TVP5160PNPG4 [TI]

COLOR SIGNAL DECODER, PQFP128, PLASTIC, HTQFP-128;
TVP5160PNPG4
型号: TVP5160PNPG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

COLOR SIGNAL DECODER, PQFP128, PLASTIC, HTQFP-128

商用集成电路
文件: 总111页 (文件大小:1382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TVP5160  
NTSC/PAL/SECAM/Component 2x10-Bit Digital Video  
Decoder  
Data Manual  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Literature Number: SLES135E  
February 2005Revised April 2011  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Contents  
1
Introduction ........................................................................................................................ 9  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
Features ...................................................................................................................... 9  
Applications .................................................................................................................. 9  
Description ................................................................................................................... 9  
Related Products .......................................................................................................... 12  
Trademarks ................................................................................................................. 12  
Document Conventions ................................................................................................... 12  
Ordering Information ...................................................................................................... 12  
Functional Block Diagram ................................................................................................ 13  
Terminal Assignments .................................................................................................... 14  
2
Functional Description ....................................................................................................... 17  
Analog Processing and A/D Converters ................................................................................ 17  
2.1  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
Video Input Switch Control .................................................................................... 18  
480p and 576p Component YPbPr ........................................................................... 18  
Analog Input Clamping ......................................................................................... 18  
Automatic Gain Control ........................................................................................ 18  
Analog Video Output ........................................................................................... 18  
A/D Converters .................................................................................................. 19  
2.2  
Digital Video Processing .................................................................................................. 19  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
2x Decimation Filter ............................................................................................ 19  
Composite Processor .......................................................................................... 19  
Color Low-Pass Filter .......................................................................................... 19  
Y/C Separation .................................................................................................. 20  
3D Frame Recursive Noise Reduction ....................................................................... 20  
Time Base Corrector ........................................................................................... 20  
IF Compensation ............................................................................................... 20  
Luminance Processing ......................................................................................... 21  
Color Transient Improvement ................................................................................. 21  
2.3  
2.4  
2.5  
2.6  
2.7  
Clock Circuits .............................................................................................................. 22  
Real-Time Control (RTC) ................................................................................................. 22  
Output Formatter .......................................................................................................... 23  
Fast Switches for SCART and Digital Overlay ........................................................................ 24  
Discrete Syncs ............................................................................................................. 26  
2.8  
2.9  
Embedded Syncs .......................................................................................................... 31  
I2C Host Interface .......................................................................................................... 32  
2.9.1  
Reset and I2C Bus Address Selection ....................................................................... 32  
I2C Operation .................................................................................................... 33  
VBUS Access ................................................................................................... 33  
2.9.2  
2.9.3  
2.9.3.1 VBUS Write ......................................................................................... 34  
2.9.3.2 VBUS Read ......................................................................................... 34  
2.10 VBI Data Processor ....................................................................................................... 34  
2.10.1 VBI FIFO and Ancillary Data in Video Stream .............................................................. 35  
2.10.2 VBI Raw Data Out .............................................................................................. 36  
2.11 Powerup, Reset, and Initialization ....................................................................................... 36  
2.12 Adjusting External Syncs ................................................................................................. 37  
2
Contents  
Copyright © 20052011, Texas Instruments Incorporated  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
3
4
Internal Control Registers ................................................................................................... 38  
3.1  
Register Definitions ........................................................................................................ 43  
VBUS Register Definitions ............................................................................................... 88  
3.2  
Typical Application Circuit .................................................................................................. 95  
Typical Application Circuit ................................................................................................ 95  
4.1  
5
6
Typical Register Programming Sequence ............................................................................. 96  
Electrical Specifications ..................................................................................................... 97  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Absolute Maximum Ratings .............................................................................................. 97  
Recommended Operating Conditions .................................................................................. 97  
Crystal Specifications ..................................................................................................... 98  
DC Electrical Characteristics ............................................................................................. 98  
Analog Processing and A/D Converters ................................................................................ 99  
Data Clock, Video Data, Sync Timing .................................................................................. 99  
I2C Host Port Timing ..................................................................................................... 100  
SDRAM Timing ........................................................................................................... 101  
Example SDRAM Timing Alignment ................................................................................... 102  
6.10 Memories Tested ......................................................................................................... 103  
6.11 Thermal Specification ................................................................................................... 103  
7
8
Designing With PowerPAD............................................................................................. 104  
Revision History .............................................................................................................. 106  
Copyright © 20052011, Texas Instruments Incorporated  
Contents  
3
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
List of Figures  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
3-1  
4-1  
6-1  
6-2  
6-3  
6-4  
7-1  
TVP5160 PNP-Package Terminal Diagram .................................................................................. 15  
Analog Processors and A/D Converters ...................................................................................... 18  
Luminance Edge-Enhancer Peaking Block ................................................................................... 21  
Peaking Filter Frequency Response NTSC/PAL ITU_R BT.601 Sampling............................................... 21  
Reference Clock Configuration ................................................................................................. 22  
RTC Timing ....................................................................................................................... 23  
Fast-Switches for SCART and Digital Overlay ............................................................................... 25  
Vertical Synchronization Signals for 525-Line System ...................................................................... 28  
Vertical Synchronization Signals for 625-Line System ...................................................................... 28  
Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode.................................................................. 29  
Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode.................................................................. 30  
VS Position With Respect to HS for Interlaced Signals ..................................................................... 31  
VS Position With Respect to HS for Progressive Signals................................................................... 31  
VBUS Access ..................................................................................................................... 33  
Reset Timing...................................................................................................................... 37  
Teletext Filter Function .......................................................................................................... 80  
Application Example ............................................................................................................. 95  
Clocks, Video Data, and Sync Timing ....................................................................................... 100  
I2C Host Port Timing............................................................................................................ 100  
SDRAM Interface Timing ...................................................................................................... 101  
TVP5160 Timing Relationship with K4S161622E-80 SDRAM............................................................ 102  
128-Pin PowerPAD Package.................................................................................................. 105  
4
List of Figures  
Copyright © 20052011, Texas Instruments Incorporated  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
List of Tables  
1-1  
Terminal Functions .............................................................................................................. 15  
Y/C Separation Support by Video Standard .................................................................................. 20  
Output Format .................................................................................................................... 23  
Summary of Line Frequency, Data Rate, and Pixel/Line Counts .......................................................... 24  
Fast-Switch Modes............................................................................................................... 25  
Look-Up Table for Converting from Digital RGB to 10-Bit YCbCr Data................................................... 26  
EAV and SAV Sequence........................................................................................................ 32  
I2C Host Interface Terminal Description....................................................................................... 32  
I2C Host Interface Device Addresses.......................................................................................... 32  
Supported VBI System .......................................................................................................... 34  
Ancillary Data Format and Sequence ......................................................................................... 35  
Reset Sequence.................................................................................................................. 36  
I2C Registers Summary.......................................................................................................... 38  
VBUS Registers Summary...................................................................................................... 42  
Input/Output Select .............................................................................................................. 43  
Analog Channel and Video Mode Selection .................................................................................. 43  
AFE Gain Control ................................................................................................................ 44  
Video Standard Select .......................................................................................................... 44  
Operation Mode .................................................................................................................. 44  
Autoswitch Mask ................................................................................................................. 45  
Color Killer ........................................................................................................................ 45  
Luminance Processing Control 1 .............................................................................................. 46  
Luminance Processing Control 2 .............................................................................................. 46  
Luminance Processing Control 3 .............................................................................................. 47  
Luminance Brightness .......................................................................................................... 47  
Luminance Contrast ............................................................................................................. 47  
Chrominance Saturation ........................................................................................................ 48  
Chroma Hue ...................................................................................................................... 48  
Chrominance Processing Control 1 ........................................................................................... 49  
Chrominance Processing Control 2 ........................................................................................... 50  
R/Pr Saturation .................................................................................................................. 50  
G/Y Saturation ................................................................................................................... 50  
B/Pb Saturation .................................................................................................................. 51  
G/Y Brightness ................................................................................................................... 51  
AVID Start Pixel .................................................................................................................. 51  
AVID Stop Pixel .................................................................................................................. 52  
HS Start Pixel .................................................................................................................... 52  
HS Stop Pixel .................................................................................................................... 52  
VS Start Line ..................................................................................................................... 52  
VS Stop Line ..................................................................................................................... 53  
VBLK Start Line .................................................................................................................. 53  
VBLK Stop Line .................................................................................................................. 53  
Embedded Sync Offset Control 1 ............................................................................................. 53  
Embedded Sync Offset Control 2 ............................................................................................. 54  
Fast-Switch Control ............................................................................................................. 54  
Fast-Switch Overlay Delay ..................................................................................................... 55  
Fast-Switch SCART Delay ..................................................................................................... 55  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
3-17  
3-18  
3-19  
3-20  
3-21  
3-22  
3-23  
3-24  
3-25  
3-26  
3-27  
3-28  
3-29  
3-30  
3-31  
3-32  
3-33  
3-34  
3-35  
Copyright © 20052011, Texas Instruments Incorporated  
List of Tables  
5
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
3-36  
3-37  
3-38  
3-39  
3-40  
3-41  
3-42  
3-43  
3-44  
3-45  
3-46  
3-47  
3-48  
3-49  
3-50  
3-51  
3-52  
3-53  
3-54  
3-55  
3-56  
3-57  
3-58  
3-59  
3-60  
3-61  
3-62  
3-63  
3-64  
3-65  
3-66  
3-67  
3-68  
3-69  
3-70  
3-71  
3-72  
3-73  
3-74  
3-75  
3-76  
3-77  
3-78  
3-79  
3-80  
3-81  
3-82  
3-83  
Overlay Delay .................................................................................................................... 55  
SCART Delay .................................................................................................................... 56  
CTI Control ....................................................................................................................... 56  
Brightness and Contrast Range Extender .................................................................................... 56  
Component Autoswitch Mask .................................................................................................. 57  
Sync Control ..................................................................................................................... 57  
Output Formatter Control 1 ..................................................................................................... 58  
Output Formatter Control 2 ..................................................................................................... 58  
Output Formatter Control 3 ..................................................................................................... 59  
Output Formatter Control 4 ..................................................................................................... 59  
Output Formatter Control 5 ..................................................................................................... 60  
Output Formatter Control 6 ..................................................................................................... 60  
Clear Lost Lock Detect .......................................................................................................... 61  
Status 1 ........................................................................................................................... 61  
Status 2 ........................................................................................................................... 62  
AGC Gain Status ................................................................................................................ 62  
Video Standard Status .......................................................................................................... 63  
GPIO Input 1 ..................................................................................................................... 63  
GPIO Input 2 ..................................................................................................................... 64  
Back End AGC Status 1 ........................................................................................................ 64  
AFE Coarse Gain for CH 1 ..................................................................................................... 64  
AFE Coarse Gain for CH 2 ..................................................................................................... 65  
AFE Coarse Gain for CH 3 ..................................................................................................... 65  
AFE Coarse Gain for CH 4 ..................................................................................................... 65  
AFE Fine Gain for B/Pb ......................................................................................................... 66  
AFE Fine Gain for G/Y/Chroma ............................................................................................... 66  
AFE Fine Gain for R/Pr ......................................................................................................... 66  
AFE Fine Gain for CVBS/Luma ................................................................................................ 67  
656 Version ....................................................................................................................... 67  
SDRAM Control .................................................................................................................. 67  
3DNR Y Noise Sensitivity ...................................................................................................... 68  
3DNR UV Noise Sensitivity .................................................................................................... 68  
3DNR Y Coring Threshold Limit ............................................................................................... 68  
3DNR UV Coring Threshold Limit ............................................................................................. 68  
3DNR Low Noise Limit .......................................................................................................... 68  
"Blue" Screen Y Control ........................................................................................................ 68  
"Blue" Screen Cb Control ....................................................................................................... 68  
"Blue" Screen Cr Control ....................................................................................................... 69  
"Blue" Screen LSB Control ..................................................................................................... 69  
Noise Measurement ............................................................................................................. 69  
3DNR Y Core0 ................................................................................................................... 69  
3DNR UV Core0 ................................................................................................................. 69  
F- and V-Bit Decode Control ................................................................................................... 70  
Back-End AGC Control ......................................................................................................... 71  
AGC Decrement Speed ......................................................................................................... 71  
ROM Version ..................................................................................................................... 71  
RAM Version MSB .............................................................................................................. 71  
AGC White Peak Processing .................................................................................................. 72  
6
List of Tables  
Copyright © 20052011, Texas Instruments Incorporated  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
3-84  
3-85  
3-86  
3-87  
3-88  
3-89  
3-90  
3-91  
3-92  
3-93  
3-94  
3-95  
3-96  
3-97  
3-98  
3-99  
F-Bit and V-Bit Control .......................................................................................................... 72  
AGC Increment Speed .......................................................................................................... 73  
AGC Increment Delay ........................................................................................................... 73  
Analog Output Control 1 ........................................................................................................ 73  
Chip ID MSB ..................................................................................................................... 73  
Chip ID LSB ...................................................................................................................... 73  
RAM Version LSB ............................................................................................................... 74  
Color PLL Speed Control ....................................................................................................... 74  
3DYC Luma Coring LSB ........................................................................................................ 74  
3DYC Chroma Coring LSB ..................................................................................................... 74  
3DYC Luma/Chroma Coring MSB ............................................................................................ 74  
3DYC Luma Gain ................................................................................................................ 75  
3DYC Chroma Gain ............................................................................................................. 75  
3DYC Signal Quality Gain ...................................................................................................... 75  
