TS4994IQT [STMICROELECTRONICS]

1W Differential Input/Output Audio Power Amplifier with Selectable Standby; 1W差分输入/输出音频功率放大器,可选择待机
TS4994IQT
型号: TS4994IQT
厂家: ST    ST
描述:

1W Differential Input/Output Audio Power Amplifier with Selectable Standby
1W差分输入/输出音频功率放大器,可选择待机

商用集成电路 放大器 功率放大器 PC
文件: 总31页 (文件大小:764K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4994  
1W Differential Input/Output Audio Power Amplifier  
with Selectable Standby  
Differential inputs  
Near zero pop & click  
100dB PSRR @ 217Hz with grounded inputs  
Operating from VCC = 2.5V to 5.5V  
Pin Connections (top view)  
TS4994IQT - DFN10  
1W RAIL to RAIL output power @ Vcc=5V,  
THD=1%, F=1kHz, with 8load  
90dB CMRR @ 217Hz  
Ultra-low consumption in standby mode (10nA)  
Selectable standby mode (active low or  
active high  
Ultra fast startup time: 15ms typ.  
Available in DFN10 3x3, 0.5mm pitch &  
MiniSO8  
STBY  
VIN -  
1
2
3
4
5
10  
9
VO+  
VDD  
N/C  
GND  
STBY MODE  
VIN +  
8
7
BYPASS  
6
VO-  
All lead-free packages  
TS4994IST - MiniSO8  
Description  
STBY  
VIN-  
VO+  
1
2
3
4
8
7
6
5
The TS4994 is an audio power amplifier capable  
of delivering 1W of continuous RMS output power  
into an 8load @ 5V. Thanks to its differential  
inputs, it exhibits outstanding noise immunity.  
Vcc  
VIN+  
GND  
BYPASS  
VO-  
An external standby mode control reduces the  
supply current to less than 10nA. A STBY MODE  
pin allows the standby pin to be active HIGH or  
LOW (except in the MiniSO8 version). An internal  
thermal shutdown protection is also provided,  
making the device capable of sustaining short-  
circuits.  
Applications  
Mobile phones (cellular / cordless)  
Laptop / notebook computers  
PDAs  
The device is equipped with Common Mode  
Feedback circuitry allowing outputs to be always  
biased at Vcc/2 regardless of the input common  
mode voltage.  
Portable audio devices  
The TS4994 has been designed for high quality  
audio applications such as mobile phones and  
requires few external components.  
Order Codes  
Part Number  
TS4994IQT  
Temperature Range  
Package  
Packaging  
Marking  
-40°C to +85°C  
-40°C to +85°C  
DFN10  
Tape & Reel  
Tape & Reel  
K994  
K994  
TS4994IST  
MiniSO8  
April 2005  
Revision 4  
1/31  
TS4994  
Application Component Information  
1 Application Component Information  
Components  
Functional Description  
Supply Bypass capacitor which provides power supply filtering.  
C
C
S
B
Bypass capacitor which provides half supply filtering.  
Feedback resistor which sets the closed loop gain in conjunction with R  
IN  
R
FEED  
A = Closed Loop Gain= R  
/R .  
V
FEED IN  
R
C
Inverting input resistor which sets the closed loop gain in conjunction with R  
.
FEED  
IN  
IN  
Optional input capacitor making a high pass filter together with R . (fcl = 1 / (2 x Pi x R x C )  
IN  
IN  
IN  
Figure 1. Typical Application DFN10 Version  
VCC  
+
Cs  
1u  
Rfeed1  
20k  
9
GND  
VCC  
Diff. input -  
Cin1  
Rin1  
2
Vin-  
-
Vo+ 10  
20k  
220nF  
Cin2  
Rin2  
Vo-  
GND  
Diff. Input +  
4
5
Vin+  
+
6
20k  
+
220nF  
8 Ohms  
Bypass  
Bias  
Optional  
Cb  
1u  
Standby  
Mode  
3
Stdby  
1
TS4994IQ  
GND  
7
GND  
Rfeed2  
20k  
GND  
GND VCC GND VCC  
Figure 2. Typical Application Mini-SO8 Version  
VCC  
+
Cs  
1u  
Rfeed1  
20k  
GND  
7
VCC  
Diff. input -  
Cin1  
Rin1  
2
Vin-  
-
Vo+ 8  
20k  
220nF  
Cin2  
Rin2  
Vo-  
5
GND  
3
4
Vin+  
+
20k  
+
220nF  
8 Ohms  
Diff. Input +  
Bypass  
Bias  
Optional  
Cb  
1u  
Standby  
GND  
6
TS4994IS  
Stdby  
1
GND  
Rfeed2  
20k  
GND  
GNDVCC  
2/31  
Absolute Maximum Ratings  
TS4994  
2 Absolute Maximum Ratings  
Table 1. Key parameters and their absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
1
VCC  
6
V
V
Supply voltage  
2
V
G
to VCC  
i
Input Voltage  
ND  
T
Operating Free Air Temperature Range  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
°C  
oper  
T
stg  
T
Maximum Junction Temperature  
j
3
R
Thermal Resistance Junction to Ambient  
thja  
120  
215  
°C/W  
DFN10  
Mini-SO8  
Pd  
Power Dissipation  
internally limited  
W
kV  
V
ESD  
ESD  
Human Body Model  
Machine Model  
2
200  
200  
260  
Latch-up Immunity  
mA  
°C  
Lead Temperature (soldering, 10sec)  
1) All voltages values are measured with respect to the ground pin.  
2) The magnitude of input signal must never exceed V + 0.3V / G - 0.3V  
CC  
ND  
3) The device is protected by a thermal shutdown active at 150°C  
Table 2. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
V
Supply Voltage  
2.5 to 5.5  
V
CC  
Standby Mode Voltage Input:  
Standby Active LOW  
V
V
=GND  
V
V
V
SM  
SM  
Standby Active HIGH  
=V  
SM  
CC  
Standby Voltage Input:  
Device ON (V =GND) or Device OFF (V =V  
)
)
1.5 V  
V  
CC  
V
SM  
SM  
CC  
CC  
STB  
STB  
1
Device OFF (V =GND) or Device ON (V =V  
SM  
SM  
G
V  
0.4  
STB  
ND  
T
Thermal Shutdown Temperature  
Load Resistor  
150  
°C  
SD  
R
8  
L
Thermal Resistance Junction to Ambient  
DFN10  
Mini-SO8  
2
R
80  
190  
°C/W  
THJA  
1) The minimum current consumption (I  
range.  
) is guaranteed when V  
=GND or V  
(i.e. supply rails) for the whole temperature  
CC  
STB  
STANDBY  
2) When mounted on a 4-layer PCB.  
3/31  
TS4994  
Electrical Characteristics  
= 25°C (unless otherwise  
amb  
3 Electrical Characteristics  
Table 3. Electrical characteristics - V = +5V, GND = 0V, T  
CC  
specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
