ICM-20600 [TDK]

High Performance 6-Axis MEMS MotionTracking Device;
ICM-20600
型号: ICM-20600
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

High Performance 6-Axis MEMS MotionTracking Device

文件: 总57页 (文件大小:1517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICM-20600  
High Performance 6-Aꢀis MEM“ MotioꢁTꢂaꢃkiꢁg™ Deꢄiꢃe iꢁ  
2.5x3x0.91mm Package  
GENERAL DESCRIPTION  
APPLICATIONS  
Smartphones and Tablets  
The ICM-20600 is a 6-axis MotionTracking device that  
combines a 3-axis gyroscope, 3-axis accelerometer, in a small  
2.5 mm x 3 mm x 0.91 mm (14-pin LGA) package.  
Wearable Sensors  
IoT Applications  
Motion-based game controllers  
3D remote controls for Internet connected DTVs and  
set top boxes, 3D mice  
High performance specs  
o
o
o
Gyroscope sensitivity error: ±1%  
Gyroscope noise: ±4 mdps/Hz  
Accelerometer noise: 100 µg/Hz  
FEATURES  
Includes 1 KB FIFO to reduce traffic on the serial bus  
interface, and reduce power consumption by allowing  
the system processor to burst read sensor data and then  
go into a low-power mode  
3-Axis Gyroscope with Programmable FSR of  
±250 dps, ±500 dps, ±1000 dps, and ±2000 dps  
3-Axis Accelerometer with Programmable FSR of ±2g,  
±4g, ±8g, and ±16g  
EIS FSYNC support  
User-programmable interrupts  
Wake-on-motion interrupt for low power operation  
of applications processor  
ICM-20600 includes on-chip 16-bit ADCs, programmable  
digital filters, an embedded temperature sensor, and  
programmable interrupts. The device features an operating  
voltage range down to 1.71V. Communication ports include  
I2C and high speed SPI at 10 MHz.  
1 KB FIFO buffer enables the applications processor to  
read the data in bursts  
On-Chip 16-bit ADCs and Programmable Filters  
Host interface: 10 MHz SPI or 400 kHz Fast Mode I2C  
Digital-output temperature sensor  
VDD operating range of 1.71 to 3.45V  
MEMS structure hermetically sealed and bonded at  
wafer level  
ORDERING INFORMATION  
PART  
TEMP RANGE  
PACKAGE  
ICM-20600†  
−ꢅꢆ°C to +ꢇꢈ°C  
14-Pin LGA  
RoHS and Green compliant  
Denotes RoHS and Green-Compliant Package  
TYPICAL OPERATING CIRCUIT  
BLOCK DIAGRAM  
SDI SCLK  
nCS  
14  
13  
12  
AD0 / SDO  
NC  
REGOUT  
SDO  
11  
10  
9
1
2
C1, 0.1 mF  
FSYNC  
INT2  
FSYNC  
INT2  
ICM-20600  
3
4
NC  
1.71 3.45VDC  
C4, 2.2 mF  
INT1  
VDD  
8
INT1  
5
6
7
C2, 0.1 mF  
1.71 3.45VDC  
C3, 10 nF  
InvenSense Inc.  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 9887339  
InvenSense reserves the right to change the detail  
specifications as may be required to permit  
improvements in the design of its products.  
Document Number: DS-000184  
Revision: 1.0  
Revision Date: 10/27/2016  
www.invensense.com  
 
 
 
 
 
 
ICM-20600  
TABLE OF CONTENTS  
General Description .............................................................................................................................................1  
Ordering Information...........................................................................................................................................1  
Block Diagram ......................................................................................................................................................1  
Applications .........................................................................................................................................................1  
Features ...............................................................................................................................................................1  
Typical Operating Circuit......................................................................................................................................1  
Introduction......................................................................................................................................................... 7  
1.1 Purpose and Scope....................................................................................................................................7  
1.2 Product Overview......................................................................................................................................7  
1.3 Applications...............................................................................................................................................7  
Features ............................................................................................................................................................... 8  
2.1 Gyroscope Features ..................................................................................................................................8  
2.2 Accelerometer Features............................................................................................................................8  
2.3 Additional Features...................................................................................................................................8  
Electrical Characteristics...................................................................................................................................... 9  
3.1 Gyroscope Specifications ..........................................................................................................................9  
3.2 Accelerometer Specifications..................................................................................................................10  
3.3 Electrical Specifications...........................................................................................................................11  
3.4 I2C Timing Characterization.....................................................................................................................14  
3.5 SPI Timing Characterization ....................................................................................................................15  
3.6 Absolute Maximum Ratings ....................................................................................................................16  
Applications Information ................................................................................................................................... 17  
4.1 Pin Out Diagram and Signal Description .................................................................................................17  
4.2 Typical Operating Circuit.........................................................................................................................18  
4.3 Bill of Materials for External Components ..............................................................................................18  
4.4 Block Diagram .........................................................................................................................................19  
4.5 Overview .................................................................................................................................................19  
4.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning ...............................................19  
4.7 Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning.........................................20  
4.8 I2C and SPI Serial Communications Interfaces ........................................................................................20  
4.9 Self-Test...................................................................................................................................................21  
1
2
3
4
4.10  
4.11  
4.12  
4.13  
4.14  
4.15  
4.16  
Clocking...............................................................................................................................................21  
Sensor Data Registers .........................................................................................................................21  
FIFO.....................................................................................................................................................22  
Interrupts............................................................................................................................................22  
Digital-Output Temperature Sensor ...................................................................................................22  
Bias and LDOs .....................................................................................................................................22  
Charge Pump ......................................................................................................................................22  
Document Number: DS-000184  
Revision: 1.0  
Page 2 of 57  
Revision Date: 10/27/2016  
ICM-20600  
4.17  
Standard Power Modes ......................................................................................................................22  
5
6
Programmable Interrupts .................................................................................................................................. 23  
5.1 Wake-on-Motion Interrupt .....................................................................................................................23  
Digital Interface ................................................................................................................................................. 24  
6.1 I2C and SPI Serial Interfaces ....................................................................................................................24  
6.2 I2C Interface.............................................................................................................................................24  
6.3 I2C Communications Protocol .................................................................................................................24  
6.4 I2C Terms .................................................................................................................................................26  
6.5 SPI Interface ............................................................................................................................................26  
Register Map...................................................................................................................................................... 28  
Register Descriptions ......................................................................................................................................... 31  
7
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Register 04 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 31  
Register 05 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 31  
Register 07 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 31  
Register 08 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 32  
Register 10 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 32  
Register 11 Gyroscope Low Noise to Low Power Offset Shift and Gyroscope Offset Temperature Compensation (TC) Register 32  
8.7 Registers 13 to 15 Accelerometer Self-Test Registers..........................................................................32  
8.8 Register 19 X-Gyro Offset Adjustment Register High Byte................................................................33  
8.9 Register 20 X-Gyro Offset Adjustment Register Low Byte ................................................................33  
8.10  
Register 21 Y-Gyro Offset Adjustment Register High Byte ...........................................................33  
8.1 Register 22 Y-Gyro Offset Adjustment Register Low Byte.................................................................33  
8.2 Register 23 Z-Gyro Offset Adjustment Register High Byte................................................................33  
8.3 Register 24 Z-Gyro Offset Adjustment Register Low Byte.................................................................34  
8.4 Register 25 Sample Rate Divider ..........................................................................................................34  
8.5 Register 26 Configuration.....................................................................................................................34  
8.6 Register 27 Gyroscope Configuration ..................................................................................................35  
8.7 Register 28 Accelerometer Configuration............................................................................................35  
8.8 Register 29 Accelerometer Configuration 2.........................................................................................36  
8.9 Register 30 Gyroscope Low Power Mode Configuration .....................................................................37  
8.10  
8.11  
8.12  
8.13  
8.14  
8.15  
8.16  
8.17  
8.18  
Register 32 Wake-on Motion Threshold (X-axis Accelerometer) ....................................................38  
Register 33 Wake-on Motion Threshold (Y-axis Accelerometer).....................................................38  
Register 34 Wake-on Motion Threshold (Z-axis Accelerometer).....................................................38  
Register 35 FIFO Enable ...................................................................................................................39  
Register 54 FSYNC Interrupt Status..................................................................................................39  
Register 55 INT/DRDY Pin / Bypass Enable Configuration ...............................................................39  
Register 57 FIFO Watermark Interrupt Status .................................................................................40  
Register 58 Interrupt Status.............................................................................................................40  
Registers 59 to 64 Accelerometer Measurements: X-Axis High Byte ..............................................40  
Document Number: DS-000184  
Revision: 1.0  
Page 3 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.19  
8.20  
8.21  
8.22  
8.23  
8.24  
8.25  
8.26  
8.27  
8.28  
8.29  
8.30  
8.31  
8.32  
Registers 65 and 66 Temperature Measurement............................................................................41  
Registers 67 to 72 Gyroscope Measurements .................................................................................41  
Registers 80 to 82 Gyroscope Self-Test Registers............................................................................42  
Register 96-97 FIFO Watermark Threshold in Number of Bytes .....................................................43  
Register 104 Signal Path Reset.........................................................................................................43  
Register 105 Accelerometer Intelligence Control............................................................................44  
Register 106 User Control................................................................................................................44  
Register 107 Power Management 1 ................................................................................................45  
Register 108 Power Management 2 ................................................................................................45  
Register 112 I2C Interface ................................................................................................................46  
Register 114 and 115 FIFO Count Registers.....................................................................................46  
Register 116 FIFO Read Write..........................................................................................................46  
Register 117 Who Am I ....................................................................................................................46  
Registers 119, 120, 122, 123, 125, 126 Accelerometer Offset Registers.........................................47  
9
Use Notes........................................................................................................................................................... 48  
9.1 Temperature Sensor Data.......................................................................................................................48  
9.2 Accelerometer-Only Low-Noise Mode....................................................................................................48  
9.3 Accelerometer Low-Power Mode ...........................................................................................................48  
9.4 Sensor Mode Change ..............................................................................................................................48  
9.5 Temp Sensor during Gyroscope Standby Mode......................................................................................48  
9.6 Gyroscope Mode Change........................................................................................................................48  
9.7 Power Management 1 Register Setting ..................................................................................................48  
9.8 Unlisted Register Locations.....................................................................................................................48  
9.9 Clock Transition When Gyroscope is Turned Off ....................................................................................48  
9.10  
9.11  
9.12  
Sleep Mode.........................................................................................................................................48  
No special operation needed for FIFO read in low power mode........................................................49  
Gyroscope Standby Procedure ...........................................................................................................49  
10  
11  
Reference........................................................................................................................................................... 50  
Orientation of Axes............................................................................................................................................ 51  
11.1  
ICM-20600 Supported Interfaces .......................................................................................................51  
12  
13  
14  
15  
Package Dimensions .......................................................................................................................................... 52  
Part Number Package Marking .......................................................................................................................... 54  
Environmental Compliance................................................................................................................................ 55  
Revision History ................................................................................................................................................. 56  
Document Number: DS-000184  
Revision: 1.0  
Page 4 of 57  
Revision Date: 10/27/2016  
ICM-20600  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram .............................................................................................................................................................14  
Figure 2. SPI Bus Timing Diagram.............................................................................................................................................................15  
Figure 3. Pin out Diagram for ICM-20600 2.5 mm x 3.0 mm x 0.91 mm LGA ..........................................................................................17  
Figure 4. ICM-20600 LGA Application Schematic (I2C Operation)............................................................................................................18  
Figure 5. ICM-20600 LGA Application Schematic (SPI Operation) ...........................................................................................................18  
Figure 6. ICM-20600 Block Diagram.........................................................................................................................................................19  
Figure 7. ICM-20600 Solution Using I2C Interface....................................................................................................................................20  
Figure 8. ICM-20600 Solution Using SPI Interface ...................................................................................................................................21  
Figure 9. START and STOP Conditions......................................................................................................................................................24  
Figure 10. Acknowledge on the I2C Bus ...................................................................................................................................................25  
Figure 11. Complete I2C Data Transfer.....................................................................................................................................................25  
Figure. 12 Typical SPI Master / Slave Configuration ................................................................................................................................27  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation ....................................................................................................51  
Figure 14. Package Dimensions................................................................................................................................................................52  
Figure 15. Part Number Package Marking ...............................................................................................................................................54  
Document Number: DS-000184  
Revision: 1.0  
Page 5 of 57  
Revision Date: 10/27/2016  
ICM-20600  
LIST OF TABLES  
Table 1. Gyroscope Specifications .............................................................................................................................................................9  
Table 2. Accelerometer Specifications.....................................................................................................................................................10  
Table 3. D.C. Electrical Characteristics.....................................................................................................................................................11  
Table 6. A.C. Electrical Characteristics .....................................................................................................................................................13  
Table 7. Other Electrical Specifications....................................................................................................................................................13  
Table 8. I2C Timing Characteristics...........................................................................................................................................................14  
Table 9. SPI Timing Characteristics (7 MHz).............................................................................................................................................15  
Table 10. Absolute Maximum Ratings .....................................................................................................................................................16  
Table 11. Signal Descriptions ...................................................................................................................................................................17  
Table 12. Bill of Materials ........................................................................................................................................................................18  
Table 13. Standard Power Modes for ICM-20600....................................................................................................................................22  
Table 14. Table of Interrupt Sources........................................................................................................................................................23  
Table 15. Serial Interface .........................................................................................................................................................................24  
Table 16. I2C Terms ..................................................................................................................................................................................26  
Table 15. ICM-20600 register map...........................................................................................................................................................29  
Table 17. Package Dimensions Table .......................................................................................................................................................53  
Document Number: DS-000184  
Revision: 1.0  
Page 6 of 57  
Revision Date: 10/27/2016  
ICM-20600  
1 INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a product specification, providing a description, specifications, and design related information on the ICM-20600™  
MotionTracking device. The device is housed in a small 2.5x3x0.91mm 14-pin LGA package.  
1.2 PRODUCT OVERVIEW  
The ICM-20600 is a 6-axis MotionTracking device that combines a 3-axis gyroscope, and a 3-axis accelerometer in a small  
2.5x3x0.91mm (14-pin LGA) package. It also features a 1K-byte FIFO that can lower the traffic on the serial bus interface, and reduce  
power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-20600,  
with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level  
integration of discrete devices, guarantee eing optimal motion performance for consumers.  
The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec. The accelerometer has a user-  
programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors  
reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and  
programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71 to 3.45V, and a separate  
digital IO supply, VDDIO from 1.71V to 3.45V.  
Communication with all registers of the device is performed using either I2C at 400kHz or SPI at 10MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion  
CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of  
2.5x3x0.91mm (14-pin LGA), to provide a very small yet high performance low cost package. The device provides high robustness by  
supporting 20,000g shock reliability.  
1.3 APPLICATIONS  
Smartphones and Tablets  
Wearable Sensors  
Document Number: DS-000184  
Revision: 1.0  
Page 7 of 57  
Revision Date: 10/27/2016  
ICM-20600  
2 FEATURES  
2.1 GYROSCOPE FEATURES  
The triple-axis MEMS gyroscope in the ICM-20600 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250, ±500,  
±1000, and ±2000°/sec and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Low-power gyroscope operation  
Factory calibrated sensitivity scale factor  
Self-test  
2.2 ACCELEROMETER FEATURES  
The triple-axis MEMS accelerometer in ICM-20600 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and integrated  
16-bit ADCs  
User-programmable interrupts  
Wake-on-motion interrupt for low power operation of applications processor  
Self-test  
2.3 ADDITIONAL FEATURES  
The ICM-20600 includes the following additional features:  
Smallest and thinnest LGA package for portable devices: 2.5 mm x 3 mm x 0.91 mm (14-pin LGA)  
Minimal cross-axis sensitivity between the accelerometer and gyroscope axes  
1 KB FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope, accelerometer, and temp sensor  
20,000 g shock tolerant  
400 kHz Fast Mode I2C for communicating with all registers  
10 MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Document Number: DS-000184  
Revision: 1.0  
Page 8 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3 ELECTRICAL CHARACTERISTICS  
3.1 GYROSCOPE SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
GYROSCOPE SENSITIVITY  
3
3
3
3
3
3
3
3
3
1
1
Full-Scale Range  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
±250  
±500  
±1000  
±2000  
16  
dps  
dps  
dps  
dps  
Gyroscope ADC Word Length  
Sensitivity Scale Factor  
bits  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
25°C  
131  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
%
65.5  
32.8  
16.4  
±1  
Sensitivity Scale Factor Initial Tolerance  
Sensitivity Scale Factor Variation Over  
Temperature  
-40°C to +85°C  
±2  
%
1
1
Nonlinearity  
Best fit straight line; 25°C  
±0.1  
±1  
%
%
Cross-Axis Sensitivity  
ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
25°C  
±1  
dps  
1
1
ZRO Variation vs. Temperature  
-40°C to +85°C  
±0.01  
dps/°C  
GYROSCOPE NOISE PERFORMANCE (FS_SEL=0)  
@10 Hz  
Rate Noise Spectral Density  
Total RMS Noise  
0.004  
0.04  
27  
dps/√Hz  
kHz  
1, 4  
1, 4  
2
Bandwidth = 100 Hz  
Gyroscope Mechanical Frequencies  
Low Pass Filter Response  
25  
5
29  
Hz  
Programmable Range  
Time from gyro enable to gyro drive  
ready  
250  
ms  
3
Gyroscope Start-Up Time  
Output Data Rate  
35  
100  
Hz  
1
Low-Noise mode  
Low Power Mode  
3.91  
3.91  
8000  
333.33  
Hz  
Hz  
3
3
Table 1. Gyroscope Specifications  
Notes:  
1. Target spec. Subject to update.  
2. Tested in production.  
3. Guaranteed by design.  
4. Noise specifications shown are for low-noise mode.  
Document Number: DS-000184  
Revision: 1.0  
Page 9 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3.2 ACCELEROMETER SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
ACCELEROMETER SENSITIVITY  
Full-Scale Range  
AFS_SEL=0  
AFS_SEL=1  
AFS_SEL=2  
±2  
±4  
±8  
g
g
g
2
2
2
AFS_SEL=3  
±16  
16  
g
2
2
2
2
2
2
ADC Word Length  
Output iꢁ tꢉoꢊs ꢃoꢋpleꢋeꢁt foꢂꢋat  
AFS_SEL=0  
bits  
Sensitivity Scale Factor  
16,384  
8,192  
4,096  
2,048  
LSB/g  
LSB/g  
LSB/g  
LSB/g  
AFS_SEL=1  
AFS_SEL=2  
AFS_SEL=3  
Sensitivity Scale Factor Initial  
Tolerance  
Component-level  
±1  
%
%
1
1
Sensitivity Change vs. Temperature  
-40°C to +85°C  
±1.5  
Nonlinearity  
Best Fit Straight Line  
±0.3  
±1  
%
%
1
1
Cross-Axis Sensitivity  
ZERO-G OUTPUT  
Component-level, all axes  
Board-level, all axes  
±25  
±40  
±0.5  
±1  
1
1
1
1
Initial Tolerance  
mg  
X & Y-axis (-40°C to +85°C)  
mg/ºC  
mg/ºC  
Zero-G Level Change vs. Temperature  
Z-axis (-40°C to +85°C)  
NOISE PERFORMANCE  
@ 10 Hz  
Power Spectral Density  
100  
1.0  
µg/√Hz  
1, 3  
RMS Noise  
Bandwidth = 100 Hz  
mg-rms  
1, 3  
2
Low-Pass Filter Response  
Accelerometer Startup Time  
Programmable Range  
From sleep mode to valid data  
Low Noise mode  
5
218  
20  
Hz  
ms  
Hz  
Hz  
10  
2
3.91  
3.91  
4000  
500  
Output Data Rate  
2
Low Power Mode  
Table 2. Accelerometer Specifications  
Notes:  
1. Target spec. Subject to update.  
2. Guaranteed by design.  
3. Noise specifications shown are for low-noise mode.  
Document Number: DS-000184  
Revision: 1.0  
Page 10 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3.3 ELECTRICAL SPECIFICATIONS  
D.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SUPPLY VOLTAGES  
MIN  
TYP  
MAX  
UNITS  
NOTES  
VDD  
1.71  
1.71  
1.8  
1.8  
3.45  
3.45  
V
V
1
1
VDDIO  
SUPPLY CURRENTS & BOOT TIME  
6-Axis Gyroscope + Accelerometer  
Low-Noise Mode  
2.79  
mA  
1
3-Axis Accelerometer  
3-Axis Gyroscope  
321  
µA  
1
1
2.55  
mA  
Accelerometer Low -Power Mode  
(Gyroscope disabled)  
100 Hz ODR, 1x averaging  
100 Hz ODR, 1x averaging  
40  
µA  
1
1
Gyroscope Low-Power Mode  
(Accelerometer disabled)  
1.08  
mA  
6-Axis Low-Power Mode  
(Gyroscope Low-Power Mode;  
Accelerometer Low-Noise Mode)  
100 Hz ODR, 1x averaging  
At 25ºC  
1.33  
6
mA  
µA  
1
1
Full-Chip Sleep Mode  
TEMPERATURE RANGE  
Specified Temperature Range  
Performance parameters are not applicable  
beyond Specified Temperature Range  
-40  
85  
°C  
1
Table 3. D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
Document Number: DS-000184  
Revision: 1.0  
Page 11 of 57  
Revision Date: 10/27/2016  
 
