TS4998IQT [STMICROELECTRONICS]

2 x 1W differential input stereo audio amplifier; 2× 1W差分输入的立体声音频放大器
TS4998IQT
型号: TS4998IQT
厂家: ST    ST
描述:

2 x 1W differential input stereo audio amplifier
2× 1W差分输入的立体声音频放大器

消费电路 商用集成电路 音频放大器 视频放大器
文件: 总33页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4998  
2 x 1W differential input stereo audio amplifier  
Features  
QFN16 4x4mm  
Operating range from V = 2.7V to 5.5V  
CC  
1W output power per channel @ V =5V,  
CC  
THD+N=1%, R =8Ω  
L
Ultra low standby consumption: 10nA typ.  
80dB PSRR @ 217Hz with grounded inputs  
High SNR: 106dB(A) typ.  
Fast startup time: 45ms typ.  
Pop&click-free circuit  
Dedicated standby pin per channel  
Lead-free QFN16 4x4mm package  
Pin connections (top view)  
Applications  
Cellular mobile phones  
Notebook and PDA computers  
LCD monitors and TVs  
Portable audio devices  
Description  
The TS4998 is designed for top-class stereo  
audio applications. Thanks to its compact and  
power-dissipation efficient QFN16 package with  
exposed pad, it suits a variety of applications.  
With a BTL configuration, this audio power  
amplifier is capable of delivering 1W per channel  
of continuous RMS output power into an 8Ω load  
@ 5V.  
Each output channel (left and right), also has its  
own external controlled standby mode pin to  
reduce the supply current to less than 10nA per  
channel. The device also features an internal  
thermal shutdown protection.  
The gain of each channel can be configured by  
external gain setting resistors.  
December 2007  
Rev 1  
1/33  
www.st.com  
33  
Contents  
TS4998  
Contents  
1
2
3
4
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Standby control and wake-up time tWU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.10 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.11 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.12 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.13 Notes on PSRR measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5
6
7
QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/33  
TS4998  
Typical application schematics  
1
Typical application schematics  
Figure 1 shows a typical application for the TS4998 with a gain of +6dB set by the input  
resistors.  
Figure 1.  
Typical application schematics  
VCC  
Cs  
1uF  
Optional  
Diff. input L- Cin1  
P1  
U1  
Rin1  
25k  
TS4998  
Vcc  
330nF  
1
2
4
3
LIN-  
LOUT-  
LOUT+  
ROUT-  
12  
11  
9
Left Speaker  
-
Cin2  
Rin2  
25k  
LEFT  
P2  
LIN+  
RIN-  
RIN+  
+
-
8 Ohms  
Diff. input L+ 330nF  
Diff. input R- Cin3  
Rin3  
25k  
Right Speaker  
P3  
RIGHT  
330nF  
ROUT+ 10  
+
8 Ohms  
Cin4  
P4  
Rin4  
25k  
Diff. input R+ 330nF  
14  
Bypass  
BIAS  
STBY  
GND  
GND  
TS4998 - QFN16  
1uF  
Cb  
Table 1.  
External component descriptions  
Functional description  
Components  
Input resistors that set the closed loop gain in conjunction with a fixed internal  
feedback resistor (Gain = Rfeed/RIN, where Rfeed = 50kΩ).  
RIN  
Input coupling capacitors that block the DC voltage at the amplifier input  
terminal. Thanks to common mode feedback, these input capacitors are  
optional. However, if they are added, they form with RIN a 1st order high pass  
filter with -3dB cut-off frequency (fcut-off = 1 / (2 x π x RIN x CIN)).  
CIN  
CS  
CB  
Supply bypass capacitors that provides power supply filtering.  
Bypass pin capacitor that provides half supply filtering.  
3/33  
 
Absolute maximum ratings  
TS4998  
2
Absolute maximum ratings  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vin  
Supply voltage (1)  
6
GND to VCC  
-40 to + 85  
-65 to +150  
150  
V
V
Input voltage (2)  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient  
Power dissipation  
°C  
Rthja  
Pd  
120  
°C/W  
Internally limited  
Human body model (3)  
Digital pins STBYL, STBYR  
2
1.5  
ESD  
ESD  
kV  
Machine model  
200  
200  
V
Latch-up immunity  
mA  
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of the input signal must never exceed VCC + 0.3V / GND - 0.3V.  
3. All voltage values are measured from each pin with respect to supplies.  
Table 3.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Supply voltage  
2.7 to 5.5  
V
V
VICM  
Common mode input voltage range  
GND to VCC - 1V  
Standby voltage input:  
VSTBY  
V
Device ON  
Device OFF  
1.3 VSTBY VCC  
GND VSTBY 0.4  
RL  
Load resistor  
4  
1  
Ω
ROUT/GND Output resistor to GND (VSTBY = GND)  
MΩ  
°C  
TSD  
Thermal shutdown temperature  
150  
Thermal resistance junction to ambient  
QFN16(1)  
45  
85  
Rthja  
°C/W  
QFN16(2)  
1. When mounted on a 4-layer PCB with vias.  
2. When mounted on a 2-layer PCB with vias.  
4/33  
 
TS4998  
Electrical characteristics  
3
Electrical characteristics  
Table 4.  