ICC  
4
7
mA  
Standby Current  
No input signal, Vstdby = V = G , RL = 8Ω  
ISTANDBY  
10  
1000  
10  
nA  
SM  
ND  
No input signal, Vstdby = V = V , RL = 8Ω  
SM  
CC  
Differential Output Offset Voltage  
No input signal, RL = 8Ω  
Voo  
0.1  
mV  
V
Input Common Mode Voltage  
CMRR -60dB  
V
V
- 0.9  
0.6  
0.8  
ICM  
CC  
Output Power  
THD = 1% Max, F= 1kHz, RL = 8Ω  
Po  
1
W
%
Total Harmonic Distortion + Noise  
Po = 850mW rms, Av = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
0.5  
1
Power Supply Rejection Ratio with Inputs Grounded  
PSRR  
F = 217Hz, R = 8Ω, Av = 1, C = 4.7µF, C =1µF  
100  
90  
dB  
dB  
IG  
in  
b
Vripple = 200mV  
PP  
Common Mode Rejection Ratio  
F = 217Hz, RL = 8Ω, Av = 1, C = 4.7µF, C =1µF  
CMRR  
in  
b
Vic = 200mV  
PP  
Signal-to-Noise Ratio (A Weighted Filter, A = 2.5)  
v
SNR  
GBP  
100  
2
dB  
(R = 8Ω, THD +N < 0.7%, 20Hz F 20kHz)  
L
Gain Bandwidth Product  
MHz  
R = 8Ω  
L
Output Voltage Noise, 20Hz F 20kHz, R = 8Ω  
L
6
5.5  
12  
10.5  
33  
28  
1.5  
1
Unweighted, Av = 1  
A weighted, Av = 1  
Unweighted, Av = 2.5  
A weighted, Av = 2.5  
Unweighted, Av = 7.5  
A weighted, Av = 7.5  
Unweighted, Standby  
A weighted, Standby  
V
µV  
RMS  
N
2
Wake-Up Time  
T
15  
ms  
WU  
C =1µF  
b
1) Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.  
2) Transition time from standby mode to fully operational amplifier.  
4/31  
Electrical Characteristics  
TS4994  
Table 4. Electrical Characteristics: V = +3.3V (all electrical values are guaranteed with correlation  
CC  
measurements at 2.6V and 5V) GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
ICC  
Supply Current No input signal, no load  
3
7
mA  
Standby Current  
No input signal, Vstdby = V = G , RL = 8Ω  
ISTANDBY  
10  
1000  
10  
nA  
SM  
ND  
No input signal, Vstdby = V = V , RL = 8Ω  
SM  
CC  
Differential Output Offset Voltage  
No input signal, RL = 8Ω  
Voo  
0.1  
mV  
V
Input Common Mode Voltage  
CMRR -60dB  
V
V
- 0.9  
0.6  
ICM  
CC  
Output Power  
THD = 1% Max, F= 1kHz, RL = 8Ω  
Po  
300  
380  
0.5  
mW  
%
Total Harmonic Distortion + Noise  
Po = 300mW rms, Av = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
1
Power Supply Rejection Ratio with Inputs Grounded  
PSRR  
F = 217Hz, R = 8Ω, Av = 1, C = 4.7µF, C =1µF  
100  
90  
dB  
dB  
IG  
in  
b
Vripple = 200mV  
PP  
Common Mode Rejection Ratio  
F = 217Hz, RL = 8Ω, Av = 1, C = 4.7µF, C =1µF  
CMRR  
in  
b
Vic = 200mV  
PP  
Signal-to-Noise Ratio (A Weighted Filter, A = 2.5)  
v
SNR  
GBP  
100  
2
dB  
(R = 8Ω, THD +N < 0.7%, 20Hz F 20kHz)  
L
Gain Bandwidth Product  
MHz  
R = 8Ω  
L
Output Voltage Noise, 20Hz F 20kHz, R = 8Ω  
L
6
5.5  
12  
10.5  
33  
28  
1.5  
1
Unweighted, Av = 1  
A weighted, Av = 1  
Unweighted, Av = 2.5  
A weighted, Av = 2.5  
Unweighted, Av = 7.5  
A weighted, Av = 7.5  
Unweighted, Standby  
A weighted, Standby  
V
µV  
RMS  
N
2
Wake-Up Time  
T
15  
ms  
WU  
C =1µF  
b
1) Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.  
2) Transition time from standby mode to fully operational amplifier.  
5/31  
TS4994  
Electrical Characteristics  
Table 5. Electrical Characteristics - V = +2.6V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
No input signal, no load  
ICC  
3
7
mA  
Standby Current  
No input signal, Vstdby = V = G , RL = 8Ω  
ISTANDBY  
10  
1000  
10  
nA  
SM  
ND  
No input signal, Vstdby = V = V , RL = 8Ω  
SM  
CC  
Differential Output Offset Voltage  
No input signal, RL = 8Ω  
Voo  
0.1  
mV  
V
V
-
Input Common Mode Voltage  
CMRR -60dB  
CC  
V
0.6  
ICM  
0.9  
Output Power  
THD = 1% Max, F= 1kHz, RL = 8Ω  
Po  
200  
250  
0.5  
mW  
%
Total Harmonic Distortion + Noise  
Po = 225mW rms, Av = 1, 20Hz F 20kHz, RL = 8Ω  
THD + N  
1
Power Supply Rejection Ratio with Inputs Grounded  
PSRR  
F = 217Hz, R = 8Ω, Av = 1, C = 4.7µF, C =1µF  
100  
90  
dB  
dB  
IG  
in  
b
Vripple = 200mV  
PP  
Common Mode Rejection Ratio  
F = 217Hz, RL = 8Ω, Av = 1, C = 4.7µF, C =1µF  
CMRR  
in  
b
Vic = 200mV  
PP  
Signal-to-Noise Ratio (A Weighted Filter, A = 2.5)  
v
SNR  
GBP  
100  
2
dB  
(R = 8Ω, THD +N < 0.7%, 20Hz F 20kHz)  
L
Gain Bandwidth Product  
MHz  
R = 8Ω  
L
Output Voltage Noise, 20Hz F 20kHz, R = 8Ω  
L
6
5.5  
12  
10.5  
33  
28  
1.5  
1
Unweighted, Av = 1  
A weighted, Av = 1  
Unweighted, Av = 2.5  
A weighted, Av = 2.5  
Unweighted, Av = 7.5  
A weighted, Av = 7.5  
Unweighted, Standby  
A weighted, Standby  
V
µV  
RMS  
N
2
Wake-Up Time  
T
15  
ms  
WU  
C =1µF  
b
1) Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.  
2) Transition time from standby mode to fully operational amplifier.  
6/31  
Electrical Characteristics  
TS4994  
Figure 3. Current consumption vs. power  
supply voltage  
Figure 6. Current consumption vs. standby  
voltage  
4.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
No load  
Tamb=25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Standby mode=0V  
Standby mode=2.6V  
Vcc = 2.6V  
No load  
Tamb=25°C  
0
1
2
3
4
5
0.0  
0.6  
1.2  
1.8  
2.4  
Power Supply Voltage (V)  
Standby Voltage (V)  
Figure 4. Current consumption vs. standby  
voltage  
Figure 7. Differential DC output voltage vs.  
common mode input voltage  
4.0  
3.5  
1000  
Av = 1  
Tamb = 25°C  
100  
10  
Vcc=3.3V  
Vcc=5V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Standby mode=0V  
Standby mode=5V  
Vcc=2.5V  
1
0.1  
0.01  
Vcc = 5V  
No load  
Tamb=25°C  
0
1
2
3
4
