ICM-20608-G [TDK]

IMU (惯性测量设备);
ICM-20608-G
型号: ICM-20608-G
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

IMU (惯性测量设备)

文件: 总35页 (文件大小:950K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICM-20608-G  
ICM-20608-G Datasheet  
Revision 1.0  
InvenSense Inc.  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 9887339  
This document contains information on a pre-production  
product. InvenSense Inc. reserves the right to change  
specifications and information herein without notice.  
Document Number: DS-000081  
Revision: 1.0  
Release Date: 06/15/2015  
www.invensense.com  
ICM-20608-G  
TABLE OF CONTENTS  
TABLE OF CONTENTS....................................................................................................................................................... 2  
Table Of FIGURES ............................................................................................................................................................ 4  
Table Of TABLES .............................................................................................................................................................. 4  
1.  
2.  
3.  
General Description ............................................................................................................................................. 5  
1.2 Purpose and Scope....................................................................................................................................5  
1.3 Product Overview......................................................................................................................................5  
1.4 Applications...............................................................................................................................................5  
Features ............................................................................................................................................................... 6  
2.1 Gyroscope Features ..................................................................................................................................6  
2.2 Accelerometer Features............................................................................................................................6  
2.3 Additional features....................................................................................................................................6  
Electrical Characteristics...................................................................................................................................... 7  
3.1 Gyroscope Specifications ..........................................................................................................................7  
3.2 Accelerometer Specifications....................................................................................................................8  
3.3 Electrical Specifications.............................................................................................................................9  
3.3.1 D.C. Electrical Characteristics.................................................................................................................... 9  
3.3.2 Standard (Duty-Cycle) Mode Noise and Power Performance:................................................................ 10  
3.3.3 A.C. Electrical Characteristics.................................................................................................................. 11  
3.3.4 Other Electrical Specifications ................................................................................................................ 13  
3.4 I2C Timing characterization.....................................................................................................................14  
3.5 spi Timing characterization .....................................................................................................................15  
3.6 Absolute Maximum Ratings ....................................................................................................................16  
Applications Information ................................................................................................................................... 17  
4.1 Pin Out Diagram and Signal Description .................................................................................................17  
4.2 Typical Operating Circuit.........................................................................................................................18  
4.3. bill of materials for external components...............................................................................................19  
4.4. Block Diagram .........................................................................................................................................19  
4.5. Overview .................................................................................................................................................20  
4.6. Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning ...............................................20  
4.7. Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning.........................................20  
4.8. I2C and SPI Serial Communications Interfaces........................................................................................20  
4.8.1 ICM-20608-G Solution Using I2C Interface ............................................................................................. 20  
4.8.2 ICM-20608-G Solution Using SPI Interface.............................................................................................. 21  
4.9 Self-Test...................................................................................................................................................22  
4.  
4.10  
4.11  
4.12  
4.13  
Clocking...............................................................................................................................................22  
Sensor Data Registers .........................................................................................................................22  
FIFO.....................................................................................................................................................22  
Interrupts............................................................................................................................................22  
Page 2 of 35  
Document Number: DS-000081  
Revision: 1.0  
 
