ADC0804LCVX [TI]

1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQCC20, PLASTIC, LCC-20;
ADC0804LCVX
型号: ADC0804LCVX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PQCC20, PLASTIC, LCC-20

转换器
文件: 总69页 (文件大小:1173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6472  
dSPIN fully integrated microstepping motor driver  
with motion engine and SPI  
Features  
Operating voltage: 8 - 45 V  
7.0 A output peak current (3.0 A r.m.s.)  
Low RDSon power MOSFETs  
Programmable speed profile  
Programmable Power MOSFET slew rate  
Up to 1/16 microstepping  
HTSSOP28  
POWERSO36  
All application commands and data registers,  
including those used to set analog values (i.e.  
current control value, current protection trip point,  
dead time, etc.) are sent through a standard 5-  
Mbit/s SPI.  
Predictive current control with adaptive decay  
Non-dissipative current sensing  
SPI interface  
Low quiescent and standby currents  
Programmable non-dissipative overcurrent  
A very rich set of protections (thermal, low bus  
voltage, overcurrent) makes the L6472 “bullet  
proof”, as required by the most demanding motor  
control applications.  
protection on all Power MOSFETs  
Two levels of overtemperature protection  
Applications  
Table 1.  
Device summary  
Package  
Bipolar stepper motor  
Order codes  
Packing  
L6472H  
L6472HTR  
L6472PD  
HTSSOP28  
HTSSOP28  
Tube  
Description  
Tape and reel  
Tube  
The L6472, realized in analog mixed signal  
technology, is an advanced fully integrated  
solution suitable for driving two-phase bipolar  
stepper motors with microstepping. It integrates a  
dual low RDS(on) DMOS full bridge with all of the  
power switches equipped with an accurate on-  
chip current sensing circuitry suitable for non-  
dissipative current control and overcurrent  
protection. Thanks to a new current control, a  
1/16 microstepping is achieved through an  
adaptive decay mode which outperforms  
traditional implementations. The digital control  
core can generate user defined motion profiles  
with acceleration, deceleration, speed or target  
position, easily programmed through a dedicated  
register set.  
POWERSO36  
POWERSO36  
L6472PDTR  
Tape and reel  
January 2012  
Doc ID 022729 Rev 1  
1/69  
www.st.com  
69  
 
Contents  
L6472  
Contents  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5
6
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1  
6.2  
6.3  
6.4  
Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.4.1  
Automatic full-step mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.5  
6.6  
Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.6.1  
Infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.7  
Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
6.7.5  
6.7.6  
Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.8  
Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.8.1  
6.8.2  
Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/69  
Doc ID 022729 Rev 1  
L6472  
Contents  
6.9  
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.10 Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.11 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.12 Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.13 External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.14 Programmable DMOS slew rate, dead time and blanking time . . . . . . . . 28  
6.15 Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.16 Internal voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.17 BUSY\SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.17.1 BUSY operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.17.2 SYNC operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.18 FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7
Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.1  
7.2  
7.3  
7.4  
Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 34  
Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 35  
8
9
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.1  
Register and flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC . . . . . . . . . . . . 42  
9.1.11 T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.1.12 TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.1.13 TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Doc ID 022729 Rev 1  
3/69  
Contents  
L6472  
9.1.14 ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.1.15 OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.1.16 STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1.17 ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.1.18 CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
9.1.19 STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9.2  
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
9.2.10 GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
9.2.11 ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.12 GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.13 GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.14 ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.2.15 ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.2.16 SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.2.17 HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
9.2.18 SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
9.2.19 HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
9.2.20 GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10  
11  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4/69  
Doc ID 022729 Rev 1  
L6472  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical application values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EL_POS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers . 43  
Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Minimum ON time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Minimum OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CONFIG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Oscillator management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External switch hard stop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Overcurrent event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Programmable power bridge output slew rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
External torque regulation enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Switching period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
STATUS register MOT_STATE bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
NOP command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
StepClock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
GoTo_DIR command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ReleaseSW command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
ResetDevice command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Doc ID 022729 Rev 1  
5/69  
List of tables  
L6472  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
HTSSOP28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
POWERSO36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6/69  
Doc ID 022729 Rev 1  
L6472  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
HTSSOP28 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
POWERSO36 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bipolar stepper motor control application using the L6472. . . . . . . . . . . . . . . . . . . . . . . . . 19  
Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Automatic full-step switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Speed profile in infinite acceleration/deceleration mode . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Constant speed commands examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 10. Positioning command examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 11. Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 12. OSCIN and OSCOUT pin configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13. External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 14. Internal 3 V linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 15. Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 16. Non-predictive current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 17. Adaptive decay - fast decay tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 18. Adaptive decay - switch from normal to slow+fast decay mode and vice versa. . . . . . . . . 36  
Figure 19. Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20. SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21. Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22. Command with 3-byte argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 23. Command with 3-byte response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 24. Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 25. HTSSOP28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 26. POWERSO36 drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Doc ID 022729 Rev 1  
7/69  
Block diagram  
L6472  
1
Block diagram  
Figure 1.  
Block diagram  
6$$  
/3#).  
/3#/54 !$#).  
62%'  
#0  
6"//4  
#HARGE  
PUMP  
%XTꢅ /SCꢅ DRIVER  
ꢄꢇ-(Z  
/SCILLATOR  
63!  
63!  
#LOCK GENꢅ  
ꢂ 6  
6OLTAGE 2EGꢅ  
!$#  
6
BOOT  
6BOOT  
34"9ꢈ234  
&,!'  
(3 !ꢄ  
,3 !ꢄ  
(3 !ꢁ  
,3 !ꢁ  
/54ꢄ!  
/54ꢁ!  
(3 !ꢄ  
,3 !ꢄ  
(3 !ꢁ  
,3 !ꢁ  
0'.$  
#ONTROL  
,OGIC  
6
$$  
63"  
63"  
(3 "ꢄ  
,3 "ꢄ  
(3 "ꢁ  
,3 "ꢁ  
#3  
#+  
6
BOOT  
6BOOT  
(3 "ꢄ  
,3 "ꢄ  
(3 "ꢁ  
,3 "ꢁ  
3$/  
/54ꢄ"  
/54ꢁ"  
3$)  
#URRENT $!#S  
"539ꢈ39.#  
4EMPERATURE  
SENSING  
#OMPARATORS  
0'.$  
34#+  
37  
6
$$  
#URRENT  
SENSING  
$'.$  
!'.$  
!-ꢀꢁꢂꢃꢃVꢄ  
8/69  
Doc ID 022729 Rev 1  
L6472  
Electrical data  
2
Electrical data  
2.1  
Absolute maximum ratings  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Test condition  
Value  
Unit  
VDD  
VS  
Logic interface supply voltage  
5.5  
48  
V
V
Motor supply voltage  
VSA = VSB = VS  
Differential voltage between AGND,  
PGND and DGND  
VGND, diff  
Vboot  
0.3  
55  
V
V
V
Bootstrap peak voltage  
Internal voltage regulator output pin  
and logic supply voltage  
VREG  
3.6  
Integrated ADC input voltage range  
(ADCIN pin)  
VADCIN  
VOSC  
-0.3 to +3.6  
-0.3 to +3.6  
V
V
OSCIN and OSCOUT pin voltage  
range  
Differential voltage between VSA  
,
Vout_diff  
VLOGIC  
OUT1A, OUT2A, PGND and VSB  
,
VSA = VSB = VS  
48  
V
OUT1B, OUT2B, PGND pins  
Logic inputs voltage range  
R.m.s. output current  
-0.3 to +5.5  
V
A
(1)  
Iout  
3
(1)  
Iout_peak  
TOP  
Pulsed output current  
TPULSE < 1 ms  
7
150  
A
Operating junction temperature  
Storage temperature range  
Total power dissipation (TA = 25 °C)  
°C  
°C  
W
Ts  
-55 to 150  
5
(2)  
Ptot  
1. Maximum output current limit is related to metal connection and bonding characteristics. Actual limit must satisfy maximum  
thermal dissipation constraints.  
2. HTSSOP28 mounted on EVAL6472H Rev 1.0.  
Doc ID 022729 Rev 1  
9/69  
Electrical data  
L6472  
2.2  
Recommended operating conditions  
Table 3.  
Symbol  
Recommended operating conditions  
Parameter  
Test condition  
Value  
Unit  
3.3 V logic outputs  
5 V logic outputs  
VSA = VSB = VS  
3.3  
5
V
VDD  
VS  
Logic interface supply voltage  
Motor supply voltage  
8
45  
45  
V
V
Differential voltage between  
VSA, OUT1A, OUT2A, PGND  
and VSB, OUT1B, OUT2B,  
PGND pins  
Vout_diff  
VSA = VSB = VS  
VREG voltage imposed by  
external source  
VREG,in Logic supply voltage  
Integrated ADC input voltage  
3.2 3.3  
V
VADC  
0
VREG  
125  
V
(ADCIN pin)  
Tj  
Operating junction temperature  
-25  
°C  
2.3  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Parameter  
Package  
Typ  
Unit  
HTSSOP28 (1)  
22  
12  
RthJA  
Thermal resistance junction-ambient  
°C/W  
POWERSO36 (2)  
1. HTSSOP28 mounted on EVAL6472H Rev 1.0 board: four-layer FR4 PCB with a dissipating copper surface  
2
of about 40 cm on each layer and 15 via holes below the IC.  
2. POWERSO36 mounted on EVAL6472PD Rev 1.0 board: four-layer FR4 PCB with a dissipating copper  
2
surface of about 40 cm on each layer and 22 via holes below the IC.  
10/69  
Doc ID 022729 Rev 1  
L6472  
Electrical characteristics  
3
Electrical characteristics  
VSA = VSB = 36 V; VDD = 3.3 V; internal 3 V regulator; TJ = 25 °C, unless otherwise  
specified.  
Table 5.  
Symbol  
Electrical characteristics  
Parameter  
Test condition  
Min. Typ. Max. Unit  
General  
VSthOn VS UVLO turn-on threshold  
VSthOff VS UVLO turn-off threshold  
7.5  
6.6  
8.2  
7.2  
8.9  
7.8  
V
V
VS UVLO threshold  
VSthHyst  
0.7  
1
1.3  
V
hysteresis  
Quiescent motor supply  
current  
Internal oscillator selected;  
VREG = 3.3V ext; CP floating  
Iq  
0.5  
130  
160  
0.65 mA  
Tj(WRN) Thermal warning temperature  
°C  
°C  
Thermal shutdown  
Tj(SD)  
temperature  
Charge pump  
Voltage swing for charge  
Vpump  
10  
V
pump oscillator  
Minimum charge pump  
fpump,min  
660  
800  
1.1  
kHz  
kHz  
oscillator frequency (1)  
Maximum charge pump  
fpump,max  
oscillator frequency (1)  
fsw,A = fsw,B = 15.6kHz  
POW_SR = ‘10’  
Iboot  
Output DMOS transistor  
High-side switch on-  
Average boot current  
1.4  
mA  
Tj = 25°C, Iout = 3A  
0.37  
0.51  
0.18  
0.23  
Tj = 125°C, (2) Iout = 3A  
resistance  
RDS(on)  
Tj = 25°C, Iout = 3A  
Low-side switch on-  
resistance  
Tj = 125°C, (2) Iout = 3A  
OUT = VS  
3.1  
IDSS  
Leakage current  
mA  
OUT = GND  
-0.3  
POW_SR = '00', Iout = +1A  
POW_SR = '00', Iout = -1A  
POW_SR = ‘11’, Iout = 1A  
POW_SR = ‘10’, Iout = 1A  
POW_SR = ‘01’, Iout = 1A  
100  
80  
tr  
Rise time (3)  
100  
200  
300  
ns  
Doc ID 022729 Rev 1  
11/69  
 