5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Standby Voltage (V)  
Common Mode Input Voltage (V)  
Figure 5. Current consumption vs. standby  
voltage  
Figure 8. Power dissipation vs. output power  
3.5  
3.0  
0.6  
RL=8  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Standby mode=0V  
Standby mode=3.3V  
0.4  
0.2  
0.0  
RL=16  
Vcc = 3.3V  
No load  
Tamb=25°C  
Vcc=5V  
F=1kHz  
THD+N<1%  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
Output Power (W)  
Standby Voltage (V)  
7/31  
TS4994  
Electrical Characteristics  
Figure 9. Power dissipation vs. output power  
Figure 12. Output power vs. power supply  
voltage  
0.3  
1.50  
Cb = 1µF  
F = 1kHz  
8Ω  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
BW < 125kHz  
Tamb = 25°C  
RL=8Ω  
0.2  
0.1  
0.0  
16  
RL=16  
Vcc=3.3V  
F=1kHz  
THD+N<1%  
32Ω  
0.0  
0.1  
0.2  
0.3  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Vcc (V)  
Output Power (W)  
Figure 10. Power dissipation vs. output power  
Figure 13. Output power vs. load resistance  
0.20  
1.0  
Vcc=2.6V  
F=1kHz  
THD+N=1%  
Cb = 1 F  
THD+N<1%  
0.15  
0.8  
0.6  
0.4  
0.2  
0.0  
Vcc=5V  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
Vcc=4.5V  
RL=8Ω  
Vcc=4V  
0.10  
0.05  
0.00  
RL=16  
Vcc=3.5V  
12  
Vcc=3V  
16  
Vcc=2.5V  
20  
0.0  
0.1  
0.2  
Output Power (W)  
0.3  
8
24  
28  
32  
Load Resistance  
Figure 11. Output power vs. power  
supply voltage  
Figure 14. Power derating curves  
1.0  
1.5  
Cb = 1µF  
F = 1kHz  
8Ω  
with 4 layers PCB  
0.8  
0.6  
0.4  
0.2  
0.0  
BW < 125kHz  
Tamb = 25°C  
1.0  
0.5  
0.0  
16  
AMR Value  
50  
32  
0
25  
75  
100  
125  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Ambiant Temperature ( C)  
Vcc (V)  
8/31  
Electrical Characteristics  
TS4994  
Figure 15. Power derating curves  
Figure 18. Open Loop gain vs. frequency  
0
0.6  
60  
40  
20  
0
Gain  
Nominal Value  
-40  
-80  
-120  
-160  
-200  
0.4  
Phase  
AMR Value  
0.2  
Vcc = 2.6V  
ZL = 8 + 500pF  
-20  
-40  
Tamb = 25  
°C  
0.0  
0.1  
1
10  
100  
1000  
10000  
0
25  
50  
75  
100  
125  
Ambiant Temperature ( C)  
Frequency (kHz)  
Figure 16. Open loop gain vs. frequency  
Figure 19. Close loop gain vs. frequency  
0
10  
0
Phase  
60  
Gain  
0
Gain  
-40  
-40  
-80  
-120  
-160  
-200  
40  
-80  
-10  
20  
0
Phase  
-120  
-160  
-200  
-20  
Vcc = 5V  
Av = 1  
-30  
Vcc = 5V  
ZL = 8 + 500pF  
-20  
ZL = 8  
+ 500pF  
Tamb = 25  
°C  
Tamb = 25  
°C  
-40  
0.1  
-40  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Figure 17. Open loop gain vs. frequency  
Figure 20. Close loop gain vs. frequency  
0
10  
0
Phase  
60  
Gain  
0
Gain  
-40  
-80  
-120  
-160  
-200  
-40  
-80  
-120  
-160  
-200  
40  
-10  
20  
0
Phase  
-20  
Vcc = 3.3V  
Av = 1  
-30  
Vcc = 3.3V  
ZL = 8 + 500pF  
-20  
ZL = 8  
+ 500pF  
Tamb = 25  
°C  
Tamb = 25  
°C  
-40  
0.1  
-40  
0.1  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
9/31  
TS4994  
Electrical Characteristics  
Figure 21. Close loop gain vs. frequency  
Figure 24. PSRR vs. frequency  
10  
0
0
-10  
-20  
-30  
-40  
Phase  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Grounded  
Gain  
0
-40  
-80  
-120  
-160  
-200  
Av = 1, Cin = 4.7  
µF  
RL  
8Ω  
-10  
Cb=0.1µF  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
Cb=0.47µF  
-20  
Cb=1µF  
Vcc = 2.6V  
-30  
-40  
Av = 1  
ZL = 8  
-100  
+ 500pF  
Cb=0  
-110  
-120  
Tamb = 25  
°C  
0.1  
1
10  
100  
1000  
10000  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (kHz)  
Figure 22. PSRR vs. frequency  
Figure 25. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Grounded  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Grounded  
Av = 1, Cin = 4.7  
µF  
Av = 2.5, Cin = 4.7  
µF  
RL  
8Ω  
RL  
8Ω  
Cb=0.1µF  
Cb=0.1µF  
-50 Tamb = 25  
°C  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
Cb=0.47  
µF  
Cb=0.47  
µF  
Cb=1µF  
Cb=1µF  
Cb=0  
-100  
-100  
Cb=0  
-110  
-120  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 23. PSRR vs. frequency  
Figure 26. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Grounded  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Grounded  
Av = 1, Cin = 4.7  
µF  
Av = 2.5, Cin = 4.7  
µF  
RL  
8Ω  
RL  
8Ω  
Cb=0.1µF  
Cb=0.1µF  
-50 Tamb = 25  
°C  
-50 Tamb = 25  
°C  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
Cb=0.47  
µF  
Cb=0.47  
µF  
Cb=1µF  
Cb=1µF  
Cb=0  
-100  
-100  
Cb=0  
-110  
-120  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
10/31  
Electrical Characteristics  
TS4994  
Figure 27. PSRR vs. frequency  
Figure 30. PSRR vs. frequency  
0
0
-10  
-10  
-20  
-30  
-40  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Floating  
Vcc = 2.6V  
Vripple = 200mVpp  
Inputs = Grounded  
-20  
-30  
Rfeed = 20k  
Av = 2.5, Cin = 4.7  
RL  
Tamb = 25  
µF  
-40  
RL  
8Ω  
8Ω  
Cb=0.1µF  
Cb=0.1µF  
-50  
-50 Tamb = 25  
°C  
°C  
-60  
Cb=0.47  
µF  
-60  
-70  
-80  
-90  
Cb=0.47  
µF  
-70  
Cb=1µF  
Cb=1µF  
-80  
-90  
Cb=0  
-100  
-110  
-120  
-100  
Cb=0  
-110  
-120  
20  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 28. PSRR vs. frequency  
Figure 31. PSRR vs. common mode input  
voltage  
0
0
Vcc = 5V  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
-10  
-20  
-30  
-40  
Vcc = 5V  
Vripple = 200mVpp  
Inputs = Floating  
-20  
Rfeed = 20k  
Av = 1  
-40  
RL  
8Ω  
RL  
8Ω  
Cb=0.1µF  
-50 Tamb = 25  
