Blue Offset [9:2]  
Blue Offset [9:2]: DC digital offset (brightness) for Blue channel applied after the ADC.  
The default setting of 80h will place the bottom-level (YRGB) clamped output blank levels at 0 and mid-level clamped (PbPr) output blank  
levels at 512.  
Blue Offset  
11111111  
100000001  
10000000  
01111111  
00000000  
Description  
maximum  
1 LSB  
0 (default)  
–1 LSB  
minimum  
Green Fine Offset  
Subaddress  
0Ch  
Default (80h)  
0
7
6
5
4
3
2
1
Green Offset [9:2]  
Green Offset [9:2]: DC digital offset (brightness) for Green channel applied after the ADC. See Red Fine Offset register at I2C address 0x0B  
Red Fine Offset  
Subaddress  
0Dh  
Default (80h)  
0
7
6
5
4
3
2
1
Red Offset [9:2]  
Red Offset [9:2]: DC digital offset (brightness) for Red channel applied after the ADC. See Blue Fine Offset register at I2C address 0x0B.  
20  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Sync Control 1  
Subaddress  
0Eh  
Default (40h)  
7
6
5
4
3
2
1
0
HSPO  
HSIP  
HSOP  
AHSO  
AHSS  
VSOI  
AVSO  
AVS  
HSPO: HSYNC Polarity Override  
0 = Polarity determined by chip (default)  
1 = Polarity set by Bit 6 in register 0Eh  
HSIP: HSYNC Input Polarity  
0 = Indicates input HSYNC polarity active low  
1 = Indicates input HSYNC polarity active high (default)  
HSOP: HSYNC Output Polarity  
0 = Active low (default)  
1 = Active high  
AHSO: Active HSYNC Override  
0 = The active interface is selected via Bit 6 in register 14h, selected by chip (default)  
1 = The user can select HSYNC to be used via Bit 3  
AHSS: Active HSYNC Select. The indicated HSYNC will be used only if Bit 4 is set to 1 or both syncs are active (Bits 1,7 =1 in 14h)  
0 = Select HSYNC as the active sync (default)  
1 = Select Sync-on-green as the active sync  
VSOI: VSYNC Output Invert (relative to VSYNC IN polarity)  
0 = No invert (default)  
1 = Invert  
AVSO: Active VSYNC Override  
0 = The active interface is selected via Bit3 in register 14h, selected by chip (default)  
1 = The user can select the VSYNC to be used via Bit 0  
AVS: Active VSYNC select, This bit is effective when AVSO Bit 1 is set to 1.  
0 = Raw VSYNC (default)  
1 = Sync separated VSYNC  
21  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
PLL and Clamp Control  
Subaddress  
0Fh  
Default (4Eh)  
7
6
5
4
3
2
1
0
CF  
CP  
Coast Sel  
CPO  
CPC  
Reserved  
FCPD  
Free run  
Clamp Function:  
0 = Internal Clamp(default)  
1 = External Clamp  
Clamp Polarity:  
0 = Active high  
1 = Active low (default)  
Coast Select:  
0 = External coast (default)  
1 = Internal Coast  
Coast Polarity Override:  
0 = Polarity determined by chip (default)  
1 = Polarity set be Bit 3 in register 0Fh  
Coast Polarity Change:  
0 = Active low  
1 = Active high (default)  
Full Chip Power-Down:  
0 = Power-down mode  
1 = Normal operation (default)  
Free run: Also ADC test mode, ADC uses external clock  
0 = PLL normal operation (default)  
1 = Enabled  
Sync On_Green Threshold  
Subaddress  
10h  
Default (B8h)  
7
6
5
4
3
2
1
0
SOG Threshold [4:0]  
Blue CS  
Green CS  
Red CS  
SOG Threshold [4:0]: Sets the voltage level of the SOG slicer comparator. The minimum setting is 0 mV and the maximum is 350 mV. The  
step is 11 mV. (default 17h, 10h recommended)  
Blue Clamp Select: When free running mode this bit is no effect  
0 = Bottom level clamp (default)  
1 = Mid level clamp  
Green Clamp Select: When free running mode this bit is no effect  