 
Electrical characteristics  
L6472  
Table 5.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Min. Typ. Max. Unit  
POW_SR = '00'; Iout = +1A  
POW_SR = '00'; Iout = -1A  
POW_SR = ‘11’, Iout = 1A  
POW_SR = ‘10’, Iout = 1A  
POW_SR = ‘01’, Iload = 1A  
POW_SR = '00', Iout = +1A  
POW_SR = '00', Iout = -1A  
POW_SR = ‘11’, Iout = 1A  
POW_SR = ‘10’, Iout = 1A  
POW_SR = ‘01’, Iout = 1A  
POW_SR = '00', Iout = +1A  
POW_SR = '00', Iout = -1A  
POW_SR = ‘11’, Iout = 1A  
POW_SR = ‘10’, Iout = 1A  
POW_SR = ‘01’, Iout = 1A  
90  
110  
tf  
Fall time (3)  
110  
260  
375  
285  
360  
285  
150  
95  
ns  
SRout_r  
Output rising slew rate  
V/µs  
V/µs  
320  
260  
260  
110  
75  
SRout_f  
Output falling slew rate  
Dead time and blanking  
POW_SR = '00'  
250  
375  
POW_SR = ‘11’,  
fOSC = 16MHz  
tDT  
Dead time (1)  
ns  
POW_SR = ‘10’,  
fOSC = 16MHz  
625  
POW_SR = ‘01’,  
fOSC = 16MHz  
875  
250  
375  
POW_SR = '00'  
POW_SR = ‘11’,  
fOSC = 16MHz  
tblank  
Blanking time (1)  
ns  
POW_SR = ‘10’,  
fOSC = 16MHz  
625  
875  
POW_SR = ‘01’,  
f
OSC = 16MHz  
Source-drain diodes  
High-side diode forward ON  
voltage  
VSD,HS  
VSD,LS  
trrHS  
Iout = 1A  
Iout = 1A  
Iout = 1A  
1
1
1.1  
1.1  
V
V
Low-side diode forward ON  
voltage  
High-side diode reverse  
recovery time  
30  
ns  
12/69  
Doc ID 022729 Rev 1  
L6472  
Electrical characteristics  
Min. Typ. Max. Unit  
Table 5.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Low-side diode reverse  
recovery time  
trrLS  
Iout = 1A  
100  
ns  
Logic inputs and outputs  
VIL  
Low logic level input voltage  
0.8  
1
V
V
VIH  
High logic level input voltage  
2
High logic level input current  
IIH  
IIL  
VIN = 5V  
VIN = 0V  
µA  
µA  
(4)  
Low logic level input current  
-1  
(5)  
VDD = 3.3V, IOL = 4mA  
VDD = 5V, IOL = 4mA  
0.3  
0.3  
Low logic level output voltage  
VOL  
V
V
(6)  
VDD = 3.3V, IOH = 4mA  
2.4  
4.7  
VOH  
High logic level output voltage  
VDD = 5V, IOH = 4mA  
RPU  
RPD  
CS pull-up and STBY pull-  
down resistors  
CS = GND;  
STBY/RST = 5V  
335 430  
565  
4.3  
k  
3.3V VREG externally  
supplied, internal oscillator  
Ilogic  
Internal logic supply current  
3.7  
2
mA  
Standby mode internal logic  
supply current  
Ilogic,STBY  
fSTCK  
3.3V VREG externally supplied  
2.5  
2
µA  
Step-clock input frequency  
MHz  
Internal oscillator and external oscillator driver  
fosc,i  
Internal oscillator frequency  
Tj = 25°C, VREG = 3.3V  
-3% 16  
8
+3% MHz  
32 MHz  
Programmable external  
oscillator frequency  
fosc,e  
Internal oscillator 3.3V VREG  
externally supplied; IOSCOUT  
= 4mA  
VOSCOUT OSCOUT clock source high  
2.4  
V
level voltage  
H
Internal oscillator 3.3V VREG  
externally supplied; IOSCOUT  
= 4mA  
OSCOUT clock source low  
level voltage  
VOSCOUTL  
0.3  
20  
V
trOSCOUT OSCOUT clock source rise  
tfOSCOUT and fall time  
Internal oscillator  
ns  
ms  
µs  
Internal to external oscillator  
switching delay  
textosc  
3
External to internal oscillator  
switching delay  
tintosc  
1.5  
SPI  
Maximum SPI clock  
fCK,MAX  
5
MHz  
frequency (7)  
Doc ID 022729 Rev 1  
13/69  
Electrical characteristics  
L6472  
Table 5.  
Symbol  
Electrical characteristics (continued)  
Parameter Test condition  
Min. Typ. Max. Unit  
trCK  
tfCK  
SPI clock rise and fall time (7) CL = 30pF  
25  
ns  
ns  
thCK  
tlCK  
SPI clock high and low time  
75  
(7)  
tsetCS  
tholCS  
tdisCS  
tsetSDI  
tholSDI  
Chip select setup time (7)  
Chip select hold time (7)  
De-select time (7)  
350  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
800  
25  
Data input setup time (7)  
Data input hold time (7)  
20  
tenSDO Data output enable time (7)  
tdisSDO Data output disable time (7)  
38  
47  
57  
tvSDO  
Data output valid time (7)  
tholSDO Data output hold time (7)  
37  
60  
Switch input (SW)  
RPUSW SW input pull-up resistance  
Current control  
SW = GND  
85  
110  
kΩ  
Max. programmable  
ISTEP,max  
4
A
reference current  
Min. programmable reference  
ISTEP,min  
current  
31  
mA  
Overcurrent protection  
Maximum programmable  
IOCD,MAX overcurrent detection  
threshold  
OCD_TH = ‘1111’  
OCD_TH = ‘0000’  
6
A
Minimum programmable  
IOCD,MIN overcurrent detection  
threshold  
0.37  
5
A
A
Programmable overcurrent  
IOCD,RES  
0.37  
5
detection threshold resolution  
tOCD,Flag OCD to flag signal delay time dIout/dt = 350A/µs  
650 1000 ns  
dIout/dt = 350A/µs POW_SR =  
'10'  
tOCD,SD OCD to shutdown delay time  
600  
µs  
Standby  
VS = 8V  
26  
30  
10  
34  
36  
Quiescent motor supply  
IqSTBY  
µA  
current in standby conditions  
VS = 36V  
tSTBY,min Minimum standby time  
µs  
µs  
Logic power-on and wake-up  
tlogicwu  
time  
38  
45  
14/69  
Doc ID 022729 Rev 1  
L6472  
Electrical characteristics  
Min. Typ. Max. Unit  
Table 5.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Charge pump power-on and Power bridges disabled, Cp =  
tcpwu  
650  
µs  
wake-up time  
10nF, Cboot = 220nF  
Internal voltage regulator  
Voltage regulator output  
VREG  
IREG  
VREG, drop  
2.9  
3
3.2  
40  
V
voltage  
Voltage regulator output  
current  
mA  
mV  
mA  
Voltage regulator output  
voltage drop  
IREG = 40mA  
50  
Voltage regulator standby  
output current  
IREG,STBY  
10  
Integrated analog-to-digital converter  
Analog-to-digital converter  
resolution  
NADC  
5
bit  
V
Analog-to-digital converter  
VADC,ref  
VREG  
reference voltage  
Analog-to-digital converter  
sampling frequency  
fOSC  
512  
/
fS  
kHz  
1. Accuracy depends on oscillator frequency accuracy.  
2. Tested at 25 °C in a restricted range and guaranteed by characterization.  
3. Rise and fall time depends on motor supply voltage value. Refer to SR values in order to evaluate the  
out  
actual rise and fall time.  
4. Not valid for the STBY/RST pin which has an internal pull-down resistor.  
5. Not valid for the SW and CS pins which have an internal pull-up resistor.  
6. FLAG, BUSY and SYNC open drain outputs included.  
7. See Figure 20 – SPI timings diagram for details.  
Doc ID 022729 Rev 1  
15/69  
Pin connection  
L6472  
4
Pin connection  
Figure 2.  
HTSSOP28 pin connection (top view)  
345  
Figure 3.  
POWERSO36 pin connection (top view)  
1(/%  
ꢆꢂ  
ꢆꢄ  
ꢆꢅ  
ꢆꢆ  
ꢆꢇ  
ꢆꢀ  
ꢆꢈ  
ꢇꢉ  
ꢇꢁ  
ꢇꢃ  
ꢇꢂ  
ꢇꢄ  
ꢇꢅ  
ꢇꢆ  
ꢇꢇ  
ꢇꢀ  
ꢇꢈ  
ꢀꢉ  
0
0
5ꢂ"  
5ꢂ"  
0
5ꢀ"  
5ꢀ"  
74"  
74"  
0
74"  
74"  
45$,  
'-"(  
$4  
45#:ꢁ345  
48  
"%$*/  
73&(  
#
4:=4:/$  
&1"%  
%(/%  
4%*  
04$*/  
ꢀꢈ  
ꢀꢀ  
ꢀꢇ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢂ  
ꢀꢃ  
ꢀꢁ  
04$0  
5
$,  
"(/%  
$1  
4%0  
7%%  
74#  
74#  
7#005  
74#  
74#  
0
0
5ꢂ#  
5ꢂ#  
0
0
5ꢀ#  
5ꢀ#  
1(/%  
16/69  
Doc ID 022729 Rev 1  
L6472  
Pin connection  
4.1  
Pin list  
Table 6.  
No.  
Pin description  
Name  
Type  
Function  
17  
6
VDD  
Power  
Logic output supply voltage (pull-up reference)  
Internal 3 V voltage regulator output and 3.3 V external logic  
supply  
VREG  
Power  
Oscillator pin 1. To connect an external oscillator or clock source.  
If this pin is unused, it should be left floating.  
7
8
OSCIN  
Analog input  
Oscillator pin 2. To connect an external oscillator. When the  
internal oscillator is used this pin can supply 2/4/8/16 MHz. If this  
pin is unused, it should be left floating.  
OSCOUT  
Analog output  
10  
11  
CP  
Output  
Charge pump oscillator output  
Bootstrap voltage needed for driving the high-side power DMOS of  
both bridges (A and B)  
Vboot  
ADCIN  
Supply voltage  
Analog input  
5
Internal analog-to-digital converter input  
2
VSA  
VSB  
Power supply  
Power supply  
Ground  
Full bridge A power supply pin. It must be connected to VSB  
26  
12  
16  
27  
13  
1
Full bridge B power supply pin. It must be connected to VSA  
Power ground pin  
PGND  
OUT1A  
OUT2A  
OUT1B  
OUT2B  
AGND  
Power output  
Power output  
Power output  
Power output  
Ground  
Full bridge A output 1  
Full bridge A output 2  
Full bridge B output 1  
Full bridge B output 2  
Analog ground.  
28  
14  
15  
9
External switch input pin. If not used the pin should be connected  
to VDD.  
4
SW  
Logical input  
Ground  
21  
DGND  
Digital ground  
By default, this BUSY pin is forced low when the device is  
22  
BUSY\SYNC  
Open drain output performing a command. Otherwise the pin can be configured to  
generate a synchronization signal.  
18  
20  
19  
23  
SDO  
SDI  
CK  
Logic output  
Logic input  
Logic input  
Logic input  
Data output pin for serial interface  
Data input pin for serial interface  
Serial interface clock  
CS  
Chip select input pin for serial interface  
Status flag pin. An internal open drain transistor can pull the pin to  
GND when a programmed alarm condition occurs (step loss,  
OCD, thermal pre-warning or shutdown, UVLO, wrong command,  
non-performable command)  
24  
FLAG  
Open drain output  
Doc ID 022729 Rev 1  
17/69  
Pin connection  
L6472  
Table 6.  
No.  
Pin description (continued)  
Name  
Type  
Function  
Standby and reset pin. LOW logic level resets the logic and puts  
the device into standby mode. If not used, it should be connected  
to VDD  
3
STBY\RST  
Logic input  
25  
STCK  
Logic input  
Ground  
Step-clock input  
EPAD  
Exposed pad  
Internally connected to PGND, AGND and DGND pins  
18/69  
Doc ID 022729 Rev 1  
L6472  
Typical applications  
5
Typical applications  
Table 7.  
Typical application values  
Name  
Value  
CVS  
CVSPOL  
CREG  
CREGPOL  
CDD  
220 nF  
100 µF  
100 nF  
47 µF  
100 nF  
CDDPOL  
D1  
10 µF  
Charge pump diodes  
220 nF  
CBOOT  
CFLY  
10 nF  
RPU  
39 kΩ  
RSW  
100 Ω  
CSW  
10 nF  
Figure 4.  
Bipolar stepper motor control application using the L6472  
Doc ID 022729 Rev 1  
19/69  
Functional description  
L6472  
6
Functional description  
6.1  
Device power-up  
At the end of power-up, the device state is the following:  
Registers are set to default,  
Internal logic is driven by the internal oscillator and a 2 MHz clock is provided by the  
OSCOUT pin,  
Bridges are disabled (High Z),  
UVLO bit in the STATUS register is forced low (fail condition),  
FLAG output is forced low.  
During power-up the device is under reset (all logic IO disabled and power bridges in high-  
impedance state) until the following conditions are satisfied:  
VS is greater than VSthOn  
VREG is greater than VREGth = 2.8 V (typ.)  
Internal oscillator is operative.  
Any motion command causes the device to exit from High Z state (HardStop and SoftStop  
included).  
6.2  
6.3  
20/69  
Logic I/O  
Pins CS, CK, SDI, STCK, SW and STBY\RST are TTL/CMOS 3.3 V-5 V compatible logic  
inputs.  
Pin SDO is a TTL/CMOS compatible logic output. The VDD pin voltage sets the logic output  
pin voltage range; when it is connected to VREG or a 3.3 V external supply voltage, the  
output is 3.3 V compatible. When VDD is connected to a 5 V supply voltage, SDO is 5 V  
compatible.  
VDD is not internally connected to VREG, an external connection is always needed.  
A 10 µF capacitor should be connected to the VDD pin in order to obtain a proper operation.  
Pins FLAG and BUSY\SYNC are open drain outputs.  
Charge pump  
To ensure the correct driving of the high-side integrated MOSFETs, a voltage higher than  
the motor power supply voltage needs to be applied to the Vboot pin. The high-side gate  
driver supply voltage Vboot is obtained through an oscillator and a few external components  
realizing a charge pump (see Figure 5).  
Doc ID 022729 Rev 1  
 