°C  
Cb=1  
Cb=0.47  
Cb=0.1  
µF  
Tamb = 25  
°
C
µ
F
F
-60  
-70  
-80  
-90  
Cb=0.47  
µF  
-60  
-80  
µ
Cb=0  
Cb=1µF  
-100  
Cb=0  
-100  
-110  
-120  
0
1
2
3
4
5
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Common Mode Input Voltage (V)  
Figure 29. PSRR vs. frequency  
Figure 32. PSRR vs. common mode input  
voltage  
0
Vcc = 3.3V  
0
-20  
-10  
-20  
-30  
-40  
Vcc = 3.3V  
Vripple = 200mVpp  
Inputs = Floating  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
Rfeed = 20k  
Av = 1  
RL  
8Ω  
RL  
8Ω  
-40  
Cb=1  
Cb=0.47  
Cb=0.1  
µF  
Cb=0.1µF  
-50 Tamb = 25  
°C  
Tamb = 25  
°
C
µ
F
F
-60  
-70  
-80  
-90  
Cb=0.47  
µF  
µ
-60  
Cb=0  
Cb=1µF  
-80  
-100  
Cb=0  
-100  
-110  
-120  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Common Mode Input Voltage (V)  
11/31  
TS4994  
Electrical Characteristics  
Figure 33. PSRR vs. common mode input  
voltage  
Figure 36. CMRR vs. frequency  
0
-10  
0
Vcc = 2.5V  
Vripple = 200mVpp  
Inputs Grounded  
F = 217Hz  
Vcc = 2.6V  
Vic = 200mVpp  
Av = 1, Cin = 470  
-20  
-20  
µF  
-30  
RL  
8Ω  
Cb=1µF  
Av = 1  
-40  
8Ω  
-40  
Tamb = 25  
°C  
Cb=0.47µF  
RL  
-50  
Cb=0.1µF  
Tamb = 25°C  
-60  
Cb=0  
-60  
-80  
Cb=1  
Cb=0.47  
Cb=0.1  
µF  
-70  
Cb=0  
µ
F
-80  
µF  
-90  
-100  
-110  
-120  
-100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
10000 20k  
10000 20k  
Common Mode Input Voltage (V)  
Figure 34. CMRR vs. frequency  
Figure 37. CMRR vs. frequency  
0
0
-10  
Vcc = 5V  
Vcc = 5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vic = 200mVpp  
Av = 2.5, Cin = 470  
-20 Vic = 200mVpp  
µ
F
Av = 1, Cin = 470  
RL  
Tamb = 25  
µF  
-30  
-40  
RL  
8Ω  
8Ω  
Cb=1µF  
Tamb = 25  
°C  
°
C
Cb=0.47  
µ
F
-50  
Cb=1µF  
Cb=0.1µF  
-60  
Cb=0.47  
µ
F
Cb=0  
-70  
Cb=0.1µF  
Cb=0  
-80  
-90  
-100  
-110  
-120  
20  
20  
100  
1000  
10000 20k  
100  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 35. PSRR vs. frequency  
Figure 38. CMRR vs. frequency  
0
0
-10  
Vcc = 3.3V  
Vic = 200mVpp  
Av = 2.5, Cin = 470  
Vcc = 3.3V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20 Vic = 200mVpp  
µ
F
Av = 1, Cin = 470  
RL  
Tamb = 25  
µF  
-30  
-40  
RL  
8Ω  
8Ω  
Cb=1µF  
Tamb = 25  
°C  
°
C
Cb=0.47  
µF  
-50  
Cb=1µF  
Cb=0.1µF  
-60  
Cb=0.47  
µF  
Cb=0  
-70  
Cb=0.1µF  
Cb=0  
-80  
-90  
-100  
-110  
-120  
20  
20  
100  
1000  
10000 20k  
100  
1000  
Frequency (Hz)  
Frequency (Hz)  
12/31  
Electrical Characteristics  
TS4994  
Figure 39. CMRR vs. frequency  
Figure 42. THD+N vs. output power  
10  
0
RL = 8  
F = 20Hz  
Av = 1  
Vcc = 2.6V  
Vic = 200mVpp  
Av = 2.5, Cin = 470  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
µ
F
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
RL  
8Ω  
Tamb = 25  
°C  
°C  
Cb=1  
Cb=0.47  
Cb=0.1  
Cb=0  
µF  
µ
F
µF  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Output Power (W)  
Figure 43. THD+N vs. output power  
Figure 40. CMRR vs. common mode input  
voltage  
10  
0
RL = 8  
F = 20Hz  
Av = 2.5  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
1
0.1  
-20  
-40  
Vcc=2.5V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vic = 200mVpp  
F = 217Hz  
°C  
Av = 1, Cb = 1  
RL  
Tamb = 25  
µF  
-60  
8Ω  
°
C
0.01  
1E-3  
-80  
-100  
Vcc=5V  
1E-3  
0.01  
0.1  
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Power (W)  
Common Mode Input Voltage (V)  
Figure 44. THD+N vs. output power  
Figure 41. CMRR vs. common mode input  
voltage  
10  
RL = 8  
F = 20Hz  
Av = 7.5  
0
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
-20  
-40  
Vcc=2.5V  
1
0.1  
°
C
Vic = 200mVpp  
F = 217Hz  
Av = 1, Cb = 0  
-60  
RL  
8Ω  
Tamb = 25  
°C  
-80  
0.01  
-100  
Vcc=5V  
1E-3  
0.01  
0.1  
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Power (W)  
Common Mode Input Voltage (V)  
13/31  
TS4994  
Electrical Characteristics  
Figure 45. THD+N vs. output power  
Figure 48. THD+N vs. output power  
10  
10  
RL = 8  
F = 1kHz  
RL = 8  
F = 20kHz  
Av = 1  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Av = 1  
Cb = 1  
BW < 125kHz  
Tamb = 25°C  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
µF  
1
0.1  
1
°C  
Vcc=5V  
Vcc=5V  
0.1  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 49. THD+N vs. output power  
Figure 46. THD+N vs. output power  
10  
10  
RL = 8  
RL = 8  
F = 20kHz  
Av = 2.5  
F = 1kHz  
Av = 2.5  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1µF  
1
0.1  
BW < 125kHz  
Tamb = 25°C  
1
°C  
Vcc=5V  
Vcc=5V  
0.1  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 50. THD+N vs. output power  
Figure 47. THD+N vs. output power  
10  
10  
RL = 8  
F = 20kHz  
Av = 7.5  
RL = 8  
F = 1kHz  
Av = 7.5  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
1
0.1  
Vcc=5V  
°C  
°C  
1
Vcc=5V  
0.01  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
14/31  
Electrical Characteristics  
TS4994  
Figure 51. THD+N vs. output power  
Figure 54. THD+N vs. output power  
10  
10  
RL = 16  
F = 20Hz  
Av = 1  
RL = 16Ω  
F = 1kHz  
Av = 7.5  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
1
0.1  
°C  
°C  
Vcc=5V  
Vcc=5V  
0.01  
0.01  
1E-3  
1E-3  
0.01  
0.1  
1
1
1
1E-3  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 52. THD+N vs. output power  
Figure 55. THD+N vs. output power  
10  
10  
RL = 16  
RL = 16Ω  
F = 20kHz  
Av = 1  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
F = 20Hz  
Av = 7.5  