3DYC Signal Quality Coring .................................................................................................... 75  
IF Compensation Control ....................................................................................................... 76  
3-100 IF Differential Gain Control ..................................................................................................... 76  
3-101 IF Low Frequency Gain Control ............................................................................................... 76  
3-102 IF High Frequency Gain Control ............................................................................................... 76  
3-103 Weak Signal High Threshold ................................................................................................... 76  
3-104 Weak Signal High Threshold ................................................................................................... 77  
3-105 Status Request .................................................................................................................. 77  
3-106 3DYC NTSC VCR Threshold .................................................................................................. 77  
3-107 3DYC PAL VCR Threshold ..................................................................................................... 77  
3-108 Vertical Line Count .............................................................................................................. 77  
3-109 AGC Decrement Delay ......................................................................................................... 78  
3-110 VDP TTX Filter and Mask ...................................................................................................... 78  
3-111 VDP TTX Filter Control ......................................................................................................... 79  
3-112 VDP FIFO Word Count ......................................................................................................... 80  
3-113 VDP FIFO Interrupt Threshold ................................................................................................. 81  
3-114 VDP FIFO Reset ................................................................................................................. 81  
3-115 VDP FIFO Output Control ...................................................................................................... 81  
3-116 VDP Line Number Interrupt .................................................................................................... 81  
3-117 VDP Pixel Alignment ............................................................................................................ 82  
3-118 VDP Line Start ................................................................................................................... 82  
3-119 VDP Line Stop ................................................................................................................... 82  
3-120 VDP Global Line Mode ......................................................................................................... 82  
3-121 VDP Full Field Enable .......................................................................................................... 82  
3-122 VDP Full Field Mode ............................................................................................................ 83  
3-123 Interlaced/Progressive Status .................................................................................................. 83  
3-124 VBUS Data Access with No VBUS Address Increment .................................................................... 83  
3-125 VBUS Data Access with VBUS Address Increment ........................................................................ 83  
3-126 VDP FIFO Read Data ........................................................................................................... 83  
3-127 VBUS Address ................................................................................................................... 84  
3-128 Interrupt Raw Status 0 .......................................................................................................... 84  
3-129 Interrupt Raw Status 1 .......................................................................................................... 85  
3-130 Interrupt Status 0 ................................................................................................................ 85  
3-131 Interrupt Status 1 ................................................................................................................ 86  
Copyright © 20052011, Texas Instruments Incorporated  
List of Tables  
7
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
3-132 Interrupt Mask 0 ................................................................................................................. 86  
3-133 Interrupt Mask 1 ................................................................................................................. 86  
3-134 Interrupt Clear 0 ................................................................................................................. 87  
3-135 Interrupt Clear 1 ................................................................................................................. 87  
3-136 VDP Closed Caption Data ...................................................................................................... 88  
3-137 VDP WSS/CGMS Data ......................................................................................................... 88  
3-138 VDP VITC Data .................................................................................................................. 89  
3-139 VDP V-Chip TV Rating Block 1 ................................................................................................ 89  
3-140 VDP V-Chip TV Rating Block 2 ................................................................................................ 89  
3-141 VDP V-Chip TV Rating Block 3 ................................................................................................ 90  
3-142 VDP V-Chip MPAA Rating Data ............................................................................................... 90  
3-143 VDP General Line Mode and Line Address .................................................................................. 91  
3-144 VDP VPS, Gemstar EPG Data ................................................................................................ 92  
3-145 Analog Output Control 2 ........................................................................................................ 93  
3-146 Interrupt Configuration .......................................................................................................... 93  
3-147 Interrupt Raw Status 1 .......................................................................................................... 93  
3-148 Interrupt Status 1 ................................................................................................................ 94  
3-149 Interrupt Mask 1 ................................................................................................................. 94  
3-150 Interrupt Clear 1 ................................................................................................................. 94  
6-1  
Memories Tested ............................................................................................................... 103  
Revision History................................................................................................................. 106  
8-1  
8
List of Tables  
Copyright © 20052011, Texas Instruments Incorporated  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
NTSC/PAL/SECAM/Component 2x10-Bit Digital Video Decoder  
Check for Samples: TVP5160  
1
Introduction  
1.1 Features  
1
Two 11-Bit 60-MSPS Analog-to-Digital (A/D)  
Converters With Analog Preprocessors  
(Clamp/AGC)  
Fast Switch 4x Oversampled Input for Digital  
RGB Overlay Switching Between Any CVBS,  
S-Video, or Component Video Input  
Fixed RGB-to-YUV Color Space Conversion  
Robust Sync Detection for Weak and Noisy  
SCART 4x Oversampled Fast Switching  
Between Component RGB Input and CBVS  
Input  
Signals as Well as VCR  
Analog Video Output  
Chrominance Processor  
Luminance Processor  
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I,  
M, N, Nc, 60) and SECAM (B, D, G, K, K1, L)  
CVBS, S-Video  
Supports Component Standards 480i, 576i,  
Clock/Timing Processor and Power-Down  
480p, and 576p  
Control  
Supports ITU-R BT.601 Pixel Sampling  
Output Formatter Supports Both ITU-R BT.656  
(Embedded Syncs) and ITU-R BT.601 (4:2:2  
With Discrete Syncs)  
Frequencies  
Supports 3D Y/C Separation, or 2D 5-Line (5H)  
Adaptive Comb and Chroma Trap Filter for  
Both PAL and NTSC Signals  
Concurrent Temporal, Frame Recursive, Noise  
Reduction (3DNR)  
IF Compensation  
I2C Host Port Interface  
VBI Data Processor  
"Blue" Screen (Programmable Color) Output  
MacrovisionCopy Protection Detection  
Circuit (Types 1, 2, and 3) on Both Interlaced  
and Progressive Signals  
Line-Based Time Base Correction (TBC)  
1.2 Applications  
Digital TV  
LCD TV/Monitors  
DVD-R  
PVR  
PC Video Cards  
Video Capture/Video Editing  
Video Conferencing  
1.3 Description  
The TVP5160 device is a high quality, digital video decoder that digitizes and decodes all popular  
baseband analog video formats into digital component video. The TVP5160 decoder supports the A/D  
conversion of component YPbPr and RGB (SCART) signals, as well as the A/D conversion and decoding  
of NTSC, PAL, and SECAM composite and S-Video into component YCbCr. Additionally, component  
progressive signals can be digitized. The chip includes two 11-bit, 60-MSPS, A/D converters (ADCs). Prior  
to each ADC, each analog channel contains an analog circuit, which clamps the input to a reference  
voltage and applies a programmable gain and offset. A total of 12 video input terminals can be configured  
to a combination of YPbPr, RGB, CVBS, and S-Video video inputs.  
Progressive component signals are sampled at 2× clock frequency (54 MHz) and are then decimated to  
the 1× rate. In SCART mode the component inputs and the CVBS inputs are sampled at 54 MHz  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2011, Texas Instruments Incorporated  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
alternately, then decimated to the 1× rate. Composite or S-Video signals are sampled at 4× the ITU-R  
BT.601 clock frequency (54 MHz), line-locked for correct pixel alignment, and are then decimated to the  
1× rate. CVBS decoding uses advanced 3D Y/C filtering and 2-dimensional complementary 5-line adaptive  
comb filtering for both the luma and chroma data paths to reduce both cross-luma and cross-chroma  
artifacts. 3D Y/C color separation may be used on both PAL and NTSC video signals. A chroma trap filter  
is also available. On CVBS and Y/C inputs, the user can control video characteristics such as hue,  
contrast, brightness, and saturation via an I2C host port interface. Furthermore, luma peaking with  
programmable gain is included, as well as a patented color transient improvement (CTI) circuit.  
Attenuation at higher frequencies or asymmetrical color subcarrier sidebands are compensated using the  
IF compensation block. Frame adaptive noise reduction may be applied to reduce temporal noise on  
CVBS, S-Video, or component inputs.  
3D noise reduction and 3D Y/C separation may be used at the same time or independently.  
The TVP5160 decoder uses Texas Instruments' patented technology for locking to weak, noisy, or  
unstable signals and can auto-detect between broadcast quality and VCR-style (nonstandard) video  
sources.  
The TVP5160 decoder generates synchronization, blanking, field, active video window, horizontal and  
vertical syncs, clock, genlock (for downstream video encoder synchronization), host CPU interrupt and  
programmable logic I/O signals, in addition to digital video outputs.  
The TVP5160 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The  
VBI data processor (VDP) slices and performs error checking on teletext, closed caption, and other VBI  
data. A built-in FIFO stores up to 11 lines of teletext data, and, with proper host port synchronization,  
full-screen teletext retrieval is possible. The TVP5160 decoder can pass through the output formatter 2×  
sampled raw Luma data for host-based VBI processing.  
Digital RGB overlay can be synchronously switched with any video input, with all signals being  
oversampled at 4× the pixel rate.  
The TVP5160 detailed functionality includes:  
Two high-speed, 60-MSPS, 11-bit, A/D channels with programmable clamp and gain control  
The two ADCs can sample CVBS or S-Video at 54 MHz. YPbPr/RGB is multiplexed between the two  
ADCs which sample at 54 MHz giving a channel sampling frequency of 27 MHz.  
Supports ITU-R BT.601 pixel sampling frequencies.  
Supports ITU-R BT.601 sampling for both interlaced and progressive signals.  
RGB-to-YUV color space conversion for SCART signals  
3D Y/C separation or 2D 5-line (5H) adaptive comb and chroma trap filter  
3-frame NTSC and PAL color separation  
Temporal frame recursive noise reduction (3DNR)  
Frame recursive noise reduction can be applied to interlaced CVBS, S-Video, or component inputs for  
interlaced signals. Noise reduction can be used at the same time as 3D Y/C separation. Noise  
reduction cannot be applied to progressive video signals.  
Line-based time base correction (TBC)  
Line-based time correction corrects for horizontal phase errors encountered during video decoding up  
to ±80 pixels of error. This improves the output video quality from jittery sources such as VCRs. It also  
reduces line tearing during video trick modes such as fast forward and rewind.  
IF compensation  
Attenuation at higher frequencies or asymmetrical color subcarrier sidebands are compensated using  
the IF compensation block  
Fast switch 4× oversampling for digital RGB overlay signals for switching between any CVBS, S-Video,  
or component video inputs  
The fast switch overlay signals (FSO, DR, DG, DB) are oversampled at 4× the pixel clock frequency.  
The phase of these signals is used to mix the selected video input format and a digital RGB input to  
10  
Introduction  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
generate an output video stream. This improves the overlay picture quality when the external FSO and  
digital RGB signals are generated by an asynchronous source.  
SCART 4x oversampled fast switching between component RGB input and CBVS input  
The SCART overlay control signal (FSS) is oversampled at 4x the pixel clock frequency. The phase of  
this signal is used to mix between the CVBS input and the analog RGB inputs. This improves the  
analog overlay picture quality when the external FSS and analog video signals are generated by an  
asynchronous source.  
Analog video output  
Buffered analog output with automatic PGA  
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60), SECAM (B, D, G, K, K1, L), CVBS, and  
S-Video  
Twelve analog video input terminals for multi-source connection  
User-programmable video output formats  
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs  
20-bit 4:2:2 YCbCr with discrete syncs  
10-bit 4:2:2 YCbCr with discrete syncs  
2× sampled raw VBI data in active video during a vertical blanking period  
Sliced VBI data during a horizontal blanking period  
HS/VS outputs with programmable position, polarity, and width and FID (Field ID) output  
Composite and S-Video processing  
Adaptive 3D/2D Y/C separation using 5-line adaptive comb filter for composite video inputs;  
chroma-trap available  
Automatic video standard detection and switching (NTSC/PAL/SECAM/progressive)  
Luma-peaking with programmable gain  
Output data rates either 1× or 2× pixel rate  
Patented architecture for locking to weak, noisy, or unstable signals  
Single 14.31818-MHz reference crystal for all standards (ITU-R.BT601 sampling, interlaced or  
progressive)  
Line-locked internal pixel sampling clock generation with horizontal and vertical lock signal outputs  
Certified Macrovision copy protection detection on composite and S-Video inputs (NTSC, PAL)  
Genlock output (RTC) for downstream video encoder synchronization  
Vertical blank interval data processor  
Teletext (NABTS, WST)  
Closed caption (CC) and extended data service (XDS)  
Wide screen signaling (WSS)  
Copy generation management system (CGMS)  
Video program system (VPS/PDC)  
Vertical interval time code (VITC)  
EPG video guide 1×/2× (Gemstar)  
V-Chip decoding  
Custom mode  
Register readback of CC, CGMS, WSS, VPS, VITC, V-Chip, EPG 1× and 2× sliced data, CGMS-A  
and RC for progressive signals.  
I2C host port interface  
"Blue" screen output  
Macrovision copy protection detection circuit (types 1, 2, and 3) on both interlaced and progressive  
signals  
Macrovision detection on standard definition signals of types 1, 2, and 3, and to Revision 1.2 for  
Copyright © 20052011, Texas Instruments Incorporated  
Introduction  
11  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
progressive signals  
Reduced power consumption: 1.8-V digital core, 3.3-V and 1.8-V analog core with power-save and  
power-down modes  
128-TQFP PowerPADpackage  
1.4 Related Products  
TVP5146M2  
TVP5147M1  
TVP5150AM1  
TVP5151  
TVP5154A  
TVP5158  
1.5 Trademarks  
TI and PowerPAD are trademarks of Texas Instruments.  
Macrovision is a trademark of Macrovision Corporation.  
Gemstar is a trademark of Gemstar-TV Guide International.  
Other trademarks are the property of their respective owners  
1.6 Document Conventions  
Throughout this data manual, several conventions are used to convey information. These conventions are  
listed below:  
1. To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit  
binary field.  
2. To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a  
12-bit hexadecimal field.  
3. All other numbers that appear in this document that do not have either a b or h following the number  
are assumed to be decimal format.  
4. If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates  
the logical NOT function. When asserted, this signal is a logic low, 0, or 0b.  
5. RSVD indicates that the referenced item is reserved.  
1.7 Ordering Information(1)  
PACKAGED DEVICES(2)  
TA  
PACKAGE OPTION  
128-PIN TQFP PowerPAD™  
0°C to 70°C  
TVP5160PNP  
Tray  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
12  
Introduction  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
1.8 Functional Block Diagram  
INTREQ  
SDA  
SCL  
Control  
Address  
Data  
GLCO  
HS/CS  
VS/VBLK  
FID  
AVID  
SCLK  
RESETB  
PWDN  
XOUT  
XIN  
Copyright © 20052011, Texas Instruments Incorporated  
Introduction  
13  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
1.9 Terminal Assignments  
The TVP5160 video decoder is packaged in a 128-terminal PNP PowerPAD package. Figure 1-1 is the  
PNP-package terminal diagram. Table 1-1 gives a description of the terminals.  
PNP PACKAGE  
(TOP VIEW)  
PNP PACKAGE  
(TOP VIEW)  
Y_2  
A33GND  
A33VDD  
VI_1  
1
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Y_3  
2
Y_4  
3
IOGND  
IOVDD  
Y_5  
VI_2  
4
VI_3  
5
NC  
6
Y_6  
VI_4  
7
Y_7  
VI_5  
8
Y_8  
VI_6  
9
Y_9  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DGND  
DVDD  
SCLK  
GLCO/GPIO/I2CA0  
GPIO/I2CA1  
A3  
A18VDD  
A18GND  
A18VDD  
A18GND  
A18GND  
A18VDD  
VI_7  
A2  
A1  
VI_8  
A0  
VI_9  
A10  
NC  
BA1  
VI_10  
VI_11  
IOGND  
IOVDD  
BA0  
VI_12  
NC  
RAS  
A33VDD  
A33GND  
A33GND  
A33GND  
DGND  
SCL  
CAS  
WE  
A4  
A5  
A6  
DGND  
DVDD  
SDA  
INTREQ  
Figure 1-1. TVP5160 PNP-Package Terminal Diagram  
14  
Introduction  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 1-1. Terminal Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Analog Video  
VI_1  
VI_2  
VI_3  
VI_4  
VI_5  
VI_6  
VI_7  
VI_8  
VI_9  
VI_10  
VI_11  
VI_12  
3
4
5
7
8
I
VI_x: analog video inputs  
Up to 12 composite, 6 S-Video, or 3 component video inputs (or combinations thereof) can  
be  
supported. Also, 4-channel SCART is supported.  
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.  
The possible input configurations are listed in the input select register 00h.  
Unused inputs must be connected to ground through 0.1-µF capacitors.  
9
17  
18  
19  
21  
22  
23  
Analog_out  
Clock Signals  
XIN  
127  
O
Unbuffered analog video output  
121  
122  
84  
I
External clock reference input. It may connected to external oscillator with 1.8-V compatible  
clock signal or 14.31818-MHz crystal oscillator.  
XOUT  
O
O
External clock reference output. Not connected if XTAL1 is driven by an external  
single-ended oscillator.  
SCLK  
Line-locked data output clock  
Digital Video  
Y[9:0]  
8791,  
9498  
O
Digital video output of Y/YCbCr, Y_9 is MSB and Y_0 is LSB. For 8-bit operation, the upper  
8 bits must be connected.  
C[9:0] / GPIO  
101104,  
107110,  
113, 114  
I/O  
Digital video output of CbCr, C_9 is MSB and C_0 is LSB. These terminals can be  
programmable general purpose I/O, or as digital overlay controls. For 8-bit operation, the  
upper 8 bits must be connected.  
FSO  
DB  
DG  
DR  
101  
102  
103  
104  
I
I
I
I
Fast-switch overlay between digital RGB and any video input  
Digital BLUE input from overlay device  
Digital GREEN input from overlay device  
Digital RED input from overlay device  
Unused GPIO pins must be either configured as outputs, or tied to either IOVDD or DGND  
Miscellaneous Signals  
RESETB  
PWDN  
36  
35  
I
I
Reset input, active low  
Power down input  
1 = Power down  
0 = Normal mode  
GLCO /  
GPIO / I2CA0  
83  
82  
I/O  
Genlock control output (GLCO). Supports the real-time control (RTC) format. This pin can  
also be configured as a general-purpose I/O (GPIO).  
During power on reset this pin is sampled along with pin 82 (I2CA1) as an input to determine  
the I2C address the device will be configured to. A 10-kΩ resistor pulls this either high (to  
IOVDD) or low to select between addresses.  
GPIO / I2CA1  
I/O  
Programmable general purpose I/O  
During power on reset this pin is sampled along with pin 83 (I2CA0) as an input to determine  
the I2C address the device will be configured to. A 10-kΩ resistor pulls this either high (to  
IOVDD) or low to select between addresses.  
INTREQ  
FSS  
32  
119  
O
I
Interrupt request output (open drain when programmed to be active low)  
SCART fast switch input  
NC  
6, 10, 20, 24  
N/A  
No internal connection. Connect to AGND through 0.1-µF capacitors for future compatibility.  
Host Interface  
SDA  
31  
30  
I/O  
I/O  
I2C data bus  
I2C clock input  
SCL  
Copyright © 20052011, Texas Instruments Incorporated  
Introduction  
15  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 1-1. Terminal Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Power Supplies  
A33GND  
1, 26, 27,  
P
Analog 3.3-V return. Connect to analog ground.  
28, 126, 128  
A33VDD  
2, 25, 125  
12, 14, 15  
11, 13, 16  
124  
P
P
P
P
P
P
Analog power. Connect to analog 3.3-V supply.  
Analog 1.8-V return. Connect to analog ground.  
Analog power. Connect to analog 1.8-V supply.  
Analog power return. Connect to analog ground.  
Analog power. Connect to analog 1.8-V supply.  
Digital return. Connect to digital ground.  
A18GND  
A18VDD  
PLL18GND  
PLL18VDD  
123  
DGND  
29, 34, 48,66,  
86, 100,112,  
120  
DVDD  
33, 47, 65,85,  
99, 111  
P
P
P
Digital core power. Connect to 1.8-V supply.  
Digital power return. Connect to digital ground.  
Digital I/O power. Connect to digital 3.3-V supply.  
IOGND  
38, 58, 75,93,  
106  
IOVDD  
37, 57, 74,92,  
105  
Sync Signals  
HS / CS /  
GPIO  
117  
118  
116  
I/O  
I/O  
I/O  
Horizontal sync output or digital composite sync output  
Programmable general purpose I/O  
Unused GPIO pins must be either configured as outputs, or tied to either IOVDD or DGND  
VS / VBLK /  
GPIO  
Vertical sync output. (for modes with dedicated VS) or vertical blanking output  
Programmable general purpose I/O  
Unused GPIO pins must be either configured as outputs, or tied to either IOVDD or DGND  
FID / GPIO  
Odd/even field indicator  
Programmable general purpose I/O This pin must be pulled low through a 10-kΩ resistor for  
correct device operation.  
AVID / GPIO  
115  
I/O  
O
Active video indicator  
Programmable general purpose I/O  
Unused GPIO pins must be either configured as outputs, or tied to either IOVDD or DGND  
SDRAM Interface  
Address[11:0]  
61, 77,  
SDRAM address bus  
6264,  
6769, 8178  
D[15:0]  
WE  
4956, 4639  
I/O  
O
SDRAM data bus  
70  
71  
SDRAM write enable  
SDRAM CAS enable  
CAS  
O
RAS  
72  
O
SDRAM RAS enable  
DQM  
59  
O
SDRAM input/output mask for data  
SDRAM bank address  
SDRAM 108-MHz clock  
BA[1:0]  
SDRAM_CLK  
76, 73  
60  
O
O
16  
Introduction  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
2
Functional Description  
2.1 Analog Processing and A/D Converters  
Figure 2-1 shows a functional diagram of the analog processors and A/D converters (ADCs). This block  
provides the analog interface to all video inputs. It accepts up to 12 inputs and performs source selection,  
video clamping, video amplification, A/D conversion, and gain and offset adjustments to center the  
digitized video signal. The TVP5160 decoder supports one analog video output.  
M
U
X
Analog_out  
PGA  
Clamp  
VI_1  
M
U
X
Buffer  
VI_2  
VI_3  
ADC  
PGA  
ADC1 Out  
VI_4  
M
U
X
Buffer  
VI_5  
VI_6  
Clamp  
Clamp  
VI_7  
M
U
X
Buffer  
VI_8  
VI_9  
ADC  
PGA  
ADC2 Out  
VI_10  
M
U
X
Buffer  
VI_11  
VI_12  
Line-Locked  
Sampling Clock  
Clamp  
Figure 2-1. Analog Processors and A/D Converters  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
17  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
2.1.1 Video Input Switch Control  
The TVP5160 decoder has two analog channels that accept up to 12 video inputs. The user can configure  
the internal analog video switches via I2C. The 12 analog video inputs can be used for different input  
configurations, some of which are:  
12 CVBS video inputs  
4 S-Video inputs and 2 CVBS inputs  
3 YPbPr video inputs and 3 CVBS input  
2 YPbPr video inputs, 2 S-Video inputs, and 2 CVBS inputs  
The input selection is performed by the input select register at I2C subaddress 00h.  
2.1.2 480p and 576p Component YPbPr  
The TVP5160 decoder supports progressive component video inputs. The YPbPr inputs of the TVP5160  
decoder may accept 480p or 576p progressive inputs. The Y channel is fed into one ADC while PbPr are  
sampled alternatively by the other ADC.  
2.1.3 Analog Input Clamping  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit  
provides line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection  
between bottom and mid clamp is performed automatically by the TVP5160 decoder.  
2.1.4 Automatic Gain Control  
The TVP5160 decoder uses two programmable gain amplifiers (PGAs); one per channel. The PGA can  
scale a signal with a voltage input compliance of 0.5 VPP to 2.0 VPP to a full-scale, 11-bit, A/D output code  
range. A 4-bit code sets the coarse gain with individual adjustment per channel. Minimum gain  
corresponds to a code 0x0 (2.0-VPP full-scale input, 6 dB gain) while maximum gain corresponds to code  
0xF (0.5-VPP full scale, +6 dB gain). The TVP5160 decoder also has 12-bit fine gain controls for each  
channel and applies independently to coarse gain controls. For composite video, the input video signal  