Symbol  
V
= +5V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
No input signal, no load, left and right channel active  
ICC  
ISTBY  
Voo  
7.4  
9.6  
mA  
Standby current (1)  
No input signal, VSTBYL = GND, VSTBYR = GND, RL = 8Ω  
10  
1
2000  
35  
nA  
mV  
mW  
%
Output offset voltage  
No input signal, RL = 8Ω  
Output power  
THD = 1% max, F = 1kHz, RL = 8Ω  
Po  
800  
1000  
0.5  
Total harmonic distortion + noise  
Po = 700mWrms, G = 6dB, RL = 8Ω, 20Hz F 20kHz  
THD + N  
Power supply rejection ratio(2), inputs grounded  
RL = 8Ω, G = 6dB, Cb = 1µF, Vripple = 200mVpp  
F = 217Hz  
F = 1kHz  
PSRR  
CMRR  
dB  
dB  
80  
75  
Common mode rejection ratio(3)  
RL = 8Ω, G = 6dB, Cb = 1µF, Vincm = 200mVpp  
57  
57  
F = 217Hz  
F = 1kHz  
Signal-to-noise ratio  
A-weighted, G = 6dB, Cb = 1µF, RL = 8Ω  
(THD + N 0.5%, 20Hz < F < 20kHz)  
SNR  
108  
dB  
dB  
Channel separation, RL = 8Ω, G = 6dB  
F = 1kHz  
F = 20Hz to 20kHz  
Crosstalk  
105  
80  
Output voltage noise, F = 20Hz to 20kHz, RL = 8Ω, G=6dB  
Cb = 1µF  
VN  
µVrms  
V/V  
15  
10  
Unweighted  
A-weighted  
60kΩ  
40kΩ  
50kΩ  
---------------  
---------------  
---------------  
Gain value (RIN in kΩ)  
Gain  
R
R
R
IN  
IN  
IN  
tWU  
Wake-up time (Cb = 1µF)  
Standby time (Cb = 1µF)  
46  
10  
ms  
µs  
tSTBY  
Phase margin at unity gain  
RL = 8Ω, CL = 500pF  
ΦM  
65  
Degrees  
GM  
Gain margin, RL = 8Ω, CL = 500pF  
Gain bandwidth product, RL = 8Ω  
15  
dB  
GBP  
1.5  
MHz  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vincm)).  
.
5/33  
 
Electrical characteristics  
TS4998  
Table 5.  
Symbol  
V
= +3.3V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
No input signal, no load, left and right channel active  
ICC  
ISTBY  
Voo  
6.6  
8.6  
mA  
Standby current (1)  
No input signal, VSTBYL = GND, VSTBYR = GND, RL = 8Ω  
10  
1
2000  
35  
nA  
mV  
mW  
%
Output offset voltage  
No input signal, RL = 8Ω  
Output power  
THD = 1% max, F = 1kHz, RL = 8Ω  
Po  
370  
460  
0.5  
Total harmonic distortion + noise  
Po = 300mWrms, G = 6dB, RL = 8Ω, 20Hz F 20kHz  
THD + N  
Power supply rejection ratio(2), inputs grounded  
RL = 8Ω, G = 6dB, Cb = 1µF, Vripple = 200mVpp  
F = 217Hz  
F = 1kHz  
PSRR  
CMRR  
dB  
dB  
80  
75  
Common mode rejection ratio(3)  
RL = 8Ω, G = 6dB, Cb = 1µF, Vincm = 200mVpp  
57  
57  
F = 217Hz  
F = 1kHz  
Signal-to-noise ratio  
A-weighted, G = 6dB, Cb = 1µF, RL = 8Ω  
(THD + N 0.5%, 20Hz < F < 20kHz)  
SNR  
104  
dB  
dB  
Channel separation, RL = 8Ω, G = 6dB  
F = 1kHz  
F = 20Hz to 20kHz  
Crosstalk  
105  
80  
Output voltage noise, F = 20Hz to 20kHz, RL = 8Ω, G=6dB  
Cb = 1µF  
VN  
µVrms  
V/V  
15  
10  
Unweighted  
A-weighted  
40kΩ  
50kΩ  
60kΩ  
---------------  
---------------  
---------------  
Gain value (RIN in kΩ)  
Gain  
R
R
R
IN  
IN  
IN  
tWU  
Wake-up time (Cb = 1µF)  
Standby time (Cb = 1µF)  
47  
10  
ms  
µs  
tSTBY  
Phase margin at unity gain  
RL = 8Ω, CL = 500pF  
ΦM  
65  
Degrees  
GM  
Gain margin, RL = 8Ω, CL = 500pF  
Gain bandwidth product, RL = 8Ω  
15  
dB  
GBP  
1.5  
MHz  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vincm)).  
.
6/33  
TS4998  
Electrical characteristics  
Table 6.  