ICM-20600  
A.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
NOTE  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S
SUPPLIES  
Monotonic ramp. Ramp  
rate is 10% to 90% of the  
final value  
Supply Ramp Time  
0.01  
3
ms  
1
1
2
mV peak-  
peak  
Power Supply Noise  
10  
Power Supply Sequencing  
Requirement Between VDD and  
VDDIO  
None  
TEMPERATURE SENSOR  
-40  
Operating Range  
25°C Output  
ADC Resolution  
Ambient  
85  
°C  
LSB  
bits  
Hz  
1
3
2
2
2
3
2
1
1
0
16  
Without Filter  
With Filter  
25°C  
8000  
ODR  
3.91  
-15  
1000  
15  
Hz  
°C  
Room Temperature Offset  
Stabilization Time  
Sensitivity  
14000  
µs  
Untrimmed  
326.8  
LSB/°C  
%
Sensitivity Error  
-2.5  
+2.5  
POWER-ON RESET  
Start-up time for register read/write  
From power-up  
AD0 = 0  
AD0 = 1  
2
ms  
1
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (FSYNC, AD0, SCLK, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
0.3*VDDIO  
1
< 10  
pF  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT, INT Low-Level Output Voltage  
RLOAD=1 MΩ;  
RLOAD=1 MΩ;  
0.9*VDDIO  
V
V
V
0.1*VDDIO  
0.1  
OPEN=1, 0.3 mA sink  
Current  
OPEN=1  
1
Output Leakage Current  
tINT, INT Pulse Width  
100  
50  
nA  
µs  
LATCH_INT_EN=0  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.3*VDDIO  
V
V
V
V
0.7*VDDIO  
VDDIO + 0.5V  
Vhys, Hysteresis  
0.1*VDDIO  
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3 mA sink current  
0
0.4  
1
2
VOL=0.4V  
VOL=0.6V  
3
6
mA  
mA  
Output Leakage Current  
100  
32  
nA  
ns  
tof, Output Fall Time from VIHmax to  
VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
300  
INTERNAL CLOCK SOURCE  
FCHOICE_B=1,2,3;  
SMPLRT_DIV=0  
Sample Rate  
kHz  
Document Number: DS-000184  
Revision: 1.0  
Page 12 of 57  
Revision Date: 10/27/2016  
ICM-20600  
NOTE  
PARAMETER  
CONDITIONS  
FCHOICE_B=0;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
FCHOICE_B=0;  
MIN  
TYP  
MAX  
UNITS  
S
8
kHz  
kHz  
2
2
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
1
CLK_SEL=0, 6 or gyro  
inactive; 25°C  
-3  
-1  
+3  
+1  
±2  
±2  
%
%
%
%
1
1
1
1
Clock Frequency Initial Tolerance  
CLK_SEL=1,2,3,4,5 and gyro  
active; 25°C  
CLK_SEL=0,6 or gyro  
inactive. (-40°C to +85°C)  
CLK_SEL=1,2,3,4,5 and gyro  
active  
Frequency Variation over  
Temperature  
Table 4. A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Guaranteed by design.  
3. Production tested.  
Other Electrical Specifications  
Typical Operating Circuit of section Error! Reference source not found., VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SERIAL INTERFACE  
MIN  
TYP  
MAX  
UNITS  
NOTES  
100  
0.2  
100  
±10%  
Low Speed Characterization  
High Speed Characterization  
kHz  
1,3  
SPI Operating Frequency, All  
Registers Read/Write  
1
10  
MHz  
1, 2, 3  
SPI Modes  
0 and 3  
All registers, Fast-mode  
100  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
All registers, Standard-mode  
Table 5. Other Electrical Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. SPI clock duty cycle between 45% and 55% should be used for 10 MHz operation.  
3. Minimum SPI/I2C clock rate is dependent on ODR. If ODR is below 4 kHz, minimum clock rate is 100 kHz. If ODR is greater than 4 kHz, minimum clock rate is  
200 kHz.  
Document Number: DS-000184  
Revision: 1.0  
Page 13 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3.4 I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETERS  
CONDITIONS  
I2C FAST-MODE  
MIN  
TYP  
MAX  
UNITS  
NOTES  
I2C TIMING  
fSCL, SCL Clock Frequency  
100  
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
1
1
1
1
1
1
1
1
1
1
1
tHD.STA, (Repeated) START Condition Hold Time  
tLOW, SCL Low Period  
1.3  
tHIGH, SCL High Period  
0.6  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
0.6  
0
100  
Cb bus cap. from 10 to 400 pF  
Cb bus cap. from 10 to 400 pF  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
tf, SDA and SCL Fall Time  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
< 400  
pF  
µs  
µs  
1
1
1
0.9  
0.9  
tVD.ACK, Data Valid Acknowledge Time  
Table 6. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
tf  
tSU.DAT  
tr  
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
9th clock cycle  
A
tf  
tr  
tVD.DAT  
70%  
30%  
70%  
30%  
tHD.DAT  
tHD.STA  
1/fSCL  
tLOW  
1st clock cycle  
S
tHIGH  
tBUF  
SDA  
SCL  
70%  
30%  
A
tSU.STO  
tSU.STA  
tHD.STA  
tVD.ACK  
70%  
30%  
9th clock cycle  
S
P
Sr  
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000184  
Revision: 1.0  
Page 14 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3.5 SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section Error! Reference source not found., VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
Parameters  
Conditions  
Min  
Typical  
Max  
Units  
Notes  
SPI TIMING  
fSPC, SPC Clock Frequency  
tLOW, SPC Low Period  
tHIGH, SPC High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tDIS.SDO, SDO Output Disable Time  
10  
MHz  
ns  
1
1
1
1
1
1
1
1
1
45  
45  
2
ns  
ns  
63  
3
ns  
ns  
7
ns  
Cload = 20 pF  
40  
20  
ns  
ns  
Table 7. SPI Timing Characteristics (7 MHz)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
2. Based on other parameter values  
CS  
70%  
30%  
tFall  
tRise  
tHD;CS  
tSU;CS  
70%  
tHIGH  
1/fCLK  
SCLK  
30%  
tSU;SDI  
tHD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
tDIS;SDO  
tVD;SDO  
tHD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Document Number: DS-000184  
Revision: 1.0  
Page 15 of 57  
Revision Date: 10/27/2016  
ICM-20600  
3.6 ABSOLUTE MAXIMUM RATINGS  
“tꢂess aꢌoꢄe those listed as ꢍAꢌsolute Maꢀiꢋuꢋ ‘atiꢁgsꢎ ꢋaꢏ ꢃause peꢂꢋaꢁeꢁt daꢋage to the deꢄiꢃe. These aꢂe stꢂess ꢂatiꢁgs oꢁly  
and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for  
extended periods may affect device reliability.  
PARAMETER  
RATING  
-0.5V to +4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
REGOUT  
-0.5V to +4V  
-0.5V to 2V  
Input Voltage Level (AD0, FSYNC, SCL, SDA)  
Acceleration (Any Axis, unpowered)  
Operating Temperature Range  
-0.5V to VDDIO + 0.5V  
20,000g for 0.2 ms  
-40°C to +85°C  
-40°C to +125°C  
Storage Temperature Range  
2 kV (HBM);  
250V (MM)  
Electrostatic Discharge (ESD) Protection  
Latch-up  
JEDEC Class II (2),125°C  
±100 mA  
Table 8. Absolute Maximum Ratings  
Document Number: DS-000184  
Page 16 of 57  
Revision: 1.0  
Revision Date: 10/27/2016  
ICM-20600  
4 APPLICATIONS INFORMATION  
4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
AD0 / SDO  
NC  
PIN DESCRIPTION  
I2C slave address LSB (AD0); SPI serial data output (SDO)  
No Connect  
1
2
3
NC  
No Connect  
4
INT1  
Interrupt digital output (totem pole or open-drain)  
Digital I/O supply voltage  
5
VDDIO  
GND  
6
Power supply ground  
7
RESV  
Reserved, connect to ground  
8
VDD  
Power supply voltage  
9
INT2  
Interrupt digital output (totem pole or open-drain)  
Frame synchronization digital input or No Connect  
Regulator filter capacitor connection  
Chip select (SPI mode only)  
10  
11  
12  
13  
14  
FSYNC / NC  
REGOUT  
nCS  
SCL / SCLK  
SDA / SDI  
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 9. Signal Descriptions  
AD0/SDO  
1
2
3
4
11  
REGOUT  
FSYNC/NC  
INT2  
+Z  
10  
9
NC  
NC  
I
C
M
-
2
0
ICM-20600  
6
0
0
8
INT1  
VDD  
+Y  
+X  
Orientation of Axes of Sensitivity and Polarity of  
Rotation  
LGA Package (Top view)  
Figure 3. Pin out Diagram for ICM-20600 2.5 mm x 3.0 mm x 0.91 mm LGA  
Document Number: DS-000184  
Revision: 1.0  
Page 17 of 57  
Revision Date: 10/27/2016  
ICM-20600  
4.2 TYPICAL OPERATING CIRCUIT  
SCL  
SDA  
VDDIO  
14  
13  
12  
AD0 / SDO  
AD0  
REGOUT  
11  
10  
9
1
2
C1, 0.1 mF  
FSYNC  
INT2  
NC  
NC  
FSYNC  
INT2  
ICM-20600  
3
4
1.71 3.45VDC  
C4, 2.2 mF  
INT1  
INT1  
VDD  
8
5
6
7
C2, 0.1 mF  
1.71 3.45VDC  
C3, 10 nF  
Figure 4. ICM-20600 LGA Application Schematic (I2C Operation)  
Note: I2C liꢁes aꢂe opeꢁ dꢂaiꢁ aꢁd pullup ꢂesistoꢂs ꢐe.g. ꢑꢆkΩꢒ aꢂe ꢂeꢓuiꢂed.  
SDI SCLK  
nCS  
14  
13  
12  
AD0 / SDO  
NC  
REGOUT  
SDO  
11  
10  
9
1
2
C1, 0.1 mF  
FSYNC  
INT2  
FSYNC  
INT2  
ICM-20600  
3
4
NC  
1.71 3.45VDC  
C4, 2.2 mF  
INT1  
VDD  
8
INT1  
5
6
7
C2, 0.1 mF  
1.71 3.45VDC  
C3, 10 nF  
Figure 5. ICM-20600 LGA Application Schematic (SPI Operation)  
4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
LABEL  
SPECIFICATION  
QUANTITY  
REGOUT Capacitor  
C1  
X7R, 0.1 µF ±10%  
1
C2  
C4  
X7R, 0.1 µF ±10%  
X7R, 2.2 µF ±10%  
1
1
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
C3  
X7R, 10 nF ±10%  
1
Table 10. Bill of Materials  
Document Number: DS-000184  
Revision: 1.0  
Page 18 of 57  
Revision Date: 10/27/2016  
ICM-20600  
4.4 BLOCK DIAGRAM  
ICM-20600  
INT1  
INT2  
Self  
test  
X Accel  
ADC  
ADC  
Interrupt  
Status  
Register  
nCS  
Self  
test  
Y Accel  
Slave I2C and  
SPI Serial  
Interface  
AD0 / SDO  
SCL / SCLK  
SDA / SDI  
FIFO  
Self  
test  
Z Accel  
X Gyro  
ADC  
ADC  
User & Config  
Registers  
FSYNC  
Self  
test  
Sensor  
Registers  
Self  
test  
Y Gyro  
Z Gyro  
ADC  
ADC  
Self  
test  
Temp Sensor  
ADC  
Bias & LDOs  
Charge  
Pump  
VDD  
GND  
REGOUT  
Figure 6. ICM-20600 Block Diagram  
4.5 OVERVIEW  
The ICM-20600 is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The ICM-20600 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes.  
When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff.  
The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage  
is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro  
sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). The ADC sample rate is  
programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide  
range of cut-off frequencies.  
Document Number: DS-000184  
Revision: 1.0  
Page 19 of 57  
Revision Date: 10/27/2016  
ICM-20600  
4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The ICM-ꢔꢆꢕꢆꢆꢊs ꢖ-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces  
displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-ꢔꢆꢕꢆꢆꢊs  
architecture reduces the aꢃꢃeleꢂoꢋeteꢂsꢊ susceptibility to fabrication variations as well as to thermal drift. When the device is placed  
on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-aꢀis. The aꢃꢃeleꢂoꢋeteꢂsꢊ sꢃale factor is calibrated at the  
factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs.  
The full scale range of the digital output can be adjusted to ±2g, ±4g, ±8g, or ±16g.  
4.8 I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The ICM-20600 communicates to a system processor using either a SPI or an I2C serial interface. The ICM-20600 always acts as a  
slave when communicating to the system processor. The LSB of the I2C slave address is set by pin 1 (AD0).  
ICM-20600 Solution Using I2C Interface  
In Figure 7, the system processor is an I2C master to the ICM-20600.  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
INT1  
sensor data from MPU  
INT2  
ICM-20600  
AD0  
SCL  
VDDIO or GND  
Slave I2C  
or SPI  
Serial  
SCL  
SDA  
System  
Processor  
SDA  
Interface  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 7. ICM-20600 Solution Using I2C Interface  
ICM-20600 Solution Using SPI Interface  
In Figure 8 below, the system processor is an SPI master to the ICM-20600. Pins 1, 12, 13, and 14 are used to support the SDO, nCS,  
SCLK, and SDI signals for SPI communications.  
Document Number: DS-000184  
Revision: 1.0  
Page 20 of 57  
Revision Date: 10/27/2016  
 