ICM-20608-G  
4.14  
4.15  
4.16  
4.17  
Digital-Output Temperature Sensor ...................................................................................................22  
Bias and LDOs .....................................................................................................................................23  
Charge Pump ......................................................................................................................................23  
Power Modes......................................................................................................................................23  
5
6
Programmable Interrupts .................................................................................................................................. 24  
5.1 Wake-on-Motion Interrupt .....................................................................................................................24  
Digital Interface ................................................................................................................................................. 25  
6.1 I2C and SPI Serial Interfaces....................................................................................................................25  
6.2 I2C Interface............................................................................................................................................25  
6.3 I2C Communications Protocol.................................................................................................................25  
6.4 I2C Terms .................................................................................................................................................27  
6.5 SPI Interface ............................................................................................................................................28  
Assembly............................................................................................................................................................ 29  
Orientation of Axes............................................................................................................................................29  
Package Dimensions ..........................................................................................................................................30  
Part Number Package Marking.......................................................................................................................... 32  
7
8
9.Reference................................................................................................................................................................... 33  
Revision History .................................................................................................................................................34  
Compliance Declaration Disclaimer ...................................................................................................................35  
Page 3 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
TABLE OF FIGURES  
Figure 1. I2C Bus Timing Diagram ............................................................................................................................................................14  
Figure 2. SPI Bus Timing Diagram.............................................................................................................................................................15  
Figure 3. Pin out Diagram for ICM-20608-G 3.0x3.0x0.75mm LGA .........................................................................................................17  
Figure 4. ICM-20608-G I2C Operation Application Schematic.................................................................................................................18  
Figure 5. ICM-20608-G SPI Operation Application Schematic .................................................................................................................18  
Figure 6. ICM-20608-G Block Diagram.....................................................................................................................................................19  
Figure 7. ICM-20608-G Solution Using I2C Interface ................................................................................................................................21  
Figure 8. ICM-20608-G Solution Using SPI Interface................................................................................................................................21  
Figure 9. START and STOP Conditions......................................................................................................................................................25  
Figure 10. Acknowledge on the I2C Bus ...................................................................................................................................................26  
Figure 11. Complete I2C Data Transfer.....................................................................................................................................................26  
Figure 12. Typical SPI Master/Slave Configuration ..................................................................................................................................28  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation ....................................................................................................29  
TABLE OF TABLES  
Table 1. Gyroscope Specifications .............................................................................................................................................................7  
Table 2. Accelerometer Specifications.......................................................................................................................................................8  
Table 3. D.C. Electrical Characteristics.......................................................................................................................................................9  
Table 4. Gyroscope Noise and Current Consumption..............................................................................................................................10  