L6472  
Functional description  
Figure 5.  
Charge pump circuitry  
6.4  
Microstepping  
The driver is able to divide the single step into up to 16 microsteps. Step mode can be  
programmed by the STEP_SEL parameter in the STEP_MODE register (see Table 19).  
Step mode can only be changed when bridges are disabled. Every time step mode is  
changed, the electrical position (i.e. the point of microstepping sinewave that is generated)  
is reset to the first microstep, and the absolute position counter value (see Section 6.5)  
becomes meaningless.  
Figure 6.  
Normal mode and microstepping (16 microsteps)  
Doc ID 022729 Rev 1  
21/69  
Functional description  
L6472  
6.4.1  
Automatic full-step mode  
When motor speed is greater than a programmable full-step speed threshold, the L6472  
switches automatically to full-step mode (see Figure 7); the driving mode returns to  
microstepping when motor speed decreases below the full-step speed threshold. The full-  
step speed threshold is set through the FS_SPD register (see Section 9.1.9).  
Figure 7.  
Automatic full-step switching  
)
PEAK  
SINꢀPꢀꢁꢄ X )PEAK  
0HASE !  
0HASE "  
&ULLꢅ3TEP  
M3TEPPING  
M3TEPPING  
ꢀꢁ.ꢂꢃꢄ X Pꢀꢁ  
ꢀꢁ.ꢂꢃꢄ X Pꢀꢁ  
6.5  
6.6  
Absolute position counter  
An internal 22-bit register (ABS_POS) keeps track of the motor motion according to the  
selected step mode; the stored value unit is equal to the selected step mode (full, half,  
quarter, etc.). The position range is from -221 to +221-1 (µ) steps (see Section 9.1.1).  
Programmable speed profiles  
The user can easily program a customized speed profile, independently defining  
acceleration, deceleration, maximum and minimum speed values through the ACC, DEC,  
MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5, 9.1.6, 9.1.7 and  
9.1.8).  
When a command is sent to the device, the integrated logic generates the microstep  
frequency profile that performs a motor motion compliant to speed profile boundaries.  
All acceleration parameters are expressed in step/tick2 and all speed parameters are  
expressed in step/tick; the unit of measurement does not depend on selected step mode.  
Acceleration and deceleration parameters range from 2-40 to (212-2)•2-40 step/tick2  
(equivalent to 14.55 to 59590 step/s2).  
Minimum speed parameter ranges from 0 to (212-1)•2-24 step/tick (equivalent to 0 to 976.3  
step/s).  
Maximum speed parameter ranges from 2-18 to (210-1)• 2-18 step/tick (equivalent to 15.25 to  
15610 step/s).  
22/69  
Doc ID 022729 Rev 1  
 
 
L6472  
Functional description  
6.6.1  
Infinite acceleration/deceleration mode  
When the ACC register value is set to max. (0xFFF), the system works in “infinite  
acceleration mode”: acceleration and deceleration phases are totally skipped, as shown in  
Figure 8.  
It is not possible to skip the acceleration or deceleration phase independently.  
Figure 8.  
Speed profile in infinite acceleration/deceleration mode  
6.7  
Motor control commands  
The L6472 can accept different types of commands:  
constant speed commands (Run, GoUntil, ReleaseSW)  
absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark)  
motion commands (Move)  
stop commands (SoftStop, HardStop, SoftHiz, HardHiz).  
For detailed command descriptions refer to Section 9.2.  
6.7.1  
Constant speed commands  
A constant speed command produces a motion in order to reach and maintain a user  
defined target speed starting from the programmed minimum speed (set in the MIN_SPEED  
register) and with the programmed acceleration/deceleration value (set in the ACC and DEC  
registers). A new constant speed command can be requested anytime.  
Doc ID 022729 Rev 1  
23/69  
 
Functional description  
Figure 9.  
L6472  
Constant speed commands examples  
6.7.2  
Positioning commands  
An absolute positioning command produces a motion in order to reach a user-defined  
position that is sent to the device together with the command. The position can be reached  
by performing the minimum path (minimum physical distance) or forcing a direction (see  
Figure 10).  
The performed motor motion is compliant to programmed speed profile boundaries  
(acceleration, deceleration, minimum and maximum speed).  
Note that with some speed profiles or positioning commands, the deceleration phase can  
start before the maximum speed is reached.  
Figure 10. Positioning command examples  
24/69  
Doc ID 022729 Rev 1  
 
L6472  
Functional description  
6.7.3  
Motion commands  
Motion commands produce a motion in order to perform a user-defined number of  
microsteps in a user-defined direction that are sent to the device together with the command  
(see Figure 11).  
The performed motor motion is compliant to programmed speed profile boundaries  
(acceleration, deceleration, minimum and maximum speed).  
Note that with some speed profiles or motion commands, the deceleration phase can start  
before the maximum speed is reached.  
Figure 11. Motion command examples  
6.7.4  
Stop commands  
A stop command forces the motor to stop. Stop commands can be sent anytime.  
The SoftStop command causes the motor to decelerate with a programmed deceleration  
value until the MIN_SPEED value is reached and then stops the motor maintaining the rotor  
position (a holding torque is applied).  
The HardStop command stops the motor instantly, ignoring deceleration constraints and  
maintaining the rotor position (a holding torque is applied).  
The SoftHiZ command causes the motor to decelerate with a programmed deceleration  
value until the MIN_SPEED value is reached and then forces the bridges into high-  
impedance state (no holding torque is present).  
The HardHiZ command instantly forces the bridges into high-impedance state (no holding  
torque is present).  
6.7.5  
Step-clock mode  
In step-clock mode the motor motion is defined by the step-clock signal applied to the STCK  
pin.  
At each step-clock rising edge, the motor is moved by one microstep in the programmed  
direction and the absolute position is consequently updated.  
When the system is in step-clock mode the SCK_MOD flag in the STATUS register is raised,  
the SPEED register is set to zero and the motor status is considered stopped whatever the  
STCK signal frequency (the MOT_STATUS parameter in the STATUS register equal to  
g00h).  
Doc ID 022729 Rev 1  
25/69  
 
 
Functional description  
L6472  
6.7.6  
GoUntil and ReleaseSW commands  
In most applications the power-up position of the stepper motor is undefined, so an  
initialization algorithm driving the motor to a known position is necessary.  
The GoUntil and ReleaseSW commands can be used in combination with external switch  
input (see Section 6.13) to easily initialize the motor position.  
The GoUntil command makes the motor run at the target constant speed until the SW input  
is forced low (falling edge). When this event occurs, one of the following actions can be  
performed:  
ABS_POS register is set to zero (home position) and the motor decelerates to zero  
speed (as a SoftStop command)  
ABS_POS register value is stored in the MARK register and the motor decelerates to  
zero speed (as a SoftStop command).  
If the SW_MODE bit of the CONFIG register is set to e0f, the motor does not decelerate but  
it immediately stops (as a HardStop command).  
The ReleaseSW command makes the motor run at the programmed minimum speed until  
the SW input is forced high (rising edge). When this event occurs, one of the following  
actions can be performed:  
ABS_POS register is set to zero (home position) and the motor immediately stops (as a  
HardStop command)  
ABS_POS register value is stored in the MARK register and the motor immediately  
stops (as a HardStop command).  
If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s.  
26/69  
Doc ID 022729 Rev 1  
L6472  
Functional description  
6.8  
Internal oscillator and oscillator driver  
The control logic clock can be supplied by the internal 16-MHz oscillator, an external  
oscillator (crystal or ceramic resonator) or a direct clock signal.  
These working modes can be selected by the EXT_CLK and OSC_SEL parameters in the  
CONFIG register (see Table 24).  
At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal  
on the OSCOUT pin.  
Attention: In any case, before changing clock source configuration, a  
hardware reset is mandatory. Switching to different clock  
configurations during operation could cause unexpected  
behavior.  
6.8.1  
6.8.2  
Internal oscillator  
In this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock  
source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to  
the OSC_SEL value); otherwise it is unused (see Figure 12).  
External clock source  
Two types of external clock source can be selected: crystal/ceramic resonator or direct clock  
source. Four programmable clock frequencies are available for each external clock source:  
8, 16, 24 and 32 MHz.  
When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to  
drive the crystal/resonator (see Figure 12). The crystal/resonator and load capacitors (CL)  
must be placed as close as possible to the pins. Refer to Table 8 for the choice of the load  
capacitor value according to the external oscillator frequency.  
Table 8.  
CL values according to external oscillator frequency  
Crystal/resonator freq. (1)  
CL (2)  
8 MHz  
16 MHz  
24 MHz  
32 MHz  
25 pF (ESRmax = 80 )  
18 pF (ESRmax = 50 )  
15 pF (ESRmax = 40 )  
10 pF (ESRmax = 40 )  
1. First harmonic resonance frequency.  
2. Lower ESR value allows the driving of greater load capacitors.  
If a direct clock source is used, it must be connected to the OSCIN pin, and the OSCOUT  
pin supplies the inverted OSCIN signal (see Figure 12).  
Doc ID 022729 Rev 1  
27/69  
 