ICM-20600  
Processor SPI Bus: for reading all  
data from MPU and for configuring  
MPU  
Interrupt  
Status  
Register  
INT1  
INT2  
nCS  
nCS  
SDO  
ICM-20600  
SDI  
Slave I2C  
or SPI  
Serial  
System  
Processor  
SCLK  
SDI  
SPC  
SDO  
Interface  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 8. ICM-20600 Solution Using SPI Interface  
4.9 SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can  
be activated by means of the gyroscope and accelerometer self-test registers.  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is  
used to observe the self-test response.  
The self-test response is defined as follows:  
SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED SENSOR OUTPUT WITH SELF-TEST DISABLED  
The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis  
is defined in the accelerometer specification table.  
When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-  
test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.  
4.10 CLOCKING  
The ICM-20600 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous  
circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip  
PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source  
The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.  
4.11 SENSOR DATA REGISTERS  
The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only  
registers, and are accessed via the serial interface. Data from these registers may be read anytime.  
Document Number: DS-000184  
Revision: 1.0  
Page 21 of 57  
Revision Date: 10/27/2016  
ICM-20600  
4.12 FIFO  
The ICM-20600 contains a 1 KB FIFO (FIFO depth 1008 bytes) register that is accessible via the Serial Interface. The FIFO  
configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data,  
temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The  
FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.  
The ICM-20600 allows FIFO read in low-power accelerometer mode. A programmable FIFO watermark is included, with data-ready  
interrupt triggered when the watermark is reached.  
4.13 INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT1 and INT2  
pins configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are  
(1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from  
the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO overflow. The interrupt status can be read from the  
Interrupt Status register.  
4.14 DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the ICM-20600 die temperature. The readings from the ADC can be  
read from the FIFO or the Sensor Data registers.  
4.15 BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20600. Its two  
inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT.  
For further details on the capacitor, please refer to the Bill of Materials for External Components.  
4.16 CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
4.17 STANDARD POWER MODES  
The following table lists the user-accessible power modes for ICM-20600.  
MODE  
NAME  
GYRO  
Off  
ACCEL  
Off  
1
2
3
4
5
6
7
8
Sleep Mode  
Standby Mode  
Drive On  
Off  
Off  
Off  
Duty-Cycled  
Accelerometer Low-Power Mode  
Accelerometer Low-Noise Mode  
Gyroscope Low-Power Mode  
Gyroscope Low-Noise Mode  
6-Axis Low-Noise Mode  
On  
Off  
Off  
On  
On  
Duty-Cycled  
On  
On  
6-Axis Low-Power Mode  
Duty-Cycled  
Table 11. Standard Power Modes for ICM-20600  
Notes:  
1. Power consumption for individual modes can be found in the D.C. Electrical Characteristics section.  
Document Number: DS-000184  
Revision: 1.0  
Page 22 of 57  
Revision Date: 10/27/2016  
ICM-20600  
5 PROGRAMMABLE INTERRUPTS  
The ICM-20600 has a programmable interrupt system that can generate an interrupt signal on the INT pins. Status flags indicate the  
source of an interrupt. Interrupt sources may be enabled and disabled individually. Interrupts carried on INT1 and INT2 pins are  
shown in the table below. If INT2 is not enabled, all interrupts are mapped to INT1.  
INTERRUPT NAME  
Motion Detection  
MODULE  
INT2  
FIFO Overflow  
FIFO Watermark  
Data Ready  
FSYNC  
INT2  
INT1  
INT1  
INT2  
Table 12. Table of Interrupt Sources  
5.1 WAKE-ON-MOTION INTERRUPT  
The ICM-20600 provides motion detection capability. A qualifying motion sample is one where the high passed sample from any axis  
has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-Motion  
Interrupt.  
Step 1: Ensure that Accelerometer is running  
In PWR_MGMT_1 register (0x6B) set CYCLE = 0, SLEEP = 0, and GYRO_STANDBY = 0  
In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0, and STBY_XG = STBY_YG = STBY_ZG = 1  
Step 2: Accelerometer Configuration  
In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 1 and A_DLPF_CFG[2:0] = 1 (b001)  
Step 3: Enable Motion Interrupt  
In INT_ENABLE register (0x38) set WOM_X_INT_EN = WOM_Y_INT_EN = WOM_Z_INT_EN = 1 to enable motion interrupt for  
X, Y, and Z axis  
Step 4: Set Motion Threshold  
Set the motion threshold for X-axis in ACCEL_WOM_X_THR register (0x20)  
Set the motion threshold for Y-axis in ACCEL_WOM_Y_THR register (0x21)  
Set the motion threshold for Z-axis in ACCEL_WOM_Z_THR register (0x22)  
Step 5: Set Interrupt Mode  
In ACCEL_INTEL_CTRL register (0x69) clear bit 0 (WOM_TH_MODE) to select the motion interrupt as an OR of the enabled  
interrupts for X, Y, Z-axes and set bit 0 to make the interrupt an AND of the enabled interrupts for X, Y, Z axes  
Step 6: Enable Accelerometer Hardware Intelligence  
In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = ACCEL_INTEL_MODE = 1  
Step 7: Set Frequency of Wake-Up  
In SMPLRT_DIV register (0x19) set SMPLRT_DIV[7:0] = 3.9Hz 500Hz  
Step 8: Enable Cycle Mode (Accelerometer Low-Power Mode)  
In PWR_MGMT_1 register (0x6B) set CYCLE = 1  
Document Number: DS-000184  
Revision: 1.0  
Page 23 of 57  
Revision Date: 10/27/2016  
ICM-20600  
6 DIGITAL INTERFACE  
6.1 I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the ICM-20600 can be accessed using either I2C at 400 kHz or SPI at 10 MHz. SPI operates in  
four-wire mode.  
PIN NUMBER  
PIN NAME  
AD0 / SDO  
nCS  
PIN DESCRIPTION  
1
I2C Slave Address LSB (AD0); SPI serial data output (SDO)  
Chip select (SPI mode only)  
12  
13  
14  
SCL / SCLK  
SDA / SDI  
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 13. Serial Interface  
Note:  
To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be  
peꢂfoꢂꢋed iꢋꢋediatelꢏ afteꢂ ꢉaitiꢁg foꢂ the tiꢋe speꢃified ꢌꢏ the ꢍ“taꢂt-Up Tiꢋe foꢂ ‘egisteꢂ ‘ead/Wꢂiteꢎ iꢁ “eꢃtioꢁ 0.  
For further information regarding the I2C_IF_DIS bit, please refer to sections 7 and Error! Reference source not found. of this document.  
6.2 I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-  
directional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the  
slave address on the bus, and the slave device with the matching address acknowledges the master.  
The ICM-20600 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA  
and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.  
The slave address of the ICM-20600 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level  
on pin AD0. This allows two ICM-20600s to be connected to the same I2C bus. When used in this configuration, the address of one of  
the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).  
6.3 I2C COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW  
transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP  
condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 9. START and STOP Conditions  
Document Number: DS-000184  
Revision: 1.0  
Page 24 of 57  
Revision Date: 10/27/2016  
 