0 = Bottom level clamp (default)  
1 = Mid level clamp  
Red Clamp Select: When free running mode this bit is no effect.  
0 = Bottom level clamp (default)  
1 = Mid level clamp  
22  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Sync Separator Threshold  
Subaddress  
11h  
Default (20h)  
7
6
5
4
3
2
1
0
Sync Separator Threshold [7:0]  
Sync Separator Threshold [7:0]: Sets how many internal 5 MHz clock periods the sync separator will count to before toggling high or low.  
The selection of this register affects the VSYNC out position relative to HSYNC out.  
Pre-Coast  
Subaddress  
12h  
Default (00h)  
0
7
6
5
4
3
2
1
Pre-Coast [7:0]  
Pre-Coast [7:0]: Sets the number of HSYNC periods that coast becomes active prior to VSYNC.  
Post-Coast  
Subaddress  
13h  
Default (00h)  
0
7
6
5
4
3
2
1
Post-Coast [7:0]  
Post-Coast [7:0]: Sets the number of HSYNC periods that coast stays active following VSYNC.  
Table 7. Recommended Pre and Post-Coast Settings  
STANDARD  
PRE_COAST  
POST-COAST  
480i/p with Macrovision  
3
3
3
0
0
0Ch  
0Ch  
0
576i/p with Macrovision  
1080i  
1080p  
720p  
0
0
23  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Sync Detect Status  
Subaddress  
14h  
Read Only  
7
6
5
4
3
2
1
0
HSD  
AHS  
IHSPD  
VSD  
AVS  
VSPD  
SOGD  
ICPD  
HSYNC Detect:  
0 = No HSYNC detected  
1 = HSYNC detected  
Active HSYNC:  
0 = HSYNC input pin  
1 = HSYNC from SOG  
Input HSYNC Polarity Detect:  
0 = Active low  
1 = Active high  
VSYNC Detect:  
0 = No VSYNC detected  
1 = VSYNC detected  
AVS:  
0 = VSYNC input pin  
1 = VSYNC from Sync separator  
VSYNC Polarity Detect:  
0 = Active low  
1 = Active high  
SOG Detect:  
0 = No SOG detected  
1 = SOG is present on the SOG interface  
Input Coast Polarity Detect:  
0 = Active low  
1 = Active high  
Output Formater  
Subaddress  
15h  
Default (00h)  
7
6
5
4
3
2
1
0
Reserved  
Clamp REF  
CbCr order  
422/444  
Reserved  
Clamp REF:  
0 = Clamp pulse placement respect to the trailing edge of HSYNC (default)  
1 = Clamp pulse placement respect to the leading edge of HSYNC  
CbCr order: This bit is effective when Bit 1 is set to 1.  
0 = CrCb (default)  
1 = CbCr  
422/444:  
0 = Output is in 4:4:4 format (default)  
1 = Output is in 4:2:2 format  
24  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Test Register  
Subaddress  
16h  
Default (00h)  
7
6
5
4
3
2
1
0
Pixel tolerance [2:0]  
Reserved  
Test ouptut  
PLL PD  
STRTB  
Pixel tolerance:  
000 = No tolerance (default)  
001 = 1 pixel tolerance (recommended setting for best SOG performance)  
111 = 7 pixel tolerance (maximum)  
Test output: Controls TEST 1 pin output  
00 = 5 MHz clock (default)  
01 = Coast output  
10 = Clamp  
11 = High impedance  
PLL PD: PLL power-down  
0 = Normal operation (default)  
1 = PLL powered down  
STRTB: PLL start-up circuit enable  
0 = Disabled (default)  
1 = Enabled  
Input Mux Select 1  
Subaddress  
19h  
Default (00h)  
0
7
6
5
4
3
2
1
SOG Select [1:0]  
Red Select [1:0]  
Green Select [1:0]  
Blue Select [1:0]  
SOG Select [1:0]:  
00 = CH1 selected (default)  
01 = CH2 selected  
10 = CH3 selected  
11 = Reserved  
Red Select [1:0]:  
00 = CH1 selected (default)  
01 = CH2 selected  
10 = CH3 selected  
11 = Reserved  
Green Select [1:0]:  
00 = CH1 selected (default)  
01 = CH2 selected  
10 = CH3 selected  
11 = CH4 selected  
Blue Select [1:0]:  
00 = CH1 selected (default)  