Functional description  
Figure 12. OSCIN and OSCOUT pin configurations  
L6472  
Note:  
When OSCIN is UNUSED, it should be left floating.  
When OSCOUT is UNUSED it should be left floating.  
6.9  
Overcurrent detection  
When the current in any of the Power MOSFETs exceeds a programmed overcurrent  
threshold, the STATUS register OCD flag is forced low until the overcurrent event expires  
and a GetStatus command is sent to the IC (see Section 9.1.19 and 9.2.20). The  
overcurrent event expires when all the Power MOSFET currents fall below the programmed  
overcurrent threshold.  
The overcurrent threshold can be programmed through the OCD_TH register in one of 16  
available values ranging from 375 mA to 6 A with steps of 375 mA (see Table 17).  
It is possible to set if an overcurrent event causes or not the MOSFET turn-off (bridges in  
high-impedance status) acting on the OC_SD bit in the CONFIG register (see  
Section 9.1.18). The OCD flag in the STATUS register is raised anyway (see Table 25).  
When the IC outputs are turned-off by an OCD event, they cannot be turned on until the  
OCD flag is released by a GetStatus command.  
Attention: The overcurrent shutdown is a critical protection feature. It is  
not recommended to disable it.  
28/69  
Doc ID 022729 Rev 1  
 
L6472  
Functional description  
6.10  
Undervoltage lockout (UVLO)  
The L6472 provides motor supply UVLO protection. When the motor supply voltage falls  
below the VSthOff threshold voltage, the STATUS register UVLO flag is forced low. When a  
GetStatus command is sent to the IC, and the undervoltage condition expires, the UVLO  
flag is released (see Section 9.1.19 and 9.2.20). The undervoltage condition expires when  
the motor supply voltage goes over the VSthOn threshold voltage. When the device is in the  
undervoltage condition, no motion command can be performed. The UVLO flag is forced low  
by logic reset (power-up included) even if no UVLO condition is present.  
6.11  
Thermal warning and thermal shutdown  
An internal sensor allows the L6472 to detect when the device internal temperature exceeds  
a thermal warning or an overtemperature threshold.  
When the thermal warning threshold (Tj(WRN)) is reached, the TH_WRN bit in the STATUS  
register is forced low (see Section 9.1.19) until the temperature decreases below Tj(WRN)  
and a GetStatus command is sent to the IC (see Section 9.1.19 and 9.2.20).  
When the thermal shutdown threshold (Tj(OFF)) is reached, the device goes into the thermal  
shutdown condition: the TH_SD bit in the STATUS register is forced low, the power bridges  
are disabled bridges in high-impedance state and the HiZ bit in the STATUS register is  
raised (see Section 9.1.19).  
The thermal shutdown condition only expires when the temperature goes below the thermal  
warning threshold (Tj(WRN)).  
On exiting the thermal shutdown condition, the bridges are still disabled (HiZ flag high);  
whichever motion command makes the device exit from High Z state (HardStop and  
SoftStop included).  
6.12  
Reset and standby  
The device can be reset and put into standby mode through a dedicated pin. When the  
STBY\RST pin is driven low, the bridges are left open (High Z state), the internal charge  
pump is stopped, the SPI interface and control logic are disabled, and the internal 3 V  
voltage regulator maximum output current is reduced to IREG,STBY; as a result, the L6472  
heavily reduces the power consumption. At the same time the register values are reset to  
default and all protection functions are disabled. STBY\RST input must be forced low at  
least for tSTBY,min, in order to ensure the complete switch to standby mode.  
On exiting standby mode, as well as for IC power-up, a delay of up to tlogicwu must be given  
before applying a new command to allow proper oscillator and logic startup and a delay of  
up to tcpwu must be given to allow the charge pump startup.  
On exiting standby mode the bridges are disabled (HiZ flag high) and whichever motion  
command causes the device to exit High Z state (HardStop and SoftStop included).  
Attention: It is not recommended to reset the device when outputs are  
active. The device should be switched to high-impedance  
state before being reset.  
Doc ID 022729 Rev 1  
29/69  
Functional description  
L6472  
6.13  
External switch (SW pin)  
The SW input is internally pulled-up to VDD and detects if the pin is open or connected to  
ground (see Figure ).  
The SW_F bit of the STATUS register indicates if the switch is open (‘0’) or closed (‘1’) (see  
Section 9.1.19); the bit value is refreshed at every system clock cycle (125 ns). The  
SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input falling  
edge) is detected (see Section 9.1.19). A GetStatus command releases the SW_EVN flag  
(see Section 9.2.20).  
By default a switch turn-on event causes a HardStop interrupt (SW_MODE bit of the  
CONFIG register set to ‘0’). Otherwise (SW_MODE bit of the CONFIG register set to ‘1’),  
switch input events do not cause interrupts and the switch status information is at the user’s  
disposal (see Table 25).  
The switch input can be used by the GoUntil and ReleaseSW commands as described in  
Section 9.2.10 and 9.2.11.  
If the SW input is not used, it should be connected to VDD.  
Figure 13. External switch connection  
6.14  
6.15  
Programmable DMOS slew rate, dead time and blanking time  
Using the POW_SR parameter in the CONFIG register, it is possible to set the commutation  
speed of the power bridge output (see Table 27).  
Integrated analog-to-digital converter  
The L6472 integrates an NADC bit ramp-compare analog-to-digital converter with a  
reference voltage equal to VREG. The analog-to-digital converter input is available through  
the ADCIN pin and the conversion result is available in the ADC_OUT register (see  
Section 9.1.13). The sampling frequency is equal to the clock frequency divided by 512.  
The ADC_OUT value can be used for the torque regulation or can remain at the user’s  
disposal.  
30/69  
Doc ID 022729 Rev 1  
 
 
L6472  
Functional description  
6.16  
Internal voltage regulator  
The L6472 integrates a voltage regulator which generates a 3 V voltage starting from motor  
power supply (VSA and VSB). In order to make the voltage regulator stable, at least 22 µF  
should be connected between the VREG pin and ground (the suggested value is 47 µF).  
The internal voltage regulator can be used to supply the VDD pin in order to make the  
device digital output range 3.3 V compatible (Figure 14). A digital output range 5 V  
compatible can be obtained connecting the VDD pin to an external 5 V voltage source. In  
both cases, a 10 µF capacitance should be connected to the VDD pin in order to obtain a  
correct operation.  
The internal voltage regulator is able to supply a current up to IREG,MAX, internal logic  
consumption included (Ilogic). When the device is in standby mode the maximum current that  
can be supplied is IREG  
, internal consumption included (Ilogic STBY).  
STBY  
,
,
If an external 3.3 V regulated voltage is available, it can be applied to the VREG pin in order  
to supply all the internal logic and avoid power dissipation of the internal 3 V voltage  
regulator (Figure 14). The external voltage regulator should never sink current from the  
VREG pin.  
Figure 14. Internal 3 V linear regulator  
6
"!4  
6S  
6S  
ꢆ6  
ꢆꢇꢆ6  
2%'ꢇ  
6
$$  
62%'  
6
$$  
63!  
63"  
62%'  
6
$$  
6
3!  
6
3"  
M#  
)#  
)#  
$'.$  
!'.$  
$'.$  
!'.$  
,OGIG SUPPLIED B  
).4%2.!, VOLTAGE REGULATOR  
,OGIG SUPPLIED B  
%84%2.!, VOLTAGE REGULATOR  
6.17  
BUSY\SYNC pin  
This pin is an open drain output which can be used as the busy flag or synchronization  
signal according to the SYNC_EN bit value (STEP_MODE register).  
6.17.1  
BUSY operation mode  
The pin works as busy signal when the SYNC_EN bit is set low (default condition). In this  
mode the output is forced low while a constant speed, absolute positioning or motion  
command is under execution. The BUSY pin is released when the command has been  
executed (target speed or target position reached). The STATUS register includes a BUSY  
flag that is the BUSY pin mirror (see Section 9.1.19).  
In the case of daisy chain configuration, BUSY pins of different ICs can be hard-wired to  
save host controller GPIOs.  
Doc ID 022729 Rev 1  
31/69  
 
Functional description  
L6472  
6.17.2  
SYNC operation mode  
The pin works as a synchronization signal when the SYNC_EN bit is set high. In this mode a  
step-clock signal is provided on the output according to a SYNC_SEL and STEP_SEL  
parameter combination (see Section 9.1.16).  
6.18  
FLAG pin  
By default an internal open drain transistor pulls the FLAG pin to ground when at least one  
of the following conditions occur:  
Power-up or standby/reset exit  
Overcurrent detection  
Thermal warning  
Thermal shutdown  
UVLO  
Switch turn-on event  
Wrong command  
Non-performable command.  
It is possible to mask one or more alarm conditions by programming the ALARM_EN  
register (see Table 22). If the corresponding bit of the ALARM_EN register is low, the alarm  
condition is masked and it does not cause a FLAG pin transition; all other actions imposed  
by alarm conditions are performed anyway. In the case of daisy chain configuration, the  
FLAG pins of different ICs can be OR-wired to save host controller GPIOs.  
32/69  
Doc ID 022729 Rev 1  
L6472  
Phase current control  
7
Phase current control  
The L6472 performs a new current control technique, named predictive current control,  
allowing the device to obtain the target average phase current. This method is described in  
detail in Section 7.1. Furthermore, the L6472 automatically selects the better decay mode in  
order to follow the current profile.  
Current control algorithm parameters can be programmed by the T_FAST, TON_MIN,  
TOFF_MIN and CONFIG registers (see Section 9.1.11, 9.1.12, 9.1.13 and 9.1.18 for  
details).  
Different current amplitude can be set for acceleration, deceleration and constant speed  
phases and when the motor is stopped through the TVAL_ACC, TVAL_DEC, TVAL_RUN  
and TVAL_HOLD registers (see Section 7.4). The output current amplitude can also be  
regulated by the ADCIN voltage value (see Section 6.15).  
Each bridge is driven by an independent control system that shares the control parameters  
only with other bridges.  
7.1  
Predictive current control  
Unlike a classical peak current control system, that causes the phase current decay when  
the target value is reached, this new method keeps the power bridge on for an extra time  
after reaching the current threshold.  
At each cycle the system measures the time required to reach the target current (tSENSE).  
After that the power stage is kept in a “predictive” ON state (tPRED) for a time equal to the  
mean value of tSENSE in the last two control cycles (actual one and previous one), as shown  
in Figure 15.  
Figure 15. Predictive current control  
At the end of the predictive ON state the power stage is set in the OFF state for a fixed time,  
as in a constant tOFF current control. During the OFF state both slow and fast decay can be  
performed; the better decay combination is automatically selected by the L6472, as  
described in Section 7.2.  
Doc ID 022729 Rev 1  
33/69  
 