Symbol  
V
= +2.7V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
No input signal, no load, left and right channel active  
ICC  
ISTBY  
Voo  
6.2  
8.1  
mA  
Standby current (1)  
No input signal, VSTBYL = GND, VSTBYR = GND, RL = 8Ω  
10  
1
2000  
35  
nA  
mV  
mW  
%
Output offset voltage  
No input signal, RL = 8Ω  
Output power  
THD = 1% max, F = 1kHz, RL = 8Ω  
Po  
220  
295  
0.5  
Total harmonic distortion + noise  
Po = 200mWrms, G = 6dB, RL = 8Ω, 20Hz F 20kHz  
THD + N  
Power supply rejection ratio(2), inputs grounded  
RL = 8Ω, G = 6dB, Cb = 1µF, Vripple = 200mVpp  
F = 217Hz  
F = 1kHz  
PSRR  
CMRR  
dB  
dB  
76  
73  
Common mode rejection ratio(3)  
RL = 8Ω, G = 6dB, Cb = 1µF, Vincm = 200mVpp  
57  
57  
F = 217Hz  
F = 1kHz  
Signal-to-noise ratio  
A-weighted, G = 6dB, Cb = 1µF, RL = 8Ω  
(THD + N 0.5%, 20Hz < F < 20kHz)  
SNR  
102  
dB  
dB  
Channel separation, RL = 8Ω, G = 6dB  
F = 1kHz  
F = 20Hz to 20kHz  
Crosstalk  
105  
80  
Output voltage noise, F = 20Hz to 20kHz, RL = 8Ω, G=6dB  
Cb = 1µF  
VN  
µVrms  
V/V  
15  
10  
Unweighted  
A-weighted  
60kΩ  
40kΩ  
50kΩ  
---------------  
---------------  
---------------  
Gain value (RIN in kΩ)  
Gain  
R
R
R
IN  
IN  
IN  
tWU  
Wake-up time (Cb = 1µF)  
Standby time (Cb = 1µF)  
46  
10  
ms  
µs  
tSTBY  
Phase margin at unity gain  
RL = 8Ω, CL = 500pF  
ΦM  
65  
Degrees  
GM  
Gain margin, RL = 8Ω, CL = 500pF  
Gain bandwidth product, RL = 8Ω  
15  
dB  
GBP  
1.5  
MHz  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vincm)).  
.
7/33  
Electrical characteristics  
TS4998  
Table 7.  
Index of graphics  
Description  
Figure  
Page  
THD+N vs. output power  
Figure 2 to 13  
Figure 14 to 19  
Figure 20 to 28  
Figure 29  
page 9 to page 10  
page 11  
THD+N vs. frequency  
PSRR vs. frequency  
page 12 to page 13  
page 13  
PSRR vs. common mode input voltage  
CMRR vs. frequency  
Figure 30 to 35  
Figure 36  
page 13 to page 14  
page 14  
CMRR vs. common mode input voltage  
Crosstalk vs. frequency  
Figure 37 to 39  
Figure 40 to 45  
page 14 to page 15  
page 15 to page 16  
SNR vs. power supply voltage  
Differential DC output voltage vs. common mode input  
voltage  
Figure 46 to 48  
page 16  
Current consumption vs. power supply voltage  
Current consumption vs. standby voltage  
Standby current vs. power supply voltage  
Frequency response  
Figure 49  
page 16  
Figure 50 to 52  
Figure 53  
page 17  
page 17  
Figure 54 to 56  
Figure 57  
page 17 to page 18  
page 18  
Output power vs. load resistance  
Output power vs. power supply voltage  
Power dissipation vs. output power  
Power derating curves  
Figure 58 to 59  
Figure 60 to 62  
Figure 63  
page 18  
page 18 to page 19  
page 19  
8/33  
TS4998  
Electrical characteristics  
Figure 2.  
THD+N vs. output power  
Figure 3.  
THD+N vs. output power  
10  
10  
RL = 4  
G = +6dB  
F = 1kHz  
Ω
RL = 4  
G = +12dB  
F = 1kHz  
Ω
Vcc=5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
μF  
Cb = 1  
BW < 125kHz  
1
μF  
Vcc=3.3V  
Vcc=3.3V  
1
Tamb = 25°C  
Tamb = 25°C  
Vcc=2.7V  
Vcc=2.7V  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 4.  
THD+N vs. output power  
Figure 5.  
THD+N vs. output power  
10  
10  
RL = 8  
Ω
RL = 8Ω  
G = +6dB  
F = 1kHz  
G = +12dB  
F = 1kHz  
Vcc=5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
μ
F
Cb = 1  
BW < 125kHz  
1
μF  
1
Vcc=3.3V  
Vcc=2.7V  
Vcc=3.3V  
Vcc=2.7V  
Tamb = 25  
°
C
Tamb = 25°C  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 6.  
THD+N vs. output power  
Figure 7.  
THD+N vs. output power  
10  
10  
RL = 16Ω  
RL = 16Ω  
G = +6dB  
F = 1kHz  
G = +12dB  
F = 1kHz  
Vcc=5V  
Vcc=5V  
Cb = 1μF  
BW < 125kHz  
Tamb = 25°C  
Cb = 1  
BW < 125kHz  
1
μF  
1
Tamb = 25°C  
Vcc=3.3V  
Vcc=2.7V  
Vcc=3.3V  
Vcc=2.7V  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
9/33  
Electrical characteristics  
TS4998  
Figure 8.  