Table 5. Accelerometer Noise and Current Consumption .......................................................................................................................10  
Table 6. A.C. Electrical Characteristics .....................................................................................................................................................12  
Table 7. Other Electrical Specifications....................................................................................................................................................13  
Table 8. I2C Timing Characteristics...........................................................................................................................................................14  
Table 9. SPI Timing Characteristics (8MHz Operation) ............................................................................................................................15  
Table 10. Absolute Maximum Ratings .....................................................................................................................................................16  
Table 12. Bill of Materials .......................................................................................................................................................................19  
Table 13. Power Modes for ICM-20608-G ...............................................................................................................................................23  
Table 14. Table of Interrupt Sources........................................................................................................................................................24  
Table 15. Serial Interface .........................................................................................................................................................................25  
Table 16. I2C Terms ..................................................................................................................................................................................27  
Page 4 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
1. GENERAL DESCRIPTION  
1.2 PURPOSE AND SCOPE  
This document is a product specification, providing a description, specifications, and design related information on the ICM-20608-  
G™ MotionTracking device. The device is housed in a small 3x3x0.75mm 16-pin LGA package.  
1.3 PRODUCT OVERVIEW  
The ICM-20608-G is a 6-axis MotionTracking device that combines a 3-axis gyroscope, and a 3-axis accelerometer in a small  
3x3x0.75mm (16-pin LGA) package. It also features a 512-byte FIFO that can lower the traffic on the serial bus interface, and reduce  
power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-20608-G,  
with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level  
integration of discrete devices, guaranteeing optimal motion performance for consumers.  
The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec. The accelerometer has a user-  
programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors  
reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and  
programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71 to 3.45V, and a separate  
digital IO supply, VDDIO from 1.71V to 3.45V. Communication with all registers of the device is performed using either I2C at 400kHz  
or SPI at 8MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion  
CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of  
3x3x0.75mm (16-pin LGA), to provide a very small yet high performance low cost package. The device provides high robustness by  
supporting 10,000g shock reliability.  
1.4 APPLICATIONS  
Mobile phones and tablets  
Handset and portable gaming  
Motion-based game controllers  
3D remote controls for Internet connected DTVs and set top boxes, 3D mice  
Wearable sensors for health, fitness and sports  
Page 5 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
2. FEATURES  
2.1 GYROSCOPE FEATURES  
The triple-axis MEMS gyroscope in the ICM-20608-G includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250, ±500,  
±1000, and ±2000°/sec and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Factory calibrated sensitivity scale factor  
Self-test  
2.2 ACCELEROMETER FEATURES  
The triple-axis MEMS accelerometer in ICM-20608-G includes a wide range of features:  
Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and  
integrated 16-bit ADCs  
User-programmable interrupts  
Wake-on-motion interrupt for low power operation of applications processor  
Self-test  
2.3 ADDITIONAL FEATURES  
The ICM-20608-G includes the following additional features:  
Smallest and thinnest LGA package for portable devices: 3x3x0.75mm (16-pin LGA)  
Minimal cross-axis sensitivity between the accelerometer and gyroscope axes  
512 byte FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope, accelerometer, and temp sensor  
10,000 g shock tolerant  
400kHz Fast Mode I2C for communicating with all registers  
8MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Page 6 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3. ELECTRICAL CHARACTERISTICS  
3.1 GYROSCOPE SPECIFICATIONS  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
GYROSCOPE SENSITIVITY  
FS_SEL=0  
Full-Scale Range  
±250  
±500  
±1000  
±2000  
16  
3
3
3
3
3
3
3
3
3
2
1
1
1
/s  
/s  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
/s  
/s  
Gyroscope ADC Word Length  
Sensitivity Scale Factor  
bits  
FS_SEL=0  
131  
LSB/(/s)  
LSB/(/s)  
LSB/(/s)  
LSB/(/s)  
%
FS_SEL=1  
65.5  
32.8  
16.4  
±2  
FS_SEL=2  
FS_SEL=3  
Sensitivity Scale Factor Tolerance  
Sensitivity Scale Factor Variation Over Temperature  
Nonlinearity  
25°C  
-40°C to +85°C  
Best fit straight line; 25°C  
±3  
%
±0.1  
±2  
%
Cross-Axis Sensitivity  
%
ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
25°C  
±5  
2
1
/s  
ZRO Variation Over Temperature  
-40°C to +85°C  
±0.1  
/s/°C  
GYROSCOPE NOISE PERFORMANCE (FS_SEL=0)  
Noise Spectral Density  
0.008  
27  
1
2
/s/√Hz  
Gyroscope Mechanical Frequencies  
Low Pass Filter Response  
Gyroscope Start-Up Time  
25  
29  
KHz  
Programmable Range  
From Sleep mode  
5
250  
Hz  
ms  