 
Phase current control  
L6472  
As shown in Figure 15, the system is able to center the triangular wave on the desired  
reference value improving dramatically the accuracy of the current control system: in fact the  
average value of a triangular wave is exactly equal to the middle point of each of its  
segments and at steady-state the predictive current control tends to equalize the duration of  
the tSENSE and the tPRED time.  
Furthermore, the tOFF value is recalculated each time a new current value is requested  
(microstep change) in order to keep the PWM frequency as near as possible to the  
programmed one (TSW parameter in the CONFIG register).  
The device can be forced to work using a classic peak current control setting the PRED_EN  
bit in the CONFIG register low (default condition). In this case, after the sense phase  
(tSENSE) the power stage is set in the OFF state, as shown in Figure 16.  
Figure 16. Non-predictive current control  
34/69  
Doc ID 022729 Rev 1  
 
L6472  
Phase current control  
7.2  
Auto-adjusted decay mode  
During the current control, the device automatically selects the better decay mode in order  
to follow the current profile reducing the current ripple.  
At reset, the OFF time is performed by turning on both the low-side MOSFETs of the power  
stage and the current recirculates in the lower half of the bridge (slow decay).  
If, during a PWM cycle, the target current threshold is reached in a time shorter than the  
TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed  
turning on the opposite MOS of both half bridges and the current recirculates back to the  
supply bus.  
After this time, the bridge returns to the ON state: if the time needed to reach the target  
current value is still less than TON_MIN, a new fast decay is performed with a period twice  
the previous one. Otherwise, the normal control sequence is followed as described in  
Section 7.1. The maximum fast decay duration is set by the TOFF_FAST value.  
Figure 17. Adaptive decay - fast decay tuning  
When two or more fast decays are performed with the present target current, the control  
system adds a fast decay at the end of every OFF time, keeping the OFF state duration  
constant (tOFF is split into tOFF,SLOW and tOFF,FAST). When the current threshold is increased  
by a microstep change (rising step), the system returns to normal decay mode (slow decay  
only) and the tFAST value is halved.  
Stopping the motor or reaching the current sinewave zero crossing causes the current  
control system to return to the reset state.  
Doc ID 022729 Rev 1  
35/69  
 
Phase current control  
L6472  
Figure 18. Adaptive decay switch from normal to slow+fast decay mode and  
viceversa  
7.3  
Auto-adjusted fast decay during the falling steps  
When the target current is decreased by a microstep change (falling step), the device  
performs a fast decay in order to reach the new value as fast as possible. Anyway,  
exceeding the fast duration may cause a strong ripple on the step change. The L6472  
automatically adjusts these fast decays reducing the current ripple.  
At reset, the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL  
value is doubled every time, within the same falling step, an extra fast decay is necessary to  
obtain an ON time greater than TON_MIN. The maximum tFALL value is equal to  
FALL_STEP.  
At the next falling step, the system uses the last tFALL value of the previous falling step.  
Stopping the motor or reaching the current sinewave zero crossing causes the current  
control system to return to the reset state.  
36/69  
Doc ID 022729 Rev 1  
 
L6472  
Phase current control  
Figure 19. Fast decay tuning during the falling steps  
7.4  
Torque regulation (output current amplitude regulation)  
The output current amplitude can be regulated in two ways: writing the TVAL_ACC,  
TVAL_DEC, TVAL_RUN and TVAL_HOLD registers or varying the ADCIN voltage value.  
The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high,  
the ADC_OUT prevalue is used to regulate output current amplitude (see Section 9.1.14).  
Otherwise the internal analog-to-digital converter is at the user’s disposal and the output  
current amplitude is managed by the TVAL_HOLD, TVAL_RUN, TVAL_ACC and  
TVAL_DEC registers (see Section 9.1.10).  
The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC  
bit digital signal. The analog-to-digital conversion result is available in the ADC_OUT  
register.  
Doc ID 022729 Rev 1  
37/69  
 
Serial interface  
L6472  
8
Serial interface  
The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial  
communication between the host microprocessor (always master) and the L6472 (always  
slave).  
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data  
output (SDO) pins. When CS is high, the device is unselected and the SDO line is inactive  
(high-impedance).  
The communication starts when CS is forced low. The CK line is used for synchronization of  
data communication.  
All commands and data bytes are shifted into the device through the SDI input, most  
significant bit first. The SDI is sampled on the rising edges of the CK.  
All output data bytes are shifted out of the device through the SDO output, most significant  
bit first. The SDO is latched on the falling edges of the CK. When a return value from the  
device is not available, an all zero byte is sent.  
After each byte transmission, the CS input must be raised and be kept high for at least  
tdisCS in order to allow the device to decode the received command and put the return  
value into the shift register.  
All timing requirements are shown in Figure 20 (see Section 3 for the respective electrical  
characteristics for values).  
Multiple devices can be connected in a daisy chain configuration, as shown in Figure 21.  
Figure 20. SPI timings diagram  
38/69  
Doc ID 022729 Rev 1  
 
L6472  
Serial interface  
Figure 21. Daisy chain configuration  
Doc ID 022729 Rev 1  
39/69  
Programming manual  
L6472  
9
Programming manual  
9.1  
Register and flag description  
Table 9 shows a map of the user registers available (detailed description in respective  
paragraphs):  
Table 9.  
Register map  
Address  
[Hex]  
Register  
name  
Reset  
Hex  
Remarks  
Register function  
Len. [bit]  
Reset Value  
(1)  
h01  
h02  
h03  
h04  
ABS_POS  
EL_POS  
MARK  
Current position  
Electrical position  
Mark position  
22  
9
000000  
000  
0
0
0
R, WS  
R, WS  
R, WR  
R
22  
20  
000000  
SPEED  
Current speed  
00000 0 step/tick (0 step/s)  
125.5e-12 step/tick2 (2008  
h05  
h06  
ACC  
DEC  
Acceleration  
Deceleration  
12  
12  
08A  
R, WS  
R, WS  
step/s2)  
125.5e-12 step/tick2 (2008  
08A  
step/s2)  
248e-6 step/tick (991.8  
step/s)  
h07  
h08  
h15  
MAX_SPEED Maximum speed  
MIN_SPEED Minimum speed  
10  
13  
10  
041  
R, WR  
R, WS  
R, WR  
000  
027  
0 step/tick (0 step/s)  
150.7e-6 step/tick (602.7  
step/s)  
FS_SPD  
Full-step speed  
h09  
h0A  
TVAL_HOLD Holding current  
7
7
29  
29  
1.3125 A  
1.3125 A  
R, WR  
R, WR  
TVAL_RUN Constant speed current  
Acceleration starting  
h0B  
h0C  
TVAL_ACC  
current  
7
7
29  
29  
1.3125 A  
1.3125 A  
R, WR  
R, WR  
Deceleration starting  
TVAL_DEC  
current  
h0D  
h0E  
h0F  
h10  
h11  
h12  
h13  
h14  
h16  
h17  
RESERVED Reserved address  
16  
8
T_FAST  
Fast decay/fall step time  
Minimum ON time  
19  
29  
29  
1µs / 5 µs  
20.5 µs  
R, WH  
R, WH  
R, WH  
TON_MIN  
7
TOFF_MIN Minimum OFF time  
RESERVED Reserved address  
7
20.5 µs  
8
ADC_OUT  
OCD_TH  
ADC output  
5
XX (2)  
8
R
OCD threshold  
4
3.38 A  
R, WR  
RESERVED Reserved address  
STEP_MODE Step mode  
8
8
7
16 microsteps, no synch  
All alarms enabled  
R, WH  
R, WS  
ALARM_EN Alarms enable  
8
FF  
40/69  
Doc ID 022729 Rev 1  
 
L6472  
Programming manual  
Remarks  
Table 9.  
Register map (continued)  
Address  
[Hex]  
Register  
Reset  
Hex  
Register function  
name  
Len. [bit]  
Reset Value  
(1)  
R, WH  
R
Internal oscillator, 2 MHz  
OSCOUT clock, supply  
voltage compensation  
disabled, overcurrent  
shutdown enabled, slew  
rate = 290 V/µs TSW =  
40 µs  
h18  
CONFIG  
IC configuration  
16  
16  
2E88  
High-impedance state,  
UVLO/reset flag set.  
h19  
STATUS  
Status  
XXXX (2)  
h1A  
h1B  
RESERVED Reserved address  
RESERVED Reserved address  
1. R: Readable, WH: writable only when outputs are in high-impedance, WS: writable only when motor is stopped, WR:  
always writable.  
2. According to startup conditions.  
9.1.1  
ABS_POS  
The ABS_POS register contains the current motor absolute position in agreement to the  
selected step mode; the stored value unit is equal to the selected step mode (full, half,  
quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1.  
At power-on the register is initialized to “0” (HOME position).  
Any attempt to write the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
9.1.2  
EL_POS  
The EL_POS register contains the current electrical position of the motor. The two MSbits  
indicate the current step and the other bits indicate the current microstep (expressed in  
step/128) within the step.  
Table 10. EL_POS register  
Bit 8  
Bit 7  
STEP  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MICROSTEP  
When the EL_POS register is written by the user the new electrical position is instantly  
imposed. When the EL_POS register is written its value must be masked in order to match  
with the step mode selected in the STEP_MODE register in order to avoid a wrong  
microstep value generation (see Section 9.1.16); otherwise the resulting microstep  
sequence is incorrect.  
Any attempt to write the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
Doc ID 022729 Rev 1  
41/69  
 
Programming manual  
L6472  
9.1.3  
MARK  
The MARK register contains an absolute position called MARK, in accordance with the  
selected step mode; the stored value unit is equal to the selected step mode (full, half,  
quarter, etc.).  
It is in 2's complement format and it ranges from -221 to +221-1.  
9.1.4  
SPEED  
The SPEED register contains the current motor speed, expressed in step/tick (format  
unsigned fixed point 0.28).  
In order to convert the SPEED value in step/s the following formula can be used:  
Equation 1  
SPEED 228  
[step s] = ---------------------------------------  
tick  
where SPEED is the integer number stored in the register and tick is 250 ns.  
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.  
The range, effectively available to the user, is limited by the MAX_SPEED parameter.  
Note:  
Any attempt to write the register causes the command to be ignored and the  
NOTPERF_CMD flag to rise (see Section 9.1.19).  
9.1.5  
ACC  
The ACC register contains the speed profile acceleration expressed in step/tick2 (format  
unsigned fixed point 0.40).  
In order to convert ACC value in step/s2 the following formula can be used:  
Equation 2  
ACC 240  
[step s] = -------------------------------  
tick2  
where ACC is the integer number stored in the register and tick is 250 ns.  
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.  
When the ACC value is set to 0xFFF the device works in infinite acceleration mode.  
Any attempt to write to the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
9.1.6  
DEC  
The DEC register contains the speed profile deceleration expressed in step/tick2 (format  
unsigned fixed point 0.40).  
In order to convert the DEC value in step/s2 the following formula can be used:  
42/69  
Doc ID 022729 Rev 1  
 