amplitude may vary significantly from the nominal level of 1 VPP. The TVP5160 decoder can adjust its  
PGA setting automatically: an automatic gain control (AGC) can be enabled and can adjust the signal  
amplitude such that the maximum input range of the ADC is reached without clipping. Some nonstandard  
video signals contain peak white levels that saturate the ADC. In these cases, the AGC automatically cuts  
back gain to avoid clipping. If the AGC is on, then the TVP5160 decoder can read the gain currently being  
used.  
The TVP5160 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C  
separation. The back-end AGC restores the optimum system gain whenever an amplitude reference, such  
as the composite peak (which is only relevant before Y/C separation), forces the front-end AGC to set the  
gain too low. The front-end and back-end AGC algorithms can use up to four amplitude references: sync  
height, color burst amplitude, composite peak, and luma peak.  
The specific amplitude references being used by the front-end and back-end AGC algorithms can be  
independently controlled using the AGC white peak processing register located at subaddress 74h. The  
TVP5160 gain increment speed and gain increment delay can be controlled using the AGC increment  
speed register located at subaddress 78h and the AGC increment delay register located at subaddress  
79h, respectively.  
2.1.5 Analog Video Output  
Any one of the analog input signals is available at the analog video output pin. The signal at this pin must  
be buffered by a source follower if it drives a 75-Ω resister. The nominal output voltage is 2 VPP, and the  
signal can drive a 75-Ω line when buffered. The magnitude is maintained with a PGA in 16 steps  
controlled by the TVP5160 decoder.  
18  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
2.1.6 A/D Converters  
All ADCs have a resolution of 11 bits and can operate up to 60 MSPS. All A/D channels receive an  
identical clock from the on-chip, phase-locked loop (PLL) at a frequency between 24 MHz and 60 MHz. All  
ADC reference voltages are generated internally.  
2.2 Digital Video Processing  
This block receives digitized video signals from the ADCs and performs composite processing for CVBS  
and S-Video inputs, YCbCr signal enhancements for CVBS and S-Video inputs. It also generates  
horizontal and vertical syncs, and other output control signals such as RTC for CVBS and S-Video inputs.  
Additionally, it can provide field identification, horizontal and vertical lock, vertical blanking, and active  
video window indication signals. The digital data output can be programmed to two formats: 20-bit 4:2:2  
with external syncs or 10-bit 4:2:2 with embedded/discrete syncs. The circuit detects pseudo sync pulses,  
AGC pulses and color striping in Macrovision-encoded copy protected material. Information present in the  
VBI interval can be retrieved and either inserted in the ITU-R.BT656 output as ancillary data or stored in  
an internal FIFO for retrieval via the I2C interface.  
2.2.1 2x Decimation Filter  
All input signals are typically oversampled by a factor of 4 (54 MHz). The A/D outputs first pass through  
decimation filters that reduce the data rate to 1× pixel rate. The decimation filter is a half-band filter.  
Oversampling and decimation filtering can effectively increase the overall signal-to-noise ratio by 3 dB.  
2.2.2 Composite Processor  
The TVP5160 digital composite video processing circuit receives a digitized composite or S-Video signal  
from the ADCs and performs 2D or 3D Y/C separation (bypassed for S-Video input), chroma demodulation  
for PAL/NTSC and SECAM, and YUV signal enhancements.  
2.2.3 Color Low-Pass Filter  
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for  
nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter  
bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the  
three notch filters.  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
19  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
2.2.4 Y/C Separation  
Y/C separation may be done using 3D or 2D adaptive 5-line (5-H delay) comb filters or chroma trap filter  
for both NTSC and PAL video standards as shown in Table 2-1. The comb filter can be selectively  
bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma notch  
filters are used. TI's patented adaptive comb filter algorithm reduces artifacts such as hanging dots at  
color boundaries. It detects and properly handles false colors in high-frequency luminance images such as  
a multiburst pattern or circle pattern.  
Table 2-1. Y/C Separation Support by Video Standard  
Video Standard  
NTSC-M  
2D Y/C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
3D Y/C  
Yes  
Yes  
Yes  
Yes  
No  
NTSC-J  
PAL-B, D, G, H, I  
PAL-N  
PAL-M  
PAL-Nc  
No  
NTSC-4.43, PAL-60  
SECAM  
No  
No  
2.2.5 3D Frame Recursive Noise Reduction  
The TI proprietary frame recursive noise reduction or 3DNR reduces the level of noise in CVBS, S-Video,  
or component inputs by comparing multiple frames of data and canceling out the resulting noise. The  
3DNR uses the same frame buffer memory used by the 3DYC. The 3DNR may function concurrently with  
3DYC.  
There are various modes of operation for the 3DNR and 3DYC:  
MODES  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
OPERATION  
3DYC + 3DNR  
3DYC only  
MEMORY REQUIRED  
4 MBytes  
2 MBytes  
2D 5-line CF + 3DNR  
2D only (default  
2 MBytes  
None  
2.2.6 Time Base Corrector  
The time base corrector monitors and corrects for horizontal PLL phase offsets up to ±80 pixels. This  
improves video decoder output quality by removing artifacts due to jittery horizontal syncs from broadcast  
stations. It also reduces line tearing during VCR trick modes such as fast forward and rewind. 3DYC,  
frame recursive noise reduction (3DNR), and time base correction (TBC) can be used simultaneously or  
independently. Because TBC does not require any external memory, it can be used in all configurations.  
2.2.7 IF Compensation  
Attenuation of higher frequencies from the tuners input characteristics or due to channels that are not  
correctly tuned can be corrected in the IF compensation block. This block can correct for uneven  
sidebands resulting in incorrect and uneven UV demodulation.  
20  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
2.2.8 Luminance Processing  
The luma component is derived from the composite signal by subtracting the remodulated chroma  
information. The luminance signal is then fed to the input of a peaking circuit. Figure 2-2 illustrates the  
basic functions of the luminance data path. In the case of S-Video, the luminance signal bypasses the  
comb filter or chroma trap filter and is fed to the circuit directly. A peaking filter (edge-enhancer) amplifies  
high frequency components of the luminance signal. Figure 2-3 shows the characteristics of the peaking  
filter at four different gain settings that are user-programmable by the I2C.  
Gain  
Peak  
Detector  
Bandpass  
Filter  
Peaking  
Filter  
x
IN  
Delay  
+
OUT  
Figure 2-2. Luminance Edge-Enhancer Peaking Block  
Figure 2-3. Peaking Filter Frequency Response NTSC/PAL ITU_R BT.601 Sampling  
2.2.9 Color Transient Improvement  
Color transient improvement (CTI) enhances horizontal color transients. The color difference signal  
transition points are maintained, but the edges are enhanced for signals which have bandwidth limited  
color components.  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
21  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
2.3 Clock Circuits  
An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to  
drive the PLL. This may be input to the TVP5160 decoder at 1.8-V level on terminal 121 (XIN), or a crystal  
of 14.31818-MHz fundamental resonant frequency may be connected across terminals 121 (XIN) and 122  
(XOUT). If a parallel resonant circuit is used as shown in Figure 2-4, then the external capacitors must  
have following relationship:  
CL1 = CL2 = 2CL CSTRAY  
Where,  
CSTRAY is the pin capacitance with respect to ground  
CL is the crystal load capacitance specified by the crystal manufacturer  
Figure 2-4 shows the reference clock configurations. The TVP5160 decoder generates the SCLK signal  
used for clocking data.  
NOTE  
See crystal data sheet for correct loading specifications.  
TVP5160  
TVP5160  
121  
122  
121  
122  
14.31818-MHz  
1.8-V Clock  
XIN  
XIN  
CL1  
14.31818-MHz  
Crystal  
R
CL2  
XOUT  
NC  
XOUT  
Note: The resistor (R) in parallel with the crystal is recommended to support a wide range of crystal types. A 100-kΩ resistor  
may be used for most crystal types.  
Figure 2-4. Reference Clock Configuration  
2.4 Real-Time Control (RTC)  
Although the TVP5160 decoder is a line-locked system, the color burst information is used to accurately  
determine the color subcarrier frequency and phase. This ensures proper operation with nonstandard  
video signals that do not follow exactly the required frequency multiple between color subcarrier frequency  
and video line frequency. The frequency control word of the internal color subcarrier PLL and the  
subcarrier reset bit are transmitted via the terminal 83 (GLCO) for optional use in an end system (for  
example, by a video encoder). The frequency control word is a 23-bit binary number. The instantaneous  
frequency of the color subcarrier can be calculated from the following equation:  
F
CTRL  
FPLL  
=
× FSCLK  
233  
where FPLL is the frequency of the subcarrier PLL, FCTRL is the 23-bit PLL frequency control word and  
FSCLK is the 2× pixel frequency.  
22  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Valid  
Sample  
Valid  
Sample  
Reserved  
M
S
B
L
S
B
RTC  
Mode  
S
R
22  
0
18 CLK  
1 CLK  
45 CLK  
23-Bit Fsc PLL Increment  
3 CLK  
128 CLK  
Start  
Bit  
Figure 2-5. RTC Timing  
RTC:  
Reset bit (R) is active low  
Sequence bit (S) PAL:  
1 = (R-Y) line normal  
0 = (R-Y) line inverted  
NTSC: 1 = no change  
2.5 Output Formatter  
The output formatter sets how the data is formatted for output on the TVP5160 output buses. Table 2-2  
shows the available output modes.  
Table 2-2. Output Format  
TERMINAL  
NAME  
TERMINAL  
NUMBER  
ITU-R BT.656  
10-Bit 4:2:2 YCbCr  
20-BIT 4:2:2  
YCbCr  
Y_9  
Y_8  
Y_7  
Y_6  
Y_5  
Y_4  
Y_3  
Y_2  
Y_1  
Y_0  
C_9  
C_8  
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
87  
88  
Cb9, Y9, Cr9  
Cb8, Y8, Cr8  
Cb7, Y7, Cr7  
Cb6, Y6, Cr6  
Cb5, Y5, Cr5  
Cb4, Y4, Cr4  
Cb3, Y3, Cr3  
Cb2, Y2, Cr2  
Cb1, Y1, Cr1  
Cb0, Y0, Cr0  
Y9  
Y8  
89  
Y7  
90  
Y6  
91  
Y5  
94  
Y4  
95  
Y3  
96  
Y2  
97  
Y1  
98  
Y0  
101  
102  
103  
104  
107  
108  
109  
110  
113  
114  
Cb9, Cr9  
Cb8, Cr8  
Cb7, Cr7  
Cb6, Cr6  
Cb5, Cr5  
Cb4, Cr4  
Cb3, Cr3  
Cb2, Cr2  
Cb1, Cr1  
Cb0, Cr0  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
23  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 2-3. Summary of Line Frequency, Data Rate, and Pixel/Line Counts  
ACTIVE  
PIXELS  
PER LINE  
COLOR  
SUBCARRIER  
FREQUENCY (MHz)  
PIXELS  
STANDARDS  
LINES PER PIXEL FREQ  
HORIZONTAL  
LINE RATE (kHz)  
PER LINE  
FRAME  
(MHz)  
ITU-R BT.601 sampling  
NTSC-J, M  
NTSC-4.43  
PAL-M  
858  
858  
858  
858  
864  
864  
864  
720  
720  
720  
720  
720  
720  
720  
525  
525  
525  
525  
625  
625  
625  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
3.579545  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
15.625  
PAL-Nc  
15.625  
Dr = 4.406250  
Db = 4.250000  
SECAM  
864  
720  
625  
13.5  
15.625  
The TVP5160 input-to-output processing delay depends on the operating mode and the video standard.  
When 3DYC is enabled, the processing delay is approximately 1 frame and 2-1/3 lines. When 3DYC is  
disabled, the processing delay is approximately 2-1/3 lines.  
2.6 Fast Switches for SCART and Digital Overlay  
The TVP5160 decoder supports the SCART interface used mainly in European audio/video end  
equipment to carry mono/stereo audio, composite video, S-Video, and RGB video on the same cable. In  
the event that composite video and RGB video are present simultaneously on the video pins assigned to a  
SCART interface, the TVP5160 decoder assumes they are pixel synchronous to each other. The timing for  
both composite video and RGB video is obtained from the composite source and its derived clock is used  
to sample RGB video as well. The fast-switch input pin allows switching between these two input video  
sources on a pixel-by-pixel basis. This feature can be used to, for example, overlay RGB graphics for  
on-screen display onto decoded CVBS video. The SCART overlay control signals (FSS) are oversampled  
at 4× the pixel clock frequency. The phase of this signal is used to mix between the CVBS input and the  
analog RGB inputs. This improves the analog overlay picture quality when the external FSS and analog  
video signals are generated by an asynchronous source. The TVP5160 decoder has two programmable  
delays for component video to compensate for composite comb filter delays and two programmable delays  
for digital RGB to compensate AFE and decimation filter delays.  
If the overlay output is digital supporting 8 colors of data, the TVP5160 decoder can take digital overlay  
inputs using terminals C6, C7, and C8. For this mode, output must be the 10-bit ITU-R BT.656 mode.  
Figure 2-6 shows the block diagram of two fast-switches. Table 2-4 shows the fast-switch 1 and 2  
controls.  
24  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Y
Y’  
Gain/Offset  
R
G
B
R’  
G’  
B’  
R”  
G”  
B”  
R’’’  
G’’’  
B’’’  
Color Space  
Conversion  
D
U
V
UV  
UV’  
4×  
Oversample  
Gain  
2
Y’’  
FSS’  
FSO’  
FSS  
FSO  
FSS”  
FSO”  
D
D
Prog  
Delay  
Output  
Formatter  
UV’’  
Soft Mix  
FSS’’’  
FSO’’’  
D
SCART/COMP_Y  
SCART/COMP_Y’  
SCART/COMP_UV’  
CVBS_SEP_Y  
SCART/COMP_UV  
CVBS_SEP_UV  
D
= User Prgrammable Delay  
Figure 2-6. Fast-Switches for SCART and Digital Overlay  
Table 2-4. Fast-Switch Modes  
MODES  
000  
DESCRIPTION  
CVBS SCART  
001  
CVBS, S_Video Digital overlay  
Component Digital overlay  
(CVBS SCART) Digital overlay  
(CVBS Digital overlay) SCART  
CVBS (SCART Digital overlay  
Composite  
010  
011  
100  
101  
110  
111  
No switching  
Fast switching of digital RGB input: closed caption decoder output is digital RGB with blanking signal. The  
TVP5160 decoder supports this digital RGB input and can do overlay with composite, S-Video, or  
component video.  
See TI application note SLEA016, TVP5146 SCART and OSD, for more information on SCART overlay  
and digital overlay programming.  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
25  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 2-5. Look-Up Table for Converting from Digital RGB to 10-Bit YCbCr Data  
INPUT  
OUTPUT  
Cb  
COLOR  
DR  
DG  
0
DB  
0
Y
Cr  
BLACK  
BLUE  
0
0
0
0
1
1
1
1
64  
512  
960  
216  
664  
360  
808  
64  
512  
440  
136  
64  
0
1
164  
580  
680  
324  
424  
840  
940  
GREEN  
CYAN  
1
0
1
1
RED  
0
0
960  
888  
584  
512  
MAGENTA  
YELLOW  
WHITE  
0
1
1
0
1
1
512  
2.7 Discrete Syncs  
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any  
possible alignment to the internal pixel count and line count. The default settings for a 525-line and  
625-line video output are given as an example below. FID changes at the same transient time when the  
trailing edge of vertical sync occurs. The polarity of FID is programmable by an I2C interface.  
26  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
11  
20  
21  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
283 284  
262 263 264 265 266 267 268 269 270 271 272 273  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
NOTE: Line numbering conforms to ITU-R BT.470.  
VBLK Stop  
Figure 2-7. Vertical Synchronization Signals for 525-Line System  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
27  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
625-Line  
622 623 624 625  
1
2
3
4
5
6
7
8
23  
24  
25  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
310 311 312 313 314 315 316 317 318 319 320 321  
336 337 338  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
A. NOTE: Line numbering conforms to ITU-R BT.470.  
VBLK Stop  
Figure 2-8. Vertical Synchronization Signals for 625-Line System  
ITU-R BT.656 10-bit 4:2:2 Timing with 2× pixel clock reference  
28  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
0
SCLK  
EAV EAV EAV EAV  
SAV SAV SAV SAV  
Y[9:0]  
Cb  
Y
Cr  
Y
Horizontal Blanking  
Cb0  
Y0  
Cr0  
Y1  
1
2
3
4
1
2
3
4
HS Start  
HS Stop  
HS  
A
C
B
D
AVID  
AVID Stop  
AVID Start  
Figure 2-9. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode  
SCLK = 2× PIXEL CLOCK(1)  
MODE  
A
B
C
D
NTSC 601  
PAL 601  
480p  
106  
112  
106  
112  
128  
128  
128  
128  
42  
48  
42  
48  
276  
288  
276  
288  
576p  
(1) ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference 601 = ITU-R BT.601 timing  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
29  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
0
SCLK  
Y[9:0]  
Y
Y
Y
Y
Horizontal Blanking  
Horizontal Blanking  
Y0  
Y1  
Y2  
Y3  
CbCr[9:0]  
Cb  
Cr  
Cb  
Cr  
Cb0 Cr0 Cb1 Cr1  
HS Start  
HS Stop  
HS  
A
C
B
D
AVID  
AVID Stop  
AVID Start  
NOTE: AVID rising edge occurs 4 clock cycles early.  
NOTE: AVID rising edge occurs 4 clock cycles early.  
Figure 2-10. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode  
SCLK = 1X PIXEL CLOCK(1)  
MODE  
NTSC 601  
A
B
C
D
53  
56  
53  
56  
64  
64  
64  
64  
19  
22  
19  
22  
138  
144  
138  
144  
PAL 601  
480p  
576p  
(1) 20-bit 4:2:2 timing with 1× pixel clock reference 601 = ITU-R BT.601 timing  
30  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
HS  
First Field  
B/2  
B/2  
VS  
HS  
H/2 + B/2  
H/2 + B/2  
Second Field  
VS  
Figure 2-11. VS Position With Respect to HS for Interlaced Signals  
HS  
B/2  
B/2  
VS  
Figure 2-12. VS Position With Respect to HS for Progressive Signals  
10-BIT (SCLK = 2× PIXEL CLOCK) 20-BIT (SCLK = 1× PIXEL CLOCK)  
MODE(1)  
B/2  
64  
H/2  
858  
864  
858  
864  
B/2  
32  
32  
32  
32  
H/2  
429  
432  
NTSC 601 interlaced  
PAL 601 interlaced  
NTSC 601 progressive  
PAL 601 progressive  
64  
(1) 601 = ITU-R BT.601 timing  
2.8 Embedded Syncs  
Standard with embedded syncs insert SAV and EAV codes into the data stream on the rising and falling  
edges of AVID. These codes contain the V and F bits which also define vertical timing. Table 2-6 shows  
the format of the SAV and EAV codes.  
H equals 1b always indicates EAV. H equals 0b always indicates SAV. The alignment of V and F to the  
line and field counter varies depending on the standard.  
The P bits are protection bits:  
P3 = V xor H  
P2 = F xor H  
P1 = F xor V  
P0 = F xor V xor H  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
31  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 2-6. EAV and SAV Sequence  
Y9 (MSB)  
Y8  
1
Y7  
1
Y6  
1
Y5  
1
Y4  
1
Y3  
1
Y2  
1
Y1  
1
Y0  
1
Preamble  
Preamble  
Preamble  
Status  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
0
0
2.9 I2C Host Interface  
Communication with the TVP5160 decoder is via an I2C host interface. The I2C standard consists of two  
signals, the serial input/output data (SDA) line and input/output clock line (SCL), which carry information  
between the devices connected to the bus. A 2-bit control signal (I2CA0/ I2CA1) selects the slave  
address. Although an I2C system can be multi-mastered, the TVP5160 decoder can function as a slave  
device only. Because SDA and SCL are kept open-drain at logic high output level or when the bus is not  
driven, the user must connect SDA and SCL to IOVDD via a pullup resistor on the board. The slave  
address select, terminals 83 and 82 (I2CA0 and I2CA1), enables the use of four TVP5160 devices tied to  
the same I2C bus, because it controls the two least significant bits of the I2C device address.  
Table 2-7. I2C Host Interface Terminal Description  
SIGNAL  
I2CA0  
I2CA1  
SCL  
TYPE  
DESCRIPTION  
Slave address selection  
Slave address selection  
Input clock line  
I
I
I/O  
I/O  
SDA  
Input/output data line  
2.9.1 Reset and I2C Bus Address Selection  
The TVP5160 decoder can respond to four possible chip addresses. The address selection is made at  
reset by an externally supplied level on the I2CA0/I2CA1 pins. The TVP5160 decoder samples the level of  
terminals 83 and 82 at power up or at the trailing edge of RESETB and configures the I2C bus address bit  
A0/A1.  
Table 2-8. I2C Host Interface Device Addresses  
A6  
1
A5  
0
A4  
1
A3  
1
A2  
1
A1(I2CA1)(1)  
A0 (I2CA0)(1)  
R/W  
1/0  
1/0  
1/0  
1/0  
HEX  
0 (default)  
0 (default)  
B9/B8  
BB/BA  
BD/BC  
BF/BE  
1
0
1
1
1
0
1
1
1
0
1
1
0
1
1
1
1
0
1
1
1
(1) To pull up the I2C terminals high, tie to IOVDD via a 2.2-kΩ resistor.  
32  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
2.9.2 I2C Operation  
Data transfers occur utilizing the following formats.  
Read from I2C control registers  
receive  
data  
S
10111000  
ACK  
subaddress  
ACK  
S
10111001  
ACK  
NAK  
P
Write to I2C control registers  
S
10111000  
ACK  
subaddress  
ACK  
send data  
ACK  
P
S = I2C bus start condition  
P = I2C bus stop condition  
ACK = Acknowledge generated by the slave  
NAK = Acknowledge generated by the master, for multiple byte read master will ACK each  
byte except the last byte  
Subaddress = Subaddress byte  
Data = Data byte  
I2C bus address = In the example shown, I2CA0/I2CA1 are in default mode. Write (B8h), Read (B9h)  
2.9.3 VBUS Access  
The TVP5160 decoder has additional internal registers accessible through an indirect access to an  
internal 24-bit address wide VBUS. Figure 2-13 shows the VBUS registers access.  
2
I C Registers  
VBUS Registers  
00h  
00 0000h  
Host  
2
80 051Ch  
80 0520h  
80 052Ch  
80 0600h  
I C  
CC  
WSS/CGMS  
VITC  
Processor  
E0h  
VBUS  
Data  
Line Mode  
E1h  
E8h  
VBUS[23:0]  
80 0700h  
90 1904h  
VPS/Gemstar  
FIFO  
VBUS  
Address  
EAh  
FFh  
FF FFFFh  
Figure 2-13. VBUS Access  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
33  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
2.9.3.1 VBUS Write  
Single byte  
S
B8  
ACK  
E8  
ACK  
ACK  
VA0  
VA0  
ACK  
ACK  
VA1  
VA1  
ACK  
send data  
VA2  
ACK  
ACK  
P
P
S
B8  
ACK  
E0  
Multiple bytes  
S
S
B8  
ACK  
E8  
E1  
ACK  
ACK  
VA2  
ACK  
ACK  
P
P
B8  
ACK  
ACK  
send data  
ACK  
. . .  
send data  
2.9.3.2 VBUS Read  
Single byte  
S
S
B8  
ACK  
ACK  
E8  
E0  
ACK  
ACK  
VA0  
VA0  
ACK  
ACK  
VA1  
VA1  
ACK  
ACK  
VA2  
ACK  
NAK  
P
P
B8  
S
B9  
ACK  
read data  
Multiple bytes  
S
B8  
ACK  
E8  
ACK  
S
VA2  
ACK  
P
P
S
B8  
ACK  
E1  
ACK  
B9  
ACK  
read data MACK  
read data  
NAK  
NOTE:  
Examples use default I2C address  
ACK = Acknowledge generated by the slave  
MACK = Acknowledge generated by the master  
NAK = No Acknowledge generated by the master  
2.10 VBI Data Processor  
The TVP5160 VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed  
caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code  
(VITC), video program system (VPS), copy generation management system (CGMS) data, and electronic  
program guide (EPG or Gemstar) 1x/2x. Table 2-9 shows the supported VBI system.  
These services are acquired by programming the VDP to enable the reception of one or more VBI data  
standard(s) in the vertical blanking interval. The VDP can be programmed on a line-per-line basis to  
enable simultaneous reception of different VBI formats, one per line. The results are stored in a FIFO  
and/or registers. Because of its high data bandwidth, the teletext results are stored in the FIFO only. The  
TVP5160 decoder provides fully decoded V-Chip data to the dedicated registers at subaddresses  
800540h through 800543h.  
Table 2-9. Supported VBI System  
VBI SYSTEM  
Teletext WST A  
Teletext WST B  
Teletext NABTS C  
Teletext NABTS D  
Closed Caption  
Closed Caption  
WSS-CGMS  
WSS-CGMS  
VITC  
STANDARD  
SECAM  
PAL  
LINE NUMBER  
623 (Field 1, 2)  
622 (Field 1, 2)  
1021 (Field 1, 2)  
1021 (Field 1, 2)  
22 (Field 1, 2)  
21 (Field 1, 2)  
23 (Field 1, 2)  
20 (Field 1, 2)  
622  
NUMBER OF BYTES  
38  
43  
NTSC  
NTSC-J  
PAL  
34  
35  
2
NTSC  
PAL  
2
14 bits  
NTSC  
PAL  
20 bits  
9
9
VITC  
NTSC  
PAL  
1020  
VPS  
16  
13  
2
V-Chip (Decoded)  
NTSC  
21 (Field 2)  
34  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 2-9. Supported VBI System (continued)  
VBI SYSTEM  
STANDARD  
NTSC  
NTSC  
Any  
LINE NUMBER  
NUMBER OF BYTES  
2
Gemstar EPG 1×  
Gemstar EPG 2×  
User  
5 with frame byte  
Programmable  
20 bits  
Programmable  
CGMS-A packet A  
CGMS-A packet B  
480p  
41  
40  
480p  
16 bytes  
2.10.1 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is  
output on the Y[9:2] terminals during the horizontal blanking period following the line from which the data  
was retrieved. Table 2-10 shows the header format and sequence of the ancillary data inserted into the  
video stream. This format also stores any VBI data into the FIFO. The size of the FIFO is 512 bytes.  
Therefore, the FIFO can store up to 9 lines of teletext data according to the WSTB standard.  
Table 2-10. Ancillary Data Format and Sequence  
BYTE NO. Y7(MSB)  
Y6  
0
Y5  
0
Y4  
0
Y3  
0
Y2  
0
Y1  
0
Y0 (LSB)  
DESCRIPTION  
0
1
0
1
0
1
Ancillary data preamble  
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
N0  
Data ID (DID)  
4
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32 bit data (NN)  
Internal Data ID0 (IDID0)  
Internal Data ID1 (IDID1)  
5
6
Video line # [7:0]  
7
0
0
0
Data error Match #1 Match #2  
Video line # [9:8]  
8
Sample 1  
Sample 2  
Sample 3  
Sample 4  
Data byte  
Data byte  
Data byte  
Data byte  
1st word  
9
10  
11  
.
.
.
.
.
.
Sample m-1  
Sample m  
CS[7:0]  
Data byte  
Data byte  
Checksum  
Fill byte  
Nth word  
4N+5  
4N+6  
4N+7  
0
0
0
0
0
0
0
0
EP:  
Even parity for Y5Y0  
NEP:  
DID:  
Negated even parity  
91h: Sliced data of VBI lines of first field  
53h: Sliced data of line 24 to end of first field  
55h: Sliced data of VBI lines of second field  
97h: Sliced data of line 24 to end of second field  
SDID:  
NN:  
This field holds the data format taken from the line mode register bits [5:0] of the  
corresponding line.  
Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number of  
Dwords where each Dword is 4 bytes.  
IDID0:  
Transaction video line number [7:0]  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
35  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
IDID1:  
Bit 0/1 Transaction video line number [9:8]  
Bit 2 Match 2 flag  
Bit 3 Match 1 flag  
Bit 4 1b if at least one error was detected in the EDC block. 0b if no error was detected.  
CS:  
Sum of Y7Y0 of byte 8 through byte 4N+5. For teletext modes, byte 8 is the sync pattern  
byte. Byte 9 is Sample 1.  
Fill byte:  
Fill byte makes a multiple of 4 bytes from byte zero to last fill byte  
2.10.2 VBI Raw Data Out  
The TVP5160 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing.  
This is transmitted as an ancillary data block, although a bit differently from the way the sliced VBI data is  
transmitted in the FIFO format as described in Section 3.10.1. The samples are transmitted during the  
active portion of the line. VBI raw data uses ITU-R BT 656 format having only luma data. The chroma  
samples are replaced by luma samples. The TVP5160 decoder inserts a 4-byte preamble 000h 3FFh  
3FFh 180h before data start. There is no checksum byte or fill bytes in this mode.  