THD+N vs. output power  
Figure 9.  
THD+N vs. output power  
10  
10  
RL = 4  
G = +6dB  
F = 10kHz  
Ω
RL = 4Ω  
G = +12dB  
F = 10kHz  
Vcc=5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
μ
F
Cb = 1  
BW < 125kHz  
1
μF  
Vcc=3.3V  
Vcc=3.3V  
1
Tamb = 25  
°
C
Tamb = 25°C  
Vcc=2.7V  
Vcc=2.7V  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 10. THD+N vs. output power  
Figure 11. THD+N vs. output power  
10  
10  
RL = 8  
Ω
RL = 8Ω  
G = +6dB  
F = 10kHz  
G = +12dB  
F = 10kHz  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
Vcc=2.7V  
Cb = 1  
μ
F
Cb = 1  
BW < 125kHz  
1
μF  
BW < 125kHz  
Tamb = 25  
1
Vcc=3.3V  
Vcc=2.7V  
°
C
Tamb = 25°C  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 12. THD+N vs. output power  
Figure 13. THD+N vs. output power  
10  
10  
RL = 16Ω  
G = +6dB  
F = 10kHz  
RL = 16Ω  
G = +12dB  
F = 10kHz  
Vcc=5V  
Vcc=5V  
Cb = 1μF  
BW < 125kHz  
Cb = 1  
BW < 125kHz  
1
μF  
1
Vcc=3.3V  
Vcc=2.7V  
Tamb = 25°C  
Tamb = 25°C  
Vcc=3.3V  
Vcc=2.7V  
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
10/33  
TS4998  
Electrical characteristics  
Figure 14. THD+N vs. frequency  
Figure 15. THD+N vs. frequency  
10  
10  
RL = 4  
G = +12dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
RL = 4  
G = +6dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
Vcc=5V  
Pout=950mW  
μ
F
μ
F
Vcc=5V  
Pout=950mW  
°
C
°
C
1
1
Vcc=3.3V  
Vcc=3.3V  
Pout=430mW  
Pout=430mW  
0.1  
0.1  
0.01  
Vcc=2.7V  
Pout=260mW  
Vcc=2.7V  
Pout=260mW  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 16. THD+N vs. frequency  
Figure 17. THD+N vs. frequency  
10  
10  
RL = 8  
G = +6dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
RL = 8  
G = +12dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
μ
F
μ
F
Vcc=5V  
Pout=700mW  
Vcc=5V  
Pout=700mW  
°
C
°
C
1
1
Vcc=3.3V  
Pout=300mW  
Vcc=3.3V  
Pout=300mW  
Vcc=2.7V  
Vcc=2.7V  
Pout=200mW  
Pout=200mW  
0.1  
0.1  
0.01  
0.01  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 18. THD+N vs. frequency  
Figure 19. THD+N vs. frequency  
10  
10  
RL = 16  
G = +6dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
RL = 16  
G = +12dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
1
Ω
μ
F
μF  
Vcc=5V  
Pout=450mW  
Vcc=5V  
Pout=450mW  
°
C
°C  
1
Vcc=3.3V  
Pout=200mW  
Vcc=3.3V  
Pout=200mW  
Vcc=2.7V  
Vcc=2.7V  
Pout=120mW  
Pout=120mW  
0.1  
0.1  
0.01  
0.01  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
11/33  
Electrical characteristics  
TS4998  
Figure 20. PSRR vs. frequency  
Figure 21. PSRR vs. frequency  
0
0
Vcc = 5V  
Vripple = 200mVpp  
Vcc = 5V  
Vripple = 200mVpp  
-10  
-10  
G = +6dB  
Cb = 1 F, Cin = 4.7  
Inputs Grounded  
Tamb = 25  
G = +12dB  
Cb = 1 F, Cin = 4.7  
Inputs Grounded  
Tamb = 25  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
μ
μ
F
μ
μF  
°
C
°C  
100  
1000  
Frequency (Hz)  
10000  
10000  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 22. PSRR vs. frequency  
Figure 23. PSRR vs. frequency  
0
0
Vcc = 3.3V  
Vripple = 200mVpp  
Vcc = 5V  
Vripple = 200mVpp  
-10  
-10  
G = +6dB  
Cb = 1  
Inputs Floating  
Tamb = 25  
μF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
Cb = 1  
Inputs Grounded  
Tamb = 25  
μF, Cin = 4.7μF  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
°
C
°
C
100  
1000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
Figure 24. PSRR vs. frequency  
Figure 25. PSRR vs. frequency  
0
0
Vcc = 3.3V  
Vripple = 200mVpp  
Vcc = 3.3V  
Vripple = 200mVpp  
-10  
-10  
Cb = 1  
Inputs Floating  
Tamb = 25  
μF  
G = +12dB  
Cb = 1 F, Cin = 4.7  
Inputs Grounded  
Tamb = 25  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
μ
μF  
°
C
°
C
100  
1000  
Frequency (Hz)  
100  
1000  
10000  
Frequency (Hz)  
12/33  
TS4998  
Electrical characteristics  
Figure 26. PSRR vs. frequency  
Figure 27. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vcc = 2.7V  
Vripple = 200mVpp  
Vcc = 2.7V  
Vripple = 200mVpp  
G = +12dB  
-10  
G = +6dB  
Cb = 1 F, Cin = 4.7  