 
L6472  
Programming manual  
Equation 3  
DEC 240  
[step s] = -------------------------------  
tick2  
where DEC is the integer number stored in the register and tick is 250 ns.  
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.  
When the device is working in infinite acceleration mode this value is ignored.  
Any attempt to write the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
9.1.7  
MAX_SPEED  
The MAX_SPEED register contains the speed profile maximum speed expressed in  
step/tick (format unsigned fixed point 0.18).  
In order to convert it in step/s the following formula can be used:  
Equation 4  
MAXSPEED 218  
[step s] = -----------------------------------------------------  
tick  
where MAX_SPEED is the integer number stored in the register and tick is 250 ns.  
The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.  
9.1.8  
MIN_SPEED  
The MIN_SPEED register contains the following parameters:  
Table 11. MIN_SPEED register  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0
MIN_SPEED  
The MIN_SPEED parameter contains the speed profile minimum speed. Its value is  
expressed in step/tick and to convert it in step/s the following formula can be used:  
Equation 5  
MINSPEED 224  
[step s] = ---------------------------------------------------  
tick  
where MIN_SPEED is the integer number stored in the register and tick is the ramp 250 ns.  
The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s.  
Any attempt to write the register when the motor is running causes the NOTPERF_CMD flag  
to rise.  
Doc ID 022729 Rev 1  
43/69  
Programming manual  
L6472  
9.1.9  
FS_SPD  
The FS_SPD register contains the threshold speed. When the actual speed exceeds this  
value the step mode is automatically switched to full-step two-phase on. Its value is  
expressed in step/tick (format unsigned fixed point 0.18) and to convert it in step/s the  
following formula can be used.  
Equation 6  
(FSSPD + 0.5) ⋅ 218  
[step s] = -----------------------------------------------------------  
tick  
If the FS_SPD value is set to hFF (max.) the system always works in microstepping mode  
(SPEED must go beyond the threshold to switch to full-step mode). Setting FS_SPD to zero  
does not have the same effect as setting step mode to full-step two phase on: the zero  
FS_SPD value is equivalent to a speed threshold of about 7.63 step/s.  
The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s.  
9.1.10  
TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC  
The TVAL_HOLD register contains the current value that is assigned to the torque  
regulation DAC when the motor is stopped.  
The TVAL_RUN register contains the current value that is assigned to the torque regulation  
DAC when the motor is running at constant speed.  
The TVAL_ACC register contains the current value that is assigned to the torque regulation  
DAC during acceleration.  
The TVAL_DEC register contains the current value that is assigned to the torque regulation  
DAC during deceleration.  
The available range is from 31.25 mA to 4 A with a resolution of 31.25 mA, as shown in  
Table 12.  
Table 12. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and  
TVAL_RUN registers  
TVAL_X [6..0]  
Output current amplitude  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
31.25 mA  
62.5 mA  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
3.969 A  
4 A  
44/69  
Doc ID 022729 Rev 1  
 
L6472  
Programming manual  
9.1.11  
T_FAST  
The T_FAST register contains the maximum fast decay time (TOFF_FAST) and the  
maximum fall step time (FALL_STEP) used by the current control system (see Section 7.2  
and 7.3 for details):  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOFF_FAST  
FAST_STEP  
The available range for both parameters is from 0.5 µs to 8 µs.  
Table 13. Maximum fast decay times  
TOFF_FAST [3..0]  
FAST_STEP[3..0]  
Fast decay time  
0
0
0
0
0
0
0
1
0.5 µs  
1 µs  
1
1
1
1
1
1
0
1
7.5 µs  
8 µs  
Any attempt to write to the register when the motor is running causes the command to be  
ignored and NOTPERF_CMD to rise (see Section 9.1.19).  
9.1.12  
TON_MIN  
This parameter is used by the current control system when current mode operation is  
selected.  
The TON_MIN register contains the minimum ON time value used by the current control  
system (see Section 7.2).  
The available range for both parameters is from 0.5 µs to 64 µs.  
Table 14. Minimum ON time  
Time  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5 µs  
1 µs  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
63.5 µs  
64 µs  
Any attempt to write to the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD to rise (see Section 9.1.19).  
Doc ID 022729 Rev 1  
45/69  
Programming manual  
L6472  
9.1.13  
TOFF_MIN  
This parameter is used by the current control system when current mode operation is  
selected.  
The TOFF_MIN register contains the minimum OFF time value used by the current control  
system (see Section 7.1 for details).  
The available range for both parameters is from 0.5 µs to 64 µs.  
Table 15. Minimum OFF time  
Time  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5 µs  
1 µs  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
63.5 µs  
64 µs  
Any attempt to write to the register when the motor is running causes the command to be  
ignored and NOTPERF_CMD to rise (see Section 9.1.19).  
46/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
9.1.14  
ADC_OUT  
The ADC_OUT register contains the result of the analog-to-digital conversion of the ADCIN  
pin voltage.  
Any attempt to write to the register causes the command to be ignored and the  
NOTPERF_CMD flag to rise (see Section 9.1.19).  
Table 16. ADC_OUT value and torque regulation feature  
VADCIN/ VREG  
ADC_OUT [4..0]  
Output current amplitude  
0
0
0
0
0
0
0
0
0
0
1
125 mA  
250 mA  
1/32  
30/32  
31/32  
1
1
1
1
1
1
1
1
0
1
3.875 A  
4 A  
9.1.15  
OCD_TH  
The OCD_TH register contains the overcurrent threshold value (see Section 6.9 for details).  
The available range is from 375 mA to 6 A, steps of 375 mA, as shown in Table 17.  
Table 17. Overcurrent detection threshold  
OCD_TH [3..0]  
Overcurrent detection threshold  
0
0
0
0
0
0
1
375 mA  
750 mA  
0
1
1
1
1
1
1
0
1
5.625 A  
6 A  
Doc ID 022729 Rev 1  
47/69  
 
Programming manual  
L6472  
9.1.16  
STEP_MODE  
The STEP_MODE register has the following structure:  
Table 18. STEP_MODE register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
1 (1)  
Bit 2  
Bit 1  
Bit 0  
SYNC_EN  
SYNC_SEL  
STEP_SEL  
1. When the register is written this bit should be set to 1.  
The STEP_SEL parameter selects one of five possible stepping modes:  
Table 19. Step mode selection  
STEP_SEL[2..0]  
Step mode  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Full-step  
Half-step  
1/4 microstep  
1/8 microstep  
1/16 microstep  
Every time the step mode is changed, the electrical position (i.e. the point of microstepping  
sinewave that is generated) is reset to the first microstep.  
Warning: Every time STEP_SEL is changed the value in the ABS_POS  
register looses meaning and should be reset.  
Any attempt to write the register when the motor is running causes the command to be  
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
When when SYNC_EN bit is set low, BUSY/SYNC output is forced low during the  
commands execution, otherwise, when the SYNC_EN bit is set high, the BUSY/SYNC  
output provides a clock signal according to the SYNC_SEL parameter.  
48/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
Table 20. SYNC output frequency  
STEP_SEL (fFS is the full-step frequency)  
000  
fFS/2  
NA  
001  
fFS/2  
fFS  
010  
fFS/2  
fFS  
011  
fFS/2  
fFS  
100  
fFS/2  
fFS  
101  
fFS/2  
fFS  
110  
fFS/2  
fFS  
111  
fFS/2  
fFS  
000  
001  
010  
011  
100  
101  
110  
111  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
2· fFS  
NA  
2· fFS  
4· fFS  
NA  
2· fFS  
4· fFS  
8· fFS  
NA  
2· fFS  
4· fFS  
8· fFS  
NA  
2· fFS  
4· fFS  
8· fFS  
NA  
2· fFS  
4· fFS  
8· fFS  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
The synchronization signal is obtained starting from the electrical position information  
(EL_POS register) according to Table 21:  
Table 21. SYNC signal source  
SYNC_SEL[2..0]  
Source  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
EL_POS[7]  
EL_POS[6]  
EL_POS[5]  
EL_POS[4]  
EL_POS[3]  
UNUSED (1)  
UNUSED (1)  
UNUSED (1)  
1. When this value is selected the BUSY output is forced low.  
Doc ID 022729 Rev 1  
49/69  
 
Programming manual  
L6472  
9.1.17  
ALARM_EN  
The ALARM_EN register allows the selection of which alarm signals are used to generate  
the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm  
condition forces the FLAG pin output down.  
Table 22. ALARM_EN register  
ALARM_EN bit  
Alarm condition  
0 (LSB)  
Overcurrent  
Thermal shutdown  
Thermal warning  
1
2
3
Undervoltage  
4
UNUSED  
5
6
UNUSED  
Switch turn-on event  
Wrong or non-performable command  
7 (MSB)  
9.1.18  
CONFIG  
The CONFIG register has the following structure:  
Table 23. CONFIG register  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
TSW  
Bit 4  
Bit 11  
Bit 10  
Bit 9 Bit 8  
PRED_EN  
Bit 7  
POW_SR  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1 Bit 0  
OC_SD  
RESERVED EN_TQREG SW_MODE EXT_CLK  
OSC_SEL  
50/69  
Doc ID 022729 Rev 1  
 