DATA  
NO.  
Y9  
(MSB)  
Y0  
(LSB)  
Y8  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
DESCRIPTION  
0
1
2
3
4
0
1
1
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VBI raw data preamble  
Sample 1  
2× pixel rate  
Luma data  
(i.e., NTSC 601: n = 1707)  
5
Sample 2  
n1  
N
Sample n5  
Sample n4  
2.11 Powerup, Reset, and Initialization  
No specific power-up sequence is required, but all power supplies must be active and stable within 500  
ms of each other. Reset may be low during power-up, but must remain low for at least 1 µs after the  
power supplies become stable and the crystal begins to oscillate. Alternately, reset may be asserted any  
time after power up and a stable crystal oscillation, and must remain asserted for at least 1 µs. Table 2-11  
describes the status of the TVP5160 terminals during and immediately after reset.  
200 µs must be allowed after reset before commencing I2C operations if the SCL pin is not monitored  
during I2C operations  
Table 2-11. Reset Sequence  
SIGNAL NAME  
Y[9:0], SCLK  
C[9:0]/GPIO  
DURING RESET  
RESET COMPLETED  
High-impedance  
Input  
Input  
Input  
Input  
RESETB, PWDN, SDA, SCL, FSS/GPIO,  
AVID/GPIO, GLCO/GPIO/I2CA0, HS/CS/GPIO,  
VS/VBLK/GPIO, FID/GPIO  
Input  
INTREQ  
Input  
Output (open drain)  
36  
Functional Description  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
200 µs  
1 µs  
Power  
Crystal  
RESET  
2
I C SDA  
Figure 2-14. Reset Timing  
After reset has completed, the following sequence of operations must be completed:  
1. Write 01h to VBus register 0xB00060  
2. Write 01h to VBus register 0xB00063  
3. Write 00h to VBus register 0xB00060  
2.12 Adjusting External Syncs  
The TVP5160 decoder stores values for the positions of the external syncs for two different modes:  
525-line with ITU-R BT.601 sampling  
625-line with ITU-R BT.601 sampling  
Once the values are stored, they are retained and restored when the signal switches back into one of  
these two modes.  
The proper sequence to change the external sync positions is:  
To set NTSC, PAL-M, NTSC 443, PAL 60 (525-line modes):  
Make sure the standard is one of the above 525-line mode formats by forcing the video standard  
Set HS, VS, VBLK, and AVID external syncs (register 16h through 24h)  
To set PAL, PAL-N, SECAM (625-line modes):  
Make sure the standard is one of the above 625-line mode formats by forcing the video standard  
Set HS, VS, VBLK, and AVID external syncs (register 16h through 24h)  
Once programmed, the values for each mode are retained when the signal switches back into that or other  
compatible video standards.  
Copyright © 20052011, Texas Instruments Incorporated  
Functional Description  
37  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
3
Internal Control Registers  
The TVP5160 decoder is initialized and controlled by a set of internal registers that define the operating  
parameters of the entire device. Communication between the external controller and the TVP5160  
decoder is through a standard I2C host port interface, as described earlier.  
Table 3-1 shows the summary of these registers. Detailed programming information for each register is  
described in the following sections. Additional registers are accessible through an indirect procedure  
involving access to an internal 24-bit address wide VBUS. Table 3-2 shows the summary of VBUS  
registers.  
Table 3-1. I2C Registers Summary  
REGISTER NAME  
I2C SUBADDRESS  
00h  
DEFAULT  
00h  
R/W(1)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Input/Output Select  
AFE Gain Control  
Video Standard Select  
Operation Mode  
Autoswitch Mask  
Color Killer  
01h  
0Fh  
00h  
02h  
03h  
00h  
04h  
23h  
05h  
10h  
Luminance Processing Control 1  
Luminance Processing Control 2  
Luminance Processing Control 3  
Luminance Brightness  
Luminance Contrast  
Chrominance Saturation  
Chroma Hue  
06h  
00h  
07h  
00h  
08h  
00h  
09h  
80h  
0Ah  
80h  
0Bh  
80h  
0Ch  
00h  
Chrominance Processing Control 1  
Chrominance Processing Control 2  
Reserved(2)  
0Dh  
00h  
0Eh  
0Ch  
0Fh  
Pr Contrast  
10h  
80h  
80h  
80h  
R/W  
R/W  
R/W  
Y Contrast  
11h  
Pb Contrast  
12h  
Reserved(2)  
13h  
G/Y Brightness  
14h  
80h  
R/W  
Reserved(2)  
15h  
AVID Start Pixel  
16h17h  
18h19h  
1Ah1Bh  
1Ch1Dh  
1Eh1Fh  
20h21h  
22h23h  
24h25h  
26h  
55h/5Fh  
325h/32Fh  
00h/07h  
40h/47h  
004h/001h  
007h/004h  
001h/26Fh  
015h/018h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AVID Stop Pixel  
HS Start Pixel  
HS Stop Pixel  
VS Start Line  
VS Stop Line  
VBLK Start Line  
VBLK Stop Line  
Embedded Sync Offset Control 1  
Embedded Sync Offset Control 2  
Fast Switch Control  
Fast Switch Overlay Delay  
Fast Switch SCART Delay  
Overlay Delay  
27h  
00h  
28h  
C0h  
29h  
17h  
2Ah  
1Ch  
2Bh  
12h  
(1) R = Read only, W = Write only, R/W = Read and write  
(2) Reserved I2C register addresses must not be written to.  
38  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-1. I2C Registers Summary (continued)  
REGISTER NAME  
I2C SUBADDRESS  
DEFAULT  
R/W(1)  
SCART Delay  
Reserved(2)  
CTI Control  
2Ch  
56h  
R/W  
2Dh  
2Eh  
00h  
00h  
00h  
R/W  
R/W  
R/W  
Brightness and Contrast Range Extender  
Component Autoswitch Mask  
Reserved(2)  
2Fh  
30h  
31h  
Sync Control  
32h  
00h  
40h  
00h  
FFh  
FFh  
FFh  
FFh  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Output Formatter 1  
Output Formatter 2  
Output Formatter 3  
Output Formatter 4  
Output Formatter 5  
Output Formatter 6  
Clear Lost Lock Detect  
Status 1  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
Status 2  
3Bh  
R
AGC Gain Status  
Reserved(2)  
3Ch3Dh  
3Eh  
R
Video Standard Status  
GPIO Input 1  
3Fh  
R
R
R
40h  
GPIO Input 2  
41h  
Reserved(2)  
42h-43h  
44h  
Back End AGC Status  
Reserved(2)  
R
45h  
AFE Coarse Gain for CH1  
AFE Coarse Gain for CH2  
AFE Coarse Gain for CH3  
AFE Coarse Gain for CH4  
AFE Fine Gain for Pb  
AFE Fine Gain for Chroma  
AFE Fine Gain for Pr  
AFE Fine Gain for CVBS_Luma  
Reserved(2)  
46h  
20h  
20h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
47h  
48h  
20h  
49h  
20h  
4Ah4Bh  
4Ch4Dh  
4Eh4Fh  
50h51h  
52h-56h  
57h  
900h  
900h  
900h  
900h  
656 Version  
00h  
R/W  
Reserved(2)  
58h  
SDRAM Control  
59h  
00h  
80h  
80h  
80h  
40h  
40h  
00h  
80h  
80h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Y Noise Sensitivity  
UV Noise Sensitivity  
Y coring threshold  
UV coring threshold  
Low Noise Limit  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
"Blue" Screen Y  
5Fh  
"Blue" Screen Cb  
60h  
"Blue" Screen Cr  
61h  
"Blue" Screen LSB  
3DNR Noise Measurement LSB  
3DNR Noise Measurement MSB  
62h  
64h  
65h  
R
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
39  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-1. I2C Registers Summary (continued)  
REGISTER NAME  
I2C SUBADDRESS  
DEFAULT  
R/W(1)  
Y Core0 (3DNR)  
UV Core0 (3DNR)  
Reserved(2)  
66h  
R
R
67h  
68h  
F and V Bit Decode Control  
Reserved(2)  
69h  
00h  
08h  
04h  
R/W  
R/W  
6Ah-6Bh  
6Ch  
Back End AGC Control  
Reserved(2)  
6Eh  
AGC Decrement Speed  
ROM Version  
6Fh  
R/W  
R
70h  
RAM Version MSB  
Reserved(2)  
71h  
R
72h-73h  
74h  
AGC White Peak Processing  
F and V Bit Control  
00h  
16h  
R/W  
R/W  
75h  
Reserved(2)  
76h-77h  
78h  
AGC Increment Speed  
AGC Increment Delay  
Analog Output Control 1  
CHIP ID MSB  
06h  
1Eh  
00h  
51h  
60h  
R/W  
R/W  
R/W  
R
79h  
7Fh  
80h  
CHIP ID LSB  
81h  
R
RAM Version MSB  
82h  
R
Color PLL Speed Control  
3DYC Luma Coring LSB  
3DYC Chroma Coring LSB  
3DYC Chroma/Luma MSBs  
3DYC Luma Gain  
83h  
09h  
20h/20h  
20h/2Ah  
00h/00h  
08h/08h  
08h/08h  
02h/02h  
328h/380h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
84h  
85h  
86h  
87h  
3DYC Chroma Gain  
88h  
3DYC Signal Quality Gain  
3DYC Signal Quality Coring  
IF Compensation Control  
IF Differential Gain Control  
IF Low Frequency Gain Control  
IF High Frequency Gain Control  
Reserved(2)  
89h  
8Ah8Bh  
8Dh  
8Eh  
22h  
8Fh  
44h  
90h  
00h  
91h-94h  
95h  
Weak Signal High Threshold  
Weak Signal Low Threshold  
Status Request  
60h  
50h  
00h  
10h  
20h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R
96h  
97h  
3DYC NTSC VCR Threshold  
3DYC PAL VCR Threshold  
Vertical Line Count  
98h  
99h  
9Ah9Bh  
9Ch-9Dh  
9Eh  
Reserved(2)  
AGC Decrement Delay  
Reserved(2)  
R/W  
9Fh-B0h  
B1h  
VDP TTX Filter 1 Mask 1  
VDP TTX Filter 1 Mask 2  
VDP TTX Filter 1 Mask 3  
VDP TTX Filter 1 Mask 4  
VDP TTX Filter 1 Mask 5  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
B2h  
B3h  
B4h  
B5h  
40  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-1. I2C Registers Summary (continued)  
REGISTER NAME  
I2C SUBADDRESS  
DEFAULT  
00h  
R/W(1)  
R/W  
R/W  
R/W  
R/W W  
R/W  
R/W  
R
VDP TTX Filter 2 Mask 1  
VDP TTX Filter 2 Mask 2  
VDP TTX Filter 2 Mask 3  
VDP TTX Filter 2 Mask 4  
VDP TTX Filter 2 Mask 5  
VDP TTX Filter Control  
VDP FIFO Word Count  
B6h  
B7h  
00h  
B8h  
00h  
B9h  
00h  
BAh  
00h  
BBh  
00h  
BCh  
VDP FIFO Interrupt Threshold  
Reserved  
BDh  
80h  
R/W  
BEh  
VDP FIFO Reset  
BFh  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
VDP FIFO Output Control  
VDP Line Number Interrupt  
VDP Pixel Alignment  
Reserved  
C0h  
C1h  
00h  
C2hC3h  
C4hD5h  
D6h  
01Eh  
VDP Line Start  
06h  
1Bh  
FFh  
00h  
FFh  
R/W  
R/W  
R/W  
R/W  
R/W  
R
VDP Line Stop  
D7h  
VDP Global Line Mode  
VDP Full Field Enable  
VDP Full Field Mode  
Interlaced/Progressive Status  
Reserved(2)  
D8h  
D9h  
DAh  
DBh  
DCh-DFh  
E0h  
VBUS Data Access with No VBUS Address Increment  
VBUS Data Access with VBUS Address Increment  
VDP FIFO Read Data  
Reserved(2)  
R/W  
R/W  
R
E1h  
E2h  
E3h-E7h  
E8hEAh  
EBh-EFh  
F0h  
VBUS Address Access  
Reserved(2)  
00 0000h  
R/W  
Interrupt Raw Status 0  
Interrupt Raw Status 1  
Interrupt Status 0  
R
R
F1h  
F2h  
R
Interrupt Status 1  
F3h  
R
Interrupt Mask 0  
F4h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
Interrupt Mask 1  
F5h  
Interrupt Clear 0  
F6h  
Interrupt Clear 1  
F7h  
Reserved(2)  
F8h-FFh  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
41  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-2. VBUS Registers Summary  
VBUS  
SUBADDRESS  
REGISTER NAME  
DEFAULT  
R/W(1)  
(2)(3)  
Reserved  
00 0000h 80 051Bh  
80 051Ch 80 051Fh  
80 0520h 80 0526h  
80 0527h 80 052Bh  
80 052Ch 80 0534h  
80 0535h 80 053Fh  
80 0540h 80 0543h  
80 0544h 80 05FFh  
80 0600h 80 0611h  
80 0612h 80 06FFh  
80 0700h 80 070Ch  
80 070Dh A0 005Dh  
A0 005Eh  
VDP Closed Caption Data  
VDP WSS/CGMS data  
R
R
(2)(3)  
Reserved  
VDP VITC Data  
R
R
(2)(3)  
Reserved  
VDP V-Chip Data  
(2)(3)  
Reserved  
VDP General Line Mode and Address  
FFh, 00h  
R/W  
R
(2)(3)  
Reserved  
VDP VPS/Gemstar EPG Data  
(2)(3)  
Reserved  
Analog Output Control 2  
B2h  
00h  
R/W  
R/W  
(2)(3)  
Reserved  
A0 005Fh B0 005Fh  
B0 0060h  
Interrupt Configuration Register  
(2)(3)  
Reserved  
B0 0062h B0 0064h  
B0 0065h  
Interrupt Mask 1  
Interrupt Raw Status 1  
Interrupt Status 1  
Interrupt Clear 1  
Reserved(2)(3)  
R
R
R
R
B0 0069h  
B0 006Dh  
B0 0071h  
B0 0073h FF FFFFh  
(1) R = Read only, W = Write only, R/W = Read and write  
(2) Register addresses not shown in the register map summary are reserved and must not be written to.  
(3) Writing to or reading from any value labeled "Reserved" register may cause erroneous operation of the TVP5160 decoder. For registers  
with reserved bits, a 0b must be written to reserved bit locations unless otherwise stated.  
42  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
3.1 Register Definitions  
Table 3-3. Input/Output Select  
Subaddress 00h  
Default  
00h  
7
6
5
4
3
2
1
0
Input select [7:0]  
Twelve input terminals can be configured to support composite, S-Video, and component YPbPr. Only values in Table 3-4 are valid.  
NOTE: The video output can be either CVBS, Y, or G.  
Table 3-4. Analog Channel and Video Mode Selection  
INPUT SELECT [7:0]  
MODE  
CVBS  
INPUT(S) SELECTED  
OUTPUT  
VI_1  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
6
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
3
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
HEX  
00  
01  
02  
04  
05  
06  
08  
09  
0A  
0C  
0D  
0E  
40  
41  
42  
50  
51  
52  
44  
45  
46  
54  
55  
56  
90  
91  
92  
94  
95  
96  
C0  
C1  
C2  
VI_1 (default)  
VI_2  
VI_2  
VI_3  
VI_3  
VI_4  
VI_4  
VI_5  
VI_5  
VI_6  
VI_6  
VI_7  
VI_7  
VI_8  
VI_8  
VI_9  
VI_9  
VI_10  
VI_11  
VI_12  
VI_10  
VI_11  
VI_12  
S-Video  
VI_1(Y), VI_7(C)  
VI_1(Y)  
VI_2(Y)  
VI_3(Y)  
VI_1(Y)  
VI_2(Y)  
VI_3(Y)  
VI_4(Y)  
VI_5(Y)  
VI_6(Y)  
VI_4(Y)  
VI_5(Y)  
VI_6(Y)  
VI_1(Y)  
VI_2(Y)  
VI_3(Y)  
VI_4(Y)  
VI_5(Y)  
VI_6(Y)  
VI_1(CVBS)  
VI_2(CVBS)  
VI_3(CVBS)  
VI_2(Y), VI_8(C)  
VI_3(Y), VI_9(C)  
VI_1(Y), VI_10(C)  
VI_2(Y), VI_11(C)  
VI_3(Y), VI_12(C)  
VI_4(Y), VI_7(C)  
VI_5(Y), VI_8(C)  
VI_6(Y), VI_9(C)  
VI_4(Y), VI_10(C)  
VI_5(Y), VI_11(C)  
VI_6(Y), VI_12(C)  
YPbPr  
VI_10(Pb), VI_1(Y), VI_7(Pr)  
VI_11(Pb), VI_2(Y), VI_8(Pr)  
VI_12(Pb), VI_3(Y), VI_9(Pr)  
VI_10(Pb), VI_4(Y), VI_7(Pr)  
VI_11(Pb), VI_5(Y), VI_8(Pr)  
VI_12(Pb), VI_6(Y), VI_9(Pr)  
VI_10(B), VI_4(G), VI_7(R), VI_1(CVBS)  
VI_11(B), VI_5(G), VI_8(R), VI_2(CVBS)  
VI_12(B), VI_6(G), VI_9(R), VI_3(CVBS)  
SCART  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
43  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-5. AFE Gain Control  
Subaddress 01h  
Default  
0Fh  
7
6
5
4
3
1
2
1
1
1
0
Reserved  
AGC  
Bit 3:  
Bit 2:  
Bit 1:  
AGC:  
1b must be written to this bit  
1b must be written to this bit  
1b must be written to this bit  
Controls automatic gain  
0 = Manual  
1 = Enable auto gain (default)  
This setting only affects the analog front-end (AFE). The brightness and contrast controls are not affected by these settings.  
Table 3-6. Video Standard Select  
Subaddress 02h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Video standard [3:0]  
Video standard [3:0]:  
CVBS and S-Video  
Component video  
Autoswitch mode (default)  
Interlaced 525 (480i)  
Interlaced 625 (576i)  
Reserved  
0000 = Autoswitch mode (default)  
0001 = (M, J) NTSC  
0010 = (B, D, G, H, I, N) PAL  
0011 = (M) PAL  
0100 = (Combination-N) PAL  
0101 = NTSC 4.43  
Reserved  
Reserved  
0110 = SECAM  
Reserved  
0111 = PAL 60  
Reserved  
1000 = Reserved  
Reserved  
1001 = Reserved  
NTSC Progressive 525 (480p)  
PAL Progressive 625 (576p)  
1010 = Reserved  
The user can force the device to operate in a particular video standard mode by writing the appropriate value into this register. Changing  
these bits will cause some register settings to be reset to their defaults.  
Table 3-7. Operation Mode  
Subaddress 03h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Power save  
Power save  
0 = Normal operation (default)  
1 = Power save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I2C interface is active and all  
current operating settings are preserved.  
44  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-8. Autoswitch Mask  
Subaddress 04h  
Default  
23h  
7
6
5
4
3
2
1
0
Reserved  
PAL 60  
SECAM  
NTSC 4.43  
(Nc) PAL  
(M) PAL  
PAL  
(M, J) NTSC  
Autoswitch mode mask: Limits the video formats between which autoswitch is possible. See register 30h for masking the progressive  
modes.  
PAL 60  
0 = Autoswitch does not include PAL 60 (default)  
1 = Autoswitch includes PAL 60  
SECAM  
0 = Autoswitch does not include SECAM  
1 = Autoswitch includes SECAM (default)  
NTSC 4.43  
0 = Autoswitch does not include NTSC 4.43 (default)  
1 = Autoswitch includes NTSC 4.43  
(Nc) PAL  
0 = Autoswitch does not include (Nc) PAL (default)  
1 = Autoswitch includes (Nc) PAL  
(M) PAL  
0 = Autoswitch does not include (M) PAL (default)  
1 = Autoswitch includes (M) PAL  
PAL  
0 = Reserved  
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)  
(M, J) NTSC  
0 = Reserved  
1 = Autoswitch includes (M, J) NTSC (default)  
Note: Bits 1 and 0 must always be 11b.  
Table 3-9. Color Killer  
Subaddress 05h  
Default  
10h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold [4:0]  
Automatic color killer:  
00 = Automatic mode (default)  
01 = Reserved  
10 = Color killer enabled, the UV terminals are forced to a zero color state  
11 = Color killer disabled  
Color killer threshold [4:0]:  
11111 = 31 (maximum)  
10000 = 16 (default)  
00000 = 0 (minimum)  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
45  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-10. Luminance Processing Control 1  
Subaddress 06h  
Default 00h  
7
6
5
4
3
2
1
0
Reserved  
Pedestal  
Reserved  
VBI raw  
Reserved  
Luminance signal delay [2:0]  
Pedestal:  
0 = 7.5 IRE pedestal is present on the analog video input signal (default)  
1 = Pedestal is not present on the analog video input signal  
VBI raw:  
0 = Disable (default)  
1 = Enable  
During the duration of the vertical blanking as defined by VBLK start and stop registers 22h through 25h, the chroma samples are replaced  
by luma samples. This feature may be used to support VBI processing performed by an external device during the vertical blanking interval.  
To use this bit, the output format must be the 10-bit, ITU-R BT.656 mode.  
Luminance signal delay [2:0]: Luminance signal delays respect to chroma signal in 1× pixel clock increments.  
011 = 3 pixel clocks delay  
010 = 2 pixel clocks delay  
001 = 1 pixel clock delay  
000 = 0 pixel clock delay (default)  
111 = 1 pixel clock delay  
110 = 2 pixel clocks delay  
101 = 3 pixel clocks delay  
100 = 0 pixel clock delay  
Table 3-11. Luminance Processing Control 2  
Subaddress 07h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma filter select [1:0]  
Reserved  
Peaking gain [1:0]  
Reserved  
Luma filter selected [1:0]:  
00 = Luminance adaptive comb enable (default on CVBS and SECAM)  
01 = Luminance adaptive comb disable (trap filter selected)  
10 = Luma comb/trap filter bypassed (default on S-Video, component mode)  
11 = Reserved  
Peaking gain [1:0]:  
00 = 0 (default)  
01 = 0.5  
10 = 1  
11 = 2  
46  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-12. Luminance Processing Control 3  
Subaddress 08h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Trap filter select [1:0]  
Trap filter select[1:0] selects one of the four trap filters to produce the luminance signal by removing the chrominance signal from the  
composite video signal. The stop band of the chroma trap filter is centered at the chroma subcarrier frequency with stopband bandwidth  
controlled by the two control bits. Changing this register will trade luma resolution for dot crawl.  
Trap filter stop band bandwidth (MHz):  
Filter select [1:0]  
NTSC ITU-R 601  
1.2129  
PAL ITU-R 601  
1.2129  
00 (default)  
01  
10  
11  
0.8701  
0.8701  
0.7183  
0.7383  
0.5010  
0.5010  
Table 3-13. Luminance Brightness  
Subaddress 09h  
Default  
80h  
7
6
5
4
3
2
1
0
Brightness [7:0]  
Brightness [7:0]: This register works for CVBS and S-Video luminance. See subaddress 2Fh.  
0000 0000 = 0 (dark)  
1000 0000 = 128 (default)  
1111 1111 = 255 (bright)  
For composite and S-Video outputs, the output black level relative to the nominal black level (64 out of 1024) as a function of the  
Brightness[7:0] setting is as follows.  
Black Level = nominal_black_level + (MB + 1) × (Brightness[7:0] - 128)  
Where MB is the brightness multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 2Fh.  
Table 3-14. Luminance Contrast  
Subaddress 0Ah  
Default  
80h  
7
6
5
4
3
2
1
0
Contrast [7:0]  
Contrast [7:0]: This register works for CVBS and S-Video luminance. See subaddress 2Fh.  
0000 0000 = 0 (minimum contrast)  
1000 0000 = 128 (default)  
1111 1111 = 255 (maximum contrast)  
For composite and S-Video outputs, the total luminance gain relative to the nominal luminance gain as a function of the Contrast [7:0]  
setting is as follows.  
Luminance Gain = (nominal_luminance_gain) × [Contrast[7:0] / 64 / (2^MC) + MC - 1]  
Where MC is the contrast multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 2Fh.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
47  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-15. Chrominance Saturation  
Subaddress 0Bh  
Default  
80h  
7
6
5
4
3
2
1
0
Saturation [7:0]  
Saturation [7:0]: This register works for CVBS and S-Video chrominance.  
0000 0000 = 0 (no color)  
1000 0000 = 128 (default)  
1111 1111 = 255 (maximum)  
For composite and S-Video outputs, the total chrominance gain relative to the nominal chrominance gain as a function of the Saturation  
[7:0] setting is as follows.  
Chrominance Gain = (nominal_chrominance_gain) × (Saturation[7:0] / 128)  
Table 3-16. Chroma Hue  
Subaddress 0Ch  
Default  
00h  
7
6
5
4
3
2
1
0
Hue [7:0]  
Hue [7:0] (does not apply to a component or SECAM video):  
0111 1111 = 180 degrees  
0000 0000 = 0 degrees (default)  
1000 0000 = 180 degrees  
48  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-17. Chrominance Processing Control 1  
Subaddress 0Dh  
Default  
00h  
7
6
5
4
3
2
1
0
3DYC  
TBC  
Reserved  
Chroma adaptive comb enable  
3DNR  
Automatic color gain control  
[1:0]  
3DYC, frame recursive noise reduction (3DNR), and time base correction (TBC) can be used simultaneously or independently.  
Memory requirements:  
External Memory  
3DYC  
3DNR  
Function  
Required  
0
1
0
1
0
0
1
1
None  
None  
3DYC only  
3DNR only  
3DYC + 3DNR  
16 Mbits  
16 Mbits  
32 Mbits  
Note: The SDRAM configuration register must be programmed before enabling features that require the SDRAM. Failure to do so will  
result in incorrect operation of the memory controller  
3DYC:  
0 = Disable; the 2D adaptive 5-line comb filter is enabled (default)  
1 = Enable  
3DYC enhances 2D Y/C separation by utilizing temporal-based, or frame-based information. 3DYC requires the use of the frame buffer  
memory and can be used simultaneously with 3DNR and TBC.  
TBC:  
00 = Disable (default)  
01 = On  
10 = Automatic selection  
11 = Automatic selection  
Line-based time correction corrects for horizontal phase errors encountered during video decoding up to ±80 pixels of error. TBC can  
be used simultaneously with 3DYC and 3DNR. TBC does not require external memory.  
Chrominance adaptive comb enable:  
0 = Enable (default)  
1 = Disable  
This bit is effective on composite video only.  
3DNR:  
0 = Disable (default)  
1 = Enable  
Frame recursive noise reduction minimizes the amount of noise in interlaced CVBS, S-Video, or component inputs. 3DNR requires the  
use of the frame buffer memory and can be used simultaneously with 3DYC and TBC.  
Note: Noise reduction can not be used on progressive inputs.  
Automatic color gain control (ACGC) [1:0]:  
00 = ACGC enabled (default)  
01 = Reserved  
10 = ACGC disabled, ACGC set to the nominal value  
11 = ACGC frozen to the previously set value  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
49  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-18. Chrominance Processing Control 2  
Subaddress 0Eh  
Default 0Ch  
7
6
5
4
3
2
1
0
Reserved  
PAL  
WCF  
Chrominance filter select [1:0]  
compensation  
This register trades chroma bandwidth for less false color.  
PAL compensation: This bit has no effect in NTSC and SECAM modes.  
0 = Disabled  
1 = Enabled (default)  
Wideband chroma LPF filter (WCF):  
0 = Disabled  
1 = Enabled (default)  
Chrominance filter select [1:0]:  
00 = Disabled (default)  
01 = Notch 1  
10 = Notch 2  
11 = Notch 3  
Table 3-19. R/Pr Saturation  
Subaddress 10h  
Default 80h  
7
6
5
4
3
2
1
0
R/Pr saturation [7:0]  
R/Pr saturation [7:0]: This register works only with YPbPr component video. For RGB video, use the AFE gain registers.  
0000 0000 = minimum  
1000 0000 = default  
1111 1111 = maximum  
For component video, the total R/Pr gain relative to the nominal R/Pr gain as a function of the R/Pr saturation[7:0] setting is as follows.  
R/Pr Gain = (nominal_chrominance_gain) × (R/Pr saturation[7:0] / 128)  
Table 3-20. G/Y Saturation  
Subaddress 11h  
Default  
80h  
7
6
5
4
3
2
1
0
G/Y contrast [7:0]  
G/Y contrast [7:0]: This register works only with YPbPr component video. For RGB video, use the AFE gain registers.  
0000 0000 = minimum  
1000 0000 = default  
1111 1111 = maximum  
For component video outputs, the total luminance gain relative to the nominal luminance gain as a function of the G/Y contrast[7:0] is  
as follows.  
G/Y Gain = (nominal_luminance_gain) × (G/Y contrast[7:0] / 128)  
50  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-21. B/Pb Saturation  
Subaddress 12h  
Default  
80h  
7
6
5
4
3
2
1
0
B/Pb saturation[7:0]  
B/Pb saturation [7:0]: This register works only with YPbPr component video. For RGB video, use the AFE gain registers.  
0000 0000 = minimum  
1000 0000 = default  
1111 1111 = maximum  
For component video, the total Pb gain relative to the nominal Pb gain as a function of the B/Pb saturation[7:0] setting is as follows.  
B/Pb Gain = (nominal_chrominance_gain) × (B/Pb saturation[7:0] / 128)  
Table 3-22. G/Y Brightness  
Subaddress 14h  
Default  
80h  
7
6
5
4
3
2
1
0
G/Y brightness[7:0]  
G/Y brightness [7:0]: This register works only with YPbPr component video. For RGB video, use the AFE gain registers.  
0000 0000 = minimum  
1000 0000 = default  
1111 1111 = maximum  
For component video, the output black level relative to the nominal black level (64 out of 1024) as a function of G/Y brightness[7:0] is  
as follows.  
Black Level = nominal_black_level + (G/Y brightness[7:0] - 128)  
Table 3-23. AVID Start Pixel  
Subaddress 16h17h  
Default  
55h/5Fh  
Subaddress  
16h  
7
6
5
4
3
2
1
0
AVID start [7:0]  
AVID active  
17h  
Reserved  
Reserved  
AVID start [9:8]  
AVID active  
0 = AVID out active in VBLK (default)  
1 = AVID out inactive in VBLK  
AVID start [9:0]: AVID start pixel number, this is a absolute pixel location from HS start pixel 0.  
The TVP5160 decoder updates the AVID start only when the AVID start MSB byte is written to. The AVID start pixel register also  
controls the position of the SAV code. If these registers are modified, then the TVP5160 decoder retains the values for each video  
standard until the device is reset. The values for a particular video standard must be set by forcing the decoder to the desired video  
standard first using register 02h then setting this register. This must be repeated for each video standard where the default values need  
to be changed.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
51  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-24. AVID Stop Pixel  
Subaddress 18h19h  
Default  
325h/32Fh  
7
Subaddress  
18h  
6
5
4
3
2
1
0
AVID stop [7:0]  
19h  
Reserved  
AVID stop [9:8]  
AVID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an  
even number. This is a absolute pixel location from HS start pixel 0.  
The TVP5160 decoder updates the AVID stop only when the AVID stop MSB byte is written  
to. The AVID stop pixel register also controls the position of the EAV code. If these registers  
are modified, then the TVP5160 decoder retains the values for each video standard until the  
device is reset. The values for a particular video standard must be set by forcing the decoder  
to the desired video standard first using register 02h then setting this register. This must be  
repeated for each video standard where the default values need to be changed.  
Table 3-25. HS Start Pixel  
Subaddress 1Ah1Bh  
Default  
000h  
Subaddress  
1Ah  
7
6
5
4
3
2