Cb = 1  
BW < 125kHz  
Tamb = 25  
1
0.1  
µ
F
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
1
0.1  
°
C
°C  
Vcc=5V  
Vcc=5V  
0.01  
1E-3  
0.01  
1E-3  
1E-3  
0.01  
0.1  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
Figure 53. THD+N vs. output power  
Figure 56. THD+N vs. output power  
10  
10  
RL = 16  
RL = 16Ω  
F = 20kHz  
Av = 7.5  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
F = 1kHz  
Av = 1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
1
0.1  
µ
F
µF  
°C  
°C  
Vcc=5V  
Vcc=5V  
1
0.01  
1E-3  
0.1  
1E-3  
1E-3  
0.01  
0.1  
0.01  
0.1  
1
Output Power (W)  
Output Power (W)  
15/31  
TS4994  
Electrical Characteristics  
Figure 57. THD+N vs. output power  
Figure 60. THD+N vs. output power  
10  
10  
RL = 16  
RL = 8  
Vcc = 2.6V  
Vcc = 5V  
Av = 1, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
Av = 1  
Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
F=20kHz  
F=1kHz  
F=20kHz  
F=1kHz  
1
0.1  
0.1  
F=20Hz  
F=20Hz  
0.01  
0.01  
1E-3  
1E-3  
1E-3  
0.01  
0.1  
1
0.01  
Output Power (W)  
0.1  
Output Power (W)  
Figure 58. THD+N vs. output power  
Figure 61. THD+N vs. frequency  
10  
10  
RL = 8  
Av = 1  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
RL = 8  
Vcc = 2.6V  
Av = 1, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
µF  
1
0.1  
1
0.1  
F=20kHz  
Vcc=2.6V, Po=225mW  
°C  
F=1kHz  
0.01  
1E-3  
0.01  
1E-3  
Vcc=5V, Po=850mW  
F=20Hz  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
1E-3  
0.01  
Output Power (W)  
0.1  
Figure 59. THD+N vs. output power  
Figure 62. THD+N vs. frequency  
10  
10  
RL = 8  
Av = 1  
Cb = 0  
Bw < 125kHz  
Tamb = 25  
RL = 16  
Vcc = 5V  
Av = 1, Cb = 0  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
1
0.1  
F=20kHz  
F=1kHz  
Vcc=2.6V, Po=225mW  
°C  
F=20Hz  
0.01  
1E-3  
0.01  
1E-3  
Vcc=5V, Po=850mW  
20  
100  
1000  
10000 20k  
1E-3  
0.01  
0.1  
1
Output Power (W)  
Frequency (Hz)  
16/31  
Electrical Characteristics  
TS4994  
Figure 63. THD+N vs. frequency  
Figure 66. THD+N vs. frequency  
10  
10  
RL = 8  
Av = 7.5  
Cb = 1  
Bw < 125kHz  
RL = 16  
Av = 7.5  
Cb = 1µF  
Bw < 125kHz  
Tamb = 25  
Vcc=2.6V, Po=155mW  
µF  
1
0.1  
Vcc=2.6V, Po=225mW  
1
0.1  
Tamb = 25  
°C  
°C  
0.01  
1E-3  
Vcc=5V, Po=850mW  
Vcc=5V, Po=600mW  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 64. THD+N vs. frequency  
Figure 67. SNR vs. power supply voltage with  
unweighted filter  
110  
10  
RL = 8  
Av = 7.5  
Cb = 0  
Bw < 125kHz  
RL=16  
105  
100  
95  
Vcc=2.6V, Po=225mW  
1
0.1  
Tamb = 25°C  
RL=8Ω  
90  
Av = 2.5  
Cb = 1  
THD+N < 0.7%  
µ
F
85  
Vcc=5V, Po=850mW  
Tamb = 25  
°
C
80  
0.01  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Power Supply Voltage (V)  
Figure 65. THD+N vs. frequency  
Figure 68. SNR vs. power supply voltage with  
a weighted filter  
10  
RL = 16  
Av = 1  
110  
RL=16  
Cb = 1µF  
1
0.1  
105  
100  
95  
Bw < 125kHz  
Vcc=2.6V, Po=155mW  
Tamb = 25  
°C  
RL=8Ω  
0.01  
1E-3  
90  
Av = 2.5  
Cb = 1  
THD+N < 0.7%  
Vcc=5V, Po=600mW  
µ
F
85  
Tamb = 25  
°
C
20  
100  
1000  
10000 20k  
80  
Frequency (Hz)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
17/31  
TS4994  
Electrical Characteristics  
Figure 69. Startup time vs. bypass capacitor  
20  
Tamb=25°C  
Vcc=5V  
15  
10  
5
Vcc=3.3V  
Vcc=2.6V  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
Bypass Capacitor Cb ( F)  
18/31  
Application Information  
TS4994  
4 Application Information  
4.1 Differential configuration principle  
The TS4994 is a monolithic full-differential input/ output power amplifier. The TS4994 also includes a  
common mode feedback loop that controls the output bias value to average it at Vcc/2 for any DC  
common mode input voltage. This allows the device to always have a maximum output voltage swing,  
and by consequence, maximize the output power. Moreover, as the load is connected differentially  
compared to a single-ended topology, the output is four times higher for the same power supply voltage.  
The advantages of a full-differential amplifier are:  
Very high PSRR (Power Supply Rejection Ratio).  
High common mode noise rejection.  
Virtually zero pop without additional circuitry, giving an faster start-up time compared to conventional  
single-ended input amplifiers.  
Easier interfacing with differential output audio DAC.  
No input coupling capacitors required thanks to common mode feedback loop.  
In theory, the filtering of the internal bias by an external bypass capacitor is not necessary. But, to  
reach maximal performances in all tolerance situations, it’s better to keep this option.  
The main disadvantage is:  
As the differential function is directly linked to external resistors mismatching, in order to reach  
maximal performances of the amplifier paying particular attention to this mismatching is mandatory.  
4.2 Gain in typical application schematic  
Typical differential applications are shown on the figures on page 2.  
In the flat region of the frequency-response curve (no C effect), the differential gain is expressed by the  
in  
relation:  
VO+ VO−  
Diff.Input + −Diff.Input−  
Rfeed  
Rin  
Avdiff  
=
=
where R = R = R and R  
= R  
= R  
.
feed2  
in  
in1  
in2  
feed  
feed1  
Note: For the rest of this chapter, Av will be called Av to simplify the expression.  
diff  
4.3 Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage to be  