L6472  
Programming manual  
The OSC_SEL and EXT_CLK bits set the system clock source:  
Table 24. Oscillator management  
EXT_CLK OSC_SEL[2..0] Clock source  
OSCIN  
OSCOUT  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Internal oscillator: 16 MHz  
Unused  
Unused  
Supplies a 2-MHz  
clock  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
Internal oscillator: 16 MHz  
Internal oscillator: 16 MHz  
Internal oscillator: 16 MHz  
Internal oscillator: 16 MHz  
Unused  
Unused  
Unused  
Unused  
Supplies a 4-MHz  
clock  
Supplies an 8-MHz  
clock  
Supplies a 16-MHz  
clock  
Crystal/resonator  
External crystal or resonator: 8 MHz Crystal/resonator driving  
driving  
External crystal or resonator:  
Crystal/resonator driving  
16 MHz  
Crystal/resonator  
driving  
External crystal or resonator:  
Crystal/resonator driving  
24 MHz  
Crystal/resonator  
driving  
External crystal or resonator:  
Crystal/resonator driving  
32 MHz  
Crystal/resonator  
driving  
Ext clock source: 8 MHz  
Clock source  
Supplies inverted  
OSCIN signal  
(Crystal/resonator driver disabled)  
Ext clock source: 16 MHz  
Clock source  
Supplies inverted  
OSCIN signal  
(Crystal/resonator driver disabled)  
Ext clock source: 24 MHz  
Clock source  
Supplies inverted  
OSCIN signal  
(Crystal/resonator driver disabled)  
Ext clock source: 32 MHz  
Clock source  
Supplies inverted  
OSCIN signal  
(Crystal/resonator driver disabled)  
The SW_MODE bit sets the external switch to act as HardStop interrupt or not:  
Table 25. External switch hard stop interrupt mode  
SW_MODE  
Switch mode  
0
1
HardStop interrupt  
User disposal  
The OC_SD bit sets if an overcurrent event causes or not the bridges to turn off; the OCD  
flag in the STATUS register is forced low anyway:  
Doc ID 022729 Rev 1  
51/69  
Programming manual  
L6472  
Table 26. Overcurrent event  
OC_SD  
Overcurrent event  
1
0
Bridges shut down  
Bridges do not shut down  
The POW_SR bits set the slew rate value of the power bridge output:  
Table 27. Programmable power bridge output slew rate values  
POW_SR [1..0]  
Output Slew rate (1) [V/ìs] (1)  
0
0
1
1
0
1
0
1
180  
180  
290  
530  
1. See SRout_r and SRout_f parameters in Table 5 for details.  
The TQREG bit sets if the torque regulation (see Section 7.4) is performed through ADCIN  
voltage (external) or the TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers  
(internal):  
Table 28. External torque regulation enable  
TQREG  
External torque regulation enable  
0
1
Internal registers  
ADC input  
The TSW parameter is used by the current control system and it sets the target switching  
period.  
Table 29. Switching period  
TSW [4..0]  
Switching period  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
4 µs (250 kHz)  
4 µs (250 kHz)  
8 µs (125 kHz)  
1
1
1
1
1
124 µs (8 kHz)  
Any attempt to write the CONFIG register when the motor is running causes the command  
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
52/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
9.1.19  
STATUS  
Table 30. STATUS register  
Bit 15  
Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
SCK_MOD  
Bit 7  
X
X
OCD  
Bit 4  
DIR  
TH_SD  
Bit 3  
TH_WRN UVLO WRONG_CMD  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
HiZ  
NOTPERF_CMD  
MOT_STATUS  
SW_EVN  
SW_F  
BUSY  
When the HiZ flag is high it indicates that the bridges are in high-impedance state. Any  
motion command causes the device to exit from High Z state (HardStop and SoftStop  
included), unless error flags forcing a High Z state are active.  
The UVLO flag is active low and is set by an undervoltage lockout or reset event (power-up  
included). The TH_WRN, TH_SD, OCD flags are active low and indicate respectively  
thermal warning, thermal shutdown and overcurrent detection events.  
The NOTPERF_CMD and WRONG_CMD flags are active high and indicate, respectively,  
that the command received by SPI can't be performed or does not exist at all. The SW_F  
reports the SW input status (low for open and high for closed).  
The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling  
edge).  
The UVLO, TH_WRN, TH_SD, OCD, NOTPERF_CMD, WRONG_CMD and SW_EVN flags  
are latched: when the respective conditions make them active (low or high) they remain in  
that state until a GetStatus command is sent to the IC.  
The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed,  
positioning or motion command is under execution and is released (high) after the command  
has been completed.  
The SCK_MOD bit is an active high flag indicating that the device is working in step-clock  
mode. In this case the step-clock signal should be provided through the STCK input pin. The  
DIR bit indicates the current motor direction:  
Table 31. STATUS register DIR bit  
DIR  
Motor direction  
1
0
Forward  
Reverse  
MOT_STATUS indicates the current motor status:  
Table 32. STATUS register MOT_STATE bits  
MOT_STATUS  
Motor status  
0
0
1
1
0
1
0
1
Stopped  
Acceleration  
Deceleration  
Constant speed  
Doc ID 022729 Rev 1  
53/69  
 
Programming manual  
Any attempt to write to the register causes the command to be ignored and the  
L6472  
NOTPERF_CMD to rise (see Section 9.1.19).  
9.2  
Application commands  
A summary of commands is given in Table 33.  
Table 33. Application commands  
Command Mnemonic  
Command binary code  
[7..5] [4] [3] [2..1] [0]  
Action  
NOP  
000  
0
0
00  
0
Nothing  
Writes VALUE in the PARAM register  
Returns the stored value in the PARAM register  
SetParam(PARAM,VALUE) 000  
[PARAM]  
[PARAM]  
GetParam(PARAM)  
Run(DIR,SPD)  
001  
010  
1
1
0
00  
00  
DIR Sets the target speed and the motor direction  
Puts the device into step-clock mode and imposes  
DIR direction  
StepClock(DIR)  
010  
1
DIR  
Makes N_STEP (micro) steps in DIR direction (non-  
performable when motor is running)  
Move(DIR,N_STEP)  
GoTo(ABS_POS)  
010  
011  
0
0
0
0
0
1
00  
00  
00  
DIR  
0
Brings motor in ABS_POS position (minimum path)  
Brings motor in ABS_POS position forcing DIR  
direction  
GoTo_DIR(DIR,ABS_POS) 011  
DIR  
Performs a motion in DIR direction with speed SPD  
GoUntil(ACT,DIR,SPD)  
ReleseSW(ACT, DIR)  
100  
100  
0
1
ACT  
ACT  
01  
01  
DIR until SW is closed, the ACT action is executed then a  
SoftStop takes place  
Performs a motion in DIR direction at minimum  
DIR speed until the SW is released (open), the ACT  
action is executed then a HardStop takes place  
GoHome  
GoMark  
011  
011  
110  
110  
101  
101  
1
1
1
0
1
1
0
1
1
0
0
1
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
Brings the motor in HOME position  
Brings the motor in MARK position  
Resets the ABS_POS register (set HOME position)  
Device is reset to power-up conditions.  
Stops motor with a deceleration phase  
Stops motor immediately  
ResetPos  
ResetDevice  
SoftStop  
HardStop  
Puts the bridges in high-impedance status after a  
deceleration phase  
SoftHiZ  
101  
101  
0
0
0
1
00  
00  
0
0
Puts the bridges in high-impedance status  
immediately  
HardHiZ  
GetStatus  
RESERVED  
RESERVED  
110  
111  
111  
1
0
1
0
1
1
00  
01  
00  
0
1
0
Returns the STATUS register value  
RESERVED COMMAND  
RESERVED COMMAND  
54/69  
Doc ID 022729 Rev 1  
 
L6472  
Programming manual  
9.2.1  
Command management  
The host microcontroller can control motor motion and configure the L6472 through a  
complete set of commands.  
All commands are composed by a single byte. After the command byte, some argument  
bytes should be needed (see Figure 22). Argument length can vary from 1 to 3 bytes.  
Figure 22. Command with 3-byte argument  
By default the device returns an all zeroes response for any received byte, the only  
exceptions are GetParam and GetStatus commands. When one of these commands is  
received the following response bytes represents the related register value (see Figure 23).  
Response length can vary from 1 to 3 bytes.  
Figure 23. Command with 3-byte response  
During response transmission, new commands can be sent. If a command requiring a  
response is sent before the previous response is completed, the response transmission is  
aborted and the new response is loaded into the output communication buffer (see  
Figure 24).  
Figure 24. Command response aborted  
When a byte that does not correspond to a command is sent to the IC, it is ignored and the  
WRONG_CMD flag in the STATUS register is raised (see Section 9.1.19).  
9.2.2  
Nop  
Table 34. NOP command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
0
From host  
Nothing is performed.  
Doc ID 022729 Rev 1  
55/69  
 
 
 
Programming manual  
L6472  
9.2.3  
SetParam (PARAM, VALUE)  
Table 35. SetParam command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
PARAM  
From host  
VALUE Byte 2 (if needed)  
VALUE Byte 1 (if needed)  
VALUE Byte 0  
The SetParam command sets the PARAM register value equal to VALUE; PARAM is the  
respective register address listed in Table 9.  
The command should be followed by the new register VALUE (most significant byte first).  
The number of bytes composing the VALUE argument depends on the length of the target  
register (see Table 9).  
Some registers cannot be written (see Table 9); any attempt to write one of these registers  
causes the command to be ignored and the WRONG_CMD flag to rise at the end of the  
command byte as if an unknown command code was sent (see Section 9.1.18).  
Some registers can only be written in particular conditions (see Table 9); any attempt to  
write one of these registers when the conditions are not satisfied causes the command to be  
ignored and the NOTPERF_CMD flag to rise at the end of last argument byte (see  
Section 9.1.19).  
Any attempt to set an inexistent register (wrong address value) causes the command to be  
ignored and the WRONG_CMD flag to rise at the end of the command byte as if an  
unknown command code was sent.  
9.2.4  
GetParam (PARAM)  
Table 36. GetParam command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
1
PARAM  
From host  
To host  
To host  
To host  
ANS Byte 2 (if needed)  
ANS Byte 1 (if needed)  
ANS Byte 0  
This command reads the current PARAM register value; PARAM is the respective register  
address listed in Table 9.  
The command response is the current value of the register (most significant byte first). The  
number of bytes composing the command response depends on the length of the target  
register (see Table 9).  
The returned value is the register one at the moment of GetParam command decoding. If  
the register value changes after this moment, the response is not accordingly updated.  
All registers can be read anytime.  
56/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
Any attempt to read an inexistent register (wrong address value) causes the command to be  
ignored and WRONG_CMD flag to rise at the end of command byte as if an unknown  
command code is sent.  
9.2.5  
Run (DIR, SPD)  
Table 37. Run command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
Bit 1  
Bit 0  
0
1
0
1
0
0
DIR  
From host  
From host  
X
X
X
X
SPD (Byte 2)  
SPD (Byte 1)  
SPD (Byte 0)  
From host  
From host  
The Run command produces a motion at SPD speed; the direction is selected by the DIR  
bit: '1' forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed  
point 0.28) which is the same format as the SPEED register (see Section 9.1.4).  
Note:  
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED  
otherwise the Run command is executed at MAX_SPEED or MIN_SPEED respectively.  
This command keeps the BUSY flag low until the target speed is reached.  
This command can be given anytime and is immediately executed.  
9.2.6  
StepClock (DIR)  
Table 38. StepClock command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
0
1
1
0
0
DIR  
From host  
The StepClock command switches the device in step-clock mode (see Section 6.7.5) and  
imposes the forward (DIR = '1') or reverse (DIR = '0') direction.  
When the device is in step-clock mode the SCK_MOD flag in the STATUS register is raised  
and the motor is always considered stopped (see Section 6.7.5 and 9.1.18).  
The device exits from step-clock mode when a constant speed, absolute positioning or  
motion command is sent through SPI. Motion direction is imposed by the respective  
StepClock command argument and can by changed by a new StepClock command without  
exiting step-clock mode.  
Events that cause bridges to be forced into high-impedance state (overtemperature,  
overcurrent, etc.) do not cause the device to leave step-clock mode. StepClock command  
does not force the BUSY flag low. This command can only be given when the motor is  
stopped. If a motion is in progress the motor should be stopped and it is then possible to  
send a StepClock command.  
Any attempt to perform a StepClock command when the motor is running causes the  
command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
Doc ID 022729 Rev 1  
57/69  
Programming manual  
L6472  
9.2.7  
Move (DIR, N_STEP)  
Table 39. Move command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
0
0
0
0
0
DIR  
From host  
X
X
N_STEP (Byte 2)  
From host  
From host  
From host  
N_STEP (Byte 1)  
N_STEP (Byte 0)  
The move command produces a motion of N_STEP microsteps; the direction is selected by  
the DIR bit ('1' forward or '0' reverse).  
The N_STEP value is always in agreement with the selected step mode; the parameter  
value unit is equal to the selected step mode (full, half, quarter, etc.).  
This command keeps the BUSY flag low until the target number of steps is performed. This  
command can only be performed when the motor is stopped. If a motion is in progress the  
motor must be stopped and it is then possible to perform a Move command.  
Any attempt to perform a Move command when the motor is running causes the command  
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).  
9.2.8  
GoTo (ABS_POS)  
Table 40. GoTo command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
1
0
0
0
0
0
From host  
From host  
From host  
From host  
X
X
ABS_POS (Byte 2)  
ABS_POS (Byte 1)  
ABS_POS (Byte 0)  
The GoTo command produces a motion to the ABS_POS absolute position through the  
shortest path. The ABS_POS value is always in agreement with the selected step mode; the  
parameter value unit is equal to the selected step mode (full, half, quarter, etc.).  
The GoTo command keeps the BUSY flag low until the target position is reached.  
This command can be given only when the previous motion command as been completed  
(BUSY flag released).  
Any attempt to perform a GoTo command when a previous command is under execution  
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see  
Section 9.1.19).  
58/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
9.2.9  
GoTo_DIR (DIR, ABS_POS)  
Table 41. GoTo_DIR command structure  
Bit 7  
0
Bit 6  
1
Bit 5  
1
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0
1
0
0
DIR From host  
From host  
X
X
ABS_POS (Byte 2)  
ABS_POS (Byte 1)  
ABS_POS (Byte 0)  
From host  
From host  
The GoTo_DIR command produces a motion to the ABS_POS absolute position imposing a  
forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in  
agreement with the selected step mode; the parameter value unit is equal to the selected  
step mode (full, half, quarter, etc.).  
The GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This  
command can be given only when the previous motion command has been completed  
(BUSY flag released).  
Any attempt to perform a GoTo_DIR command when a previous command is under  
execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to  
rise (see Section 9.1.19).  
9.2.10  
GoUntil (ACT, DIR, SPD)  
Table 42. GoUntil command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
0
0
ACT  
0
1
DIR  
From host  
From host  
From host  
From host  
X
X
X
X
SPD (Byte 2)  
SPD (Byte 1)  
SPD (Byte 0)  
The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or a  
reverse (DIR = '0') direction. When an external switch turn-on event occurs (see  
Section 6.13), the ABS_POS register is reset (if ACT = '0') or the ABS_POS register value is  
copied into the MARK register (if ACT = '1'); the system then performs a SoftStop command.  
The SPD value is expressed in step/tick (format unsigned fixed point 0.28) which is the  
same format as the SPEED register (see Section 9.1.4).  
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED,  
otherwise the target speed is imposed at MAX_SPEED or MIN_SPEED respectively.  
If the SW_MODE bit of the CONFIG register is set low, the external switch turn-on event  
causes a HardStop interrupt instead of the SoftStop one (see Section 6.13 and 9.1.18).  
This command keeps the BUSY flag low until the switch turn-on event occurs and the motor  
is stopped. This command can be given anytime and is immediately executed.  
Doc ID 022729 Rev 1  
59/69  
 