ICM-20600  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte  
transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master,  
while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the  
acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL  
LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line  
(refer to the following figure).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 10. Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the  
read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the  
master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be  
followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of  
the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line.  
However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP  
condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take  
place when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 7  
8
9
1 7  
8
9
1 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 11. Complete I2C Data Transfer  
Document Number: DS-000184  
Page 25 of 57  
Revision: 1.0  
Revision Date: 10/27/2016  
ICM-20600  
To write the internal ICM-20600 registers, the master transmits the start condition (S), followed by the I2C address and the write bit  
(0). At the 9th clock cycle (when the clock is high), the ICM-20600 acknowledges the transfer. Then the master puts the register  
address (RA) on the bus. After the ICM-20600 acknowledges the reception of the register address, the master puts the register data  
onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple  
bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-  
20600 automatically increments the register address and loads the data to the appropriate register. The following figures show  
single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
To read the internal ICM-20600 registers, the master sends a start condition, followed by the I2C address and a write bit, and then  
the register address that is going to be read. Upon receiving the ACK signal from the ICM-20600, the master transmits a start signal  
followed by the slave address and read bit. As a result, the ICM-20600 sends an ACK signal and the data. The communication ends  
with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high  
at the 9th clock cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
AD+R  
AD+R  
NACK  
P
ACK  
ACK  
ACK  
ACK  
ACK  
DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
S
ACK  
NACK  
P
ACK DATA  
DATA  
6.4 I2C TERMS  
SIGNAL  
DESCRIPTION  
S
AD  
Start Condition: SDA goes from high to low while SCL is high  
Slave I2C address  
W
Write bit (0)  
R
Read bit (1)  
ACK  
NACK  
RA  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
ICM-20600 internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 14. I2C Terms  
6.5 SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20600 always operates as a Slave  
device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared  
among the Slave devices. Each SPI slave device requires its own Chip Select (nCS) line from the master.  
Document Number: DS-000184  
Revision: 1.0  
Page 26 of 57  
Revision Date: 10/27/2016  
ICM-20600  
nCS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one nCS line is active at a time,  
ensuring that only one slave is selected at any given time. The nCS lines of the non-selected slave devices are held high, causing their  
SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.  
SPI Operational Features  
1. Data is delivered MSB first and LSB last  
2. Data is latched on the rising edge of SCLK  
3. Data should be transitioned on the falling edge of SCLK  
4. The maximum frequency of SCLK is 10MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the  
SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit  
and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-  
byte Read/Writes, data is two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1 D0  
6. Supports Single or Burst Read/Writes.  
SCLK  
SDI  
SPI Master  
SPI Slave 1  
SDO  
nCS  
CS1  
CS2  
SCLK  
SDI  
SDO  
nCS  
SPI Slave 2  
Figure. 12 Typical SPI Master / Slave Configuration  
Document Number: DS-000184  
Revision: 1.0  
Page 27 of 57  
Revision Date: 10/27/2016  
ICM-20600  
7 REGISTER MAP  
The following table lists the register map for the ICM-20600. Note that all registers are accessible in all modes of device operation.  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
READ/  
WRITE  
04  
05  
07  
08  
0A  
0B  
0D  
04  
05  
07  
08  
10  
11  
13  
XG_OFFS_TC_H  
XG_OFFS_LP[5:0]  
XG_OFFS_TC_H [9:8]  
READ/  
WRITE  
XG_OFFS_TC_L  
YG_OFFS_TC_H  
YG_OFFS_TC_L  
XG_OFFS_TC_L [7:0]  
YG_OFFS_TC_L [7:0]  
READ/  
WRITE  
YG_OFFS_LP[5:0]  
ZG_OFFS_LP[5:0]  
YG_OFFS_TC_H [9:8]  
ZG_OFFS_TC_H [9:8]  
READ/  
WRITE  
READ/  
WRITE  
ZG_OFFS_TC_H  
ZG_OFFS_TC_L  
READ/  
WRITE  
ZG_OFFS_TC_L [7:0]  
XA_ST_DATA[7:0]  
READ/  
WRITE  
SELF_TEST_X_ACCEL  
READ/  
WRITE  
0E  
0F  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
20  
21  
22  
23  
14  
15  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
32  
33  
34  
35  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
XG_OFFS_USRH  
XG_OFFS_USRL  
YG_OFFS_USRH  
YG_OFFS_USRL  
ZG_OFFS_USRH  
ZG_OFFS_USRL  
SMPLRT_DIV  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
X_OFFS_USR [15:8]  
X_OFFS_USR [7:0]  
Y_OFFS_USR [15:8]  
Y_OFFS_USR [7:0]  
Z_OFFS_USR [15:8]  
Z_OFFS_USR [7:0]  
SMPLRT_DIV[7:0]  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
READ/  
WRITE  
FIFO_  
MODE  
CONFIG  
-
EXT_SYNC_SET[2:0]  
DLPF_CFG[2:0]  
READ/  
WRITE  
GYRO_CONFIG  
ACCEL_CONFIG  
ACCEL_CONFIG 2  
LP_MODE_CFG  
ACCEL_WOM_X_THR  
ACCEL_WOM_Y_THR  
ACCEL_WOM_Z_THR  
FIFO_EN  
XG_ST  
XA_ST  
YG_ST  
YA_ST  
ZG_ST  
FS_SEL [1:0]  
-
FCHOICE_B[1:0]  
READ/  
WRITE  
ZA_ST  
ACCEL_FS_SEL[1:0]  
-
READ/  
WRITE  
ACCEL_FCH  
OICE_B  
-
DEC2_CFG  
A_DLPF_CFG  
READ/  
WRITE  
GYRO_CYC  
LE  
G_AVGCFG[2:0]  
-
READ/  
WRITE  
WOM_X_TH[7:0]  
READ/  
WRITE  
WOM_Y_TH[7:0]  
WOM_Z_TH[7:0]  
READ/  
WRITE  
READ/  
WRITE  
ACCEL_FIF  
O_EN  
-
GYRO_FIFO_EN  
-
READ to  
CLEAR  
36  
37  
54  
55  
FSYNC_INT  
FSYNC_INT  
INT_LEVEL  
-
FSYNC  
_INT_MODE  
_EN  
READ/  
WRITE  
LATCH  
_INT_EN  
INT_RD  
_CLEAR  
FSYNC_INT  
_LEVEL  
INT_PIN_CFG  
INT_OPEN  
-
-
INT2_EN  
FIFO  
_OFLOW  
_EN  
READ/  
WRITE  
WOM_X_I  
NT_EN  
WOM_Y_INT  
_EN  
WOM_Z_INT  
_EN  
FSYNC_INT  
_EN  
GDRIVE_INT  
_EN  
DATA_RDY_IN  
T_EN  
38  
39  
56  
57  
INT_ENABLE  
READ to  
CLEAR  
FIFO_WM_IN  
T
FIFO_WM_INT_STATUS  
-
-
Document Number: DS-000184  
Revision: 1.0  
Page 28 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
FIFO  
_OFLOW  
_INT  
READ to  
CLEAR  
WOM_X_I  
NT  
DATA  
_RDY_INT  
3A  
58  
INT_STATUS  
WOM_Y_INT  
WOM_Z_INT  
-
GDRIVE_INT  
-
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
ACCEL_XOUT_H  
ACCEL_XOUT_L  
ACCEL_YOUT_H  
ACCEL_YOUT_L  
ACCEL_ZOUT_H  
ACCEL_ZOUT_L  
TEMP_OUT_H  
TEMP_OUT_L  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
READ  
ACCEL_XOUT[15:8]  
ACCEL_XOUT[7:0]  
ACCEL_YOUT[15:8]  
ACCEL_YOUT[7:0]  
ACCEL_ZOUT[15:8]  
ACCEL_ZOUT[7:0]  
TEMP_OUT[15:8]  
TEMP_OUT[7:0]  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
GYRO_XOUT[15:8]  
GYRO_XOUT[7:0]  
GYRO_YOUT[15:8]  
GYRO_YOUT[7:0]  
GYRO_ZOUT[15:8]  
GYRO_ZOUT[7:0]  
READ/  
WRITE  
50  
51  
52  
60  
61  
68  
69  
6A  
6B  
6C  
70  
80  
81  
SELF_TEST_X_GYRO  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
FIFO_WM_TH1  
FIFO_WM_TH2  
SIGNAL_PATH_RESET  
ACCEL_INTEL_CTRL  
USER_CTRL  
XG_ST_DATA[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
READ/  
WRITE  
READ/  
WRITE  
82  
READ/  
WRITE  
96  
-
-
FIFO_WM_TH[9:8]  
READ/  
WRITE  
97  
FIFO_WM_TH[7:0]  
READ/  
WRITE  
ACCEL  
_RST  
TEMP  
_RST  
104  
105  
106  
107  
108  
112  
READ/  
WRITE  
ACCEL_INT  
EL_EN  
ACCEL_INTEL  
_MODE  
OUTPUT_LIMI  
T
WOM_TH_MO  
DE  
-
READ/  
WRITE  
FIFO  
_RST  
SIG_COND  
_RST  
-
FIFO_EN  
SLEEP  
-
-
READ/  
WRITE  
DEVICE_RE  
SET  
GYRO_  
STANDBY  
PWR_MGMT_1  
PWR_MGMT_2  
I2C_IF  
CYCLE  
TEMP_DIS  
STBY_ZA  
CLKSEL[2:0]  
STBY_YG  
READ/  
WRITE  
-
STBY_XA  
STBY_YA  
STBY_XG  
STBY_ZG  
READ/  
WRITE  
-
I2C_IF_DIS  
-
72  
73  
114  
115  
FIFO_COUNTH  
FIFO_COUNTL  
READ  
READ  
FIFO_COUNT[15:8]  
FIFO_COUNT[7:0]  
FIFO_DATA[7:0]  
WHOAMI[7:0]  
READ/  
WRITE  
74  
75  
77  
116  
117  
119  
FIFO_R_W  
WHO_AM_I  
XA_OFFSET_H  
READ  
READ/  
WRITE  
XA_OFFS [14:7]  
READ/  
WRITE  
78  
7A  
7B  
7D  
7E  
120  
122  
123  
125  
126  
XA_OFFSET_L  
YA_OFFSET_H  
YA_OFFSET_L  
ZA_OFFSET_H  
ZA_OFFSET_L  
XA_OFFS [6:0]  
-
-
-
READ/  
WRITE  
YA_OFFS [14:7]  
READ/  
WRITE  
YA_OFFS [6:0]  
READ/  
WRITE  
ZA_OFFS [14:7]  
READ/  
WRITE  
ZA_OFFS [6:0]  
Table 15. ICM-20600 register map  
Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.  
Document Number: DS-000184  
Revision: 1.0  
Page 29 of 57  
Revision Date: 10/27/2016  
ICM-20600  
The reset value is 0x00 for all registers other than the registers below, also the self-test registers contain pre-programmed values  
and will not be 0x00 after reset.  
Register 26 (0x80) CONFIG  
Register 107 (0x41) Power Management 1  
Register 117 (0x11) WHO_AM_I  
Document Number: DS-000184  
Revision: 1.0  
Page 30 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8 REGISTER DESCRIPTIONS  
This section describes the function and contents of each register within the ICM-20600.  
Note: The device will come up in sleep mode upon power-up.  
8.1 REGISTER 04 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: XG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 04 (Decimal); 04 (Hex)  
BIT  
NAME  
FUNCTION  
Stores the offset shift in the gyroscope output from low noise mode to low  
power mode to be implemented as a ꢃoꢂꢂeꢃtioꢁ iꢁ the ꢃustoꢋeꢂ softꢉaꢂe. ꢔꢊs  
complement digital code, 0.125dps/LSB from +3.875 dps to -4 dps.  
Bits 9 and 8 of the 10-bit offset of X gyroscope (2s complement)  
[7:2]  
[1:0]  
XG_OFFS_LP[5:0]  
XG_OFFS_TC_H[9:8]  
8.2 REGISTER 05 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: XG_OFFS_TC_L  
Type: READ/WRITE  
Register Address: 05 (Decimal); 05 (Hex)  
BIT  
[7:0]  
NAME  
XG_OFFS_TC_L[7:0]]  
FUNCTION  
Bits 7 to 0 of the 10-bit offset of X gyroscope (2s complement)  