Hz  
Hz  
3
1
1
1
35  
Standard (duty-cycled) mode  
Low-Noise (active) mode  
3.91  
4
500  
8000  
Output Data Rate  
Table 1. Gyroscope Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Tested in production.  
3. Guaranteed by design.  
Page 7 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.2 ACCELEROMETER SPECIFICATIONS  
Typical Operating Circuit of section 0, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
ACCELEROMETER SENSITIVITY  
AFS_SEL=0  
AFS_SEL=1  
±2  
±4  
g
g
3
3
Full-Scale Range  
AFS_SEL=2  
±8  
g
3
AFS_SEL=3  
±16  
g
3
ADC Word Length  
Output in two’s complement format  
AFS_SEL=0  
16  
bits  
3
3
3
16,384  
8,192  
LSB/g  
LSB/g  
AFS_SEL=1  
Sensitivity Scale Factor  
AFS_SEL=2  
AFS_SEL=3  
4,096  
2,048  
±2  
LSB/g  
LSB/g  
%
3
3
2
Initial Tolerance  
Component-level  
-40°C to +85°C AFS_SEL=0  
Component-level  
Sensitivity Change vs. Temperature  
±0.016  
%/C  
1
Nonlinearity  
Best Fit Straight Line  
±0.5  
±2  
%
%
1
1
Cross-Axis Sensitivity  
ZERO-G OUTPUT  
Component-level, all axes  
Initial Tolerance  
±60  
mg  
1
1
-40°C to +85°C,  
Board-level  
X and Y axes  
Z axis  
±0.5  
mg/°C  
Zero-G Level Change vs. Temperature  
±1  
mg/°C  
1
NOISE PERFORMANCE  
µg/√Hz  
250  
Noise Spectral Density  
1
3
Low Pass Filter Response  
Programmable Range  
5
218  
Hz  
Intelligence Function Increment  
4
20  
30  
mg/LSB  
ms  
ms  
Hz  
Hz  
3
1
1
From Sleep mode  
Accelerometer Startup Time  
Output Data Rate  
From Cold Start, 1ms VDD ramp  
Standard (duty-cycled) mode  
Low-Noise (active) mode  
0.24  
4
500  
4000  
1
Table 2. Accelerometer Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Tested in production.  
3. Guaranteed by design.  
Page 8 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.3 ELECTRICAL SPECIFICATIONS  
3.3.1 D.C. Electrical Characteristics  
Typical Operating Circuit of section 0, VDD = 1.8 V, VDDIO = 1.8 V, TA=25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SUPPLY VOLTAGES  
MIN  
TYP  
MAX  
UNITS  
NOTES  
VDD  
1.71  
1.71  
1.8  
1.8  
3.45  
3.45  
V
V
1
1
VDDIO  
SUPPLY CURRENTS  
Low-Noise Mode  
6-axis Gyroscope + Accelerometer  
3
mA  
mA  
1
1
2.6  
3-axis Gyroscope  
390  
µA  
1
3-axis Accelerometer, 4kHz ODR  
Accelerometer Standard Mode  
100Hz ODR, 1x averaging  
57  
µA  
1
Gyroscope Standard Mode  
Gyroscope Standard Mode  
100Hz ODR, 1x averaging  
10Hz ODR, 1x averaging  
1.6  
1.3  
mA  
mA  
1
1
6-Axis Standard Mode (Gyroscope  
Standard Mode; Accelerometer Low-  
Noise Mode)  
100Hz ODR, 1x averaging  
1.9  
6
mA  
µA  
1
1
Full-Chip Sleep Mode  
TEMPERATURE RANGE  
Performance parameters are not applicable  
beyond Specified Temperature Range  
Specified Temperature Range  
-40  
+85  
°C  
1
Table 3. D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
Page 9 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.3.2 Standard (Duty-Cycle) Mode Noise and Power Performance:  
The following tables contain Gyroscope and Accelerometer noise and current consumption values for standard (duty-cycle) mode,  
for various ODRs and averaging filter settings. Please refer to the ICM-20608-G Register Map for further information about the  
registers referenced in the tables below.  
FCHOICE_B  
G_AVGCFG  
0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
Averages  
Ton (ms)  
Noise BW (Hz)  
Noise (dps) TYP based on  
0.008º/s/Hz  
1x  
1.73  
650.8  
2x  
2.23  
407.1  
4x  
3.23  
224.2  
8x  
5.23  
117.4  
16x  
9.23  
60.2  
32x  
17.23  
30.6  
64x  
33.23  
15.6  
128x  
65.23  
8.0  
0.20  
0.16  
0.12  
0.09  
0.06  
0.04  
0.03  
0.02  
ODR  
SMPLRT_DIV  
(Hz)  
Current Consumption (mA) TYP  
255  
99  
64  
32  
19  
9
7
4
3
2
3.9  
10.0  
15.4  
30.3  
1.3  
1.3  
1.4  
1.4  
1.5  
1.6  
1.7  
1.9  
2.1  
2.3  
2.9  
1.3  
1.3  
1.4  
1.4  
1.5  
1.7  
1.8  
2.1  
2.3  
2.6  
1.3  
1.4  
1.4  
1.5  
1.6  
1.9  
2.0  
2.5  
2.7  
1.3  
1.4  
1.5  
1.6  
1.8  
2.2  
2.5  
1.4  
1.5  
1.6  
1.8  
2.1  
3.0  
1.4  
1.6  
1.8  
2.2  
2.8  
1.5  
1.9  
2.2  
1.8  
2.5  
N/A  
N/A  
50.0  
100.0  
125.0  
200.0  
250.0  
333.3  
500.0  
N/A  
N/A  
N/A  
N/A  
1
N/A  
Table 4. Gyroscope Noise and Current Consumption  
ACCEL_FCHOICE_B  
1
x
x
0
7
0
0
7
1
0
7
2
0
7
3
A_DLPF_CFG  
DEC2_CFG  
Averages  
Ton (ms)  
Noise BW (Hz)  
Noise (mg) TYP based on  
250µg/Hz  
1x  
1.084  
1100.0  
4x  
1.84  
441.6  
8x  
2.84  
235.4  
16x  
4.84  
121.3  
32x  
8.84  
61.5  
8.3  
5.3  
3.8  
2.8  
2.0  
ODR  
SMPLRT_DIV  
(Hz)  
Current Consumption (µA) TYP  
255  
127  
63  
31  
15  
7
3.9  
7.8  
8.4  
9.8  
9.4  
11.9  
17.0  
27.1  
47.2  
87.5  
168.1  
329.3  
10.8  
14.7  
22.5  
38.2  
69.4  
13.6  
20.3  
33.7  
60.4  
113.9  
220.9  
19.2  
31.4  
55.9  
104.9  
202.8  
N/A  
15.6  
31.3  
62.5  
125.0  
250.0  
500.0  
12.8  
18.7  
30.4  
57.4  
100.9  
194.9  
132.0  
257.0  
3
1
N/A  
N/A  
Table 5. Accelerometer Noise and Current Consumption  
Page 10 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.3.3 A.C. Electrical Characteristics  
Typical Operating Circuit of section 0, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
SUPPLIES  
Supply Ramp Time (TRAMP  
)
Monotonic ramp. Ramp rate is  
10% to 90% of the final value  
0.01  
100  
85  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Room Temperature Offset  
Ambient  
25°C  
-40  
°C  
°C  
1
1
1
0
Sensitivity  
Untrimmed  
326.8  
LSB/°C  
POWER-ON RESET  
Valid power-on RESET  
From power-up  
From sleep  
AD0 = 0  
Supply Ramp Time (TRAMP  
)
0.01  
100  
100  
5
ms  
ms  
ms  
1
1
1
11  
Start-up time for register read/write  
1101000  
1101001  
I2C ADDRESS  
AD0 = 1  
DIGITAL INPUTS (FSYNC, AD0, SCLK, SDI, CS)  
0.7*VDDIO  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
V
V
0.3*VDD  
IO  
1
1
CI, Input Capacitance  
< 10  
pF  
DIGITAL OUTPUT (SDO, INT)  
RLOAD=1MΩ;  
VOH, High Level Output Voltage  
VOL1, Low-Level Output Voltage  
0.9*VDDIO  
V
V
RLOAD=1MΩ;  
0.1*VDD  
IO  
VOL.INT, INT Low-Level Output Voltage  
OPEN=1, 0.3mA sink  
Current  
0.1  
V
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
100  
50  
nA  
µs  
LATCH_INT_EN=0  
I2C I/O (SCL, SDA)  
-0.5V  
0.3*VDD  
IO  
V
V
VIL, Low-Level Input Voltage  
VIH, High-Level Input Voltage  
0.7*VDDIO  