1
0
HS start [7:0]  
1Bh  
Reserved  
HS start [9:8]  
HS start pixel [9:0]: This is an absolute pixel location from HS start pixel 0.  
The TVP5160 decoder updates the HS start only when the HS start MSB byte is written to. If these registers are modified, then the  
TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must be  
set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
Table 3-26. HS Stop Pixel  
Subaddress 1Ch1Dh  
Default  
040h  
Subaddress  
1Ch  
7
6
5
4
3
2
1
0
HS stop [7:0]  
1Dh  
Reserved  
HS stop [9:8]  
HS stop [9:0]: This is a absolute pixel location from HS start pixel 0.  
The TVP5160 decoder updates the HS stop only when the HS stop MSB byte is written to. If these registers are modified, then the  
TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must be  
set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
Table 3-27. VS Start Line  
Subaddress 1Eh1Fh  
Default  
004h/001h  
Subaddress  
1Eh  
7
6
5
4
3
2
1
0
VS start [7:0]  
1Fh  
Reserved  
VS start [9:8]  
VS start [9:0]: This is a absolute line number.  
The TVP5160 decoder updates the VS start only when the VS start MSB byte is written to. If these registers are modified, then the  
TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must be  
set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
52  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-28. VS Stop Line  
Subaddress 20h21h  
Default  
004h/001h  
Subaddress  
20h  
7
6
5
4
3
2
1
0
VS stop [7:0]  
21h  
Reserved  
VS stop [9:8]  
VS stop [9:0]: This is an absolute line number.  
The TVP5160 decoder updates the VS stop only when the VS stop MSB byte is written to. If these registers are modified, then the  
TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must be  
set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
Table 3-29. VBLK Start Line  
Subaddress 22h23h  
Default  
001h/26Fh  
Subaddress  
22h  
7
6
5
4
3
2
1
0
VBLK start [7:0]  
23h  
Reserved  
VBLK start [9:8]  
VBLK start [9:0]: This is an absolute line number.  
The TVP5160 decoder updates the VBLK start line only when the VBLK start MSB byte is written to. If these registers are modified, then  
the TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must  
be set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
Table 3-30. VBLK Stop Line  
Subaddress 24h25h  
Default  
001h/26Fh  
Subaddress  
24h  
7
6
5
4
3
2
1
0
VBLK stop [7:0]  
25h  
Reserved  
VBLK stop [9:8]  
VBLK stop [9:0]: This is an absolute line number.  
The TVP5160 decoder updates the VBLK stop only when the VBLK stop MSB byte is written to. If these registers are modified, then the  
TVP5160 decoder retains the values for each video standard until the device is reset. The values for a particular video standard must be  
set by forcing the decoder to the desired video standard first using register 02h then setting this register. This must be repeated for each  
video standard where the default values need to be changed.  
Table 3-31. Embedded Sync Offset Control 1  
Subaddress 26h  
Default  
00h  
7
6
5
4
3
2
1
0
Offset [7:0]  
This register allows the line position of the embedded F bit and V bit signals to be offset from the 656 standard positions. This register is  
only applicable to input video signals with standard number of lines.  
0111 1111 = 127 lines  
0000 0001 = 1 line  
0000 0000 = 0 line  
1111 1111 = 1 line  
1000 0000 = 128 lines  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
53  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-32. Embedded Sync Offset Control 2  
Subaddress 27h  
Default 00h  
7
6
5
4
3
2
1
0
Offset [7:0]  
This register allows the line relationship between the embedded F bit and V bit signals to be offset from the 656 standard positions, and  
moves F relative to V. This register is only applicable to input video signals with standard number of lines.  
0111 1111 = 127 lines  
0000 0001 = 1 line  
0000 0000 = 0 line  
1111 1111 = 1 line  
1000 0000 = 128 lines  
Table 3-33. Fast-Switch Control  
Subaddress 28h  
Default  
C0h  
7
6
5
4
3
2
1
0
Mode [2:0]  
Reserved  
Polarity FSO  
Polarity FSS  
Mode [2:0]:  
000 = CVBS SCART  
001 = CVBS, S_VIDEO Digital overlay  
010 = Component Digital overlay  
011 = (CVBS SCART) Digital overlay  
100 = (CVBS Digital overlay) SCART  
101 = CVBS (SCART Digital overlay)  
110 = Composite (default)  
111 = Component  
Polarity FSO:  
0 = If FSO = 0, then output = YPbPr  
If FSO = 1, then output = Digital RGB (default)  
1 = If FSO = 0, then output = Digital RGB  
If FSO = 1, then output = YPbPr  
Polarity FSS:  
0 = If FSO = 0, then output = RGB  
If FSO = 1, then output = CVBS (4A) (default)  
1 = If FSO = 0, then output = CVBS (4A)  
If FSO = 1, then output = RGB  
See TI application note SLEA016, TVP5146 SCART and OSD, for more information on SCART overlay and digital overlay programming.  
54  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-34. Fast-Switch Overlay Delay  
Subaddress 29h  
Default  
17h  
7
6
5
4
3
2
1
0
Reserved  
FSO delay [4:0]  
Overlay delay [4:0]: Adjusts delay between digital RGB and FSO  
11111 = 8 pixel delay  
11000 = 1 pixel delay  
10111 = 0 delay (default)  
10110 = 1 pixel delay  
00000 = 23 pixel delay  
When SCART mode is active (RGB component) the recommended setting for this register is 1Bh; otherwise, 17h is recommended.  
Table 3-35. Fast-Switch SCART Delay  
Subaddress 2Ah  
Default  
1Ch  
7
6
5
4
3
2
1
0
Reserved  
FSS delay [4:0]  
FSS delay [4:0]: Adjusts delay between FSS and component RGB  
11111 = 3 pixel delay  
11101 = 1 pixel delay  
11100 = 0 delay (default)  
11011 = 1 pixel delay  
00000 = 23 pixel delay  
Table 3-36. Overlay Delay  
Subaddress 2Bh  
Default 12h  
7
6
5
4
3
2
1
0
Reserved  
Overlay delay [4:0]  
Overlay delay[4:0]: Adjusts delay between digital RGB and component video  
11111 = 13 pixel delay  
10011 = 1 pixel delay  
10010 = 0 delay (default)  
10001 = 1 pixel delay  
00000 = 18 pixel delay  
When SCART mode is active (RGB component) the recommended setting for this register is 16h; otherwise, 12h is recommended.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
55  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-37. SCART Delay  
Subaddress 2Ch  
Default  
56h  
7
6
5
4
3
2
1
0
Reserved  
SCART delay [6:0]  
This register must be changed in multiples of 2 to maintain the CbCr relationship. SCART delay[6:0]: Adjusts delay between CVBS and  
component video.  
101 1111 = 9 pixel delay  
101 0111 = 1 pixel delay  
101 0110 = 0 delay (default)  
101 0101 = 1 pixel delay  
000 0000 = 86 pixel delay  
Table 3-38. CTI Control  
Subaddress 2Eh  
Default  
00h  
7
6
5
4
3
2
1
0
CTI coring [3:0]  
CTI gain [3:0]  
CTI coring [3:0]: 4-bit CTI coring limit control values, unsigned, linear control range from 0 to ±60, step size = 4  
1111 = ±60  
0001 = ±4  
0000 = 0 (default)  
CTI gain [3:0]: 4-bit CTI gain control values, unsigned, linear control range from 0 to 15/16, step size = 1/16  
1111 = 15/16  
0001 = 1/16  
0000 = 0 (default)  
Table 3-39. Brightness and Contrast Range Extender  
Subaddress 2Fh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Contrast  
multiplier  
Brightness multiplier [3:0]  
Contrast multiplier [4]: (MC) Increases the contrast control range for composite and S-Video modes.  
0 = 2x contrast control range (default), Gain = n/64 1 where n is the contrast control and 64 n 255  
1 = Normal contrast control range, Gain = n/128 where n is the contrast control and 0 n 255  
Brightness multiplier [3:0]: (MB) Increases the brightness control range for composite and S-Video modes from 1x to 16x.  
0h = 1x(default)  
1h = 2x  
3h = 4x  
7h = 8x  
Fh = 16x  
Note: In general, the brightness multiplier should be set to 0h for 10-bit outputs and 3h for 8-bit outputs  
56  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-40. Component Autoswitch Mask  
Subaddress 30h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
576i  
480i  
576p  
480p  
Masks the component progressive/interlaced modes from being processed in the autoswitch routines.  
480p  
0 = Autoswitch does not include 480p progressive modes (default)  
1 = Autoswitch includes 480p progressive mode  
576p  
0 = Autoswitch does not include 576p progressive mode (default)  
1 = Autoswitch includes 576p progressive mode  
480i  
0 = Autoswitch does not include 480i interlaced modes (default)  
1 = Autoswitch includes 480i interlaced mode  
576i  
0 = Autoswitch does not include 576i interlaced mode (default)  
1 = Autoswitch includes 576i interlaced mode  
Table 3-41. Sync Control  
Subaddress 32h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity FID  
Polarity VS  
Polarity HS  
VS/VBLK  
HS/CS  
Polarity FID: determines polarity of FID pin  
0 = First field high, second field low (default)  
1 = First field low, second field high  
Polarity VS: determines polarity of VS pin  
0 = Active low (default)  
1 = Active high  
Polarity HS: determines polarity of HS pin  
0 = Active low (default)  
1 = Active high  
VS/VBLK:  
0 = VS pin outputs vertical sync (default)  
1 = VS pin outputs vertical blank  
HS/CS:  
0 = HS pin outputs horizontal sync (default)  
1 = HS pin outputs composite sync  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
57  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-42. Output Formatter Control 1  
Subaddress 33h  
Default  
40h  
7
6
5
4
3
2
1
0
Reserved  
YCbCr code range  
CbCr code  
Reserved  
Output format [2:0]  
YCbCr output code range:  
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940, Cb and Cr range from 64 to 960)  
1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016) (default)  
CbCr code format:  
0 = Offset binary code (2s complement + 512) (default)  
1 = Straight binary code (2s complement)  
Output format [2:0]:  
000 = 10-bit 4:2:2 (pixel × 2 rate) with embedded syncs (ITU-R BT.656)  
001 = 20-bit 4:2:2 (pixel rate) with discrete syncs  
010 = Reserved  
011 = 10-bit 4:2:2 with discrete syncs  
100 = 20-bit 4:2:2 (pixel rate) with embedded syncs  
101111 = Reserved  
Note: 10-bit mode is also used for raw VBI output mode when bit 4 (VBI raw) in the luminance processing control 1 register at subaddress  
06h is set.  
Table 3-43. Output Formatter Control 2  
Subaddress 34h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Data enable  
"Blue" Screen Output [1:0]  
Clock polarity  
SCLK enable  
Data enable: Y[9:0] and C[9:0] output enable  
0 = Y[9:0] and C[9:0] high-impedance (default)  
1 = Y [9:0] and C[9:0] active  
"Blue" Screen Output [1:0]:  
00 = Normal operation (default)  
01 = "Blue" screen out when the TVP5160 decoder detects lost lock (with tuner input but not with VCR)  
10 = Force "Blue" screen out  
11 = Reserved  
Fully programmable color of "blue screen" to support clean input/channel switching. When enabled, in case of lost lock, or when forced, the  
decoder waits until the end of the current frame, then switches the output data to a programmable color. Once displaying the "blue screen",  
the inputs and or RF channel can be switched without causing snow or noise to be displayed on the digital output data. Once the inputs  
have settled, the "blue screen" can be disabled, and the decoder then waits until the end of the current video frame before re-enabling the  
video stream data to the output ports.  
Clock polarity:  
0 = Data clocked out on the falling edge of SCLK (default)  
1 = Data clocked out on the rising edge of SCLK  
SCLK enable:  
0 = SCLK outputs are high-impedance (default)  
1 = SCLK outputs are enabled  
58  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-44. Output Formatter Control 3  
Subaddress 35h  
Default  
FFh  
7
6
5
4
3
2
1
0
GPIO [1:0]  
AVID [1:0]  
GLCO [1:0]  
FID [1:0]  
GPIO [1:0]: GPIO pin (pin 82) function select  
00 = GPIO is 0b output  
01 = GPIO is 1b output  
10 = Reserved  
11 = GPIO in logic input (default)  
AVID [1:0]: AVID pin function select  
00 = AVID is 0b output  
01 = AVID is 1b output  
10 = AVID is active video indicator output  
11 = AVID is logic input (default). In this mode the pin is used as GPIO.  
GLCO [1:0]: GLCO pin function select  
00 = GLCO is 0b output  
01 = GLCO is 1b output  
10 = GLCO is genlock output  
11 = GLCO is logic input (default). In this mode the pin is used as GPIO.  
FID [1:0]: FID pin function select  
00 = FID is 0b output  
01 = FID is 1b output  
10 = FID is FID output  
11 = FID is logic input (default). In this mode the pin is used as GPIO.  
Table 3-45. Output Formatter Control 4  
Subaddress 36h  
Default  
FFh  
7
6
5
4
3
2
1
0
VS/VBLK [1:0]  
HS/CS [1:0]  
C_1 [1:0]  
C_0 [1:0]  
VS/VBLK [1:0]: VS pin function select  
00 = VS is 0b output  
01 = VS is 1b output  
10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control register at subaddress 32h  
(see Section 4.1.37)  
11 = VS is logic input (default). In this mode the pin is used as GPIO.  
HS/CS [1:0]: HS pin function select  
00 = HS is 0b output  
01 = HS is 1b output  
10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control register at subaddress 32h  
(see Section 4.1.37)  
11 = HS is logic input (default). In this mode the pin is used as GPIO.  
C_1 [1:0]: C_1 pin function select  
00 = C_1 is 0b output  
01 = C_1 is 1b output  
10 = Reserved  
11 = C_1 is logic input (default)  
C_0 [1:0]: C_0 pin function select  
00 = C_0 is 0b output  
01 = C_0 is 1b output  
10 = Reserved  
11 = C_0 is logic input (default)  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
59  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-46. Output Formatter Control 5  
Subaddress 37h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_5 [1:0]  
C_4 [1:0]  
C_3 [1:0]  
C_2 [1:0]  
C_5 [1:0]: C_5 pin function select  
00 = C_5 is 0b output  
01 = C_5 is 1b output  
10 = Reserved  
11 = C_5 is logic input (default). In this mode the pin is used as GPIO.  
C_4 [1:0]: C_4 pin function select  
00 = C_4 is 0b output  
01 = C_4 is 1b output  
10 = Reserved  
11 = C_4 is logic input (default). In this mode the pin is used as GPIO.  
C_3 [1:0]: C_3 pin function select  
00 = C_3 is 0b output  
01 = C_3 is 1b output  
10 = Reserved  
11 = C_3 is logic input (default). In this mode the pin is used as GPIO.  
C_2 [1:0]: C_2 pin function select  
00 = C_2 is 0b output  
01 = C_2 is 1b output  
10 = Reserved  
11 = C_2 is logic input (default). In this mode the pin is used as GPIO.  
Table 3-47. Output Formatter Control 6  
Subaddress 38h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_9 [1:0]  
C_8 [1:0]  
C_7 [1:0]  
C_6 [1:0]  
C_9 [1:0]: C_9 pin function select  
00 = C_9 is 0b output  
01 = C_9 is 1b output  
10 = Reserved  
11 = C_9 is logic input (default). In this mode the pin is used as GPIO.  
Note: If overlay is enabled, then C[9] functions as FSO regardless of the setting of register 38h.  
C_8 [1:0]: C_8 pin function select  
00 = C_8 is 0b output  
01 = C_8 is 1b output  
10 = Reserved  
11 = C_8 is logic input (default). In this mode the pin is used as GPIO.  
C_7 [1:0]: C_7 pin function select  
00 = C_7 is 0b output  
01 = C_7 is 1b output  
10 = Reserved  
11 = C_7 is logic input (default). In this mode the pin is used as GPIO.  
C_6 [1:0]: C_6 pin function select  
00 = C_6 is 0b output  
01 = C_6 is 1b output  
10 = Reserved  
11 = C_6 is logic input (default). In this mode the pin is used as GPIO.  
60  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-48. Clear Lost Lock Detect  
Subaddress 39h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Clear lost lock detect  
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah  
0 = No effect (default)  
1 = Clears bit 4 in the status 1 register  
Table 3-49. Status 1  
Subaddress 3Ah  
Read only  
7
6
5
4
3
2
1
0
Peak white  
detect status  
Line-alternating  
status  
Field rate  
status  
Lost lock detect  
Color  
subcarrier lock  
status  
Vertical sync  
lock status  
Horizontal sync TV/VCR status  
lock status  
Peak white detect status:  
0 = Peak white is not detected  
1 = Peak white is detected  
Line-alternating status:  
0 = Non line-alternating  
1 = Line-alternating  
Field rate status:  
0 = 60 Hz  
1 = 50 Hz  
Lost lock detect:  
0 = No lost lock since this bit was last cleared  
1 = Lost lock since this bit was last cleared  
Color subcarrier lock status:  
0 = Color subcarrier is not locked  
1 = Color subcarrier is locked  
Vertical sync lock status:  
0 = Vertical sync is not locked  
1 = Vertical sync is locked  
Horizontal sync lock status:  
0 = Horizontal sync is not locked  
1 = Horizontal sync is locked TV/VCR status: 0 = TV 1 = VCR  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
61  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-50. Status 2  
Subaddress 3Bh  
Read only  
7
6
5
4
3
2
1
0
Signal present  
Weak signal  
detection  
PAL switch  
polarity  
Field sequence  
status  
Color killed  
Macrovision detection [2:0]  
Signal present detection:  
0 = Signal not present  
1 = Signal present  
Weak signal detection:  
0 = No weak signal  
1 = Weak signal mode  
PAL switch polarity of first line of odd field:  
0 = PAL switch is 0b  
1 = PAL switch is 1b  
Field sequence status:  
0 = Even field  
1 = Odd field  
Color killed:  
0 = Color killer not active  
1 = Color killer activated  
Macrovision detection [2:0]:  
000 = No copy protection  
001 = AGC pulses/pseudo syncs present (Type 1)  
010 = 2-line colorstripe only present  
011 = AGC pulses/pseudo syncs and 2-line colorstripe present (Type 2)  
100 = Reserved  
101 = Reserved  
110 = 4-line colorstripe only present  
111 = AGC pulses/pseudo syncs and 4-line colorstripe present (Type 3)  
Table 3-51. AGC Gain Status  
Subaddress 3Ch3Dh  
Read only  
Subaddress  
3Ch  
7
6
5
4
3
2
1
0
Fine Gain [7:0]  
3Dh  
Coarse Gain [3:0]  
Fine Gain[11:8]  
Fine gain [11:0]: This register provides the fine gain value of sync channel.  
1111 1111 1111 = 1.9995  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
Coarse gain [3:0]: This register provides the coarse gain value of sync channel.  
1111 = 2  
0101 = 1  
0000 = 0.5  
These AGC gain status registers are updated automatically by the TVP5160 decoder with AGC on, in manual gain control mode these  
register values are not updated by the TVP5160 decoder.  
Because this register is a multi-byte register, it is necessary to capture the setting into the register to ensure that the value is not updated  
between reading the lower and upper bytes. To cause this register to capture the current settings, bit 0 of I2C register 97h (status request)  
must be set to 1b. Once the internal processor has updated this register, bit 0 of register 97h is cleared, indicating that both bytes of the  
AGC gain status register have been updated and can be read. Either byte may be read first, because no further update occurs until bit 0 of  
97h is set to 1b again.  
62  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-52. Video Standard Status  
Subaddress 3Fh  
Read only  
7
6
5
4
3
2
1
0
Autoswitch  
Reserved  
Video standard [3:0]  
Autoswitch mode  
0 = Single standard set  
1 = Autoswitch mode enabled  
Video standard [3:0]:  
CVBS and S-Video  
0000 = Reserved  
Component Video  
Reserved  
0001 = (M, J) NTSC  
0010 = (B, D, G, H, I, N) PAL  
0011 = (M) PAL  
Interlaced 525 (480i)  
Interlaced 625 (576i)  
Reserved  
0100 = (Combination-N) PAL  
0101 = NTSC 4.43  
0110 = SECAM  
Reserved  
Reserved  
Reserved  
0111 = PAL 60  
Reserved  
1000 = Reserved  
Reserved  
1001 = Reserved  
Progressive 525 (480p)  
Progressive 625 (576p)  
1010 = Reserved  
This register contains information about the detected video standard that the device is currently operating. When in autoswitch mode, this  
register can be tested to determine which video standard as has been detected.  
Table 3-53. GPIO Input 1  
Subaddress 40h  
Read only  
7
6
5
4
3
2
1
0
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
C_x input status:  
0 = Input is a low  
1 = Input is a high  
These status bits are only valid when pins are used as input and are updated at every line.  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
Internal Control Registers  
63  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-54. GPIO Input 2  
Subaddress 41h  
Read only  
7
6
5
4
3
2
1
0
AVID  
GPIO  
GLCO  
VS  
HS  
FID  
C_9  
C_8  
AVID input pin status:  
0 = Input is a low  
1 = Input is a high  
GPIO (Pin 82) input pin status:  
0 = Input is a low  
1 = Input is a high  
GLCO input pin status:  
0 = Input is a low  
1 = Input is a high  
VS input pin status:  
0 = Input is a low  
1 = Input is a high  
HS input status:  
0 = Input is a low  
1 = Input is a high  
FID input status:  
0 = Input is a low  
1 = Input is a high  
C_x input status:  
0 = Input is a low  
1 = Input is a high  
These status bits are only valid when pins are used as input and its states updated at every line.  
Table 3-55. Back End AGC Status 1  
Subaddress 44h  
Read only  
7
6
5
4
3
2
1
0
Gain [7:0]  
Current back end AGC ratio = Gain/128  
Table 3-56. AFE Coarse Gain for CH 1  
Subaddress 46h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 1 [3:0]  
Reserved  
CGAIN 1 [3:0]: Coarse Gain = 0.5 + (CGAIN 1)/10 where 0 CGAIN 1 15  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
...  
0010 = 0.7(default)  
0001 = 0.6  
0000 = 0.5  
64  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-57. AFE Coarse Gain for CH 2  
Subaddress 47h  
Default  
20h  
7
6
5
4
3
2
1
1
1
0
0
0
CGAIN 2 [3:0]  
Reserved  
CGAIN 2 [3:0]: Coarse Gain = 0.5 + (CGAIN 2)/10 where 0 CGAIN 2 15.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
0010 = 0.7(default)  
0001 = 0.6  
0000 = 0.5  
Table 3-58. AFE Coarse Gain for CH 3  
Subaddress 48h  
Default  
20h  
7
6
5
4
3
2
CGAIN 3 [3:0]  
Reserved  
CGAIN 3 [3:0]: Coarse Gain = 0.5 + (CGAIN 3)/10 where 0 CGAIN 3 15.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
0010 = 0.7(default)  
0001 = 0.6  
0000 = 0.5  
Table 3-59. AFE Coarse Gain for CH 4  
Subaddress 49h  
Default  
20h  
7
6
5
4
3
2
CGAIN 4 [3:0]  
Reserved  
CGAIN 4 [3:0]: Coarse Gain = 0.5 + (CGAIN 4)/10 where 0 CGAIN 4 15.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
0010 = 0.7(default)  
0001 = 0.6  
0000 = 0.5  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
Internal Control Registers  
65  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-60. AFE Fine Gain for B/Pb  
Subaddress 4Ah4Bh  
Default  
900h  
Subaddress  
4Ah  
7
6
5
4
3
2
1
0
FGAIN 1 [7:0]  
4Bh  
Reserved  
FGAIN 1 [11:8]  
FGAIN 1 [11:0]: This fine gain applies to component B/Pb.  
Fine Gain = (1/2048) * FGAIN where 0 FGAIN 1 4095  
This register is only updated when the MSB (register 4Bh) is written to.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.25 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
Table 3-61. AFE Fine Gain for G/Y/Chroma  
Subaddress 4Ch4Dh  
Default  
900h  
Subaddress  
4Ch  
7
6
5
4
3
2
1
0
FGAIN 2 [7:0]  
4Dh  
Reserved  
FGAIN 2 [11:8]  
FGAIN 2 [11:0]: This gain applies to component G/Y channel or S-Video chroma.  
This register is only updated when the MSB (register 4Dh) is written to.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.25 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
Table 3-62. AFE Fine Gain for R/Pr  
Subaddress 4Eh4Fh  
Default  
900h  
Subaddress  
4Eh  
7
6
5
4
3
2
1
0
FGAIN 3 [7:0]  
4Fh  
Reserved  
FGAIN 3 [11:8]  
FGAIN 3 [11:0]: This fine gain applies to component R/Pr.  
This register is only updated when the MSB (register 4Fh) is written to.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.25 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
66  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-63. AFE Fine Gain for CVBS/Luma  
Subaddress 50h51h  
Default  
900h  
Subaddress  
50h  
7
6
5
4
3
2
1
0
FGAIN 4 [7:0]  
51h  
Reserved  
FGAIN 4 [11:8]  
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-Video luma (see AFE fine gain for Pb register)  
This register is only updated when the MSB (register 51h) is written to.  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.25 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
Table 3-64. 656 Version  
Subaddress 57h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
656 version  
Reserved  
656 version  
0 = Timing confirms to ITU-R BT.656-4 specifications (default)  
1 = Timing confirms to ITU-R BT.656-3 specifications  
Table 3-65. SDRAM Control  
Subaddress 59h  
Default 00h  
7
6
5
4
3
2
1
0
Reserved  
SDRAM_CLK delay control  
Enable  
Configuration[1:0]  
Configuration[1:0]  
Bit 1  
Bit 0  
Arrangement  
0
0
1
1
0
1
0
1
2 banks × 2048 rows × 256 columns  
4 banks × 2048 rows × 256 columns  
2 banks × 4096 rows × 256 columns  
4 banks × 4096 rows × 256 columns  
16 Mbits  
32 Mbits  
32 Mbits  
64 Mbits  
Memories with more rows, columns, and/or banks can be used as long as the minimum requirements are met. Additional rows, columns,  
and/or banks are ignored and unused by the memory controller.  
The memory controller must be configured before enabling 3DYC or 3DNR; otherwise, incorrect operation of the memory controller will  
result.  
Enable:  
0 = SDRAM controller disabled (default)  
1 = SDRAM controller enabled  
SDRAM_CLK delay control[3:0]  
This register changes the delay from the default position of SDRAM_CLK in increments of approximately 0.58 ns.  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Delay  
0 (default)  
0.58 ns  
1.16 ns  
9.3 ns  
0
0
1
1
0
0
0
1
0
0
0
1
0
1
0
1
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
67  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-66. 3DNR Y Noise Sensitivity  
Subaddress 5Ah  
Default  
80h  
7
6
6
6
6
6
5
5
5
5
5
4
3
2
1
1
1
1
1
0
Y noise sensitivity[7:0]  
Table 3-67. 3DNR UV Noise Sensitivity  
Subaddress 5Bh  
Default 80h  
7
4
3
2
0
0
0
0
UV noise sensitivity[7:0]  
Table 3-68. 3DNR Y Coring Threshold Limit  
Subaddress 5Ch  
Default 80h  
7
4
3
2
Y coring threshold [7:0]  
Table 3-69. 3DNR UV Coring Threshold Limit  
Subaddress 5Dh  
Default 40h  
7
4
3
2
UV coring threshold [7:0]  
Table 3-70. 3DNR Low Noise Limit  
Subaddress 5Eh  
Default 40h  
7
4
3
2
Threshold to indicate when Low Noise Present[7:0]  
This register sets a threshold for low noise present.  
Table 3-71. "Blue" Screen Y Control  
Subaddress 5Fh  
Default  
00h  
7
6
5
4
3
2
1
0
Y value [9:2]  
The Y value of the color screen output when enabled by bit 2 or 3 of the output formatter 2 register is programmable using a 10-bit value.  
The 8 MSB, bits[9:2], are represented in this register.  
The remaining two LSB are found in the "Blue" screen LSB register. The default color screen output is black.  
Table 3-72. "Blue" Screen Cb Control  
Subaddress 60h  
Default  
80h  
7
6
5
4
3
2
1
0
Cb value [9:2]  
The Cb value of the color screen output when enabled by bit 2 or 3 of the output formatter 2 register is programmable using a 10-bit value.  
The 8 MSB, bits[9:2], are represented in this register.  
The remaining two LSB are found in the "Blue" screen LSB register. The default color screen output is black.  
68  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-73. "Blue" Screen Cr Control  
Subaddress 61h  
Default  
80h  
7
6
5
4
3
2
1
0
Cr value [9:2]  
The Cr value of the color screen output when enabled by bit 2 or 3 of the output formatter 2 register is programmable using a 10-bit value.  
The 8 MSB, bits[9:2], are represented in this register. The remaining two LSB are found in the "Blue" screen LSB register. The default color  
screen output is black.  
Table 3-74. "Blue" Screen LSB Control  
Subaddress 62h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Y value LSB [1:0]  
Cb value LSB [1:0]  
Cr value LSB [1:0]  