averaged at Vcc/2 for any DC common mode bias input voltage.  
However, due to VICM limitation of the input stage (see Electrical Characteristics on page 4), the  
common mode feedback loop can ensure its role only within a defined range. This range depends upon  
the values of Vcc, R and R  
(Av). To have a good estimation of the VICM value, we can apply this  
in  
feed  
formula:  
Vcc×Rin + 2× V ×Rfeed  
IC  
V
=
(V)  
ICM  
2×(Rin + Rfeed  
)
with  
Diff.  
+Diff.Input−  
2
Input+  
V
=
(V)  
IC  
19/31  
TS4994  
Application Information  
and the result of the calculation must be in the range:  
0.6V V  
Vcc 0.9V  
IC  
M
If the result of VICM calculation is not in the previous range, an input coupling capacitor must be used.  
Example: With Vcc=2.5V, R =R =20k and V =2V, we found V =1.63V. This is higher than 2.5V-  
in  
feed  
IC  
ICM  
0.9V=1.6V, so input coupling capacitors are required or you will have to change the V value.  
IC  
4.4 Low and high frequency response  
In the low frequency region, C starts to have an effect. C forms, with R , a high-pass filter with a -3dB  
in  
in  
in  
cut-off frequency. F is in Hz.  
CL  
1
FCL  
=
(Hz)  
2× π×Rin ×Cin  
In the high-frequency region, you can limit the bandwidth by adding a capacitor (C  
) in parallel with  
feed  
R
. It forms a low-pass filter with a -3dB cut-off frequency. F is in Hz.  
feed  
CH  
1
FCH  
=
(Hz)  
2× π×Rfeed ×Cfeed  
While these bandwidth limitations are in theory attractive, in practice, because of low performance in  
terms of capacitor precision (and by consequence in terms of mismatching), they deteriorate the values of  
PSRR and CMRR.  
We will discuss the influence of mismatching on PSRR and CMRR performance in more detail in the  
following paragraphs.  
Example: A typical application with input coupling and feedback capacitor with F =50Hz and  
CL  
F
=8kHz. We assume that the mismatching between R  
and C  
can be neglected. If we sweep  
CH  
in1,2  
feed1,2  
the frequency from DC to 20kHz we observe the following with respect to the PSRR value:  
From DC to 200Hz, the C impedance decreases from infinite to a finite value and the C  
in  
feed  
impedance is high enough to be neglected. Due to the tolerance of C  
, we must introduce a  
in1,2  
mismatch factor (R x C R x C ) that will decrease the PSRR performance.  
in1  
in  
in2  
in2  
From 200Hz to 5kHz, the C impedance is low enough to be neglected when compare to R and  
in  
in,  
the C  
impedance is high enough to be neglected as well. In this range, we can reach the PSRR  
feed  
performance of the TS4994 itself.  
From 5kHz to 20kHz, the C impedance is low to be neglected when compared to R and the C  
in  
in,  
feed  
impedance decreases to a finite value. Due to tolerance of C  
, we introduce a mismatching  
feed1,2  
factor (R  
x C  
R  
x C  
) that will decrease the PSRR performance.  
feed2  
feed1  
feed1  
feed2  
20/31  
Application Information  
TS4994  
4.5 Calculating the influence of mismatching  
On PSRR performance:  
For this calculation, we consider that C and C  
have no influence.  
feed  
in  
We use the same kind of resistor (same tolerance) and R is the tolerance value in %.  
The following equation is valid for frequencies ranging from DC to about 1kHz. Above this frequency,  
parasitic effects start to be significant and a literal equation is not possible to write.  
The PSRR equation is (R in %):  
R×100  
(10000 − ∆R2)  
PSRR 20×Log  
(dB)  
This equation doesn’t include the additional performance provided by bypass capacitor filtering. If a  
bypass capacitor is added, it acts, together with the internal high output impedance bias, as a low-pass  
filter, and the result is a quite important PSRR improvement with a relatively small bypass capacitor.  
The complete PSRR equation (R in %, C in microFarad and F in Hz) is:  
b
R × 100  
----------------------------------------------------------------------------------------------------  
PSRR 20 × log  
(dB)  
2
2
2
(10000 R ) × 1 + F × C × 22.2  
b
Example: With R=0.1% and C =0, the minimum PSRR would be -60dB. With a 100nF bypass  
b
capacitor, at 100Hz the new PSRR would be -93dB.  
This example is a worst case scenario, where each resistor has extreme tolerance and illustrates the fact  
that with only a small bypass capacitor, the TS4994 produce high PSRR performance.  
In addition, it’s important to note that this is a theoretical formula. As the TS4994 has self-generated  
noise, you should consider that the highest practical PSRR reachable is about -110dB. It is therefore  
unreasonable to target a -120dB PSRR.  
The three following graphs show PSRR versus frequency and versus bypass capacitor C in worst-case  
b
condition (R=0.1%).  
Figure 70. PSRR vs. frequency worst case  
condition  
Figure 71. PSRR vs. frequency worst case  
condition  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Vcc = 5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7µF  
Vcc = 3.3V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
µF  
R/R = 0.1%, RL 8Ω  
R/R = 0.1%, RL 8Ω  
Tamb = 25°C, Inputs = Grounded  
Cb=0  
Tamb = 25°C, Inputs = Grounded  
Cb=0  
Cb=0.1µF  
Cb=0.1µF  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Cb=1µF  
Cb=0.47µF  
Cb=1µF  
Cb=0.47µF  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
21/31  
TS4994  
Application Information  
Figure 72. PSRR vs. frequency worst case condition  
0
-10  
-20  