Description:  
The temperature compensation (TC) registers are used to reduce gyro offset variation due to temperature change.  
The TC feature is always enabled. However, the compensation only happens when a TC coefficient is programed  
during factory trim which gets loaded into these registers at power up or after a DEVICE_RESET. If these registers  
contain a value of zero, temperature compensation has no effect on the offset of the chip. The TC registers have a  
10-bit magnitude and sign adjustment in all full scale modes with a resolution of 2.52 mdps/C steps.  
If these registers contain a non-zero value after power up, the user may write zeros to them to see the offset values  
ꢉithout TC ꢉith teꢋpeꢂatuꢂe ꢄaꢂiatioꢁ. Note that doiꢁg so ꢋaꢏ ꢂesult iꢁ offset ꢄalues that eꢀꢃeed data sheet Initial  
)‘O Toleꢂaꢁꢃeꢎ in other than normal ambient temperature (~25 °C). The TC coefficients maybe restored by the  
user with a power up or a DEVICE_RESET.  
The above description also applies to registers 7-8 and 10-11.  
8.3 REGISTER 07 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: YG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 07 (Decimal); 07 (Hex)  
BIT  
NAME  
FUNCTION  
Stores the offset shift in the gyroscope output from low noise mode to low  
poꢉeꢂ ꢋode to ꢌe iꢋpleꢋeꢁted as a ꢃoꢂꢂeꢃtioꢁ iꢁ the ꢃustoꢋeꢂ softꢉaꢂe. ꢔꢊs  
complement digital code, 0.125 dps/LSB from +3.875 dps to -4 dps.  
Bits 9 and 8 of the 10-bit offset of Y gyroscope (2s complement)  
[7:2]  
[1:0]  
YG_OFFS_LP[5:0]  
YG_OFFS_TC_H[9:8]  
Document Number: DS-000184  
Revision: 1.0  
Page 31 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.4 REGISTER 08 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: YG_OFFS_TC_L  
Register Type: READ/WRITE  
Register Address: 08 (Decimal); 08 (Hex)  
BIT  
[7:0]  
NAME  
YG_OFFS_TC_L[7:0]]  
FUNCTION  
Bits 7 to 0 of the 10-bit offset of Y gyroscope (2s complement)  
8.5 REGISTER 10 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: ZG_OFFS_TC_H  
Register Type: READ/WRITE  
Register Address: 10 (Decimal); 0A (Hex)  
BIT  
NAME  
FUNCTION  
Stores the offset shift in the gyroscope output from low noise mode to low  
poꢉeꢂ ꢋode to ꢌe iꢋpleꢋeꢁted as a ꢃoꢂꢂeꢃtioꢁ iꢁ the ꢃustoꢋeꢂ softꢉaꢂe. ꢔꢊs  
complement digital code, 0.125 dps/LSB from +3.875 dps to -4 dps.  
Bits 9 and 8 of the 10-bit offset of Z gyroscope (2s complement)  
[7:2]  
[1:0]  
ZG_OFFS_LP[5:0]  
ZG_OFFS_TC_H[9:8]  
8.6 REGISTER 11 GYROSCOPE LOW NOISE TO LOW POWER OFFSET SHIFT AND GYROSCOPE OFFSET  
TEMPERATURE COMPENSATION (TC) REGISTER  
Register Name: ZG_OFFS_TC_L  
Register Type: READ/WRITE  
Register Address: 11 (Decimal); 0B (Hex)  
BIT  
[7:0]  
NAME  
ZG_OFFS_TC_L[7:0]]  
FUNCTION  
Bits 7 to 0 of the 10-bit offset of Z gyroscope (2s complement)  
8.7 REGISTERS 13 TO 15 ACCELEROMETER SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_ACCEL, SELF_TEST_Y_ACCEL, SELF_TEST_Z_ACCEL  
Type: READ/WRITE  
Register Address: 13, 14, 15 (Decimal); 0D, 0E, 0F (Hex)  
REGISTER  
BITS  
NAME  
FUNCTION  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_X_ACCEL  
[7:0]  
XA_ST_DATA[7:0]  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
[7:0]  
[7:0]  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP (2620/2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value  
(ST_ FACꢒ deteꢂꢋiꢁed iꢁ Iꢁꢄeꢁ“eꢁseꢊs faꢃtoꢂꢏ fiꢁal test aꢁd ꢃalꢃulated ꢌased oꢁ the folloꢉiꢁg eꢓuatioꢁ:  
log(ST _ FAC /(2620/2FS ))  
ST _ code round(  
) 1  
log(1.01)  
Document Number: DS-000184  
Page 32 of 57  
Revision: 1.0  
Revision Date: 10/27/2016  
ICM-20600  
8.8 REGISTER 19 X-GYRO OFFSET ADJUSTMENT REGISTER HIGH BYTE  
Register Name: XG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 19 (Decimal); 13 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of X gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[15:8]  
8.9 REGISTER 20 X-GYRO OFFSET ADJUSTMENT REGISTER LOW BYTE  
Register Name: XG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 20 (Decimal); 14 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of X gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[7:0]  
8.10 REGISTER 21 Y-GYRO OFFSET ADJUSTMENT REGISTER HIGH BYTE  
Register Name: YG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 21 (Decimal); 15 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Y gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[15:8]  
8.1 REGISTER 22 Y-GYRO OFFSET ADJUSTMENT REGISTER LOW BYTE  
Register Name: YG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 22 (Decimal); 16 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Y gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[7:0]  
8.2 REGISTER 23 Z-GYRO OFFSET ADJUSTMENT REGISTER HIGH BYTE  
Register Name: ZG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 23 (Decimal); 17 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Z gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[15:8]  
Document Number: DS-000184  
Revision: 1.0  
Page 33 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.3 REGISTER 24 Z-GYRO OFFSET ADJUSTMENT REGISTER LOW BYTE  
Register Name: ZG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 24 (Decimal); 18 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Z gyroscope (2s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[7:0]  
8.4 REGISTER 25 SAMPLE RATE DIVIDER  
Register Name: SMPLRT_DIV  
Register Type: READ/WRITE  
Register Address: 25 (Decimal); 19 (Hex)  
BIT  
[7:0]  
NAME  
SMPLRT_DIV[7:0]  
FUNCTION  
Divides the internal sample rate (see register CONFIG) to generate the sample rate that  
controls sensor data output rate, FIFO sample rate. Note: This register is only effective when  
FCHOICE_B ꢂegisteꢂ ꢌits aꢂe ꢔꢊꢌꢆꢆ, aꢁd ꢐꢆ < DLPF_CFG < ꢗꢒ.  
This is the update rate of the sensor register:  
SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)  
Where INTERNAL_SAMPLE_RATE = 1kHz  
8.5 REGISTER 26 CONFIGURATION  
Register Name: CONFIG  
Register Type: READ/WRITE  
Register Address: 26 (Decimal); 1A (Hex)  
BIT  
[7]  
[6]  
NAME  
FUNCTION  
-
FIFO_MODE  
Default configuration value is 1. User should set it to 0.  
Wheꢁ set to ꢘꢑꢊ, ꢉheꢁ the FIFO is full, additioꢁal ꢉꢂites ꢉill ꢁot ꢌe ꢉꢂitteꢁ to FIFO.  
Wheꢁ set to ꢘꢆꢊ, ꢉheꢁ the FIFO is full, additioꢁal ꢉꢂites ꢉill ꢌe ꢉꢂitteꢁ to the FIFO, ꢂeplaꢃiꢁg  
the oldest data.  
[5:3]  
EXT_SYNC_SET[2:0]  
Enables the FSYNC pin data to be sampled.  
EXT_SYNC_SET  
FSYNC bit location  
function disabled  
TEMP_OUT_L[0]  
GYRO_XOUT_L[0]  
GYRO_YOUT_L[0]  
GYRO_ZOUT_L[0]  
ACCEL_XOUT_L[0]  
ACCEL_YOUT_L[0]  
ACCEL_ZOUT_L[0]  
0
1
2
3
4
5
6
7
FSYNC will be latched to capture short strobes. This will be done such that if FSYNC toggles,  
the latꢃhed ꢄalue toggles, ꢌut ꢉoꢁꢊt toggle agaiꢁ uꢁtil the ꢁeꢉ latꢃhed ꢄalue is ꢃaptuꢂed ꢌꢏ  
the sample rate strobe.  
[2:0]  
DLPF_CFG[2:0]  
For the DLPF to be used, FCHOICE_B[ꢑ:ꢆ] is ꢔꢊꢌꢆꢆ.  
See the table below.  
The DLPF is configured by DLPF_CFG, when FCHOICE_B [ꢑ:ꢆ] = ꢔꢌꢊꢆꢆ. The gꢏꢂosꢃope aꢁd teꢋpeꢂatuꢂe seꢁsoꢂ aꢂe filteꢂed  
according to the value of DLPF_CFG and FCHOICE_B as shown in the table below.  
Document Number: DS-000184  
Revision: 1.0  
Page 34 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Temperature  
Sensor  
FCHOICE_B  
Gyroscope  
DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
<1>  
<0>  
3-dB BW (Hz)  
X
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
X
X
0
1
2
3
4
5
6
7
8173  
3281  
250  
176  
92  
8595.1  
32  
4000  
4000  
4000  
188  
98  
3451.0  
306.6  
177.0  
108.6  
59.0  
32  
8
1
1
41  
42  
1
20  
30.5  
20  
1
10  
15.6  
10  
1
5
8.0  
5
1
3281  
3451.0  
8
4000  
8.6 REGISTER 27 GYROSCOPE CONFIGURATION  
Register Name: GYRO_CONFIG  
Register Type: READ/WRITE  
Register Address: 27 (Decimal); 1B (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
XG_ST  
YG_ST  
ZG_ST  
FUNCTION  
X Gyro self-test  
Y Gyro self-test  
Z Gyro self-test  
Gyro Full Scale Select:  
00 = ±250 dps  
01= ±500 dps  
10 = ±1000 dps  
11 = ±2000 dps  
Reserved  
[4:3]  
FS_SEL[1:0]  
[2]  
[1:0]  
-
FCHOICE_B[1:0]  
Used to bypass DLPF as shown in table 1 above.  
8.7 REGISTER 28 ACCELEROMETER CONFIGURATION  
Register Name: ACCEL_CONFIG  
Register Type: READ/WRITE  
Register Address: 28 (Decimal); 1C (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
XA_ST  
YA_ST  
ZA_ST  
FUNCTION  
X Accel self-test  
Y Accel self-test  
Z Accel self-test  
Accel Full Scale Select:  
±2g (00), ±4g (01), ±8g (10), ±16g (11)  
Reserved  
[4:3]  
[2:0]  
ACCEL_FS_SEL[1:0]  
-
Document Number: DS-000184  
Revision: 1.0  
Page 35 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.8 REGISTER 29 ACCELEROMETER CONFIGURATION 2  
Register Name: ACCEL_CONFIG2  
Register Type: READ/WRITE  
Register Address: 29 (Decimal); 1D (Hex)  
BIT  
NAME  
FUNCTION  
Averaging filter settings for Low Power Accelerometer mode:  
0 = Average 4 samples  
1 = Average 8 samples  
[5:4]  
DEC2_CFG[1:0]  
2 = Average 16 samples  
3 = Average 32 samples  
[3]  
[2:0]  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
Used to bypass DLPF as shown in the table below.  
Accelerometer low pass filter setting as shown in table 2 below.  
Accelerometer Data Rates and Bandwidths (Low-Noise Mode)  
Accelerometer  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
1
0
0
0
0
0
0
0
0
X
0
1
2
3
4
5
6
7
1046.0  
218.1  
218.1  
99.0  
1100.0  
235.0  
235.0  
121.3  
61.5  
4
1
1
1
1
1
1
1
1
44.8  
21.2  
31.0  
10.2  
15.5  
5.1  
7.8  
420.0  
441.6  
The data output rate of the DLPF filter block can be further reduced by a factor of 1/(1+SMPLRT_DIV), where SMPLRT_DIV is an 8-bit  
integer. Following is a small subset of ODRs that are configurable for the accelerometer in the low-noise mode in this manner (Hz):  
3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500, 1K  
The following table lists the approximate accelerometer filter bandwidths available in the low-power mode of operation for some  
example ODRs.  
In the low-power mode of operation, the accelerometer is duty-cycled. The following table shows some example configurations for  
accelerometer low power mode.  
Document Number: DS-000184  
Revision: 1.0  
Page 36 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Averages  
ACCEL_FCHOICE_B  
DEC2_CFG  
1x  
1
4x  
0
8x  
0
16x  
0
32x  
0
X
0
1
2
3
A_DLPF_CFG  