The two LSB for the "Blue" screen Y, Cb, and Cr values are represented in this register.  
Table 3-75. Noise Measurement  
Subaddress 64h65h  
Read only  
Subaddress  
64h  
7
6
5
4
3
2
1
0
3DNR Noise Measurement [7:0]  
3DNR Noise Measurement [15:8]  
65h  
3DNR Noise Measurement  
Because this register is a double-byte register it is necessary to capture the setting into the register to ensure that the value is not updated  
between reading the lower and upper bytes. To cause this register to capture the current settings, bit 0 of I2C register 97h (status request)  
must be set to 1b. Once the internal processor has updated this register bit 0 of register 97h is cleared, indicating that both bytes of the  
noise measurement register have been updated and can be read. Either byte may be read first, because no further update will occur until  
bit 0 of 97h is set to 1b again.  
Table 3-76. 3DNR Y Core0  
Subaddress 66h  
Read only  
7
6
5
4
3
2
1
0
Y_core0[7:0]  
Y Core0  
Table 3-77. 3DNR UV Core0  
Subaddress 67h  
Read only  
7
6
5
4
3
2
1
0
UV_core0[7:0]  
UV Core0  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
69  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-78. F- and V-Bit Decode Control  
Subaddress 69h  
Default  
00h  
7
6
5
4
3
2
1
0
VPLL  
Adaptive  
Reserved  
F-Mode[1:0]  
This register only works in manual gain control mode. When AGC is active, writing to any value is ignored.  
F-bit control mode  
00 = Auto: If lines per frame is standard decode F and V bits as per 656 standard from line count else decode F bit from vsync input  
and set V bit = 0b  
01 = Decode F and V bits from input syncs  
10 = Reserved  
11 = Always decode F and V bits from line count (TVP5146 compatible)  
This register is used in conjunction with register 75h as indicated below:  
REGISTER 69H  
REGISTER 75H  
STANDARD LPF  
NONSTANDARD LPF  
MODE  
BIT 1  
BIT 0  
BIT 3  
BIT 2  
F
V
F
V
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
TVP5160  
TVP5160  
Reserved  
Reserved  
Reserved  
656  
Reserved  
656  
Reserved  
Toggle  
Reserved  
Switch9  
0
656  
656  
Pulse  
Reserved  
Reserved  
656  
Reserved  
Reserved  
656  
Reserved  
Reserved  
Toggle  
Reserved  
Reserved  
Switch9  
0
656  
656  
Pulse  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Even = 1  
Odd = toggle  
1
1
0
0
TVP5146  
656  
656  
Switch  
1
1
1
1
1
1
0
1
1
1
0
1
TVP5146  
TVP5146  
Reserved  
656  
656  
656  
656  
Toggle  
Pulse  
Switch  
Switch  
Reserved  
Reserved  
Reserved  
Reserved  
656 = ITU-R BT.656 standard  
Pulse = Pulses low for 1 line prior to field transition  
Switch = V bit switches high before the F-bit transition and low after the F bit transition  
Switch9 = V bit switches high 1 line prior to the F-bit transition, then low after 9 lines  
Reserved = Not used  
Adaptive  
0 = Enable F- and V-bit adaptation to detected lines per frame  
1 = Disable F- and V-bit adaptation to detected lines per frame  
VPLL time constant control:  
0 = VPLL adapts time constants to input signal  
1 = VPLL time constants fixed  
70  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-79. Back-End AGC Control  
Subaddress 6Ch  
Default  
08h  
7
6
5
4
3
1
2
1
0
Reserved  
Peak  
Color  
Sync  
This register allows disabling the back-end AGC when the front-end AGC uses specific amplitude references (sync height, color burst, or  
composite peak) to decrement the front-end gain. For example, writing 0x09 to this register disables the back-end AGC whenever the  
front-end AGC uses the sync height to decrement the front-end gain.  
Sync: Disables back end AGC when the front end AGC uses the sync height as an amplitude reference.  
0 = Enabled (default)  
1 = Disabled  
Color: Disables back end AGC when the front end AGC uses the color burst as an amplitude reference.  
0 = Enabled (default)  
1 = Disabled  
Peak: Disables back end AGC when the front end AGC uses the composite peak as an amplitude reference.  
0 = Enabled (default)  
1 = Disabled  
Table 3-80. AGC Decrement Speed  
Subaddress 6Fh  
Default  
04h  
7
6
5
4
3
2
1
0
Reserved  
AGC decrement speed [2:0]  
AGC decrement speed: Adjusts gain decrement speed. Only used for composite/luma peaks.  
111 = 7 (slowest)  
110 = 6 (default)  
000 = 0 (fastest)  
Table 3-81. ROM Version  
Subaddress 70h  
Read only  
7
6
5
4
3
2
1
0
ROM version [7:0]  
ROM Version [7:0]: ROM revision number  
Table 3-82. RAM Version MSB  
Subaddress 71h  
Read only  
7
6
5
4
3
2
1
0
RAM version MSB [7:0]  
RAM version MSB [7:0]: This register identifies the MSB of the RAM code revision number.  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
Internal Control Registers  
71  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-83. AGC White Peak Processing  
Subaddress 74h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma peak A  
Reserved  
Color burst A  
Sync height A  
Luma peak B  
Composite  
peak  
Color burst B  
Sync height B  
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC algorithm  
0 = Enabled (default)  
1 = Disabled  
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back-end  
NOTE: Not available for SECAM, component and B/W video sources.  
0 = Enabled (default)  
1 = Disabled  
Sync height A: Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC algorithm  
0 = Enabled (default)  
1 = Disabled  
Luma peak B: Use of the luma peak as a video amplitude reference for front-end feedback type AGC algorithm  
0 = Enabled (default)  
1 = Disabled  
Composite peak: Use of the composite peak as a video amplitude reference for front-end feedback type AGC algorithm  
NOTE: Required for CVBS video sources  
0 = Enabled (default)  
1 = Disabled  
Color burst B: Use of the color burst amplitude as a video amplitude reference for front-end feedback type AGC algorithm  
NOTE: Not available for SECAM, component and B/W video sources  
0 = Enabled (default)  
1 = Disabled  
Sync height B: Use of the sync-height as a video amplitude reference for front-end feedback type AGC algorithm  
0 = Enabled (default)  
1 = Disabled  
NOTE: If all 4 bits of the lower nibble are set to 1111b (that is, no amplitude reference selected), then the front-end analog and digital  
gains are automatically set to nominal values.  
If all 4 bits of the upper nibble are set to 1111b (that is, no amplitude reference selected), then the back-end gain is set automatically to  
unity. If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%, then the  
back-end scale factor attempts to increase the contrast in the back-end to restore the video amplitude to 100%.  
Table 3-84. F-Bit and V-Bit Control  
Subaddress 75h  
Default  
16h  
7
6
5
4
1
3
2
1
1
0
Reserved  
F and V [1:0]  
Reserved  
F and V [1:0]  
F AND V(1)  
LINES PER FRAME  
Standard  
F BIT  
V BIT  
ITU-R BT.656  
ITU-R BT 656  
Forced to 1  
Toggles  
00 =  
Nonstandard even  
Nonstandard odd  
Standard  
Switch at field boundary  
Switch at field boundary  
ITU-R BT.656  
ITU-R BT 656  
Toggles  
01 = (default)  
Nonstandard  
Standard  
Switch at field boundary  
ITU-R BT.656  
ITU-R BT 656  
Pulsed mode  
10 =  
11 =  
Nonstandard  
Reserved  
Switch at field boundary  
(1) F and V control bits are only enabled for F-bit control modes 01 and 10 (see register 69h).  
72  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-85. AGC Increment Speed  
Subaddress 78h  
Default  
06h  
7
6
5
4
3
2
1
0
Reserved  
AGC increment speed [2:0]  
AGC increment speed: Adjusts gain increment speed.  
111 = 7 (slowest)  
110 = 6 (default)  
000 = 0 (fastest)  
Table 3-86. AGC Increment Delay  
Subaddress 79h  
Default  
1Eh  
7
6
5
4
3
2
1
0
AGC increment delay [7:0]  
AGC increment delay: Number of frames to delay gain increments  
1111 1111 = 255  
0001 1110 = 30 (default)  
0000 0000 = 0  
Table 3-87. Analog Output Control 1  
Subaddress 7Fh  
Default 00h  
7
6
5
4
3
2
1
0
Reserved  
AGC enable  
Reserved  
Analog output  
enable  
AGC enable:  
0 = Enabled (default)  
1 = Disabled, manual gain mode set (see Section 4.2.10)  
Analog output enable:  
0 = Analog output is disabled (default)  
1 = Analog output is enabled  
Table 3-88. Chip ID MSB  
Subaddress 80h  
Read only  
7
6
5
4
3
2
1
0
CHIP ID MSB[7:0]  
CHIP ID MSB[7:0]: This register identifies the MSB of device ID. Value = 51h  
Table 3-89. Chip ID LSB  
Subaddress 81h  
Read only  
7
6
5
4
3
2
1
0
CHIP ID LSB [7:0]  
CHIP ID LSB [7:0]: This register identifies the LSB of device ID. Value = 60h  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
73  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-90. RAM Version LSB  
Subaddress 82h  
Read only  
7
6
5
4
3
2
1
0
RAM version LSB [7:0]  
RAM version LSB [7:0]: This register identifies the LSB of the RAM code revision number.  
Example:  
Patch Release = v04.04.02  
ROM Version = 04h  
RAM Version MSB = 04h  
RAM Version LSB = 02h  
Table 3-91. Color PLL Speed Control  
Subaddress 83h  
Default 09h  
7
6
5
4
3
2
1
0
Speed[3:0]  
Color PLL speed control.  
Table 3-92. 3DYC Luma Coring LSB  
Subaddress 84h  
Default  
20h/20h  
7
6
5
4
3
2
1
0
3DYC Luma Coring [7:0]  
This register contains the lower 8 bits of the 10-bit 3DYC luma coring register. The upper 2 bits are accessed through I2C register 86h.  
An inter-frame luma signal difference smaller than the programmed value is assumed to be noise, resulting in the pixel being recognized as  
"no motion" hence favoring intra-frame (3D) comb filtering. The minimum value of 000h favors the 2D comb filter output, whereas the  
maximum value of 3FFh favors the 3D comb filter output.  
Table 3-93. 3DYC Chroma Coring LSB  
Subaddress 85h  
Default  
20h/2Ah  
7
6
5
4
3
2
1
0
3DYC Chroma Coring [7:0]  
This register contains the lower 8 bits of the 10-bit 3DYC chroma coring register. The upper 2 bits are accessed through I2C register 86h.  
An inter-frame chroma signal difference smaller than the programmed value is assumed to be noise, resulting in the pixel being recognized  
as "no motion" hence favoring intra-frame (3D) comb filtering. The minimum value of 000h favors the 2D comb filter output whereas the  
maximum value of 3FFh favors the 3D comb filter output.  
Table 3-94. 3DYC Luma/Chroma Coring MSB  
Subaddress 86h  
Default  
00h/00h  
7
6
5
4
3
2
1
0
Reserved  
Chroma Coring [9:8]  
Luma Coring [9:8]  
This register contains the upper 2 bits of the 10-bit 3DYC luma coring and 3DYC chroma coring registers. The lower 8 bits are accessed  
through I2C registers 84h and 85h.  
An inter-frame luma signal difference smaller than the programmed value is assumed to be noise, resulting in the pixel being recognized as  
"no motion" hence favoring intra-frame (3D) comb filtering. The minimum value of 000h favors the 2D comb filter output, whereas the  
maximum value of 3FFh favors the 3D comb filter output.  
74  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-95. 3DYC Luma Gain  
Subaddress 87h  
Default  
08h/08h  
7
6
5
4
3
2
1
0
3DYC luma gain [7:0]  
This register contains a 5.3 format gain value used to calculate the luma difference value for luma coring. The gain can vary from 0 to  
31.875 in steps of 0.125. The minimum value of 0 favors the 3D comb filter output, whereas the maximum value of 31.875 favors the 2D  
comb filter output.  
Table 3-96. 3DYC Chroma Gain  
Subaddress 88h  
Default  
08h/08h  
7
6
5
4
3
2
1
0
3DYC chroma gain [7:0]  
This register contains a 5.3 format gain value used to calculate the chroma difference value for chroma coring. The gain can vary from 0 to  
31.875 in steps of 0.125. The minimum value of 0 favors the 3D comb filter output, whereas the maximum value of 31.875 favors the 2D  
comb filter output.  
Table 3-97. 3DYC Signal Quality Gain  
Subaddress 89h  
Default  
02h/02h  
7
6
5
4
3
2
1
0
3DYC Signal Quality gain [7:0]  
When the input signal quality is not good, for example weak broadcast signals or poor VCR signals, 3DCY comb filtering is automatically  
turned off. This register sets the gain, or sensitivity, to distinguish poor signal quality. A smaller value in this register favors application of  
3DYC, whereas a larger value favors 2DYC.  
Table 3-98. 3DYC Signal Quality Coring  
Subaddress 8Ah8Bh  
Default  
328h/380h  
Subaddress  
8Ah  
7
6
5
4
3
2
1
0
3DYC Signal Quality Coring [7:0]  
3DYC Signal Quality Coring [15:8]  
8Bh  
When the input signal quality is not good, for example weak broadcast signals or poor VCR signals, 3DCY comb filtering is automatically  
turned off. This register sets the coring value used to distinguish poor signal quality. A larger value in this register favors application of  
3DYC, whereas a smaller value favors 2DYC.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
75  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-99. IF Compensation Control  
Subaddress 8Dh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
U
V
Comp.  
IF Enable  
Comp:  
0 = Crosstalk compensation only. Use if SAW IF stage used.  
1 = Crosstalk and low-frequency gain compensation. Use if non-SAW IF stage used.  
U: Enable high frequency U gain  
0 = Enabled  
1 = Disabled  
V: Enable high frequency V gain  
0 = Enabled  
1 = Disabled  
IF enable:  
0 = IF compensation disabled (default)  
1 = IF compensation enabled  
Table 3-100. IF Differential Gain Control  
Subaddress 8Eh  
Default 22h  
7
6
5
4
3
2
1
0
U differential gain[3:0]  
V differential gain[3:0]  
For low IF stage distortions, use lower settings.  
Table 3-101. IF Low Frequency Gain Control  
Subaddress 8Fh  
Default 44h  
7
6
5
4
3
2
1
0
0
0
U low frequency gain[3:0]  
V low frequency gain[3:0]  
Table 3-102. IF High Frequency Gain Control  
Subaddress 90h  
Default 00h  
7
6
5
4
3
2
1
U high frequency gain[3:0]  
V high frequency gain[3:0]  
Table 3-103. Weak Signal High Threshold  
Subaddress 95h  
Default 60h  
7
6
5
4
3
2
1
Level [7:0]  
This register controls the upper threshold of the noise measurement that determines whether the input signal is considered a weak signal.  
76  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-104. Weak Signal High Threshold  
Subaddress 96h  
Default  
50h  
7
6
5
4
3
2
1
0
Level [7:0]  
This register controls the lower threshold of the noise measurement that determines whether the input signal is considered a weak signal.  
Table 3-105. Status Request  
Subaddress 97h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Capture  
Capture:  
Setting a 1b in this bit causes the internal processor to capture the current settings of the AGC status, 3DNR noise measurement, and  
the vertical line count registers. Because this capture is not immediate, it is necessary to check for completion of the capture by reading  
the Capture bit repeatedly after setting it and waiting for it to be cleared by the internal processor. Once the Capture bit is 0b, then the  
AGC status, noise measurement, and vertical line counters (3Ch/3Dh, 64h/65h, and 9Ah/9Bh) will have been updated and can be  
safely read in any order.  
Table 3-106. 3DYC NTSC VCR Threshold  
Subaddress 98h  
Default  
10h  
7
6
5
4
3
2
1
0
Thresh [7:0]  
This register controls how 3DYC is enabled/disabled for VCR modes.  
Table 3-107. 3DYC PAL VCR Threshold  
Subaddress 99h  
Default 20h  
7
6
5
4
3
2
1
0
Thresh [7:0]  
This register controls how 3DYC is enabled/disabled for VCR modes.  
Table 3-108. Vertical Line Count  
Subaddress 9Ah9Bh  
Read only  
Subaddress  
9Ah  
7
6
5
4
3
2
1
0
Vertical line [7:0]  
9Bh  
Reserved  
Vertical line [9:8]  
Vertical line [9:0] represent the detected a total number of lines from the previous frame. This can be used with nonstandard video signals  
such as a VCR in trick mode to synchronize downstream video circuitry.  
Because this register is a double-byte register it is necessary to capture the setting into the register to ensure that the value is not updated  
between reading the lower and upper bytes. To cause this register to capture the current settings bit 0 of I2C register 97h (status request)  
must be set to a 1b. Once the internal processor has updated this register, bit 0 of register 97h is cleared, indicating that both bytes of the  
vertical line count register have been updated and can be read. Either byte may be read first, because no further update will occur until bit 0  
of 97h is set to 1b again.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
77  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-109. AGC Decrement Delay  
Subaddress 9Eh  
Default  
1Eh  
7
6
5
4
3
2
1
0
AGC decrement delay [7:0]  
AGC decrement delay: Number of frames to delay gain decrements  
1111 1111 = 255  
0001 1110 = 30 (default)  
0000 0000 = 0  
Table 3-110. VDP TTX Filter and Mask  
Subaddress B1h  
B2h  
00h  
B3h  
00h  
B4h  
00h  
B5h  
00h  
B6h  
00h  
B7h  
00h  
B8h  
00h  
B9h  
00h  
BAh  
00h  
Default  
00h  
Subaddress  
B1h  
7
6
5
4
3
2
1
0
Filter 1 Mask 1  
Filter 1 Mask 2  
Filter 1 Mask 3  
Filter 1 Mask 4  
Filter 1 Mask 5  
Filter 2 Mask 1  
Filter 2 Mask 2  
Filter 2 Mask 3  
Filter 2 Mask 4  
Filter 2 Mask 5  
Filter 1 Pattern 1  
Filter 1 Pattern 2  
Filter 1 Pattern 3  
Filter 1 Pattern 4  
Filter 1 Pattern 5  
Filter 2 Pattern 1  
Filter 2 Pattern 2  
Filter 2 Pattern 3  
Filter 2 Pattern 4  
Filter 2 Pattern 5  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits (D[3:0]) interlaced with 4 Hamming protection  
bits (H[3:0]):  
Bit 7  
D[3]  
Bit 6  
H[3]  
Bit 5  
D[2]  
Bit 4  
H[2]  
Bit 3  
D[1]  
Bit 2  
H[1]  
Bit 1  
D[0]  
Bit 0  
H[0]  
Only the data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits P[3:0] and mask bits M[3:0].  
The filter ignores hamming protection bits.  
For a WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of magazine number (M[2:0])  
and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits H[7:0]:  
Bit 7  
R[0]  
R[4]  
Bit 6  
H[3]  
H[7]  
Bit 5  
M[2]  
R[3]  
Bit 4  
H[2]  
H[6]  
Bit 3  
M[1]  
R[2]  
Bit 2  
H[1]  
H[5]  
Bit 1  
M[0]  
R[1]  
Bit 0  
H[0]  
H[4]  
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1b in the LSB of mask 1 means that the  
filter module should compare the LSB of nibble 1 in the pattern register to the first data bit on the transaction. If these match, then a true  
result is returned. A 0b in a mask bit means that the filter module should ignore that data bit of the transaction. If all 0s are programmed in  
the mask bits, the filter matches all patterns returning a true result (default 00h).  
78  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-111. VDP TTX Filter Control  
Subaddress BBh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Filter logic [1:0]  
Mode  
TTX filter 2  
enable  
TTX filter 1  
enable  
Filter logic [1:0]: Allow different logic to be applied when combining the decision of Filter 1 and Filter 2 as follows:  
00 = NOR (default)  
01 = NAND  
10 = OR  
11 = AND  
Mode: Indicates which teletext mode is in use:  
0 = Teletext filter applies to 2 header bytes (default)  
1 = Teletext filter applies to 5 header bytes  
TTX filter 2 enable: provides for enabling the teletext filter function within the VDP.  
0 = Disable (default)  
1 = Enable  
TTX filter 1 enable: provides for enabling the teletext filter function within the VDP.  
0 = Disable (default)  
1 = Enable  
If the filter matches or if the filter mask is all 0s, then a true result is returned.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
79  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
1P1[3]  
D1[3]  
1M1[3]  
1P1[2]  
D1[2]  
1M1[2]  
1P1[1]  
D1[1]  
1M1[1]  
1P1[0]  
D1[0]  
1M1[0]  
NIBBLE 1  
D2[3:0]  
1P2[3:0]  
1M2[3:0]  
NIBBLE 2  
NIBBLE 3  
NIBBLE 4  
NIBBLE 5  
PASS 1  
D3[3:0]  
1P3[3:0]  
1M3[3:0]  
Filter 1  
Enable  
00  
01  
D4[3:0]  
1P4[3:0]  
1M4[3:0]  
PASS  
10  
11  
D5[3:0]  
1P5[3:0]  
1M5[3:0]  
2
FILTER 1  
FILTER 2  
Filter Logic  
D1..D5  
2P1..2P5  
2M1..2M5  
PASS 2  
Filter 2  
Enable  
Figure 3-1. Teletext Filter Function  
Table 3-112. VDP FIFO Word Count  
Subaddress BCh  
Read only  
7
6
5
4
3
2
1
0
FIFO word count [7:0]  
FIFO word count [7:0]: This register provides the number of words in the FIFO.  
Note: 1 word equals 2 bytes.  
80  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-113. VDP FIFO Interrupt Threshold  
Subaddress BDh  
Default  
80h  
7
6
5
4
3
2
1
0
Thresh [7:0]  
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of  
words in the FIFO exceeds this value.  
Note: 1 word equals 2 bytes.  
Table 3-114. VDP FIFO Reset  
Subaddress BFh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
FIFO reset  
FIFO reset: Writing any data to this register clears the FIFO and VDP data registers. After clearing, this register bit is automatically cleared.  
Table 3-115. VDP FIFO Output Control  
Subaddress C0h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Host access  
enable  
Host access enable: This register is programmed to allow the host port access to the FIFO or allowing all VDP data to go out the video  
output.  
0 = Output FIFO data to the video output Y[9:2] (default)  
1 = Allow host port access to the FIFO data  
Table 3-116. VDP Line Number Interrupt  
Subaddress C1h  
Default  
00h  
7
6
5
4
3
2
1
0
Field 1 enable  
Field 2 enable  
Line number [5:0]  
Field 1 interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Field 2 interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Line number [5:0]: Interrupt line number (default 00h)  
This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0]. This interrupt must be  
enabled at address F4h.  
Note: The line number value of zero or one is invalid and will not generate an interrupt.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
81  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-117. VDP Pixel Alignment  
Subaddress C2hC3h  
Default  
01Eh  
Subaddress  
C2h  
7
6
5
4
3
2
1
0
Pixel alignment [7:0]  
C3h  
Reserved  
Pixel alignment [9:0]  
Pixel alignment [9:0]: These registers form a 10-bit horizontal pixel position from the falling edge of horizontal sync, where the VDP  
controller will initiate the program from one line standard to the next line standard. For example, the previous line of teletext to the next line  
of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay in the VDP, but early  
enough to allow the new values to be programmed before the current settings are required.  
The default value is 0x1E and has been tested with every standard supported here. A new value will only be needed if a custom standard is  
in use.  
Table 3-118. VDP Line Start  
Subaddress D6h  
Default  
06h  
7
6
5
4
3
2
1
0
VDP line start [7:0]  
VDP line start [7:0]: Sets the VDP line starting address for the global line mode register  
This register has to be set properly before enabling the line mode registers. The global line mode is only active in the region defined by the  
VDP line start and stop registers.  
Table 3-119. VDP Line Stop  
Subaddress D7h  
Default  
1Bh  
7
6
5
4
3
2
1
0
VDP line stop [7:0]  
VDP line stop address [7:0]: Sets the VDP stop line.  
Table 3-120. VDP Global Line Mode  
Subaddress D8h  
Default  
FFh  
7
6
5
4
3
2
1
0
Global line mode [7:0]  
Global line mode [7:0]: VDP processing for multiple lines set by VDP start line register D6h and stop line register D7h.  
Global line mode register has the same bits definitions as the line mode register's (see Table 3-143).  
General line mode will have priority over the global line mode.  
Table 3-121. VDP Full Field Enable  
Subaddress D9h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Full field enable  
Full field enable:  
0 = Disabled full field mode(default)  
1 = Enabled full field mode  
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line mode register  
programmed with FFh are sliced with the definition of full field mode register at subaddress DAh. Values other than FFh in the line mode  
registers allow a different slice mode for that particular line.  
82  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-122. VDP Full Field Mode  
Subaddress DAh  
Default  
FFh  
7
6
5
4
3
2
1
0
Full field mode [7:0]  
Full field mode [7:0]: This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings  
take priority over the full field register. This allows each VBI line to be programmed independently but have the remaining lines in full field  
mode. The full field mode register has the same bits definition as line mode registers. (default FFh)  
Global line mode will have priority over the full field mode.  
Table 3-123. Interlaced/Progressive Status  
Subaddress DBh  
Read only  
7
6
5
4
3
2
1
0
I/P  
Interlaced/progressive detection status:  
0 = SD interlaced signal detected  
1 = ED/HD signal detected  
Table 3-124. VBUS Data Access with No VBUS Address Increment  
Subaddress E0h  
Default 00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS single byte read/write transaction.  
Table 3-125. VBUS Data Access with VBUS Address Increment  
Subaddress E1h  
Default 00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS multi-byte read/write transaction. VBUS address is auto-incremented after each data byte  
read/write.  
Table 3-126. VDP FIFO Read Data  
Subaddress E2h  
Read only  
7
6
5
4
3
2
1
0
FIFO Read Data [7:0]  
FIFO Read Data [7:0]: This register is provided to access VBI FIFO data through the I2C interface. All forms of teletext data come directly  
from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO. If the host port reads data  
from the FIFO, then bit 0 (host access enable) in the VDP FIFO output control register at subaddress C0h must be set to 1b.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
83  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-127. VBUS Address  
Subaddress  
Default  
E8h  
00h  
E9h  
00h  
EAh  
00h  
Subaddress  
E8h  
7
6
5
4
3
2
1
0
VBUS address [7:0]  
VBUS address [15:8]  
VBUS address [23:16]  
E9h  
EAh  
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user must program the 24-bit  
address of the internal register to be accessed via host port indirect access mode.  
Table 3-128. Interrupt Raw Status 0  
Subaddress F0h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS/CGMS  
VPS/Gemstar  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, unmasked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available unmasked  
0 = Not available  
1 = Available  
WSS/CGMS: WSS/CGMS data available unmasked  
0 = Not available  
1 = Available  
VPS/Gemstar: VPS/Gemstar data available unmasked  
0 = Not available  
1 = Available  
VITC: VITC data available unmasked  
0 = Not available  
1 = Available  
CC F2: CC field 2 data available unmasked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available unmasked  
0 = Not available  
1 = Available  
Line: Line number interrupt unmasked  
0 = Not available  
1 = Available  
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.  
84  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-129. Interrupt Raw Status 1  
Subaddress F1h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
FIFO full  
FIFO full:  
0 = FIFO not full  
1 = FIFO was full during write to FIFO  
The masked or unmasked status is set in the interrupt mask 1 register at subaddress F5h.  
The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO has only 10 bytes left and  
teletext is the current VBI line, the FIFO full error flag is set, but no data will be written because the entire teletext line will not fit. However, if  
the next VBI line is closed caption requiring only 2 bytes of data plus the header, then this will go into the FIFO even if the full error flag is  
set.  
Table 3-130. Interrupt Status 0  
Subaddress F2h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS/CGMS  