Inputs Grounded  
Tamb = 25  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
μ
μ
F
Cb = 1  
Inputs Grounded  
Tamb = 25  
μF, Cin = 4.7μF  
°
C
°C  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 28. PSRR vs. frequency  
Figure 29. PSRR vs. common mode input  
voltage  
0
0
Vcc = 2.7V  
Vripple = 200mVpp  
Vripple = 200mVpp  
F = 217Hz, G = +6dB  
-10  
-10  
Cb = 1  
Inputs Floating  
Tamb = 25  
μF  
Cb = 1μF, RL 8Ω  
Tamb = 25°C  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
°
C
Vcc=3.3V  
Vcc=2.7V  
Vcc=5V  
100  
1000  
10000  
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Frequency (Hz)  
Figure 30. CMRR vs. frequency  
Figure 31. CMRR vs. frequency  
0
0
Vcc = 5V  
Vcc = 5V  
RL  
G = +6dB  
Vic = 200mVpp  
Cb = 1  
8
Ω
RL 8Ω  
G = +12dB  
Vic = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
μ
F, Cin = 4.7  
μ
F
Cb = 1  
μF, Cin = 4.7μF  
Tamb = 25°C  
Tamb = 25°C  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
13/33  
Electrical characteristics  
TS4998  
Figure 32. CMRR vs. frequency  
Figure 33. CMRR vs. frequency  
0
0
Vcc = 3.3V  
Vcc = 3.3V  
RL  
G = +6dB  
Vic = 200mVpp  
Cb = 1  
8
Ω
RL 8Ω  
G = +12dB  
Vic = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
μ
F, Cin = 4.7  
μ
F
Cb = 1  
μF, Cin = 4.7μF  
Tamb = 25°C  
Tamb = 25°C  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 34. CMRR vs. frequency  
Figure 35. CMRR vs. frequency  
0
0
Vcc = 2.7V  
Vcc = 2.7V  
RL 8Ω  
G = +6dB  
Vic = 200mVpp  
Cb = 1μF, Cin = 4.7μF  
Tamb = 25°C  
RL 8Ω  
G = +12dB  
Vic = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Cb = 1  
μF, Cin = 4.7μF  
Tamb = 25°C  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 36. CMRR vs. common mode input  
voltage  
Figure 37. Crosstalk vs. frequency  
0
20  
Vripple = 200mVpp  
F = 217Hz, G = +6dB  
RL = 4  
G = +6dB  
Cin = 1 F, Cb = 1  
Tamb = 25  
Ω
-10  
-20  
10  
Cb = 1  
μ
F, RL  
8
Ω
μ
μF  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
Tamb = 25°C  
°
C
-40  
-50  
Vcc=5V  
Vcc=3.3V  
Vcc=2.7V  
-60  
Vcc=3.3V  
Vcc=2.7V  
-70  
-80  
-90  
-100  
-110  
-120  
Vcc=5V  
0
1
2
3
4
5
100  
1000  
Frequency (Hz)  
10000  
Common Mode Input Voltage (V)  
14/33  
TS4998  
Electrical characteristics  
Figure 38. Crosstalk vs. frequency  
Figure 39. Crosstalk vs. frequency  
0
0
-10  
RL = 8  
G = +6dB  
Cin = 1 F, Cb = 1  
Tamb = 25  
Ω
RL = 16  
G = +6dB  
Cin = 1 F, Cb = 1  
Tamb = 25  
Ω
-10  
-20  
-20  
μ
μ
F
μ
μF  
-30  
-30  
°
C
°C  
-40  
-40  
-50  
-50  
Vcc=5V  
Vcc=5V  
-60  
-60  
Vcc=3.3V  
Vcc=2.7V  
Vcc=3.3V  
Vcc=2.7V  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 40. SNR vs. power supply voltage  
Figure 41. SNR vs. power supply voltage  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
A - Weighted filter  
96  
A - weighted filter  
F = 1kHz  
96  
F = 1kHz  
94  
92  
90  
94  
92  
90  
G = +6dB, RL = 4  
THD + N < 0.5%  
Ω
G = +6dB ,RL = 8  
THD + N < 0.5%  
Ω
Tamb = 25  
4.5 5.0  
Supply Voltage (V)  
°
C
Tamb = 25  
4.5 5.0  
Supply Voltage (V)  
°C  
2.5  
3.0  
3.5  
4.0  
5.5  
2.5  
3.0  
3.5  
4.0  
5.5  
Figure 42. SNR vs. power supply voltage  
Figure 43. SNR vs. power supply voltage  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
A - Weighted filter  
96  
Unweighted filter (20Hz to 20kHz)  
F = 1kHz  
96  
94  
92  
90  
F = 1kHz  
94  
92  
90  
G = +6dB ,RL = 16  
THD + N < 0.5%  
Ω
G = +6dB, RL = 4  
THD + N < 0.5%  
Ω
Tamb = 25  
°C  
Tamb = 25  
°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
15/33  
Electrical characteristics  
TS4998  
Figure 44. SNR vs. power supply voltage  
Figure 45. SNR vs. power supply voltage  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
Unweighted filter (20Hz to 20kHz)  
96  
Unweighted filter (20Hz to 20kHz)  
F = 1kHz  
96  
F = 1kHz  
94  
92  
90  
94  
G = +6dB, RL = 8  
THD + N < 0.5%  
Ω
G = +6dB, RL = 16  
THD + N < 0.5%  
Ω
92  
Tamb = 25  
°
C
Tamb = 25  
°C  
90  
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 46. Differential DC output voltage vs.  