Ton (ms)  
X
7
7
7
7
1.084  
1100  
1046  
1.84  
442  
420  
2.84  
236  
219  
4.84  
122  
111  
8.84  
62  
56  
NBW (Hz)  
3-dB BW (Hz)  
Noise TYP  
(mg-rms)  
3.3  
2.1  
1.5  
1.1  
0.8  
ODR  
(Hz)  
Low-Power Accelerometer Mode Current Consumption  
(µA)  
SMPLRT_DIV  
255  
127  
99  
63  
31  
19  
15  
9
3.91  
7.81  
10  
9.4  
10.7  
11.4  
13.3  
18.3  
24.4  
28.4  
40.7  
48.8  
73.4  
89.6  
171.1  
10.2  
12.4  
13.7  
16.7  
25.4  
35.8  
42.7  
63.5  
77.4  
118.8  
146.5  
284.9  
11.5  
14.7  
16.6  
21.5  
34.8  
50.8  
61.5  
93.6  
114.8  
178.9  
221.6  
13.8  
19.6  
18.5  
28.9  
22.6  
34.7  
15.63  
31.25  
50  
30.8  
49.7  
53.6  
91.2  
80.8  
141.1  
174.3  
303.3  
62.5  
100  
125  
200  
250  
500  
99.0  
153.7  
190.1  
299.3  
7
N/A  
4
3
N/A  
1
N/A  
8.9 REGISTER 30 GYROSCOPE LOW POWER MODE CONFIGURATION  
Register Name: LP_MODE_CFG  
Register Type: READ/WRITE  
Register Address: 30 (Decimal); 1E (Hex)  
BIT  
[7]  
NAME  
GYRO_CYCLE  
FUNCTION  
Wheꢁ set to ꢘꢑꢊ loꢉ-poꢉeꢂ gꢏꢂosꢃope ꢋode is eꢁaꢌled. Default settiꢁg is ꢘꢆꢊ  
Averaging filter configuration for low-power gyroscope mode. Default  
settiꢁg is ꢘꢆꢆꢆꢊ  
Reserved  
[6:4]  
[3:0]  
G_AVGCFG[2:0]  
-
To operate in gyroscope low-power mode or 6-axis low-poꢉeꢂ ꢋode, GY‘O_CYCLE should ꢌe set to ꢘꢑ.ꢊ Gꢏꢂosꢃope filteꢂ  
configuration is determined by G_AVGCFG[2:0] that sets the averaging filter configuration. It is not dependent on DLPF_CFG[2:0].  
The following table shows some example configurations for gyroscope low power mode.  
Document Number: DS-000184  
Revision: 1.0  
Page 37 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Averages  
G_AVGCFG  
NBW (Hz)  
1x  
0
2x  
1
4x  
2
8x  
3
16x  
4
32x  
5
64x  
6
128x  
7
650.8  
407.1  
224.2  
117.4  
60.2  
30.6  
15.6  
8.0  
3-dB BW (Hz)  
Noise TYP  
(dps-rms)  
622  
391  
211  
108  
54  
27  
14  
7
0.10  
0.08  
0.06  
0.04  
0.03  
0.02  
0.016  
0.011  
SMPLRT_DIV  
ODR (Hz)  
3.9  
Low-Power Gyroscope Mode Current Consumption (mA)  
255  
99  
65  
64  
33  
32  
19  
17  
16  
9
0.79  
0.81  
0.83  
0.83  
0.87  
0.87  
0.93  
0.95  
0.96  
1.08  
1.16  
1.21  
1.38  
1.53  
1.78  
0.80  
0.82  
0.84  
0.84  
0.90  
0.90  
0.98  
1.00  
1.01  
1.17  
1.27  
1.34  
1.56  
1.75  
2.07  
0.80  
0.84  
0.87  
0.87  
0.95  
0.95  
1.06  
1.10  
1.11  
1.35  
1.49  
1.59  
1.91  
2.19  
N/A  
0.82  
0.87  
0.92  
0.92  
1.05  
1.06  
1.24  
1.29  
1.32  
1.70  
1.93  
2.09  
N/A  
N/A  
N/A  
0.85  
0.95  
1.03  
1.03  
1.26  
1.28  
1.60  
1.69  
1.74  
2.41  
N/A  
N/A  
N/A  
N/A  
N/A  
0.90  
1.09  
1.24  
1.25  
1.68  
1.70  
2.30  
2.47  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.01  
1.37  
1.67  
1.69  
2.51  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.23  
1.94  
2.53  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
10.0  
15.2  
15.4  
29.4  
30.3  
50.0  
55.6  
58.8  
100.0  
125.0  
142.9  
200.0  
250.0  
333.3  
7
6
4
3
2
8.10 REGISTER 32 WAKE-ON MOTION THRESHOLD (X-AXIS ACCELEROMETER)  
Register Name: ACCEL_WOM_X_THR  
Register Type: READ/WRITE  
Register Address: 32 (Decimal); 20 (Hex)  
BIT  
NAME  
FUNCTION  
This register holds the threshold value for the Wake on Motion Interrupt for X-axis  
accelerometer.  
[7:0]  
WOM_X_TH[7:0]  
8.11 REGISTER 33 WAKE-ON MOTION THRESHOLD (Y-AXIS ACCELEROMETER)  
Register Name: ACCEL_WOM_Y_THR  
Register Type: READ/WRITE  
Register Address: 33 (Decimal); 21 (Hex)  
BIT  
NAME  
FUNCTION  
This register holds the threshold value for the Wake on Motion Interrupt for Y-axis  
accelerometer.  
[7:0]  
WOM_Y_TH[7:0]  
8.12 REGISTER 34 WAKE-ON MOTION THRESHOLD (Z-AXIS ACCELEROMETER)  
Register Name: ACCEL_WOM_Z_THR  
Register Type: READ/WRITE  
Register Address: 34 (Decimal); 22 (Hex)  
BIT  
NAME  
FUNCTION  
This register holds the threshold value for the Wake on Motion Interrupt for Z-axis  
accelerometer.  
[7:0]  
WOM_Z_TH[7:0]  
Document Number: DS-000184  
Revision: 1.0  
Page 38 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.13 REGISTER 35 FIFO ENABLE  
Register Name: FIFO_EN  
Register Type: READ/WRITE  
Register Address: 35 (Decimal); 23 (Hex)  
NAME FUNCTION  
Reserved  
BIT  
[7:5]  
-
1 write TEMP_OUT_H, TEMP_OUT_L, GYRO_XOUT_H, GYRO_XOUT_L, GYRO_YOUT_H,  
GYRO_YOUT_L, GYRO_ZOUT_H, and GYRO_ZOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 function is disabled  
[4]  
GYRO_FIFO_EN  
1 write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H,  
ACCEL_ZOUT_L, TEMP_OUT_H, and TEMP_OUT_L to the FIFO at the sample rate;  
0 function is disabled  
[3]  
ACCEL_FIFO_EN  
-
[2:0]  
Reserved  
Note: If both GYRO_FIFO_EN And ACCEL_FIFO_EN are 1, write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, ACCEL_ZOUT_L,  
TEMP_OUT_H, TEMP_OUT_L, GYRO_XOUT_H, GYRO_XOUT_L, GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H, and GYRO_ZOUT_L to the FIFO at the sample rate.  
8.14 REGISTER 54 FSYNC INTERRUPT STATUS  
Register Name: FSYNC_INT  
Register Type: READ to CLEAR  
Register Address: 54 (Decimal); 36 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
This bit automatically sets to 1 when a FSYNC interrupt has been generated. The bit  
clears to 0 after the register has been read.  
FSYNC_INT  
8.15 REGISTER 55 INT/DRDY PIN / BYPASS ENABLE CONFIGURATION  
Register Name: INT_PIN_CFG  
Register Type: READ/WRITE  
Register Address: 55 (Decimal); 37 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
1 The logic level for INT/DRDY pin is active low.  
0 The logic level for INT/DRDY pin is active high.  
1 INT/DRDY pin is configured as open drain.  
INT_LEVEL  
[6]  
[5]  
[4]  
[3]  
INT_OPEN  
0 INT/DRDY pin is configured as push-pull.  
1 INT/DRDY pin level held until interrupt status is cleared.  
0 – INT/D‘DY piꢁ iꢁdiꢃates iꢁteꢂꢂupt pulseꢊs ꢉidth is ꢈꢆus.  
1 Interrupt status is cleared if any read operation is performed.  
0 Interrupt status is cleared only by reading INT_STATUS register  
1 The logic level for the FSYNC pin as an interrupt is active low.  
0 The logic level for the FSYNC pin as an interrupt is active high.  
When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it transitions  
to the level specified by FSYNC_INT_LEVEL. When this bit is equal to 0, the FSYNC  
pin is disabled from causing an interrupt.  
LATCH_INT_EN  
INT_RD_CLEAR  
FSYNC_INT_LEVEL  
[2]  
FSYNC_INT_MODE_EN  
[1]  
[0]  
-
INT2_EN  
Reserved.  
Enable INT2 interrupt pin.  
Document Number: DS-000184  
Revision: 1.0  
Page 39 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.16 REGISTER 57 FIFO WATERMARK INTERRUPT STATUS  
Register Name: FIFO_WM_INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 57 (Decimal); 39 (Hex)  
BIT  
[6]  
NAME  
FIFO_WM_INT  
FUNCTION  
FIFO Watermark interrupt status. Cleared on Read.  
8.17 REGISTER 58 INTERRUPT STATUS  
Register Name: INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 58 (Decimal); 3A (Hex)  
BIT  
[7]  
NAME  
WOM_X_INT  
FUNCTION  
X-axis accelerometer WoM interrupt status. Cleared on Read.  
[6]  
[5]  
WOM_Y_INT  
WOM_Z_INT  
Y-axis accelerometer WoM interrupt status. Cleared on Read.  
Z-axis accelerometer WoM interrupt status. Cleared on Read.  
This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit  
clears to 0 after the register has been read.  
Reserved.  
[4]  
FIFO_OFLOW_INT  
[3]  
[2]  
[1]  
-
GDRIVE_INT  
-
Gyroscope Drive System Ready interrupt  
Reserved  
This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears  
to 0 after the register has been read.  
[0]  
DATA_RDY_INT  
8.18 REGISTERS 59 TO 64 ACCELEROMETER MEASUREMENTS: X-AXIS HIGH BYTE  
Register Name: ACCEL_XOUT_H  
Register Type: READ only  
Register Address: 59 (Decimal); 3B (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_XOUT[15:8]  
FUNCTION  
High byte of accelerometer x-axis data.  
Register Name: ACCEL_XOUT_L  
Register Type: READ only  
Register Address: 60 (Decimal); 3C (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_XOUT[7:0]  
FUNCTION  
Low byte of accelerometer x-axis data.  
Document Number: DS-000184  
Revision: 1.0  
Page 40 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Register Name: ACCEL_YOUT_H  
Register Type: READ only  
Register Address: 61 (Decimal); 3D (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_YOUT[15:8]  
FUNCTION  
High byte of accelerometer y-axis data.  
Register Name: ACCEL_YOUT_L  
Register Type: READ only  
Register Address: 62 (Decimal); 3E (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_YOUT[7:0]  
FUNCTION  
Low byte of accelerometer y-axis data.  
Register Name: ACCEL_ZOUT_H  
Register Type: READ only  
Register Address: 63 (Decimal); 3F (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_ZOUT[15:8]  
FUNCTION  
High byte of accelerometer z-axis data.  
Register Name: ACCEL_ZOUT_L  
Register Type: READ only  
Register Address: 64 (Decimal); 40 (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_ZOUT[7:0]  
FUNCTION  
Low byte of accelerometer z-axis data.  
8.19 REGISTERS 65 AND 66 TEMPERATURE MEASUREMENT  
Register Name: TEMP_OUT_H  
Register Type: READ only  
Register Address: 65 (Decimal); 41 (Hex)  
BIT  
[7:0]  
NAME  
TEMP_OUT[15:8]  
FUNCTION  
Low byte of the temperature sensor output  
Register Name: TEMP_OUT_L  
Register Type: READ only  
Register Address: 66 (Decimal); 42 (Hex)  
BIT  
NAME  
FUNCTION  
High byte of the temperature sensor output  
TEMP_degC  
= (TEMP_OUT[15:0]/Temp_Sensitivity) +  
RoomTemp_Offset  
[7:0]  
TEMP_OUT[7:0]  
where Temp_Sensitivity = 326.8 LSB/ºC and  
RoomTemp_Offset = 25ºC  
8.20 REGISTERS 67 TO 72 GYROSCOPE MEASUREMENTS  
Register Name: GYRO_XOUT_H  
Register Type: READ only  
Register Address: 67 (Decimal); 43 (Hex)  
BIT  
[7:0]  
NAME  
GYRO_XOUT[15:8]  
FUNCTION  
High byte of the X-Axis gyroscope output  
Document Number: DS-000184  
Revision: 1.0  
Page 41 of 57  
Revision Date: 10/27/2016  
ICM-20600  
Register Name: GYRO_XOUT_L  
Register Type: READ only  
Register Address: 68 (Decimal); 44 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the X-Axis gyroscope output  
GYRO_XOUT = Gyro_Sensitivity * X_angular_rate  
FS_SEL = 0  
[7:0]  
GYRO_XOUT[7:0]  
Nominal  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Register Name: GYRO_YOUT_H  
Register Type: READ only  
Register Address: 69 (Decimal); 45 (Hex)  
BIT  
[7:0]  