VPS/Gemstar  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, masked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available masked  
0 = Not available  
1 = Available  
WSS/CGMS: WSS/CGMS data available masked  
0 = Not available  
1 = Available  
VPS/Gemstar: VPS/Gemstar data available masked  
0 = Not available  
1 = Available  
VITC: VITC data available masked  
0 = Not available  
1 = Available  
CC F2: CC field 2 data available masked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available masked  
0 = Not available  
1 = Available  
Line: Line number interrupt masked  
0 = Not available  
1 = Available  
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits. Therefore, the status bits are the result of a  
logical AND between the raw status and mask bits. The external interrupt pin is derived from this register as an OR function of all  
nonmasked interrupts in this register.  
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset using the corresponding  
bits in interrupt clear 0 and 1 registers.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
85  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-131. Interrupt Status 1  
Subaddress F3h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
FIFO full  
FIFO full: Masked status of FIFO  
0 = FIFO not full  
1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h  
The masked or unmasked status is set in the interrupt mask 1 register.  
Table 3-132. Interrupt Mask 0  
Subaddress F4h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS/CGMS  
VPS/Gemstar  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed mask  
0 = Disabled (default)  
1 = Enabled FIFO_THRES interrupt  
TTX: Teletext data available mask  
0 = Disabled (default)  
1 = Enabled TTX available interrupt  
WSS/CGMS: WSS/CGMS data available mask  
0 = Disabled (default)  
1 = Enabled WSS/CGMS available interrupt  
VPS/Gemstar: VPS/Gemstar data available mask:  
0 = Disabled (default)  
1 = Enabled VPS/Gemstar available interrupt  
VITC: VITC data available mask:  
0 = Disabled (default)  
1 = Enabled VITC available interrupt  
CC F2: CC field 2 data available mask  
0 = Disabled (default)  
1 = Enabled CC field 2 available interrupt  
CC F1: CC field 1 data available mask  
0 = Disabled (default)  
1 = Enabled CC field 1 available interrupt  
LINE: Line number interrupt mask  
0 = Disabled (default)  
1 = Enabled Line_INT interrupt  
The host interrupt mask 0 and 1 registers can be used by the external processor to mask unnecessary interrupt sources for interrupt status  
0 and 1 register bits, and for the external interrupt pin. The external interrupt is generated from all nonmasked interrupt flags.  
Table 3-133. Interrupt Mask 1  
Subaddress F5h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
FIFO full  
FIFO full: FIFO full mask  
0 = Disabled (default)  
1 = Enabled FIFO full interrupt  
86  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-134. Interrupt Clear 0  
Subaddress F6h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS/CGMS  
VPS/Gemstar  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed clear  
0 = No effect (default)  
1 = Clear FIFO_THRES bit in status register 0 bit 7  
TTX: Teletext data available clear  
0 = No effect (default)  
1 = Clear TTX available bit in status register 0 bit 6  
WSS/CGMS: WSS/CGMS data available clear  
0 = No effect (default)  
1 = Clear WSS/CGMS available bit in status register 0 bit 5  
VPS/Gemstar: VPS/Gemstar data available clear  
0 = No effect (default)  
1 = Clear VPS/Gemstar available bit in status register 0 bit 4  
VITC: VITC data available clear  
0 = Disabled (default)  
1 = Clear VITC available bit in status register 0 bit 3  
CC F2: CC field 2 data available clear  
0 = Disabled (default)  
1 = Clear CC field 2 available bit in status register 0 bit 2  
CC F1: CC field 1 data available clear  
0 = Disabled (default)  
1 = Clear CC field 1 available bit in status register 0 bit 1  
LINE: Line number interrupt clear  
0 = Disabled (default)  
1 = Clear Line interrupt available bit in status register 0 bit 0  
The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits in the host interrupt status 0  
and 1 registers. When no nonmasked interrupts remain set in the registers, the external interrupt pin will also become inactive.  
Table 3-135. Interrupt Clear 1  
Subaddress F7h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
FIFO full  
FIFO full: Clear FIFO full flag  
0 = No effect (default)  
1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress  
F1h  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
87  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
3.2 VBUS Register Definitions  
Table 3-136. VDP Closed Caption Data  
Subaddress 80 051Ch 80 051Fh  
Read only  
Subaddress  
80 051Ch  
80 051Dh  
80 051Eh  
80 051Fh  
7
6
5
4
3
2
1
0
Closed Caption Field 1 byte 1  
Closed Caption Field 1 byte 2  
Closed Caption Field 2 byte 1  
Closed Caption Field 2 byte 2  
These registers contain the closed caption data arranged in bytes per field.  
Table 3-137. VDP WSS/CGMS Data  
Subaddress 80 0520h 80 0526h  
Read only  
WSS/CGMS NTSC  
Subaddress  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
7
6
5
4
3
2
1
0
Byte  
b5  
b4  
b3  
b2  
b1  
b0  
b6  
WSS/CGMS Field 1 Byte 1  
WSS/CGMS Field 1 Byte 2  
WSS/CGMS Field 1 Byte 3  
b13  
b12  
b11  
b19  
b10  
b18  
b9  
b8  
b7  
b17  
b16  
b15  
b14  
Reserved  
b13  
b12  
b5  
b4  
b3  
b9  
b2  
b8  
b1  
b7  
b0  
b6  
WSS/CGMS Field 2 Byte 1  
WSS/CGMS Field 2 Byte 2  
WSS/CGMS Field 2 Byte 3  
b11  
b19  
b10  
b18  
b17  
b16  
b15  
b14  
These registers contain the wide screen signaling data for NTSC.  
Bits 0 1 represent word 0, aspect ratio  
Bits 2 5 represent word 1, header code for word 2  
Bits 6 13 represent word 2, copy control  
Bits 14 19 represent word 3, CRC  
WSS/CGMS PAL/SECAM  
Subaddress  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
7
b7  
6
b6  
5
4
3
2
1
0
Byte  
b5  
b4  
b3  
b2  
b1  
b9  
b0  
b8  
WSS/CGMS Field 1 Byte 1  
WSS/CGMS Field 1 Byte 2  
b13  
b12  
b11  
b10  
Reserved  
Reserved  
b7  
b6  
b5  
b4  
b12  
b3  
b2  
b1  
b9  
b0  
b8  
WSS/CGMS Field 2 Byte 1  
WSS/CGMS Field 2 Byte 2  
b13  
b11  
b10  
Reserved  
These registers contain the wide screen signaling data for PAL/SECAM:  
Bits 0 3 represent Group 1, Aspect Ratio  
Bits 4 7 represent Group 2, Enhanced Services  
Bits 8 10 represent Group 3, Subtitles  
Bits 11 13 represent Group 4, Others  
88  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-138. VDP VITC Data  
Subaddress 80 052Ch 80 0534h  
Read only  
Subaddress  
80 052Ch  
80 052Dh  
80 052Eh  
80 052Fh  
80 0530h  
80 0531h  
80 0532h  
80 0533h  
80 0534h  
7
6
5
4
3
2
1
0
VITC frame byte 1  
VITC frame byte 2  
VITC seconds byte 1  
VITC seconds byte 2  
VITC minutes byte 1  
VITC minutes byte 2  
VITC hours byte 1  
VITC hours byte 2  
VITC CRC byte  
These registers contain the VITC data.  
Table 3-139. VDP V-Chip TV Rating Block 1  
Subaddress 80 0540h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
14-D  
PG-D  
Reserved  
MA-L  
14-L  
PG-L  
Reserved  
TV Parental Guidelines Rating Block 3  
14-D: When incoming video program is TV-14-D rated, this bit is set high.  
PG-D: When incoming video program is TV-PG-D rated, this bit is set high.  
MA-L: When incoming video program is TV-MA-L rated, this bit is set high.  
14-L: When incoming video program is TV-14-L rated, this bit is set high.  
PG-L: When incoming video program is TV-PG-L rated, this bit is set high.  
Table 3-140. VDP V-Chip TV Rating Block 2  
Subaddress 80 0541h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
14-S  
PG-S  
Reserved  
MA-V  
14-V  
PG-V  
Y7-FV  
TV Parental Guidelines Rating Block 2  
MA-S: When incoming video program is TV-MA-S rated, this bit is set high.  
14-S: When incoming video program is TV-14-S rated, this bit is set high.  
PG-S: When incoming video program is TV-PG-S rated, this bit is set high.  
MA-V: When incoming video program is TV-MA-V rated, this bit is set high.  
14-V: When incoming video program is TV-14-V rated, this bit is set high.  
PG-V: When incoming video program is TV-PG-S rated, this bit is set high.  
Y7-FV: When incoming video program is TV-Y7-FV rated, this bit is set high.  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
Internal Control Registers  
89  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-141. VDP V-Chip TV Rating Block 3  
Subaddress 80 0542h  
Read only  
7
6
5
4
3
2
1
0
None  
TV-MA  
TV-14  
TV-PG  
TV-G  
TV-Y7  
TV-Y  
None  
TV Parental Guidelines Rating Block 1  
None: No block intended  
TV-MA: When incoming video program is "TV-MA" rated in TV Parental Guidelines Rating, this bit is set high.  
TV-14: When incoming video program is "TV-14" rated in TV Parental Guidelines Rating, this bit is set high.  
TV-PG: When incoming video program is "TV-PG" rated in TV Parental Guidelines Rating, this bit is set high.  
TV-G: When incoming video program is "TV-G" rated in TV Parental Guidelines Rating, this bit is set high.  
TV-Y7: When incoming video program is "TV-Y7" rated in TV Parental Guidelines Rating, this bit is set high.  
TV-Y: When incoming video program is "TV-G" rated in TV Parental Guidelines Rating, this bit is set high.  
Table 3-142. VDP V-Chip MPAA Rating Data  
Subaddress 80 0543h  
Read only  
7
6
5
4
3
2
1
0
Not Rated  
X
NC-17  
R
PG-13  
PG  
G
NA  
MPAA Rating Block (E5h)  
Not Rated: When incoming video program is "Not Rated" rated in MPAA Rating, this bit is set high.  
X: When incoming video program is "X" rated in MPAA Rating, this bit is set high.  
NC-17: When incoming video program is "NC-17" rated in MPAA Rating, this bit is set high.  
R: When incoming video program is "R" rated in MPAA Rating, this bit is set high.  
PG-13: When incoming video program is "PG-13" rated in MPAA Rating, this bit is set high.  
PG: When incoming video program is "PG" rated in MPAA Rating, this bit is set high.  
G: When incoming video program is "G" rated in MPAA Rating, this bit is set high.  
N/A: When incoming video program is "N/A" rated in MPAA Rating, this bit is set high.  
90  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-143. VDP General Line Mode and Line Address  
Subaddress 80 0600h 80 0611h  
(default line mode = FFh, line address = 00h)  
Subaddress  
80 0600h  
80 0601h  
80 0602h  
80 0603h  
80 0604h  
80 0605h  
80 0606h  
80 0607h  
80 0608h  
80 0609h  
80 060Ah  
80 060Bh  
80 060Ch  
80 060Dh  
80 060Eh  
80 060Fh  
80 0610h  
80 0611h  
7
6
5
4
3
2
1
0
Line address 1  
Line mode 1  
Line address 2  
Line mode 2  
Line address 3  
Line mode 3  
Line address 4  
Line mode 4  
Line address 5  
Line mode 5  
Line address 6  
Line mode 6  
Line address 7  
Line mode 7  
Line address 8  
Line mode 8  
Line address 9  
Line mode 9  
Line address [7:0]: Line number to process selected line mode register on  
Line mode register x [7:0]  
Bit 7  
0 = Disabled filters  
1 = Enabled filters for teletext and CC (Null byte filter) (default)  
Bit 6  
0 = Send sliced VBI data to registers only  
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)  
Bit 5  
0 = Allow VBI data with errors in the FIFO  
1 = Do not allow VBI data with errors in the FIFO (default)  
Bit 4  
0 = Disabled error detection and correction  
1 = Enabled error detection and correction (teletext only) (default)  
Bit 3  
0 = Field 1  
1 = Field 2 (default)  
Bit [2:0]  
000 = Teletext (WST625, Chinese Teletext, NABTS 525)  
001 = CC (US, European, Japan, China)  
010 = WSS/CGMS (525, 625)  
011 = VITC  
100 = VPS (PAL only), Gemstar EPG (NTSC only)  
101 = USER 1  
110 = USER 2  
111 = Reserved (active video) (default)  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
Internal Control Registers  
91  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-144. VDP VPS, Gemstar EPG Data  
Subaddress 80 0700h 80 070Ch  
Read only  
VPS  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
VPS byte 1  
VPS byte 2  
VPS byte 3  
VPS byte 4  
VPS byte 5  
VPS byte 6  
VPS byte 7  
VPS byte 8  
VPS byte 9  
VPS byte 10  
VPS byte 11  
VPS byte 12  
VPS byte 13  
These registers contain the entire VPS data line except the clock run-in code and the frame code.  
Gemstar EPG  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
Gemstar EPG Frame Code  
Gemstar EPG byte 1  
Gemstar EPG byte 2  
Gemstar EPG byte 3  
Gemstar EPG byte 4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
92  
Internal Control Registers  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
Table 3-145. Analog Output Control 2  
Subaddress A0 005Eh  
Default  
B2h  
7
6
5
4
3
2
1
0
Reserved  
Gain[3:0]  
Analog output PGA gain [3:0]: These bits are effective when analog output AGC is disabled.  
Gain[3:0]  
0000  
0001  
1.30  
1.56  
1.82  
2.08  
2.34  
2.60  
2.86  
3.12  
3.38  
3.64  
3.90  
4.16  
4.42  
4.68  
4.94  
5.20  
0010 (default)  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Table 3-146. Interrupt Configuration  
Subaddress A0 0060h  
Default 00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity  
Reserved  
Polarity: Interrupt pin polarity  
0 = Active high (default)  
1 = Active low (open drain, a pullup register is required)  
Table 3-147. Interrupt Raw Status 1  
Subaddress B0 0069h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
H/V lock: unmasked  
H/V lock  
Macrovision status changed  
Standard changed  
Reserved  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: unmasked  
0 = Macrovision status unchanged  
1 = Macrovision status changed  
Standard changed: unmasked  
0 = Video standard unchanged  
1 = Video standard changed  
The masked or unmasked status is set in the interrupt mask 1 register.  
Copyright © 20052011, Texas Instruments Incorporated  
Internal Control Registers  
93  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
Table 3-148. Interrupt Status 1  
Subaddress B0 006Dh  
Read only  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
Reserved  
H/V lock: H/V lock status changed masked  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: Macrovision status changed masked  
0 = Macrovision status not changed  
1 = Macrovision status changed  
Standard changed: Standard changed masked  
0 = Video standard not changed  
1 = Video standard changed  
The masked or unmasked status is set in the interrupt mask1 register.  
Table 3-149. Interrupt Mask 1  
Subaddress B0 0065h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
H/V lock: H/V lock status changed mask  
H/V lock  
Macrovision status changed  
Standard changed  
Reserved  
0 = H/V lock status unchanged (default)  
1 = H/V lock status changed  
Macrovision status changed: Macrovision status changed mask  
0 = Macrovision status unchanged (default)  
1 = Macrovision status changed  
Standard changed: Standard changed mask  
0 = Disabled (default)  
1 = Enabled video standard changed  
Table 3-150. Interrupt Clear 1  
Subaddress B0 0071h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
Reserved  
H/V lock: Clear H/V lock status changed flag  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: Clear Macrovision status changed flag  
0 = No effect (default)  
1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress B0 006Dh and the interrupt raw status 1  
register at subaddress B0 0069h  
Standard changed: Clear standard changed flag  
0 = No effect (default)  
1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress B0 006Dh and the interrupt raw status 1  
register at subaddress B0 0069h  
94  
Typical Application Circuit  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
4
Typical Application Circuit  
4.1 Typical Application Circuit  
Figure 4-1. Application Example  
Copyright © 20052011, Texas Instruments Incorporated  
Typical Application Circuit  
95  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
5
Typical Register Programming Sequence  
Composite Input, Autoswitch, 10-bit ITU-656, 3DYC and 3DNR Enabled  
// Address, Data  
0xEE, 0x01 // ROM Initialization Procedure - Required  
0xEA, 0xB0  
0xE9, 0x00  
0xE8, 0x63  
0xE0, 0x01  
0xEE, 0x00  
0x00, 0x00 // Input/Output Select - Composite input selected (default)  
0x06, 0x40 // Luminance Processing Control 1 - No pedestal present  
0x33, 0x40 // Output Formatter Control 1 - 10-bit ITU-656 (default)  
0x34, 0x11 // Output Formatter Control 2 - Data and SCLK enabled  
0x35, 0x2A // Output Formatter Control 3 - GPIO (pin 82) = 0, GLCO, AVID, and FID enabled  
0x36, 0xAF // Output Formatter Control 4 - HS and VS enabled  
0x59, 0x07 // SDRAM Control - 64-Mbit SDRAM configured and enabled; must be set before enabling  
3DYC  
or 3DNR  
0x0D, 0x84 // Chrominance Processing Control 1 - 3DYC and 3DNR enabled  
480p Progressive Inputs, Autoswitch, 20-bit ITU-656, 3DYC and 3DNR Enabled  
// Address, Data  
0xEE, 0x01 // ROM Initialization Procedure - Required  
0xEA, 0xB0  
0xE9, 0x00  
0xE8, 0x63  
0xE0, 0x01  
0xEE, 0x00  
0x00, 0x95 // Input/Output Select - Y(VI_5), Pb(VI_11), Pr(VI_8)  
0x06, 0x40 // Luminance Processing Control 1 - No pedestal present  
0x30, 0x0F // Component Autoswitch Mask - 480i/p and 576i/p enabled in autoswitch  
0x33, 0x44 // Output Formatter Control 1 - 20-bit ITU-656  
0x34, 0x11 // Output Formatter Control 2 - Data and SCLK enabled  
0x35, 0x2A // Output Formatter Control 3 - GPIO (pin 82) = 0, GLCO, AVID, and FID are enabled  
0x36, 0xAF // Output Formatter Control 4 - HS and VS enabled  
0x59, 0x07 // SDRAM Control - 64-Mbit SDRAM configured and enabled; must be set before enabling  
3DYC  
or 3DNR  
0x0D, 0x84 // Chrominance Processing Control 1 - 3DYC and 3DNR enabled  
96  
Typical Register Programming Sequence  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
6
Electrical Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
0.5  
MAX  
4.0  
UNIT  
IOVDD to  
IOGND  
V
V
V
DVDD to DGND  
0.2  
0.3  
2.0  
A33VDD(2) to  
Supply voltage range  
3.6  
A33GND(3)  
A18VDD(4) to  
0.2  
2.0  
V
A18GND(5)  
VI to DGND  
VO to DGND  
AIN to AGND  
TA  
Digital input voltage range  
Digital output voltage range  
Analog input voltage range  
Operating free-air temperature  
Storage temperature  
0.5  
0.5  
0.2  
0
4.5  
4.5  
2.0  
70  
V
V
V
°C  
°C  
Tstg  
65  
150  
(1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) CH1_A33VDD, CH2_A33VDD  
(3) CH1_A33GND, CH2_A33GND  
(4) CH1_A18VDD, CH2_A18VDD, A18VDD, A18VDD_REF, PLL_A18VDD  
(5) CH1_A18GND, CH2_A18GND, A18GND  
6.2 Recommended Operating Conditions  
PARAMETER  
Supply voltage, digital  
TEST CONDITIONS  
MIN  
3.0  
NOM  
3.3  
MAX  
3.6  
UNIT  
V
IOVDD  
DVDD  
AVDD33  
AVDD18  
VI(PP)  
Supply voltage, digital  
1.65  
1.8  
1.95  
3.6  
V
Supply voltage, analog  
3.0  
3.3  
V
Supply voltage, analog  
1.65  
1.8  
1.95  
2.0  
V
Input voltage, analog (ac-coupling necessary)  
Input voltage high, digital(1)  
0.5  
1.0  
V
VIH  
0.7 IOVDD  
V
0.3  
IOVDD  
VIL  
Input voltage low, digital(2)  
V
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
TA  
Output current (Y/SD data/SD address/SCLK)(3)  
Output current (Y/SD data/SD address/SCLK)  
Output current (SDRAM_CLK)  
Output current (SDRAM_CLK)  
Output current (C)  
Vout = 2.4 V  
8  
8
mA  
mA  
mA  
mA  
mA  
mA  
°C  
Vout = 0.4 V  
Vout = 2.4 V  
Vout = 0.4 V  
Vout = 2.4 V  
Vout = 0.4 V  
8  
8
4  
4
Output current (C)  
Operating free-air temperature  
0
70  
Analog  
out  
Output voltage  
2.0  
2.4  
V
(1) Exception: 0.7 AVDD18 for XIN terminal  
(2) Exception: 0.3 AVDD18 for XIN terminal  
(3) Currents out of a terminal are given as a negative number  
Copyright © 20052011, Texas Instruments Incorporated  
Electrical Specifications  
97  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
6.3 Crystal Specifications  
CYSTAL SPECIFICATION  
MIN  
NOM  
MAX  
UNIT  
MHz  
ppm  
Frequency  
Frequency tolerance(1)  
14.31818  
50  
50  
(1) This number is the required specification for the external crystal/oscillator and is not tested.  
6.4 DC Electrical Characteristics  
For minimum/maximum values: IOVDD = 3.0 V to 3.6 V, DVDD = 1.65 V to 1.95 V, AVDD33 = 3.0 V to 3.6 V, AVDD18 = 1.65 V  
to 1.95 V, TA = 0°C to 70°C. For typical values: IOVDD = 3.3 V, DVDD = 1.8 V, AVDD33 = 3.3 V, AVDD18 = 1.8 V, TA = 25°C  
PARAMETER  
TEST CONDITIONS  
CVBS, 3DYC, 3DNR  
MIN  
TYP  
28  
MAX  
33  
UNIT  
S-Video, 3DNR  
SCART  
23  
27  
IDD(IOD)  
3.3-V IO digital supply current(1)  
mA  
33  
39  
480p/525p  
CVBS  
52  
63  
159  
156  
172  
205  
18  
190  
187  
206  
246  
21  
S-Video  
IDD(D)  
1.8-V digital supply current  
3.3-V analog supply current  
1.8-V analog supply current  
mA  
mA  
mA  
mW  
SCART  
480p/525p  
CVBS  
S-Video  
31  
37  
IDD(33A)  
IDD(18A)  
PTOT  
SCART  
38  
45  
480p/525p  
CVBS  
35  
42  
80  
96  
S-Video  
136  
138  
138  
582  
704  
792  
904  
163  
165  
165  
698  
845  
950  
1085  
180  
3
SCART  
480p/525p  
CVBS, 3DYC, 3DNR  
S-Video, 3DNR  
SCART  
Total power dissipation, normal  
operation  
480p/525p  
PSAVE  
PDOWN  
Ilkg  
Total power dissipation, power save  
Total power dissipation, power down  
Input leakage current(1)  
mW  
mW  
µA  
10  
CI  
Input capacitance  
by design (not tested)  
8
pF  
Output voltage high  
(Y/SD data/SD address/SCLK)  
VOH  
VOL  
IOH = 8 mA  
0.8 IOVDD  
V
V
Output voltage low  
(Y/SD data/SD address/SCLK)  
IOL = 8 mA  
0.2 IOVDD  
VOH  
VOL  
VOH  
VOL  
Output voltage high (SDRAM_CLK)  
Output voltage LOW (SDRAM_CLK)  
Output voltage HIGH (C)  
IOH = 8 mA  
IOL = 8 mA  
IOH = 4 mA  
IOL = 4 mA  
0.8 IOVDD  
0.8 IOVDD  
V
V
V
V
0.2 IOVDD  
0.2 IOVDD  
Output voltage LOW (C)  
(1) GLCO and GPIO are bidirectional pins with an internal pulldown resistor during reset. These pins may sink up to 30 µA during reset.  
98  
Electrical Specifications  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
6.5 Analog Processing and A/D Converters  
FS = 60 MSPS for CH1, CH2  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kΩ  
pF  
Zi  
Input impedance, analog video inputs  
Input capacitance, analog video inputs  
Input voltage range  
specified by design (not tested)  
specified by design (not tested)  
Ccoupling = 0.1 µF  
200  
Ci  
Vi(PP)  
ΔG  
0.50  
6.7  
7.5%  
2
1.0  
V
Input gain control range  
Input gain ratio, N = 0 to 15  
Input offset control per step  
Absolute differential nonlinearity  
Absolute integral nonlinearity  
Frequency response  
dB  
0.5 +N/10  
4
0.75  
1
LSB  
LSB  
LSB  
dB  
DNL  
INL  
AFE only  
AFE only  
FR  
Multiburst (60 IRE)  
1 MHz  
0.9  
XTALK  
SNR  
GM  
Crosstalk  
dB  
Signal-to-noise ratio all channels  
Gain match(1)  
FIN = 1 MHz, 1.0 VPP  
Full scale, 1 MHz  
54  
dB  
1.5  
%
Luma ramp  
(100 kHz to full, tilt null)  
NS  
Noise spectrum  
58  
dB  
DP  
DG  
Differential phase  
Modulated ramp  
Modulated ramp  
0.5  
°
Differential gain  
±1.5  
%
%
Analog output gain ratio, N = 0 to 15  
8% 1.3 + 0.26xN  
8
(1) Component inputs only  
6.6 Data Clock, Video Data, Sync Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
MAX  
UNIT  
%
Duty cycle SCLK  
45  
55  
t1  
t1  
t1  
t2  
t2  
t2  
t3  
t4  
t5  
t6  
High time, SCLK @ 13.5 MHz  
High time, SCLK @ 27 MHz  
High time, SCLK @ 54 MHz  
Low time, SCLK @ 13.5 MHz  
Low time, SCLK @ 27 MHz  
Low time, SCLK @ 54 MHz  
Fall time, SCLK  
50%  
37  
ns  
50%  
18.5  
9.25  
37  
50%  
50%  
ns  
50%  
18.5  
9.25  
50%  
90% to 10%  
10% to 90%  
To 90%/10%  
To 90%/10%  
5
5
5
ns  
ns  
ns  
ns  
Rise time, SCLK  
Data valid time  
Data hold time  
2.5  
Copyright © 20052011, Texas Instruments Incorporated  
Electrical Specifications  
99  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
6.7 I2C Host Port Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
0
TYP  
MAX  
UNIT  
µs  
t1  
Bus free time between STOP and START  
Data hold time  
t2  
0.9  
µs  
t3  
Data setup time  
100  
0.6  
0.6  
0.6  
ns  
t4  
Setup time for a (repeated) START condition  
Setup time for a STOP condition  
Hold time (repeated) START condition  
Rise time VC1(SDA) and VC0(SCL) signal  
Fall time VC1(SDA) and VC0(SCL) signal  
Capacitive load for each bus line  
I2C clock frequency  
µs  
t5  
µs  
t6  
µs  
t7  
specified by design(1)  
specified by design(1)  
specified by design(1)  
250  
250  
400  
400  
ns  
t8  
ns  
Cb  
f12C  
pF  
kHz  
(1) Assured by design. Not tested.  
t
2
t
t
t
3
4
1
90%  
10%  
SCLK  
t
5
t
6
90%  
10%  
Y, C, AVID,  
Valid Data  
Valid Data  
VS, HS, FID  
Figure 6-1. Clocks, Video Data, and Sync Timing  
Stop Start  
Stop  
VC1 (SDA)  
VC0 (SCL)  
Data  
t
t
1
6
t
3
t
6
t
2
t
5
t
4
t
t
7
8
Change  
Data  
Figure 6-2. I2C Host Port Timing  
100  
Electrical Specifications  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
6.8 SDRAM Timing(1)  
CL = 10 pF, CAS latency = 3, Clock delay = 0 ns  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
9.2  
4.6  
4.6  
MAX  
UNIT  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
tg  
Clock period (108 MHz)  
Clock high period  
ns  
Clock low period  
ns  
Clock to output valid time (address/data/control)  
Output hold time  
5.3  
ns  
1.8  
1.1  
0.3  
ns  
Data in setup time  
ns  
Data in hold time  
ns  
Clock rise time, 10% to 90%  
Clock fall time, 90% to 10%  
4
4
ns  
ns  
(1) Assured by design. Not tested.  
t
t
6
t
1
4
t
t
t
t
7
2
3
5
SDRAM_CLK  
Address/Control  
Data_out  
Data_in  
Figure 6-3. SDRAM Interface Timing  
Copyright © 20052011, Texas Instruments Incorporated  
Electrical Specifications  
101  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
6.9 Example SDRAM Timing Alignment  
Samsung K4S161622E-80, CAS latency = 3, Clock delay = 0 ns  
t
= 9.2 ns  
t
= 1.1 ns  
= 0.3 ns  
1
6
t
= 4.6 ns  
t
2
7
2.5 ns  
SDRAM_CLK  
Address/Data_out  
Data_in  
9.2 ns  
6 ns  
2.5 ns  
1 ns  
2.5 ns  
1 ns  
4.6 ns  
2 ns  
SDRAM_CLK_out  
Address/Data_in  
Data_out  
SDRAM-K4S161622E-80 (CAS LAT = 3)  
t
t
(dhm)  
(dsum)  
Data = read margin  
t
t
= 9.2 - 6 - 1.1 ns = 2.1 ns  
(dsum)  
= 2.5 - 0.3 ns = 2.2 ns  
(dhm)  
Figure 6-4. TVP5160 Timing Relationship with K4S161622E-80 SDRAM  
102  
Electrical Specifications  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
6.10 Memories Tested  
Table 6-1. Memories Tested  
MANUFACTURER  
Samsung  
Samsung  
Samsung  
Samsung  
Etron  
PART NUMBER  
SIZE  
MBYTES SPEED  
PINS  
54  
54  
50  
54  
54  
54  
54  
54  
50  
54  
3DYC  
3DNR  
3DYC+3DNR  
K4S641632H-TC75  
K4S641632H-TC70  
K4S161622E-TC60  
K4S161622H-TC60  
EM638165TS-6  
4 Meg x 16  
4 Meg x 16  
1 Meg x 16  
1 Meg x 16  
4 Meg x 16  
4 Meg x 16  
8 Meg x 16  
4 Meg x 16  
1 Meg x 16  
4 Meg x 16  
8 MB  
8 MB  
2 MB  
2 MB  
8 MB  
8 MB  
16 MB  
8 MB  
2 MB  
8 MB  
133 MHz  
143 MHz  
166 MHz  
166 MHz  
166 MHz  
143 MHz  
133 MHz  
133 MHz  
143 MHz  
133 MHz  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
Y
Y
N
Y
Etron  
EM638165TS-7  
Micron  
MT48LC8M16A2TG-75  
MT48LC4M16A2TG-75  
IS42S16100C1-7TL  
IS42S16400B-7TL  
Micron  
ISSI  
ISSI  
6.11 Thermal Specification(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Thermal pad soldered to 4-layer  
High-K PCB  
θJA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case thermal resistance, still air  
Maximum junction temperature for reliable operation  
17.17  
°C/W  
Thermal pad soldered to 4-layer  
High-K PCB  
θJC  
0.12  
°C/W  
TJ(MAX)  
105  
°C  
(1) The exposed thermal pad must be soldered to a JEDEC High-K PCB with adequate ground plane. When split ground planes are used,  
attach the thermal pad to the digital ground plane.  
Copyright © 20052011, Texas Instruments Incorporated  
Electrical Specifications  
103  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
 