01 = CH2 selected  
10 = CH3 selected  
11 = Reserved  
25  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Input Mux Select 2  
Subaddress  
1Ah  
Default (00h)  
7
1
6
5
4
3
2
1
0
Reserved  
VSYNC Select  
Reserved  
HSYNC Select  
Bit 7: It must be written to 1.  
VSYNC Select:  
0 = VSYNC_A selected (default)  
1 = VSYNC_B selected  
HSYNC Select [1:0]:  
0 = HSYNC_A selected (default)  
1 = HSYNC_B selected  
Blue and Green Coarse Gain  
Subaddress  
1Bh  
Default (55h)  
7
6
5
4
3
2
1
0
Green Gain [3:0]  
Blue Gain [3:0]  
Green Coarse Gain [3:0]: Coarse analog gain for Green channel applied before the ADC.  
Gain [3:0] Description  
0000 = 0.5  
0001 = 0.6  
0010 = 0.7  
0011 = 0.8  
0100 = 0.9  
0101 = 1.0  
0110 = 1.1  
0111 = 1.2  
1000 = 1.3  
1001 = 1.4  
1010 = 1.5  
1011 = 1.6  
1100 = 1.7  
1101 = 1.8  
1110 = 1.9  
1111 = 2.0  
Maximum recommended gain for 700mVp-p input.  
Blue Coarse Gain [3:0]: Coarse gain for Blue channel  
Red Coarse Gain  
Subaddress  
1Ch  
Default (05h)  
0
7
6
5
4
3
2
1
Reserved  
Red Gain [3:0]  
Red Coarse Gain [3:0]: Coarse analog gain for Red channel applied before the ADC.  
26  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Fine Offset LSB  
Subaddress  
1Dh  
Default (00h)  
7
6
5
4
3
2
1
0
Reserved  
Red Offset [1:0]  
Green Offset [1:0]  
Blue Offset [1:0]  
Red Offset [1:0] : Offset LSB for red channel. This is LSB of register 0x0D  
Green Offset [1:0] : Offset LSB for green channel. This is LSB of register 0x0C  
Blue Offset [1:0] : Offset LSB for blue channel. This is LSB of register 0x0B  
Blue Coarse Offset  
Subaddress  
1Eh  
Default (20h)  
0
7
6
5
4
3
2
1
Reserved  
Blue offset [5:0]  
Blue Coarse offset [5:0]: Coarse analog offset for blue channel applied before the ADC.  
1Fh = +31 LSB (Recommended for optimum ALC performance)  
00h = 0 LSB  
20h = -1 LSB (default)  
3Fh = -32 LSB  
Green Coarse Offset  
Subaddress  
1Fh  
Default (20h)  
0
7
6
5
4
3
2
1
1
1
Reserved  
Coarse Green offset [5:0]  
Green Coarse offset [5:0]: Coarse analog offset for green channel applied before the ADC.  
1Fh = +31 LSB (Recommended for optimum ALC performance)  
Red Coarse Offset  
Subaddress  
20h  
Default (20h)  
0
7
6
5
4
3
2
Reserved  
Coarse Red offset [5:0]  
Red Coarse offset [5:0]: Coarse analog offset for blue channel applied before the ADC.  
1Fh = +31 LSB (Recommended for optimum ALC performance)  
HSOUT Output Start  
Subaddress  
21h  
Default (09h)  
0
7
6
5
4
3
2
HSOUT Start [7:0]  
HSOUT Start [7:0]: HSYNC output Start pixel number.  
27  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
MISC Control  
Subaddress  
22h  
Default (00h)  
7
6
5
4
3
2
1
0
Reserved  
MAC_EN  
Reserved  
VS_ALIGN  
Reserved  
MAC_EN:  
0 = Macrovision compatibility disabled (default)  
1 = Macrovision compatibility enabled  
VS_ALIGN  
0 = VSOUT alignment relative to HSOUT varies with SyncSep Threshold  
1 = VSOUT alignment not affected by SyncSep Threshold  
Automatic Level Control Enable  
Subaddress  
26h  
Default (00h)  
0
7
6
5
4
3
2
1
ALC enable  
Reserved  
ALC enable: Automatic level control enable  
0 = Disabled (default)  
1 = Enabled  
28  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Automatic Level Control Filter  
Subaddress  
28h  
Default (00h)  
7
6
5
4
3
2
1
0
Reserved  
NSV[3:0]  
NSH [2:0]  
The horizonal ALC coefficient (NSH) specifies the number of the horizonal samples (N) used to calculate the average blank level per  