common mode input voltage  
Figure 47. Differential DC output voltage vs.  
common mode input voltage  
Vcc = 5V  
G = +6dB  
Tamb = 25  
Vcc = 3.3V  
G = +6dB  
Tamb = 25°C  
1000  
100  
10  
1000  
100  
10  
°
C
1
1
0.1  
0.1  
0.01  
1E-3  
0.01  
1E-3  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
Figure 48. Differential DC output voltage vs.  
common mode input voltage  
Figure 49. Current consumption vs. power  
supply voltage  
8
Vcc = 2.7V  
1000  
No load  
G = +6dB  
Tamb = 25°C  
Tamb = 25°C  
7
6
5
4
3
2
1
0
100  
10  
Both channels active  
One channel active  
1
0.1  
0.01  
1E-3  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Power Supply Voltage (V)  
16/33  
TS4998  
Electrical characteristics  
Figure 50. Current consumption vs. standby Figure 51. Current consumption vs. standby  
voltage  
voltage  
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Both channels active  
One channel active  
Both channels active  
One channel active  
Vcc = 5V  
No load  
Tamb = 25  
Vcc = 3.3V  
No load  
°
C
Tamb = 25  
°C  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
Standby Voltage (V)  
Standby Voltage (V)  
Figure 52. Current consumption vs. standby Figure 53. Standby current vs. power supply  
voltage  
voltage  
7
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
No load  
Tamb = 25  
°
C
Both channels active  
One channel active  
Vcc = 2.7V  
No load  
Tamb = 25  
°C  
0.0  
0.5  
1.0  
1.5  
2.0 2.5  
0
1
2
3
4
5
Standby Voltage (V)  
Power Supply Voltage (V)  
Figure 54. Frequency response  
Figure 55. Frequency response  
14  
14  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
Cin=4.7  
μ
F, Rin=12k  
Ω
Cin=4.7μF, Rin=12kΩ  
Cin=680nF, Rin=12k  
Cin=4.7 F, Rin=24k  
Ω
Cin=680nF, Rin=12k  
Ω
8
8
7
7
μ
Ω
Cin=4.7 F, Rin=24kΩ  
μ
6
6
5
5
4
4
Vcc = 5V  
Po = 700mW  
Vcc = 3.3V  
Po = 300mW  
3
3
Cin=330nF, Rin=24k  
100  
Ω
Cin=330nF, Rin=24k  
100  
Ω
2
2
ZL = 8  
Ω + 500pF  
ZL = 8  
Ω + 500pF  
1
1
Tamb = 25  
°
C
Tamb = 25  
°
C
0
0
20  
20k  
20  
20k  
10000  
1000  
10000  
1000  
Frequency (Hz)  
Frequency (Hz)  
17/33  
Electrical characteristics  
TS4998  
Figure 56. Frequency response  
Figure 57. Output power vs. load resistance  
14  
1800  
1600  
1400  
1200  
1000  
800  
THD+N = 1%  
F = 1kHz  
Cin=4.7μF, Rin=12kΩ  
13  
12  
11  
10  
9
Vcc=5.5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=4.5V  
Vcc=4V  
Vcc=3.3V  
Vcc=3V  
°
C
Cin=680nF, Rin=12k  
Ω
8
7
Cin=4.7μF, Rin=24kΩ  
6
5
600  
4
Vcc = 2.7V  
Po = 200mW  
400  
3
Cin=330nF, Rin=24k  
100  
Ω
2
ZL = 8  
Ω + 500pF  
200  
1
Vcc=2.7V  
Tamb = 25  
°
C
0
0
20  
20k  
1000  
10000  
4
8
12  
16  
20  
24  
28  
32  
Frequency (Hz)  
Load Resistance (Ω)  
Figure 58. Output power vs. power supply  
voltage  
Figure 59. Output power vs. power supply  
voltage  
1800  
2200  
F = 1kHz  
Cb = 1μF  
F = 1kHz  
Cb = 1μF  
2000  
1600  
1800  
1600  
1400  
1200  
1000  
800  
BW < 125 kHz  
Tamb = 25°C  
BW < 125 kHz  
Tamb = 25  
1400  
°C  
RL=4Ω  
RL=4  
Ω
1200  
1000  
800  
600  
400  
200  
0
RL=8Ω  
RL=16Ω  
RL=32Ω  
5.0  
RL=8  
Ω
600  
RL=16  
Ω
400  
200  
RL=32  
5.0  
Ω
0
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.5  
Vcc (V)  
Figure 60. Power dissipation vs. output power Figure 61. Power dissipation vs. output power  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RL=4  
Ω
RL=4  
Ω
RL=8  
Ω
RL=8  
Ω
RL=16  
Ω
RL=16  
Ω
Vcc = 5V  
F = 1kHz  
THD+N < 1%  
Vcc = 3.3V  
F = 1kHz  
THD+N < 1%  
0
0
200 400  
600  
800 1000 1200 1400 1600  
0
100  
200  
300  
400  
500  
600  
700  
Output Power (mW)  
Output Power (mW)  
18/33  
TS4998  
Electrical characteristics  
Figure 62. Power dissipation vs. output power Figure 63. Power derating curves  
400  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Mounted on 4-layer PCB  
with vias  
350  
300  
250  
200  
150  
100  
50  
RL=4  
Ω
Mounted on 2-layer PCB  
with vias  
RL=8  
Ω
RL=16  
Ω
Vcc = 2.7V  
F = 1kHz  
THD+N < 1%  
No Heat sink -AMR value  
0
0
25  
50  
75  
100  
C)  
125  
150  
0
50 100 150 200 250 300 350 400 450  
Ambiant Temperature (  
°
Output Power (mW)  
19/33  
Application information  
TS4998  
4
Application information  
4.1  
General description  
The TS4998 integrates two monolithic full-differential input/output power amplifiers with two  
selectable standby pins dedicated for each channel. The gain of each channel is set by  
external input resistors.  