NAME  
GYRO_YOUT[15:8]  
FUNCTION  
High byte of the Y-Axis gyroscope output  
Register Name: GYRO_YOUT_L  
Register Type: READ only  
Register Address: 70 (Decimal); 46 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Y-Axis gyroscope output  
GYRO_YOUT = Gyro_Sensitivity * Y_angular_rate  
[7:0]  
GYRO_YOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Register Name: GYRO_ZOUT_H  
Register Type: READ only  
Register Address: 71 (Decimal); 47 (Hex)  
BIT  
[7:0]  
NAME  
GYRO_ZOUT[15:8]  
FUNCTION  
High byte of the Z-Axis gyroscope output  
Register Name: GYRO_ZOUT_L  
Register Type: READ only  
Register Address: 72 (Decimal); 48 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Z-Axis gyroscope output  
GYRO_ZOUT = Gyro_Sensitivity * Z_angular_rate  
[7:0]  
GYRO_ZOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
8.21 REGISTERS 80 TO 82 GYROSCOPE SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_GYRO, SELF_TEST_Y_GYRO, SELF_TEST_Z_GYRO  
Type: READ/WRITE  
Register Address: 80, 81, 82 (Decimal); 50, 51, 52 (Hex)  
REGISTER  
BIT  
NAME  
FUNCTION  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_X_GYRO  
[7:0]  
XG_ST_DATA[7:0]  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
[7:0]  
[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP (2620/2FS )*1.01(ST _code1) (lsb)  
Document Number: DS-000184  
Revision: 1.0  
Page 42 of 57  
Revision Date: 10/27/2016  
ICM-20600  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value  
ꢐ“T_ FACꢒ deteꢂꢋiꢁed iꢁ Iꢁꢄeꢁ“eꢁseꢊs faꢃtoꢂꢏ fiꢁal test aꢁd ꢃalꢃulated ꢌased oꢁ the folloꢉiꢁg eꢓuatioꢁ:  
log(ST _ FAC /(2620/2FS ))  
ST _ code round(  
) 1  
log(1.01)  
8.22 REGISTER 96-97 FIFO WATERMARK THRESHOLD IN NUMBER OF BYTES  
Register Name: FIFO_WM_TH1  
Register Type: READ/WRITE  
Register Address: 96 (Decimal); 60 (Hex)  
BIT  
NAME  
FUNCTION  
FIFO watermark threshold in number of bytes. Watermark interrupt is  
disaꢌled if the thꢂeshold is set to ꢍꢆꢎ. Default ꢄalue is ꢆꢆꢆꢆꢆꢆꢆꢆ.  
[1:0]  
FIFO_WM_TH[9:8]  
Register Name: FIFO_WM_TH2  
Register Type: READ/WRITE  
Register Address: 97 (Decimal); 61 (Hex)  
BIT  
NAME  
FUNCTION  
FIFO watermark threshold in number of bytes. Watermark interrupt is  
disaꢌled if the thꢂeshold is set to ꢍꢆꢎ. Default value is 00000000.  
[7:0]  
FIFO_WM_TH[7:0]  
The register FIFO_WM_TH[9:0] sets the FIFO watermark threshold level (0 - 1023). User should ensure that bit 7 of register 0x1A is  
set to 0 before using this feature. When the FIFO count is at or above the watermark level (FIFO_COUNT[15:0] FIFO_WM_TH[9:0])  
and the system is not in the middle of a FIFO read, an interrupt is triggered. The interrupt will set the FIFO watermark interrupt  
status register field FIFO_WM_INT = 1, and the INT pin will issue a pulse if configured in pulse mode, or set to the active level if  
configured in latch mode. Register bit FIFO_WM_INT is not read-to-clear, unlike the other interrupts. Rather, whenever FIFO_R_W  
register is read, FIFO_WM_INT status bit is cleared automatically. At the same time, the INT pin will be cleared as well if it is  
configured in latch mode.  
The FIFO watermark interrupt and the INT pin are cleared upon the first read (and only the first read) of the FIFO. If, at the end of  
the FIFO read, the FIFO count is at or above the watermark level, the interrupt status bit and INT pin will again be set. If the INT pin is  
configured for latched operation, it will wait until the host completes the read to set to the active level.  
When FIFO_WM_TH = 0, the FIFO watermark interrupt is disabled.  
8.23 REGISTER 104 SIGNAL PATH RESET  
Register Name: SIGNAL_PATH_RESET  
Register Type: READ/WRITE  
Register Address: 104 (Decimal); 68 (Hex)  
BIT  
[7:2]  
NAME  
-
FUNCTION  
Reserved  
Reset accel digital signal path. Note: Sensor registers are not cleared. Use SIG_COND_RST to clear  
sensor registers.  
[1]  
[0]  
ACCEL_RST  
TEMP_RST  
Reset temp digital signal path. Note: Sensor registers are not cleared. Use SIG_COND_RST to clear  
sensor registers.  
Document Number: DS-000184  
Revision: 1.0  
Page 43 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.24 REGISTER 105 ACCELEROMETER INTELLIGENCE CONTROL  
Register Name: ACCEL_INTEL_CTRL  
Register Type: READ/WRITE  
Register Address: 105 (Decimal); 69 (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
ACCEL_INTEL_EN  
This bit enables the Wake-on-Motion detection logic  
0 Do not use  
[6]  
ACCEL_INTEL_MODE  
1 Compare the current sample with the previous sample  
Reserved  
[5:2]  
[1]  
-
To avoid limiting sensor output to less than 0x7FFF, set this bit to 1. This should be done  
every time the ICM-20600 is powered up.  
OUTPUT_LIMIT  
0 Set WoM interrupt on the OR of all enabled accelerometer thresholds  
1 Set WoM interrupt on the AND of all enabled accelerometer threshold  
Default setting is 0  
[0]  
WOM_TH_MODE  
8.25 REGISTER 106 USER CONTROL  
Register Name: USER_CTRL  
Register Type: READ/WRITE  
Register Address: 106 (Decimal); 6A (Hex)  
BIT  
[7]  
NAME  
-
FUNCTION  
Reserved  
1 Enable FIFO operation mode.  
0 Disable FIFO access from serial interface.  
Reserved  
[6]  
FIFO_EN  
[5]  
[4]  
[3]  
-
-
-
Reserved  
Reserved  
1 Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle of  
the internal 20 MHz clock.  
Reserved  
[2]  
[1]  
[0]  
FIFO_RST  
-
1 Reset all gyro digital signal path, accel digital signal path, and temp digital signal path.  
This bit also clears all the sensor registers.  
SIG_COND_RST  
Document Number: DS-000184  
Revision: 1.0  
Page 44 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.26 REGISTER 107 POWER MANAGEMENT 1  
Register Name: PWR_MGMT_1  
Register Type: READ/WRITE  
Register Address: 107 (Decimal); 6B (Hex)  
BIT  
[7]  
[6]  
NAME  
FUNCTION  
1 Reset the internal registers and restores the default settings. The bit automatically clears  
to 0 once the reset is done.  
When set to 1, the chip is set to sleep mode.  
DEVICE_RESET  
SLEEP  
When set to 1, and SLEEP and STANDBY are not set to 1, the chip will cycle between sleep  
and taking a single accelerometer sample at a rate determined by SMPLRT_DIV  
Note: When all accelerometer axes are disabled via PWR_MGMT_2 register bits and cycle is enabled,  
the chip will wake up at the rate determined by the respective registers above, but will not take any  
samples.  
[5]  
CYCLE  
When set, the gyro drive and pll circuitry are enabled, but the sense paths are disabled. This  
is a low power mode that allows quick enabling of the gyros.  
When set to 1, this bit disables the temperature sensor.  
Code Clock Source  
[4]  
[3]  
GYRO_STANDBY  
TEMP_DIS  
0
1
2
3
4
5
6
7
Internal 20 MHz oscillator  
Auto selects the best available clock source PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source PLL if ready, else use the Internal oscillator  
Internal 20 MHz oscillator  
[2:0]  
CLKSEL[2:0]  
Stops the clock and keeps timing generator in reset  
Note: The default value of CLKSEL[2:0] is 001. It is required that CLKSEL[2:0] be set to 001 to achieve full gyroscope performance.  
8.27 REGISTER 108 POWER MANAGEMENT 2  
Register Name: PWR_MGMT_2  
Register Type: READ/WRITE  
Register Address: 108 (Decimal); 6C (Hex)  
BIT  
[7]  
[6]  
NAME  
FUNCTION  
Reserved  
Reserved  
-
-
1 X accelerometer is disabled  
0 X accelerometer is on  
1 Y accelerometer is disabled  
0 Y accelerometer is on  
1 Z accelerometer is disabled  
0 Z accelerometer is on  
1 X gyro is disabled  
0 X gyro is on  
1 Y gyro is disabled  
0 Y gyro is on  
1 Z gyro is disabled  
0 Z gyro is on  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
STBY_XA  
STBY_YA  
STBY_ZA  
STBY_XG  
STBY_YG  
STBY_ZG  
Document Number: DS-000184  
Revision: 1.0  
Page 45 of 57  
Revision Date: 10/27/2016  
ICM-20600  
8.28 REGISTER 112 I2C INTERFACE  
Register Name: I2C_IF  
Register Type: READ/WRITE  
Register Address: 112 (Decimal); 70 (Hex)  
BIT  
[7]  
NAME  
-
FUNCTION  
Reserved  
[6]  
[5:0]  
I2C_IF_DIS  
-
1 Disable I2C Slave module and put the serial interface in SPI mode only.  
Reserved  
8.29 REGISTER 114 AND 115 FIFO COUNT REGISTERS  
Register Name: FIFO_COUNTH  
Register Type: READ Only  
Register Address: 114 (Decimal); 72 (Hex)  
BIT  
NAME  
FUNCTION  
High Bits, count indicates the number of written bytes in the FIFO.  
Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.  
[7:0]  
FIFO_COUNT[15:8]  
Register Name: FIFO_COUNTL  
Register Type: READ Only  
Register Address: 115 (Decimal); 73 (Hex)  
BIT  
NAME  
FUNCTION  
Low Bits, count indicates the number of written bytes in the FIFO.  
[7:0]  
FIFO_COUNT[7:0]  
Note: Must read FIFO_COUNTL to latch new data for both FIFO_COUNTH and FIFO_COUNTL.  
8.30 REGISTER 116 FIFO READ WRITE  
Register Name: FIFO_R_W  
Register Type: READ/WRITE  
Register Address: 116 (Decimal); 74 (Hex)  
BIT  
[7:0]  
NAME  
FIFO_DATA[7:0]  
FUNCTION  
Read/Write command provides Read or Write operation for the FIFO.  
Description:  
This register is used to read and write data from the FIFO buffer.  
Data is written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are  
enabled, the contents of registers 59 through 72 will be written in order at the Sample Rate.  
The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when their corresponding  
FIFO enable flags are set to 1 in FIFO_EN (Register 35).  
If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in INT_STATUS  
(Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO  
unless register 26 CONFIG, bit[6] FIFO_MODE = 1.  
If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data is available.  
Normal data is precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.  
8.31 REGISTER 117 WHO AM I  
Register Name: WHO_AM_I  
Register Type: READ only  
Register Address: 117 (Decimal); 75 (Hex)  
BIT  
[7:0]  
NAME  
WHOAMI  
FUNCTION  
Register to indicate to user which device is being accessed.  
Document Number: DS-000184  
Revision: 1.0  
Page 46 of 57  
Revision Date: 10/27/2016  
ICM-20600  
This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of  
the register is 0x11. This is different from the I2C address of the device as seen on the slave I2C controller by the applications  
processor. The I2C address of the ICM-20600 is 0x68 or 0x69 depending upon the value driven on AD0 pin.  