horizonal line. Offset error correction is applied immediately based on the vertical (NSV) coefficient.  
The vertical coefficient (NSV) specifies the amount of offset error correction (derived from NSH) that is applied to each line update.  
NSV [3:0]: ALC vertical filter coefficient  
NSV [3:0]  
0000 =  
0001 =  
0010 =  
0011 =  
0100 =  
0101 =  
0110 =  
0111 =  
1000 =  
1001 =  
1010 =  
1011 =  
1100 =  
1101 =  
1110 =  
1111 =  
Description  
1 (default)  
1/2  
Maximum error correction applied per line update  
1/4  
1/8  
1/16  
1/32  
1/64  
1/128  
1/256  
1/512  
1/1024  
1/2048  
1/4096  
1/8192  
1/16384  
1/32768  
Minimum error correction applied per line update  
Minimum number of pixels used in horizonal filter  
NSH [2:0]: ALC horizontal sample filter coefficient  
NSH [2:0]  
000 =  
001 =  
010 =  
011 =  
100 =  
101 =  
110 =  
111 =  
Description  
1 (default)  
1/2  
1/4  
1/8  
1/16  
1/32  
1/64  
1/128  
Maximum number of pixels used in horizonal filter  
29  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
Fine Clamp Control  
Subaddress  
2Ah  
Default (00h)  
7
6
5
4
3
2
1
0
Reserved  
Fine swsel[1:0]  
Fine B  
Fine G  
Fine R  
Fine swsel: Fine clamp time constant adjustment  
00 = Highest (default)  
01 =  
10 =  
11 = Lowest  
Fine B:  
0 = Blue channel fine clamp is off (default)  
1 = Blue channel fine clamp is on  
Fine G:  
0 = Green channel fine clamp is off (default)  
1 = Green channel fine clamp is on  
Fine R:  
0 = Red channel fine clamp is off (default)  
1 = Red channel fine clamp is on  
Power Control  
Subaddress  
2Bh  
(Default 00h)  
7
6
5
4
REF  
3
2
1
0
SOG  
SLICER  
CURRENT  
PW ADC B  
PW ADC G  
PW ADC R  
SOG:  
0 = Normal operation (default)  
1 = SOG power-down  
Slicer:  
0 = Normal operation (default)  
1 = Slicer power-down  
Reference:  
0 = Normal operation (default)  
1 = Reference block power-down  
Current control:  
0 = Normal operation (default)  
1 = Current control block power-down  
PW ADC B: Power-down ADC blue channel  
0 = PW ADC R: Power-down ADC red channel  
1 = ADC channel 1 power-down  
PW ADC G: Power-down ADC green channel  
0 = PW ADC R: Power-down ADC red channel  
1 = ADC channel 2 power-down  
PW ADC R: Power-down ADC red channel  
0 = PW ADC R: Power-down ADC red channel  
1 = ADC channel 3 power-down  
30  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
ADC Setup  
Subaddress  
2Ch  
(Default 00h)  
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
0
50h = Recommended setting  
Coarse Clamp Control  
Subaddress  
2Dh  
Default (00h)  
7
6
5
4
3
2
1
0
CCCLP_cur_CH1  
Reserved  
Coarse B  
Coarse G  
Coarse R  
Coarse clamp charge current switch selection:  
00 = Highest (default)  
01 =  
10 =  
11 = Lowest  
Course B:  
0 = Coarse clamp off at BLUE channel (default)  
1 = Coarse clamp on at BLUE channel  
Coarse G :  
Coarse R :  
0 = Coarse clamp off at GREEN channel (default)  
1 = Coarse clamp on at GREEN channel  
0 = Coarse clamp off at RED channel (default)  
1 = Coarse clamp on at RED channel  
SOG Clamp  
Subaddress  
2Eh  
(Default 00h)  
0
7
6
5
4
3
2
1
SOG_CE  
Reserved  
SOG_CE:  
0 = SOG Clamp disabled (default)  
1 = SOG Clamp enabled. Set to 1 for SOG operation.  
ALC Placement  
Subaddress  
31h  
(Default 00h)  
0
7
6
5
4
3
2
1
ALC placement [7:0]  
ALC placement [7:0]:  
0 = Default  
18h = PC graphics and SDTV with  