Vcc = 2.5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
µF  
-30  
R/R = 0.1%, RL 8Ω  
Tamb = 25°C, Inputs = Grounded  
-40  
Cb=0  
-50  
-60  
-70  
-80  
Cb=0.1µF  
-90  
-100  
-110  
-120  
-130  
-140  
Cb=1  
µF  
Cb=0.47µF  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
The two following graphs show typical application of TS4994 with four 0.1% tolerances and a random  
choice for them.  
Figure 73. PSRR vs. frequency with random  
choice condition  
Figure 74. PSRR vs. frequency with random  
choice condition  
0
0
-10  
-20  
-30  
-10  
-20  
-30  
Vcc = 5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
R/R 0.1%, RL  
Tamb = 25 C, Inputs = Grounded  
Vcc = 2.5V, Vripple = 200mVpp  
Av = 1, Cin = 4.7  
R/R 0.1%, RL  
Tamb = 25 C, Inputs = Grounded  
µ
F
8
µF  
8Ω  
°
°
-40  
-40  
-50  
-50  
-60  
-70  
-60  
-70  
Cb=0  
Cb=0  
Cb=0.1µF  
Cb=0.1µF  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Cb=1  
µF  
Cb=0.47  
µ
F
Cb=1  
µF  
Cb=0.47µF  
20  
20  
100  
1000  
10000 20k  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
CMRR performance  
For this calculation, we consider there to be no influence of C and C  
. C has no influence in the  
b
in  
feed  
calculation of the CMRR.  
We use the same kind of resistor (same tolerance) and R is the tolerance value in %.  
The following equation is valid for frequencies ranging from DC to about 1kHz. Above this frequency,  
parasitic effects start to be significant and a literal equation is not possible to write.  
The CMRR equation is (R in %):  
R× 200  
(10000 − ∆R2)  
CMRR 20×Log  
(dB)  
Example: With R=1%, the minimum CMRR would be -34dB.  
With a DC Vic=2.5V, the DC differential output (Voo) which results is 50mV maximum. As this Voo is  
across the load, for an 8load the extra consumption would be 50mV/8=6.2mA.  
22/31  
Application Information  
TS4994  
With R=1%, the minimum CMRR would be -53dB that give Voo=5.6mV and an maximum extra  
consumption less than 700µA.  
This example is of a worst case scenario where each resistor has extreme tolerance and illustrates the  
fact that for CMRR, good matching is essential.  
As with the PSRR, due to self-generated noise, the TS4994 CMRR limitation would be about -110dB.  
Figures 75 and 76 show CMRR versus frequency and versus bypass capacitor C in worst-case condition  
b
( R=0.1%).  
Figure 75. CMRR vs. frequency worst case  
condition  
Figure 76. CMRR vs. frequency worst case  
condition  
0
0
Vcc = 2.5V  
Vic = 200mVpp  
Av = 1, Cin = 470µF  
Vcc = 5V  
-10 Vic = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
Av = 1, Cin = 470  
R/R = 0.1%, RL  
Tamb = 25  
µF  
8Ω  
R/R = 0.1%, RL  
8Ω  
-20  
-30  
-40  
-50  
-60  
Tamb = 25  
°C  
°
C
Cb=1  
Cb=0  
µF  
Cb=1  
Cb=0  
µF  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Figures 77 and 78 show CMRR versus frequency for a typical application with four 0.1% tolerances and  
a random choice for them.  
Figure 77. CMRR vs. frequency with random  
choice condition  
Figure 78. CMRR vs. frequency with random  
choice condition  
0
0
Vcc = 2.5V  
-10  
Vcc = 5V  
-10  
Vic = 200mVpp  
Vic = 200mVpp  
-20 Av = 1, Cin = 470  
R/R 0.1%, RL  
Tamb = 25  
µF  
8Ω  
-20 Av = 1, Cin = 470  
R/R 0.1%, RL  
Tamb = 25  
µF  
8Ω  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
°C  
°C  
Cb=1  
Cb=0  
µF  
Cb=1  
Cb=0  
µF  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
23/31  
TS4994  
Application Information  
4.6 Power dissipation and efficiency  
Assumptions:  
Load voltage and current are sinusoidal (V and I  
)
out  
out  
Supply voltage is a pure DC source (V )  
cc  
Regarding the load we have:  
V
= VPEAK sinωt (V)  
out  
and  
V
out  
I
= ------------- (A)  
out  
RL  
and  
2
VPEAK  
2RL  
P
= ---------------------- ( W )  
out  
Therefore, the average current delivered by the supply voltage is:  
VPEAK  
πRL  
ICC  
= 2------------------- (A)  
AVG  
The power delivered by the supply voltage is:  
P
= Vcc Icc  
(W)  
AVG  
supply  
Then, the power dissipated by each amplifier is  
= P - P (W)  
P
diss  
supply  
out  
2 2V  
CC  
-----------------------  
P
=
P
P  
out out  
diss  
π R  
L
and the maximum value is obtained when:  
Pdiss  
--------------------- = 0  
P  
out  
and its value is:  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
Note: This maximum value is only dependent on power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply  
P
πVPEAK  
out  
η = -------------------- =-----------------------  
P
4VCC  
supply  
The maximum theoretical value is reached when Vpeak = Vcc, so  
π
---- = 78.5%  
4
24/31  
Application Information  
TS4994  
The maximum die temperature allowable for the TS4994 is 125°C. However, in case of overheating, a  
thermal shutdown set to 150°C, puts the TS4994 in standby until the temperature of the die is reduced by  
about 5°C.  
To calculate the maximum ambient temperature T  
Power supply Voltage value, Vcc  
Load resistor value, RL  
allowable, we need to know:  
AMB  
The package type, RTH  
JA  
2
Example: Vcc=5V, RL=8Ω, RTH Flip-Chip=100°C/W (100mm copper heatsink).  
JA  
We calculate P  
With  
= 633mW.  
dissmax  
TAMB = 125°C RTHJA ×P  
(°C)  
diss  
T
= 125-100x0.633=61.7°C  
AMB  
4.7 Decoupling of the circuit  
Two capacitors are needed to correctly bypass the TS4994. A power supply bypass capacitor C and a  
S
bias voltage bypass capacitor C .  
B
C has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect  