4.2  
Differential configuration principle  
The TS4998 also includes a common mode feedback loop that controls the output bias  
value to average it at V /2 for any DC common mode input voltage. This allows maximum  
CC  
output voltage swing, and therefore, to maximize the output power. Moreover, as the load is  
connected differentially instead of single-ended, output power is four times higher for the  
same power supply voltage.  
The advantages of a full-differential amplifier are:  
High PSRR (power supply rejection ratio),  
High common mode noise rejection,  
Virtually no pops&clicks without additional circuitry, giving a faster startup time  
compared to conventional single-ended input amplifiers,  
Easier interfacing with differential output audio DAC,  
No input coupling capacitors required due to common mode feedback loop.  
In theory, the filtering of the internal bias by an external bypass capacitor is not necessary.  
However, to reach maximum performance in all tolerance situations, it is recommended to  
keep this option.  
The only constraint is that the differential function is directly linked to external resistor  
mismatching, therefore you must pay particular attention to this mismatching in order to  
obtain the best performance from the amplifier.  
4.3  
Gain in typical application schematic  
A typical differential application is shown in Figure 1 on page 3.  
The value of the differential gain of each amplifier is dependent on the values of external  
input resistors R  
to R  
and of integrated feedback resistors with fixed value. In the flat  
IN1  
IN4  
region of the frequency-response curve (no C effect), the differential gain of each channel  
IN  
is expressed by the relation given in Equation 1.  
Equation 1  
V
O+ VO-  
Rfeed  
50kΩ  
RIN  
AV = ------------------------------------------------------ = -------------- = -------------  
diff  
Diffinput+ Diffinput-  
= R expressed in kΩ and R = 50kΩ (value of internal  
feed  
RIN  
where R = R  
= R  
= R  
IN  
IN1  
IN2  
IN3  
IN4  
feedback resistors).  
20/33  
 
 
 
TS4998  
Application information  
Due to the tolerance on the internal 50kΩfeedback resistors, the differential gain will be in  
the range (no tolerance on R ):  
IN  
40kΩ  
60kΩ  
-------------  
-------------  
AV  
diff  
RIN  
RIN  
The difference of resistance between input resistors of each channel have direct influence  
on the PSRR, CMRR and other amplifier parameters. In order to reach maximum  
performance, we recommend matching the input resistors R , R , R , and R with a  
IN1  
IN2  
IN3  
IN4  
maximum tolerance of 1%.  
Note:  
For the rest of this section, Av will be called A to simplify the mathematical expressions.  
diff  
V
4.4  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
Due to the V  
limitation of the input stage (see Table 3 on page 4), the common mode  
ICM  
feedback loop can fulfil its role only within the defined range. This range depends upon the  
values of V , R and R (AV). To have a good estimation of the V value, use the  
CC  
IN  
feed  
ICM  
following formula:  
Equation 2  
VCC × RIN + 2 × Vic × Rfeed  
--------------------------------------------------------------------------  
VCC × RIN + 2 × Vic × 50kΩ  
--------------------------------------------------------------------------  
2 × (RIN + 50kΩ)  
VICM  
=
=
(V)  
2 × (RIN + Rfeed  
)
with V in volts, R in kΩ and  
CC  
IN  
Diffinput+ + Diffinput-  
------------------------------------------------------  
2
Vic  
=
(V)  
The result of the calculation must be in the range:  
GND VICMVCC 1V  
Due to the +/-20% tolerance on the 50kΩ feedback resistors R  
(no tolerance on R ), it is  
also important to check that the VICM remains in this range at the tolerance limits:  
feed  
IN  
VCC × RIN + 2 × Vic × 40kΩ  
--------------------------------------------------------------------------  
2 × (RIN + 40kΩ)  
VCC × RIN + 2 × Vic × 60kΩ  
--------------------------------------------------------------------------  
(V)  
VICM  
2 × (RIN + 60kΩ)  
If the result of the V  
used.  
calculation is not in this range, an input coupling capacitor must be  
ICM  
Example: V = 2.7V, AV = 2, and V = 2.2V.  