VDDIO +  
0.5V  
0.1*VDD  
IO  
Vhys, Hysteresis  
V
V
1
VOL, Low-Level Output Voltage  
IOL, Low-Level Output Current  
3mA sink current  
0
0.4  
VOL=0.4V  
VOL=0.6V  
3
6
mA  
mA  
Output Leakage Current  
100  
nA  
ns  
tof, Output Fall Time from VIHmax to VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
300  
Page 11 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
INTERNAL CLOCK SOURCE  
FCHOICE_B=1,2,3  
SMPLRT_DIV=0  
FCHOICE_B=0;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
FCHOICE_B=0;  
32  
8
kHz  
kHz  
2
2
Sample Rate  
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
CLK_SEL=0, 6 or gyro  
inactive; 25°C  
CLK_SEL=1,2,3,4,5 and  
gyro active; 25°C  
CLK_SEL=0,6 or gyro  
inactive  
1
kHz  
2
-5  
-1  
+5  
+1  
%
%
%
%
1
1
1
1
Clock Frequency  
Initial Tolerance  
-10  
-1  
+10  
+1  
Frequency  
Variation over  
Temperature  
CLK_SEL=1,2,3,4,5 and  
gyro active  
Table 6. A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Guaranteed by design.  
Page 12 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.3.4 Other Electrical Specifications  
Typical Operating Circuit of section 0, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SERIAL INTERFACE  
Low-Speed Characterization  
High-Speed Characterization  
100 ±10%  
1
kHz  
1
SPI Operating Frequency, All Registers  
Read/Write  
8
MHz  
1, 2  
Modes 0  
and 3  
SPI Modes  
All registers, Fast-mode  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
All registers, Standard-mode  
Table 7. Other Electrical Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. SPI clock duty cycle between 45% and 55% should be used for 8-MHz operation.  
Page 13 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.4 I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 0, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
I2C TIMING  
I2C FAST-MODE  
fSCL, SCL Clock  
Frequency  
400  
kHz  
µs  
1
1
tHD.STA, (Repeated)  
START Condition Hold  
Time  
0.6  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
1.3  
0.6  
µs  
µs  
1
1
tSU.STA, Repeated START  
Condition Setup Time  
0.6  
0
µs  
µs  
ns  
ns  
ns  
µs  
1
1
1
1
1
1
tHD.DAT, SDA Data Hold  
Time  
tSU.DAT, SDA Data Setup  
Time  
100  
tr, SDA and SCL Rise  
Time  
Cb bus cap. from 10 to 400pF  
Cb bus cap. from 10 to 400pF  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
tf, SDA and SCL Fall  
Time  
tSU.STO, STOP Condition  
Setup Time  
tBUF, Bus Free Time  
Between STOP and  
START Condition  
1.3  
µs  
1
Cb, Capacitive Load for  
each Bus Line  
< 400  
pF  
µs  
µs  
1
1
1
tVD.DAT, Data Valid Time  
0.9  
0.9  
tVD.ACK, Data Valid  
Acknowledge Time  
Table 8. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
tf  
tSU.DAT  
tr  
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
A
tf  
tr  
tVD.DAT  
70%  
30%  
70%  
30%  
tHD.DAT  
9th clock cycle  
tHD.STA  
1/fSCL  
tLOW  
1st clock cycle  
S
tHIGH  
tBUF  
SDA  
SCL  
70%  
30%  
A
tSU.STO  
tSU.STA  
tHD.STA  
tVD.ACK  
70%  
30%  
9th clock cycle  
S
P
Sr  
Figure 1. I2C Bus Timing Diagram  
Page 14 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.5 SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section 0, VDD = 1.8V, VDDIO = 1.8V, TA=25°C, unless otherwise noted.  
PARAMETERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SPI TIMING  
fSCLK, SCLK Clock  
Frequency  
8
MHz  
1
tLOW, SCLK Low Period  
tHIGH, SCLK High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
56  
56  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
63  
3
7
Cload = 20pF  
40  
20  
tDIS.SDO, SDO Output  
Disable Time  
ns  
1
tFall, SCLK Fall Time  
tRise, SCLK Rise Time  
6.5  
6.5  
ns  
ns  
2
2
tDIS.SDO, SDO Output  
Disable Time  
20  
ns  
1
Table 9. SPI Timing Characteristics (8MHz Operation)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
2. Based on calculation from other parameter values  
CS  
70%  
30%  
tFall  
tRise  
tHD;CS  
tSU;CS  
70%  
tHIGH  
1/fCLK  
SCLK  
30%  
tSU;SDI  
tHD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
tDIS;SDO  
tVD;SDO  
tHD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Page 15 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
3.6 ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for  
extended periods may affect device reliability.  
PARAMETER  
RATING  
-0.5V to +4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
-0.5V to +4V  
REGOUT  
-0.5V to 2V  
Input Voltage Level (AD0, FSYNC, SCL, SDA)  
Acceleration (Any Axis, unpowered)  
Operating Temperature Range  
Storage Temperature Range  
-0.5V to VDD + 0.5V  
10,000g for 0.2ms  
-40°C to +85°C  
-40°C to +125°C  
2kV (HBM);  
250V (MM)  
Electrostatic Discharge (ESD) Protection  
Latch-up  
JEDEC Class II (2),125°C  
±100mA  
Table 10. Absolute Maximum Ratings  
Page 16 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4. APPLICATIONS INFORMATION  
4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
VDDIO  
SCL/SCLK  
SDA/SDI  
AD0/SDO  
CS  
PIN DESCRIPTION  
1
Digital I/O supply voltage  
2
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
I2C slave address LSB (AD0); SPI serial data output (SDO)  
Chip select (0 = SPI mode; 1 = I2C mode)  
Interrupt digital output (totem pole or open-drain)  
Reserved. Do not connect.  
3
4
5
6
INT  
7
RESV  
8
FSYNC  
RESV  
Synchronization digital input (optional). Connect to GND if unused.  
Reserved. Connect to GND.  
9
10  
11  
12  
13  
14  
15  
RESV  
Reserved. Connect to GND.  
RESV  
Reserved. Connect to GND.  
RESV  
Reserved. Connect to GND.  
GND  
Connect to GND  
REGOUT  
RESV  
Regulator filter capacitor connection  
Reserved. Connect to GND.  
16  
VDD  
Power Supply  
Table 11. Signal Descriptions  
16 15 14  
13  
12  
11  
10  
9
VDDIO  
SCL/SCLK  
SDA/SDI  
AD0/SDO  
CS  
1
2
3
4
5
GND  
+Z  
RESV  
RESV  
RESV  
RESV  
ICM-20608-G  
I
C
M
-
2
0
6
0
8
-
G
+Y  
+X  
6
7
8
LGA Package (Top View)  
16-pin, 3mm x 3mm x 0.75mm  
Typical Footprint and thickness  
Orientation of Axes of Sensitivity and Polarity of Rotation  
Figure 3. Pin out Diagram for ICM-20608-G 3.0x3.0x0.75mm LGA  
Page 17 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4.2 TYPICAL OPERATING CIRCUIT  
1.8 3.3VDC  
C2, 0.1 mF  
VDD  
C4, 2.2 mF  
REGOUT  
16 15 14  
C1, 0.47 mF  