S
influence on power supply disturbances. With a value for C of 1µF, you can expect similar THD+N  
S
performances to those shown in the datasheet.  
In the high frequency region, if C is lower than 1µF, it increases THD+N and disturbances on the power  
S
supply rail are less filtered.  
On the other hand, if C is higher than 1µF, those disturbances on the power supply rail are more filtered.  
S
C has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR  
b
(with input grounded and in the lower frequency region).  
4.8 Wake-up Time: T  
WU  
When the standby is released to put the device ON, the bypass capacitor C will not be charged  
b
immediately. As C is directly linked to the bias of the amplifier, the bias will not work properly until the C  
b
b
voltage is correct. The time to reach this voltage is called the wake-up time or T  
and is specified in the  
WU  
tables found in Electrical Characteristics on page 4, with C =1µF. During the wake-up time phase, the  
b
TS4994 gain is close to zero. After the wake-up time period, the gain is released and set to its nominal  
value.  
If C has a value other than 1µF, please refer to the graph in Figure 69 on page 18 to establish the wake-  
b
up time value.  
4.9 Shutdown time  
When the standby command is set, the time required to put the two output stages in high impedance and  
the internal circuitry in shutdown mode is a few microseconds.  
Note: In shutdown mode, Bypass pin and Vin+, Vin- pins are short-circuited to ground by internal switches. This allows  
a quick discharge of C and C capacitors.  
b
in  
25/31  
TS4994  
Application Information  
4.10 Pop performance  
In theory, due to a fully differential structure, the pop performance of the TS4994 should be perfect.  
However, due to R , R , and C mismatching, some noise could remain at startup. In TS4994 we  
in  
feed  
in  
included a pop reduction circuitry reach the pop that is theoretical with mismatched components. With this  
circuitry, the TS4994 is close to zero pop for all common applications possible.  
In addition, when the TS4994 is set in standby, due to the high impedance output stage configuration in  
this mode, no pop is possible.  
4.11 Single ended input configuration  
It’s possible to use the TS4994 in a single-ended input configuration. However, input coupling capacitors  
areneeded in this configuration. The schematic in Figure 79 shows this configuration using the miniSO8  
version of the TS4994 as example.  
Figure 79. Single ended input typical application  
VCC  
+
Cs  
1u  
Rfeed1  
20k  
GND  
7
VCC  
Ve  
Cin1  
Rin1  
2
Vin-  
-
Vo+  
Vo-  
8
5
20k  
220nF  
Cin2  
Rin2  
3
4
Vin+  
+
20k  
+
GND  
220nF  
8 Ohms  
Bypass  
Bias  
Optional  
Cb  
1u  
Standby  
GND  
6
TS4994IS  
Stdby  
1
GND  
Rfeed2  
20k  
GND  
GND VCC  
The components calculations remain the same except for the gain. The new formula is:  
VO+ VORfeed  
AvSE  
=
=
Ve  
Rin  
26/31  
Application Information  
4.12 Demoboard  
TS4994  
A demoboard for the TS4994 is available, however it is designed only for the TS4994 in the DFN10  
package. However, we can guarantee that all electrical parameters are similar except for the power  
dissipation.  
For more information about this demoboard, please refer to Application Note AN2013.  
Figure 80. Demoboard schematic  
Cn8  
Vcc  
+
C4  
1uF/6V  
C5  
100nF/10V  
GND  
R2  
GND  
GND  
22k/1%  
R4  
22k/1%  
Cn3  
9
J1  
VCC  
Cn1  
C1  
R1  
Cn5  
2
Vin-  
-
Vo+ 10  
Vo-  
Pos. Input  
Neg. Input  
22k/1%  
100nF/10V  
100nF/10V R3  
22k/1%  
GND  
GND  
4
5
Vin+  
+
6
C2  
Bypass  
Bias  
+
Cn2  
J2  
C3  
1uF/6V  
Standby  
GND  
7
Cn4  
Mode  
3
Stdby  
1
TS4994DFN10  
GND  
Cn6  
Cn7  
Vcc  
Vcc  
1
1
GND  
J4  
2
3
2
3
J3  
GND  
GND  
Figure 81. Components location  
Figure 82. Top layer  
27/31  
TS4994  
Application Information  
Figure 83. Bottom layer  
28/31  
Package Mechanical Data  
TS4994  
5 Package Mechanical Data  
5.1 MiniSO8 package  
29/31  
TS4994  
Package Mechanical Data  
5.2 DFN10 package  
Dimensions in millimeters unless otherwise indicated.  
3.0  
10  
3.0  
0.35  
0.8  
1
0.25  
0.5  
* The Exposed Pad is connected to the Ground  
30/31  
Revision History  
TS4994  
6 Revision History  
Date  
Revision  
Description of Changes  
01 Sept. 2003  
01 Oct. 2004  
01 Jan. 2005  
17 Mar. 2005  
1
First Release  
Curves updated in the document  
2
3
Update Mechanical Data on Flip-Chip Package  
Remove datas on Flip-Chip Package  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
31/31  

相关型号:

TS4994IST

1W Differential Input/Output Audio Power Amplifier with Selectable Standby
STMICROELECTR

TS4994IST

1W differential input/output audio power amplifier with selectable standby
TI

TS4994_06

1W differential input/output audio power amplifier with selectable standby
TI

TS4995

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain
STMICROELECTR

TS4995EIJT

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain
STMICROELECTR

TS4997

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR

TS4997IQT

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR

TS4998

2 x 1W differential input stereo audio amplifier
STMICROELECTR

TS4998IQT

2 x 1W differential input stereo audio amplifier
STMICROELECTR

TS4999

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4999EIJT

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4A

Modular Jacks
YAMAICHI