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
7
Designing With PowerPAD  
The TVP5160 device is housed in a high-performance, thermally enhanced, 128-pin PowerPAD package  
(TI package designator: 128PFP). Use of the PowerPAD package does not require any special  
considerations except to note that the PowerPAD, which is an exposed die pad on the bottom of the  
device, is a metallic thermal and electrical conductor. Therefore, if not implementing the PowerPAD PCB  
features, the use of solder masks (or other assembly techniques) may be required to prevent any  
inadvertent shorting by the exposed PowerPAD of connection etches or vias under the package. The  
recommended option, however, is not to run any etches or signal vias under the device, but to have only a  
grounded thermal land as explained below. Although the actual size of the exposed die pad may vary, the  
minimum size required for the keep out area for the 128-terminal PFP PowerPAD package is 8.8 mm ×  
8.8 mm and is centered on the device package.  
It is recommended that there be a thermal land, which is an area of solder-tinned-copper, underneath the  
PowerPAD package. The thermal land will vary in size, depending on the PowerPAD package being used,  
the PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may  
or may not contain numerous thermal vias depending on PCB construction.  
Other requirements for thermal lands and thermal vias are detailed in the TI application note PowerPAD  
Thermally Enhanced Package Application Report, TI literature number SLMA002, available via the TI web  
site at www.ti.com.  
For the TVP5160 device, this thermal land must be grounded to the low impedance ground plane of the  
device. This improves not only thermal performance but also the electrical grounding of the device. It is  
also recommended that the device ground terminal landing pads be connected directly to the grounded  
thermal land. The land size must be as large as possible without shorting device signal terminals. The  
thermal land may be soldered to the exposed PowerPAD using standard reflow soldering techniques.  
While the thermal land may be electrically floated and configured to remove heat to an external heat sink,  
it is recommended that the thermal land be connected to the low impedance ground plane for the device.  
More information may be obtained from the TI application note PHY Layout, TI literature number  
SLLA020.  
104  
Designing With PowerPAD™  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
www.ti.com  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
96  
65  
97  
64  
Exposed Thermal  
Pad  
9,70  
7,88  
128  
33  
1
32  
9,70  
7,88  
Top View  
NOTE: All linear dimensions are in millimeters  
Figure 7-1. 128-Pin PowerPAD Package  
Copyright © 20052011, Texas Instruments Incorporated  
Designing With PowerPAD™  
105  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
TVP5160  
SLES135EFEBRUARY 2005REVISED APRIL 2011  
www.ti.com  
8
Revision History  
Table 8-1. Revision History  
REVISION  
COMMENTS  
SLES135  
Initial release  
Unknown  
SLES135A  
Section 1.4, Related Products section added.  
Section 1.5, Trademarks modified.  
Table 1-1, I/O type modified for SCL pin.  
Table 2-1, Specified Y/C separation support by video standard.  
Figure 2-4, Crystal parallel resistor recommendation added.  
Table 2-9, CGMS support added for PAL.  
Table 2-11, Signal names modified.  
Table 3-1, Brightness & Contrast Range Extender register added.  
Table 3-13, Brightness control register description modified.  
Table 3-14, Color saturation control register description modified.  
Table 3-15, Contrast control register description modified.  
Table 3-19, R/Pr saturation control register description modified.  
Table 3-20, G/Y contrast control register description modified.  
Table 3-21, B/Pb saturation control register description modified.  
Table 3-22, G/Y brightness control register description modified.  
Table 3-39, Brightness & Contrast Range Extender register added.  
Table 3-128, CGMS support added.  
SLES135B  
Table 3-130, CGMS support added.  
Table 3-132, CGMS support added.  
Table 3-134, CGMS support added.  
Table 3-137, CGMS support added.  
Section 6.11, Thermal specification added.  
Made minor editorial changes throughout.  
SLES135C  
SLES135D  
Made minor editorial changes throughout.  
Section 2.9.1, Removed statement about internal pulldown on I2CAx terminals.  
Section 6.11, Updated table  
Table 3-1, Added RAM version MSB and LSB registers (subaddresses: 71h, 82h)  
Table 3-82, Added RAM version MSB register (subaddress: 71h)  
Table 3-90, Added RAM version LSB register (subaddress: 82h)  
SLES135E  
106  
Revision History  
Copyright © 20052011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TVP5160  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Aug-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TVP5160PNP  
NRND  
HTQFP  
PNP  
128  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-3-260C-168 HR  
0 to 70  
TVP5160  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TVP5160_11

NTSC/PAL/SECAM/Component 2x10-Bit Digital Video Decoder
TI

TVP5200PFP

COLOR SIGNAL DECODER, PQFP144, POWER, PLASTIC, TQFP-144
TI

TVP5200PZP

SPECIALTY CONSUMER CIRCUIT, PQFP100, POWER, PLASTIC, TQFP-100
TI

TVP6000C

NTSC/PAL Digital Video Encoder
TI

TVP6000CPFP

NTSC/PAL Digital Video Encoder
TI

TVP7000

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7000PZP

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7000PZPG4

SPECIALTY CONSUMER CIRCUIT, PQFP100, GREEN, PLASTIC, HTQFP-100
TI

TVP7000PZPR

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7000PZPRG4

SPECIALTY CONSUMER CIRCUIT, PQFP100, GREEN, PLASTIC, HTQFP-100
TI

TVP7000_17

TRIPLE 8/10-BIT, 150/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI

TVP7001

TRIPLE 8/10-BIT, 165/110 MSPS, VIDEO AND GRAPHICS DIGITIZER WITH ANALOG PLL
TI