Programming manual  
L6472  
9.2.11  
ReleaseSW (ACT, DIR)  
Table 43. ReleaseSW command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
0
1
ACT  
0
1
DIR  
From host  
The ReleaseSW command produces a motion at minimum speed imposing a forward (DIR =  
'1') or reverse (DIR = '0') rotation. When SW is released (opened) the ABS_POS register is  
reset (ACT = '0') or the ABS_POS register value is copied into the MARK register (ACT =  
'1'); the system then performs a HardStop command.  
Note that resetting the ABS_POS register is equivalent to setting the HOME position.  
If the minimum speed value is less than 5 step/s or low speed optimization is enabled, the  
motion is performed at 5 step/s.  
The ReleaseSW command keeps the BUSY flag low until the switch input is released and  
the motor is stopped.  
9.2.12  
GoHome  
Table 44. GoHome command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
1
1
0
0
0
0
From host  
The GoHome command produces a motion to the HOME position (zero position) via the  
shortest path.  
Note that this command is equivalent to the “GoTo(0…0)” command. If a motor direction is  
mandatory the GoTo_DIR command must be used (see Section 9.2.9).  
The GoHome command keeps the BUSY flag low until the home position is reached. This  
command can be given only when the previous motion command has been completed. Any  
attempt to perform a GoHome command when a previous command is under execution  
(BUSY low) causes the command to be ignored and the NOTPERF_CMD to rise (see  
Section 9.1.19).  
9.2.13  
GoMark  
GoMark command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
1
1
1
0
0
0
From host  
The GoMark command produces a motion to the MARK position performing the minimum  
path.  
Note that this command is equivalent to the “GoTo (MARK)” command. If a motor direction is  
mandatory the GoTo_DIR command must be used.  
60/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
The GoMark command keeps the BUSY flag low until the MARK position is reached. This  
command can be given only when the previous motion command has been completed  
(BUSY flag released).  
Any attempt to perform a GoMark command when a previous command is under execution  
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see  
Section 9.1.19).  
9.2.14  
ResetPos  
Table 45. ResetPos command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
1
1
0
0
0
From host  
The ResetPos command resets the ABS_POS register to zero. The zero position is also  
defined as HOME position (see Section 6.5).  
9.2.15  
ResetDevice  
Table 46.  
Bit 7  
ResetDevice command structure  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
0
0
0
0
0
From host  
The ResetDevice command resets the device to power-up conditions (see Section 6.1).  
Note:  
At power-up the power bridges are disabled.  
9.2.16  
SoftStop  
Table 47. SoftStop command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
1
1
0
0
0
0
From host  
The SoftStop command causes an immediate deceleration to zero speed and a consequent  
motor stop; the deceleration value used is the one stored in the DEC register (see  
Section 9.1.6).  
When the motor is in high-impedance state, a SoftStop command forces the bridges to exit  
from high-impedance state; no motion is performed.  
This command can be given anytime and is immediately executed. This command keeps  
the BUSY flag low until the motor is stopped.  
Doc ID 022729 Rev 1  
61/69  
Programming manual  
L6472  
9.2.17  
HardStop  
Table 48.  
Bit 7  
HardStop command structure  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
1
1
1
0
0
0
From host  
The HardStop command causes an immediate motor stop with infinite deceleration.  
When the motor is in high-impedance state, a HardStop command forces the bridges to exit  
from high-impedance state; no motion is performed.  
This command can be given anytime and is immediately executed. This command keeps  
the BUSY flag low until the motor is stopped.  
9.2.18  
SoftHiZ  
Table 49. SoftHiZ command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
1
0
0
0
0
0
From host  
The SoftHiZ command disables the power bridges (high-impedance state) after a  
deceleration to zero; the deceleration value used is the one stored in the DEC register (see  
Section 9.1.6). When bridges are disabled the HiZ flag is raised.  
When the motor is stopped, a SoftHiZ command forces the bridges to enter high-impedance  
state.  
This command can be given anytime and is immediately executed. This command keeps  
the BUSY flag low until the motor is stopped.  
9.2.19  
HardHiZ  
Table 50. HardHiZ command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
1
0
1
0
0
0
From host  
The HardHiZ command immediately disables the power bridges (high-impedance state) and  
raises the HiZ flag.  
When the motor is stopped, a HardHiZ command forces the bridges to enter high-  
impedance state.  
This command can be given anytime and is immediately executed.  
This command keeps the BUSY flag low until the motor is stopped.  
62/69  
Doc ID 022729 Rev 1  
L6472  
Programming manual  
9.2.20  
GetStatus  
Table 51. GetStatus command structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
0
1
0
0
0
0
From host  
STATUS MSByte  
STATUS LSByte  
To host  
To host  
The GetStatus command returns the STATUS register value.  
The GetStatus command resets the STATUS register warning flags. The command forces  
the system to exit from any error state. The GetStatus command does NOT reset the HiZ  
flag.  
Doc ID 022729 Rev 1  
63/69  
Package mechanical data  
L6472  
10  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
Table 52. HTSSOP28 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.2  
0.15  
1.05  
0.3  
0.8  
0.19  
0.09  
9.6  
1.0  
c
0.2  
D (1)  
D1  
E
9.7  
5.5  
6.4  
4.4  
2.8  
0.65  
0.6  
1.0  
9.8  
6.2  
4.3  
6.6  
4.5  
E1 (2)  
E2  
E
L
0.45  
0°  
0.75  
8°  
L1  
K
Aaa  
0.1  
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
do not exceed 0.15 mm per side.  
2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions do not exceed  
0.25 mm per side.  
64/69  
Doc ID 022729 Rev 1  
L6472  
Package mechanical data  
Figure 25. HTSSOP28 mechanical data  
Doc ID 022729 Rev 1  
65/69  
Package mechanical data  
L6472  
Table 53. POWERSO36 mechanical data  
mm  
inch  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
a1  
a2  
a3  
b
3.60  
0.30  
3.30  
0.10  
0.38  
0.32  
16.00  
9.80  
14.50  
11.10  
2.90  
6.2  
0.1417  
0.0118  
0.1299  
0.0039  
0.0150  
0.0126  
0.6299  
0.3858  
0.5709  
0.4370  
0.1142  
0.2441  
0.10  
0.003  
0
0
0.22  
0.23  
15.80  
9.40  
13.90  
10.90  
0.008  
0.009  
0.622  
0.370  
0.547  
0.429  
c
D (1)  
D1  
E
E1 (1)  
E2  
E3  
e
5.8  
0.228  
0.65  
0.025  
0.435  
e3  
G
11.05  
0
0.10  
15.90  
1.10  
1.10  
10°  
0.000  
0.610  
0.0039  
0.6260  
0.0433  
0.0433  
10°  
H
15.50  
h
L
0.80  
0°  
0.031  
0°  
N
S
8°  
8°  
66/69  
Doc ID 022729 Rev 1  
L6472  
Package mechanical data  
Figure 26. POWERSO36 drawings  
1
1
Dꢇ  
$
F
Dꢀ  
H
$
'(7$,/ꢊ%  
OHDG  
(
'(7$,/ꢊ$  
Hꢆ  
+
'(7$,/ꢊ$  
'
VOXJ  
Dꢆ  
%27720ꢊ9,(:  
ꢆꢂ  
ꢀꢉ  
(ꢆ  
%
(ꢀ  
(ꢇ  
'ꢀ  
'(7$,/ꢊ%  
ꢈꢋꢆꢄ  
*DJHꢊ3ODQH  
ꢎꢊ&ꢊꢎ  
6($7,1*ꢊ3/$1(  
6
/
*
&
0
E
ꢈꢋꢀꢇ  
$ %  
362ꢆꢂ0(&  
Kꢊ[ꢊꢅꢄÛ  
ꢌ&23/$1$5,7<ꢍ  
ꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊ  
Doc ID 022729 Rev 1  
67/69  
Revision history  
L6472  
11  
Revision history  
Table 54. Document revision history  
Date  
Revision  
Changes  
24-Jan-2012  
1
Initial release.  
68/69  
Doc ID 022729 Rev 1  
L6472  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022729 Rev 1  
69/69  

相关型号:

ADC0804LCWM

8-Bit uP Compatible A/D Converters
NSC

ADC0804LCWM

8-Bit, Microprocessor- Compatible, A/D Converters
INTERSIL

ADC0804LCWM

8-Bit muP Compatible A/D Converters
TI

ADC0804LCWM/NOPB

8-Bit muP Compatible A/D Converters
TI

ADC0804LCWM96

1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO20
RENESAS

ADC0804LCWMX

8-Bit muP Compatible A/D Converters
TI

ADC0804LCWMX/NOPB

8-Bit muP Compatible A/D Converters
TI

ADC0804S030

Single 8 bits ADC, up to 30 MHz, 40 MHz or 50 MHz
NXP

ADC0804S030

Single 8 bits ADC, up to 30 MHz, 40 MHz or 50 MHz
IDT

ADC0804S030TS

Single 8 bits ADC, up to 30 MHz, 40 MHz or 50 MHz
NXP

ADC0804S030TS

Single 8 bits ADC, up to 30 MHz, 40 MHz or 50 MHz
IDT

ADC0804S030TS/C1,1

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PDSO28, 5.30 MM, PLASTIC, MO-150, SOT341-1, SSOP-28, Analog to Digital Converter
NXP