GND  
VDDIO  
1.8 3.3 VDC  
13  
12  
11  
10  
9
1
2
3
4
5
RESV  
C3, 10 nF  
SCL/SCLK  
SDA/SDI  
SCL  
SDA  
AD0  
RESV  
RESV  
ICM-20608-G  
AD0/SDO  
CS  
VDDIO  
RESV  
6
7
8
Figure 4. ICM-20608-G I2C Operation Application Schematic  
1.8 3.3VDC  
VDD  
C2, 0.1 mF  
C4, 2.2 mF  
REGOUT  
16 15 14  
C1, 0.47 mF  
GND  
VDDIO  
1.8 3.3 VDC  
C3, 10 nF  
13  
12  
11  
10  
9
1
2
3
4
5
RESV  
SCL/SCLK  
SDA/SDI  
SCLK  
SDI  
RESV  
RESV  
ICM-20608-G  
AD0/SDO  
CS  
SDO  
RESV  
nCS  
6
7
8
Figure 5. ICM-20608-G SPI Operation Application Schematic  
Page 18 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4.3. BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
REGOUT Capacitor  
LABEL  
C1  
SPECIFICATION  
Ceramic, X7R, 0.47µF ±10%, 2V  
Ceramic, X7R, 0.1µF ±10%, 4V  
Ceramic, X7R, 2.2µF ±10%, 4V  
Ceramic, X7R, 10nF ±10%, 4V  
QUANTITY  
1
1
1
1
C2  
C4  
C3  
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
Table 11. Bill of Materials  
4.4. BLOCK DIAGRAM  
ICM-20608-G  
INT  
Self  
test  
X Accel  
Y Accel  
ADC  
ADC  
Interrupt  
Status  
Register  
CS  
Self  
test  
Slave I2C and  
SPI Serial  
Interface  
AD0 / SDO  
SCL / SCLK  
SDA / SDI  
FIFO  
Self  
test  
Z Accel  
X Gyro  
ADC  
ADC  
User & Config  
Registers  
FSYNC  
Self  
test  
Sensor  
Registers  
Self  
test  
Y Gyro  
Z Gyro  
ADC  
ADC  
Self  
test  
Temp Sensor  
ADC  
Bias & LDOs  
Charge  
Pump  
VDD  
GND  
REGOUT  
Figure 6. ICM-20608-G Block Diagram  
Page 19 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4.5. OVERVIEW  
The ICM-20608-G is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
4.6.  
THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The ICM-20608-G consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z-  
Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive  
pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate.  
This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range  
of the gyro sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). The ADC sample rate is  
programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide  
range of cut-off frequencies.  
4.7. THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The ICM-20608-G’s 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces  
displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20608-G’s  
architecture reduces the accelerometers’ susceptibility to fabrication variations as well as to thermal drift. When the device is placed  
on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers’ scale factor is calibrated at the  
factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs.  
The full scale range of the digital output can be adjusted to ±2g, ±4g, ±8g, or ±16g.  
4.8. I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The ICM-20608-G communicates to a system processor using either a SPI or an I2C serial interface. The ICM-20608-G always acts as a  
slave when communicating to the system processor. The LSB of the I2C slave address is set by pin 4 (AD0).  
4.8.1 ICM-20608-G Solution Using I2C Interface  
In the figure below, the system processor is an I2C master to the ICM-20608-G.  
Page 20 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
sensor data from ICM-20608  
INT  
ICM-20608-G  
AD0  
SCL  
VDDIO or GND  
Slave I2C  
or SPI  
SCL  
SDA  
System  
Processor  
Serial  
Interface  
SDA  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 7. ICM-20608-G Solution Using I2C Interface  
4.8.2 ICM-20608-G Solution Using SPI Interface  
In the figure below, the system processor is an SPI master to the ICM-20608-G. Pins 2, 3, 4, and 5 are used to support the SCLK, SDI,  
SDO, and CS signals for SPI communications.  
Processor SPI Bus: for reading all  
data from ICM-20608 and for  
configuring ICM-20608  
Interrupt  
Status  
Register  
INT  
nCS  
CS  
ICM-20608-G  
SDO  
SDI  
Slave I2C  
or SPI  
Serial  
Interface  
System  
Processor  
SCLK  
SDI  
SCLK  
SDO  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 8. ICM-20608-G Solution Using SPI Interface  
Page 21 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4.9 SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can  
be activated by means of the gyroscope and accelerometer self-test registers (registers 27 and 28).  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is  
used to observe the self-test response.  
The self-test response is defined as follows:  
Self-test response = Sensor output with self-test enabled Sensor output with self-test disabled  
The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis  
is defined in the accelerometer specification table.  
When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-  
test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use  
InvenSense MotionApps software for executing self-test.  
4.10 CLOCKING  
The ICM-20608-G has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous  
circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip  
PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source  
The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.  
4.11 SENSOR DATA REGISTERS  
The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only  
registers, and are accessed via the serial interface. Data from these registers may be read anytime.  
4.12 FIFO  
The ICM-20608-G contains a 512-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register  
determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, and  
FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst  
reads. The interrupt function may be used to determine when new data is available.  
The ICM-20608-G allows FIFO read in standard (duty cycle) accelerometer mode.  
4.13 INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin  
configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1)  
Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from  
the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO overflow. The interrupt status can be read from the  
Interrupt Status register.  
4.14 DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the ICM-20608-G die temperature. The readings from the ADC can be  
read from the FIFO or the Sensor Data registers.  
Page 22 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