8.32 REGISTERS 119, 120, 122, 123, 125, 126 ACCELEROMETER OFFSET REGISTERS  
Register Name: XA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 119 (Decimal); 77 (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
XA_OFFS[14:7]  
Register Name: XA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 120 (Decimal); 78 (Hex)  
BIT  
NAME  
FUNCTION  
Lower bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
Reserved.  
[7:1]  
[0]  
XA_OFFS[6:0]  
-
Register Name: YA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 122 (Decimal); 7A (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
YA_OFFS[14:7]  
Register Name: YA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 123 (Decimal); 7B (Hex)  
BIT  
NAME  
FUNCTION  
Lower bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
Reserved.  
[7:1]  
[0]  
YA_OFFS[6:0]  
-
Register Name: ZA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 125 (Decimal); 7D (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
ZA_OFFS[14:7]  
Register Name: ZA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 126 (Decimal); 7E (Hex)  
BIT  
NAME  
FUNCTION  
Lower bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
Reserved.  
[7:1]  
[0]  
ZA_OFFS[6:0]  
-
Document Number: DS-000184  
Revision: 1.0  
Page 47 of 57  
Revision Date: 10/27/2016  
ICM-20600  
9 USE NOTES  
9.1 TEMPERATURE SENSOR DATA  
Temperature sensor data goes into the FIFO whenever the FIFO is enabled and there is a sensor active unless the temperature is  
explicitly disabled.  
9.2 ACCELEROMETER-ONLY LOW-NOISE MODE  
The first output sample in Accelerometer-Only Low-Noise Mode after wake up from sleep always has 1ms delay, independent of  
ODR.  
9.3 ACCELEROMETER LOW-POWER MODE  
Changing the value of SMPLRT_DIV register in Accelerometer Low-Power mode will take effect after up to one sample at the old  
ODR.  
9.4 SENSOR MODE CHANGE  
When switching from low-power modes to low-noise modes, unsettled output samples may be observed at the gyroscope or  
accelerometer outputs due to filter switching and settling. The number of unsettled output samples depends on the filter and ODR  
settings. The number of unsettled output samples is minimized by selecting the widest low-noise-mode filter bandwidth consistent  
with the chosen ODR.  
9.5 TEMP SENSOR DURING GYROSCOPE STANDBY MODE  
During transition from Gyro Low power mode (GYRO_CYCLE=1), to Gyro Standby mode, in addition to the Gyro axis (axes) being  
turned off, the Temp Sensor will also be turned off if the Accel is disabled. In order to keep the temp sensor on during Gyroscope  
standby mode when Accel is disabled, the following procedure should be followed:  
Set GYRO_CYCLE = 0 at least one ODR cycle prior to entering Standby mode  
At least one of the Gyro axis is ON prior to entering Standby mode  
Set GYRO_STANDBY = 1  
9.6 GYROSCOPE MODE CHANGE  
Gyroscope will take one ODR clock period to switch from Low-Noise to Low-Power mode after GYRO_CYCLE bit is set.  
If GYRO_CYCLE is set to 1 prior to turning on the gyroscope, the first sample will be from low-noise mode, which may not be a  
settled value. It is therefore recommended to ignore the first reading in this case.  
9.7 POWER MANAGEMENT 1 REGISTER SETTING  
It is required to set CLKSEL[2:0] to 001 (auto-select) for full performance.  
9.8 UNLISTED REGISTER LOCATIONS  
Do not read unlisted register locations in Sleep mode as this may cause the device to hang up, requiring power cycle to restore  
operation.  
9.9 CLOCK TRANSITION WHEN GYROSCOPE IS TURNED OFF  
When the gyroscope is on, the on-chip master clock source will be the gyroscope clock (assuming CLKSEL[2:0] = 001 for auto-select  
mode); otherwise, the master clock source will be the internal oscillator as long as the part is not in Sleep mode. During a power  
mode transition, whenever the gyroscope is disabled and the part enters a mode other than Sleep, the on-chip master clock source  
will transition from the gyroscope clock to the internal oscillator. It will take about 20 ms for this transition to complete.  
9.10 SLEEP MODE  
The paꢂt ꢉill oꢁlꢏ eꢁteꢂ “leep ꢋode ꢉheꢁ the “LEEP ꢌit iꢁ PW‘_MGMT_ꢔ is set to ꢘꢑꢊ. If “LEEP ꢌit is ꢘꢆꢊ aꢁd ꢌit “TBY_[X,Y,)]A and  
“TBY_[X,Y,)]G aꢂe all set to ꢘꢑꢊ, aꢃꢃeleꢂometer and gyroscope will be turned off, but the on-chip master clock will still be running and  
consuming power.  
Document Number: DS-000184  
Revision: 1.0  
Page 48 of 57  
Revision Date: 10/27/2016  
ICM-20600  
9.11 NO SPECIAL OPERATION NEEDED FOR FIFO READ IN LOW POWER MODE  
The use of FIFO is enabled in all modes including low power mode.  
9.12 GYROSCOPE STANDBY PROCEDURE  
The follow precaution and procedure must be followed while using the Gyroscope Standby mode:  
Precaution to follow while entering Standby Mode:  
The user will ensure that at least one gyro axis is ON when setting gyro_standby = 1.  
Procedure to transition from Gyro Standby to Gyro off:  
The user should set gyro_standby = 0 first  
Next, turn off gyro x/y/z.  
Document Number: DS-000184  
Revision: 1.0  
Page 49 of 57  
Revision Date: 10/27/2016  
ICM-20600  
10 REFERENCE  
Please ꢂefeꢂ to ꢍIꢁꢄeꢁ“eꢁse MEM“ Haꢁdliꢁg Appliꢃatioꢁ Note ꢐAN-IVS-0002A-ꢆꢆꢒꢎ foꢂ the folloꢉiꢁg iꢁfoꢂꢋatioꢁ:  
Manufacturing Recommendations  
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
o
Reflow Specification  
o
Storage Specifications  
o
o
o
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
o
o
Packaging  
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000184  
Revision: 1.0  
Page 50 of 57  
Revision Date: 10/27/2016  
ICM-20600  
11 ORIENTATION OF AXES  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in  
LGA package.  
11.1 ICM-20600 SUPPORTED INTERFACES  
The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier () in the  
figure.  
+Z  
+Y  
+Z  
I
+Y  
C
M-  
2
0
6
0
0
+X  
+X  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Document Number: DS-000184  
Revision: 1.0  
Page 51 of 57  
Revision Date: 10/27/2016  
ICM-20600  
12 PACKAGE DIMENSIONS  
14 Lead LGA (2.5x3x0.91) mm NiAu pad finish  
Figure 14. Package Dimensions  
Document Number: DS-000184  
Revision: 1.0  
Page 52 of 57  
Revision Date: 10/27/2016  
ICM-20600  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN  
NOM  
0.91  
MAX  
0.97  
REF  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
0.85  
A1  
A2  
0.105  
0.8  
REF  
D
E
2.5  
BSC  
Body Size  
3
BSC  
0.3  
Lead Width  
Lead Length  
W
0.2  
0.25  
L
0.425  
0.475  
0.5  
0.525  
BSC  
Lead Pitch  
Lead Count  
e
n
14  
1.5  
1
D1  
E1  
SD  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
0.25  
SE  
b
---  
---  
---  
---  
---  
---  
---  
BSC  
---  
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
---  
---  
e1  
n1  
Ball Count  
Pre-Solder  
---  
Package Edge Tolerance  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
Mold Flatness  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
---  
Table 16. Package Dimensions Table  
Document Number: DS-000184  
Revision: 1.0  
Page 53 of 57  
Revision Date: 10/27/2016  
ICM-20600  
13 PART NUMBER PACKAGE MARKING  
The part number package marking for ICM-20600 devices is summarized below:  
PART NUMBER  
ICM-20600  
PART NUMBER PACKAGE MARKING  
I2600  
TOP VIEW  
I2600  
XXXXXX  
YYWW  
Part Number  
Lot Traceability Code  
YY = Year Code  
WW = Work Week  
Figure 15. Part Number Package Marking  
Document Number: DS-000184  
Revision: 1.0  
Page 54 of 57  
Revision Date: 10/27/2016  
ICM-20600  
14 ENVIRONMENTAL COMPLIANCE  
The ICM-20600 is RoHS and Green compliant.  
The ICM-20600 is in full environmental compliance as evidenced in report HS-ICM-20600A, Materials Declaration Data Sheet.  
Environmental Declaration Disclaimer:  
InvenSense believes this environmental information to be correct but cannot guarantee accuracy or completeness. Conformity documents for the above component  
constitutes are on file. InvenSense subcontracts manufacturing and the information contained herein is based on data received from vendors and suppliers, which has  
not been validated by InvenSense.  
Document Number: DS-000184  
Revision: 1.0  
Page 55 of 57  
Revision Date: 10/27/2016  
ICM-20600  
15 REVISION HISTORY  
REVISION DATE REVISION  
DESCRIPTION  
10/27/2016  
1.0  
Initial Release  
Document Number: DS-000184  
Revision: 1.0  
Page 56 of 57  
Revision Date: 10/27/2016  
ICM-20600  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by  
InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications  
are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and  
software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither  
expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no  
responsibility for any claims or damages arising from information contained in this document, or from the use of products and  
services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights,  
mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by  
implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information  
previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors  
should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons  
or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime  
prevention equipment.  
©2016 InvenSense, Inc. All rights reserved. InvenSense, Sensing Everything, MotionTracking, MotionProcessing, MotionProcessor,  
MotionFusion, MotionApps, Digital Motion Processor, and the InvenSense logo are trademarks of InvenSense, Inc. Other company  
and product names may be trademarks of the respective companies with which they are associated.  
©2016 InvenSense, Inc. All rights reserved.  
Document Number: DS-000184  
Revision: 1.0  
Page 57 of 57  
Revision Date: 10/27/2016  

相关型号:

ICM-20601

Wide-Range 6-Axis MotionTracking Device
TDK

ICM-20602

High Performance 6-Axis MEMS MotionTracking Device
TDK

ICM-20603

IMU (惯性测量设备)
TDK

ICM-20608-G

IMU (惯性测量设备)
TDK

ICM-20609

IMU (惯性测量设备)
TDK

ICM-20648

6-Axis MEMS MotionTracking Device
TDK

ICM-20649

Wide-Range 6-Axis MEMS MotionTracking Device
TDK

ICM-20689

IMU (惯性测量设备)
TDK

ICM-20690

IMU (惯性测量设备)
TDK

ICM-20789

7-Axis, High Performance Integrated 6-Axis Inertial and Barometric Pressure Sensor
TDK

ICM-20948

Lowest Power 9-Axis MEMS MotionTracking Device
TDK

ICM-2824

High Current Common Mode Choke
VISHAY