bi-level syncs  
5Ah = HDTV with tri-level syncs  
Positions the ALC signal an integer number of clock periods after the HSYNC signal. ALC must be applied after the clamp end.  
31  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
32  
TVP7000  
www.ti.com  
SLES143SEPTEMBER 2005  
APPLICATION INFORMATION  
1.5 k  
0.1 µF  
4.7 nF  
10 nF  
SOG1  
GIN1  
0.1 µF  
G/Y  
B/Pb  
R/Pr  
75 Ω  
75 Ω  
75 Ω  
GOUT[9:0]  
BOUT[9:0]  
0.1 µF  
0.1 µF  
BIN1  
RIN1  
ROUT[9:0]  
DATACLK  
SOGOUT  
VSOUT  
HSOUT  
HSYNC  
VSYNC  
HSYNC_A  
VSYNC_A  
RESETB  
+3.3 V  
2.2 kx 2  
2.2 kx 3  
Figure 8. TVP7000 Application Example  
Schematic  
33  
1
2
3
4
5
6
A3.3V  
A1.8V  
I2C ADDRESS SELECTION  
2-3: Base Addr 0xBA  
0.1uF 0.1uF 0.1uF  
0.1uF  
0.1uF 0.1uF 0.1uF 0.1uF  
D
C
B
A
D
C
B
A
1-2: Base Addr 0xB8 - Default  
D3.3V  
1.5k  
D3.3V  
D1.8V  
PLLA1.8V  
4.7nF  
0.1uF  
10k  
0.1uF 0.1uF 0.1uF 0.1uF  
0.1uF 0.1uF  
0.1uF 0.1uF  
I2CA  
2
JMP3  
VSYNC_A  
VSYNC_B  
10k  
HSYNC_A  
HSYNC_B  
PLL_F  
FILT2  
FILT1  
EXT_CLK  
GIN_4  
GIN_3  
GIN_2  
0.1uF  
10nF  
0.1uF  
10nF  
0.1uF  
A3.3V  
PLLA1.8V  
D1.8V D3.3V  
2.2k (2)  
D3.3V  
A3.3V  
A1.8V  
2.2k (2)  
U1  
10nF  
1
2
3
4
5
6
7
8
9
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SOGIN_1  
GIN_1  
SDA  
SCL  
SDA  
SCL  
GIN_1  
0.1uF  
I2CA  
A18GND  
A18VDD  
A18GND  
A18VDD  
A18VDD  
A18GND  
RIN_3  
I2CA  
TMS  
RESETB  
PWDN  
DVDD  
GND  
IOGND  
IOVDD  
R_0  
R_1  
R_2  
R_3  
R_4  
RESETB  
PWDN  
RIN_3  
RIN_2  
RIN_1  
0.1uF  
0.1uF  
0.1uF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
R[9..0]  
R[9..0]  
RIN_2  
RIN_1  
49.9  
A33GND  
A33VDD  
A33VDD  
A33GND  
BIN_3  
BIN_2  
BIN_1  
A18VDD  
A18GND  
NSUB  
TVP7000  
BIN_3  
BIN_2  
BIN_1  
0.1uF  
0.1uF  
0.1uF  
IOGND  
R_5  
R_6  
R_7  
R_8  
R_9  
TEST  
TEST  
IOGND  
IOVDD  
G_0  
VSOUT  
HSOUT  
SOGOUT  
49.9  
G_1  
G[9..0]  
G[9..0]  
49.9  
B[9..0]  
B[9..0]  
49.9  
DCLK  
SOGOUT  
HSOUT  
VSOUT  
49.9 (3)  
Title  
TVP7000  
Size  
Number  
Revision  
REV 1.1  
C
Date:  
File:  
31-Aug-2005  
Sheet of  
C:\Documents and Settings\a0214685.ENT\DesktDopra\TwVn PB7y0:00_EVM_MODULE_REV1.0.ddb  
1
2
3
4
5
6
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
TVP7000PZP  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTQFP  
PZP  
100  
90 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TVP7000PZPR  
HTQFP  
PZP  
100  
1000  
TBD  
CU NIPDAU Level-4-220C-72 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TVP7000PZP

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7000PZPG4

SPECIALTY CONSUMER CIRCUIT, PQFP100, GREEN, PLASTIC, HTQFP-100
TI

TVP7000PZPR

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7000PZPRG4

SPECIALTY CONSUMER CIRCUIT, PQFP100, GREEN, PLASTIC, HTQFP-100
TI

TVP7000_17

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7001

TRIPLE 8/10-BIT, 165/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7001PZP

TRIPLE 8/10-BIT, 165/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7001PZPG4

SPECIALTY CONSUMER CIRCUIT, PQFP100, PLASTIC, TQFP-100
TI

TVP7001PZPR

TRIPLE 8/10-BIT, 165/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7002

TRIPLE 8-/10-BIT 165-/110-MSPS, VIDEO AND GRAPHICS DIGITIZER WITH HORIZONTAL PLL
TI

TVP70025I

TRIPLE 10-BIT, 90-MSPS, VIDEO AND GRAPHICS DIGITIZER WITH HORIZONTAL PLL
TI

TVP70025IPZP

TRIPLE 10-BIT, 90-MSPS, VIDEO AND GRAPHICS DIGITIZER WITH HORIZONTAL PLL
TI