4.15 BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20608-G. Its  
two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at  
REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components.  
4.16 CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
4.17 POWER MODES  
The following table lists the user-accessible power modes for ICM-20608-G.  
MODE  
NAME  
GYRO  
Off  
Drive On  
Off  
Off  
Duty-Cycled  
On  
ACCEL  
Off  
Off  
Duty-Cycled  
1
2
3
4
5
6
7
8
Sleep Mode  
Standby Mode  
Accelerometer Standard Mode  
Accelerometer Low-Noise Mode  
Gyroscope Standard Mode  
Gyroscope Low-Noise Mode  
6-Axis Low-Noise Mode  
On  
Off  
Off  
On  
On  
On  
6-Axis Standard Mode  
Duty-Cycled  
Table 12. Power Modes for ICM-20608-G  
Page 23 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
5 PROGRAMMABLE INTERRUPTS  
The ICM-20608-G has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate  
the source of an interrupt. Interrupt sources may be enabled and disabled individually.  
INTERRUPT NAME  
Motion Detection  
MODULE  
Motion  
FIFO Overflow  
Data Ready  
FIFO  
Sensor Registers  
Table 13. Table of Interrupt Sources  
5.1 WAKE-ON-MOTION INTERRUPT  
The ICM-20608-G provides motion detection capability. A qualifying motion sample is one where the high passed sample from any  
axis has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-  
Motion Interrupt.  
Step 1: Ensure that Accelerometer is running  
In PWR_MGMT_1 register (0x6B) set CYCLE = 0, SLEEP = 0, and GYRO_STANDBY = 0  
In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0, and STBY_XG = STBY_YG = STBY_ZG = 1  
Step 2: Accelerometer Configuration  
In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 0 and A_DLPF_CFG[2:0] = 1 (b001)  
Step 3: Enable Motion Interrupt  
In INT_ENABLE register (0x38) set WOM_INT_EN = 111 to enable motion interrupt  
Step 4: Set Motion Threshold  
Set the motion threshold in ACCEL_WOM_THR register (0x1F)  
Step 5: Enable Accelerometer Hardware Intelligence  
In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = ACCEL_INTEL_MODE = 1; Ensure that bit 0 is set to 0.  
Step 6: Set Frequency of Wake-Up  
In Standard Mode Configuration register (0x1E) set LPOSC_CLKSEL[3:0] for a sample rate as indicated in the register map  
Step 7: Enable Cycle Mode (Accelerometer Standard Mode)  
In PWR_MGMT_1 register (0x6B) set CYCLE = 1  
Page 24 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
6 DIGITAL INTERFACE  
6.1 I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the ICM-20608-G can be accessed using either I2C at 400 kHz or SPI at 8MHz. SPI operates in  
four-wire mode.  
PIN NUMBER  
PIN NAME  
VDDIO  
PIN DESCRIPTION  
1
4
2
3
Digital I/O supply voltage.  
AD0 / SDO  
SCL / SCLK  
SDA / SDI  
I2C Slave Address LSB (AD0); SPI serial data output (SDO)  
I2C serial clock (SCL); SPI serial clock (SCLK)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 14. Serial Interface  
Note:  
To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit.  
Setting this bit should be performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write”  
in Section 3.3.3.  
6.2 I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-  
directional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the  
slave address on the bus, and the slave device with the matching address acknowledges the master.  
The ICM-20608-G always operates as a slave device when communicating to the system processor, which thus acts as the master.  
SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.  
The slave address of the ICM-20608-G is b110100X which is 7 bits long. The LSB bit of the 7 bit address is determined by the logic  
level on pin AD0. This allows two ICM-20608-Gs to be connected to the same I2C bus. When used in this configuration, the address  
of one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic  
high).  
6.3 I2C COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW  
transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP  
condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 9. START and STOP Conditions  
Page 25 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte  
transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master,  
while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the  
acknowledge clock pulse.  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL  
LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line  
(refer to the following figure).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 10. Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the  
read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the  
master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be  
followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of  
the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line.  
However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP  
condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take  
place when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 7  
8
9
1 7  
8
9
1 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 11. Complete I2C Data Transfer  
Page 26 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
To write the internal ICM-20608-G registers, the master transmits the start condition (S), followed by the I2C address and the write  
bit (0). At the 9th clock cycle (when the clock is high), the ICM-20608-G acknowledges the transfer. Then the master puts the register  
address (RA) on the bus. After the ICM-20608-G acknowledges the reception of the register address, the master puts the register  
data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple  
bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-  
20608-G automatically increments the register address and loads the data to the appropriate register. The following figures show  
single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
P
ACK  
ACK  
ACK  
To read the internal ICM-20608-G registers, the master sends a start condition, followed by the I2C address and a write bit, and then  
the register address that is going to be read. Upon receiving the ACK signal from the ICM-20608-G, the master transmits a start  
signal followed by the slave address and read bit. As a result, the ICM-20608-G sends an ACK signal and the data. The  
communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the  
SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
AD+R  
AD+R  
NACK  
P
ACK  
ACK  
ACK  
ACK  
ACK  
DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
S
ACK  
NACK  
P
ACK DATA  
DATA  
6.4 I2C TERMS  
SIGNAL  
DESCRIPTION  
S
AD  
W
Start Condition: SDA goes from high to low while SCL is high  
Slave I2C address  
Write bit (0)  
R
Read bit (1)  
ACK  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock  
cycle  
NACK  
RA  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
ICM-20608-G internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 15. I2C Terms  
Page 27 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
6.5 SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20608-G always operates as a  
Slave device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared  
among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring  
that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines  
to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.  
SPI Operational Features  
1. Data is delivered MSB first and LSB last  
2. Data is latched on the rising edge of SCLK  
3. Data should be transitioned on the falling edge of SCLK  
4. The maximum frequency of SCLK is 8MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the  
SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit  
and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of  
multiple-byte Read/Writes, data is two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1 D0  
6. Supports Single or Burst Read/Writes.  
SPC  
SDI  
SPI Master  
SPI Slave 1  
SDO  
CS  
CS1  
CS2  
SPC  
SDI  
SDO  
CS  
SPI Slave 2  
Figure 12. Typical SPI Master/Slave Configuration  
Page 28 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
7 ASSEMBLY  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in  
LGA package.  
ORIENTATION OF AXES  
The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier () in the  
figure.  
+Z  
+Y  
+Z  
I
C
+Y  
M
-
2
0
6
0
8
-
G
+X  
+X  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Page 29 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
PACKAGE DIMENSIONS  
16 Lead LGA (3x3x0.75) mm NiAu pad finish  
Page 30 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN  
NOM  
MAX  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
A1  
A2  
0.7  
0.75  
0.105  
0.63  
0.8  
REF  
REF  
D
E
2.9  
2.9  
0.2  
0.3  
3
3
3.1  
3.1  
0.3  
Body Size  
Lead Width  
Lead Length  
W
0.25  
L
e
n
0.35  
0.5  
16  
2
0.4  
BSC  
Lead Pitch  
Lead Count  
D1  
E1  
SD  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
1
---  
SE  
b
---  
---  
---  
---  
---  
---  
BSC  
---  
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
Ball Count  
Pre-Solder  
---  
---  
e1  
n1  
---  
---  
Package Edge Tolerance  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
Mold Flatness  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
---  
Lead Edge to Package Edge  
M
0.01  
0.06  
0.11  
Page 31 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
8 PART NUMBER PACKAGE MARKING  
The part number package marking for ICM-20608-G devices is summarized below:  
PART NUMBER  
ICM-20608-G  
PART NUMBER PACKAGE MARKING  
IC268G  
Page 32 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
9.REFERENCE  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:  
Manufacturing Recommendations  
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
o
Reflow Specification  
o
Storage Specifications  
o
o
o
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
o
Packaging  
o
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Page 33 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
REVISION HISTORY  
REVISION  
DATE  
REVISION  
NUMBER  
DESCRIPTION  
06/15/2015  
1.0  
Initial Release  
Page 34 of 35  
Document Number: DS-000081  
Revision: 1.0  
ICM-20608-G  
COMPLIANCE DECLARATION DISCLAIMER  
InvenSense believes the environmental and other compliance information given in this document to be correct but cannot  
guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on  
file. InvenSense subcontracts manufacturing and the information contained herein is based on data received from vendors and  
suppliers, which has not been validated by InvenSense.  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by  
InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications  
are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and  
software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither  
expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no  
responsibility for any claims or damages arising from information contained in this document, or from the use of products and  
services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights,  
mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by  
implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information  
previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors  
should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons  
or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime  
prevention equipment.  
©2015 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion,  
MotionApps, DMP, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be  
trademarks of the respective companies with which they are associated.  
©2015 InvenSense, Inc. All rights reserved.  
Page 35 of 35  
Document Number: DS-000081  
Revision: 1.0  

相关型号:

ICM-20609

IMU (惯性测量设备)
TDK

ICM-20648

6-Axis MEMS MotionTracking Device
TDK

ICM-20649

Wide-Range 6-Axis MEMS MotionTracking Device
TDK

ICM-20689

IMU (惯性测量设备)
TDK

ICM-20690

IMU (惯性测量设备)
TDK

ICM-20789

7-Axis, High Performance Integrated 6-Axis Inertial and Barometric Pressure Sensor
TDK

ICM-20948

Lowest Power 9-Axis MEMS MotionTracking Device
TDK

ICM-2824

High Current Common Mode Choke
VISHAY

ICM-30630

Tri-core 6-Axis Motiontraking Device
TDK

ICM-30670

OISUI Solution with Integrated Sensor Hub
TDK

ICM-308-1-GT

IC Socket, DIP8, 8 Contact(s), 2.54mm Term Pitch, 0.3inch Row Spacing, Solder
ADAM-TECH

ICM-308-1-TT

IC Socket, DIP8, 8 Contact(s), 2.54mm Term Pitch, 0.3inch Row Spacing, Solder
ADAM-TECH