CC  
ic  
With internal resistors R  
= 50kΩ, calculated external resistors are R = R  
/AV = 25kΩ,  
feed  
feed  
IN  
V
= 2.7V and V = 2.2V, which gives V  
= 1.92V. Taking into account the tolerance on  
CC  
ic  
ICM  
the feedback resistors, with R  
= 40kΩ the common mode input voltage is V  
= 1.87V  
feed  
ICM  
and with R  
= 60kΩ, it is V  
= 1.95V.  
feed  
ICM  
These values are not in range from GND to V - 1V = 1.7V, therefore input coupling  
CC  
capacitors are required. Alternatively, you can change the V value.  
ic  
21/33  
 
Application information  
TS4998  
4.5  
Low frequency response  
The input coupling capacitors block the DC part of the input signal at the amplifier inputs. In  
the low frequency region, C starts to have an effect. C and R form a first-order high  
IN  
IN  
IN  
pass filter with a -3dB cut-off frequency.  
1
----------------------------------------------  
FCL  
=
(Hz)  
2 × π × RIN × CIN  
with R expressed in Ω and C expressed in F.  
IN  
IN  
So, for a desired -3dB cut-off frequency we can calculate C :  
IN  
1
-----------------------------------------------  
CIN  
=
(F)  
2 × π × RIN × FCL  
From Figure 64, you can easily establish the C value required for a -3 dB cut-off frequency  
IN  
for some typical cases.  
Figure 64. -3dB lower cut-off frequency vs. input capacitance  
Tamb=25°C  
Rin=6.2k  
G~18dB  
Ω
100  
Rin=12k  
G~12dB  
Ω
10  
Rin=24k  
G~6dB  
Ω
0.1  
0.2  
0.4  
0.6  
0.8  
1
Input Capacitor Cin (  
μ
F)  
22/33  
 
TS4998  
Application information  
4.6  
Power dissipation and efficiency  
Assumptions:  
Load voltage and current are sinusoidal (V and I  
)
out  
out  
Supply voltage is a pure DC source (V  
)
CC  
The output voltage is:  
Vout = Vpeak sinωt (V)  
and  
Vout  
------------  
(A)  
Iout  
=
RL  
and  
2
Vpeak  
--------------------  
(W)  
Pout  
=
2RL  
Therefore, the average current delivered by the supply voltage is:  
Equation 3  
Vpeak  
----------------  
IccAVG = 2  
(A)  
πRL  
The power delivered by the supply voltage is:  
Equation 4  
Psupply = VCC IccAVG (W)  
Therefore, the power dissipated by each amplifier is:  
= P - P (W)  
P
diss  
supply  
out  
2 2VCC  
----------------------  
Pdiss  
=
P
outPout(W)  
π RL  
and the maximum value is obtained when:  
and its value is:  
Pdiss  
--------------------  
= 0  
Pout  
Equation 5  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
Note:  
This maximum value is only dependent on the power supply voltage and load values.  
23/33  
 
Application information  
TS4998  
The efficiency is the ratio between the output power and the power supply:  
Equation 6  
Pout  
πVpeak  
4Vcc  
------------------ --------------------  
η=  
=
Psupply  
The maximum theoretical value is reached when V  
= V , so:  
CC  
peak  
π
η= ---- = 78.5%  
4
The TS4998 is stereo amplifier so it has two power amplifiers. Each amplifier produces heat  
due to its power dissipation. Therefore, the maximum die temperature is the sum of each  
amplifier’s maximum power dissipation. It is calculated as follows:  
P
P
= Power dissipation of left channel power amplifier  
= Power dissipation of right channel power amplifier  
diss 1  
diss 2  
Total P  
=P  
+ P  
(W)  
diss 2  
diss  
diss 1  
In most cases, P  
= P  
, giving:  
diss 1  
diss 2  
4 2VCC  
----------------------  
TotalPdiss = 2 × Pdiss1  
=
Pout2Pout(W)  
π RL  
The maximum die temperature allowable for the TS4998 is 150°C. In case of overheating, a  
thermal shutdown protection set to 150°C, puts the TS4998 in standby until the temperature  
of the die is reduced by about 5°C.  
To calculate the maximum ambient temperature T  
allowable, you need to know:  
amb  
the power supply voltage value, V  
CC  
the load resistor value, R  
L
the package type, R  
THJA  
Example: V =5V, R =8Ω, R QFN16=85°C/W (with 2-layer PCB with vias).  
THJA  
CC  
L
Using the power dissipation formula given in Equation 5, the maximum dissipated power per  
channel is:  
P
= 633mW  
dissmax  
And the power dissipated by both channels is:  
Total P  
= 2 x P  
= 1266mW  
dissmax  
dissmax  
T
is calculated as follows:  
amb  
Equation 7  
T
amb= 150° C RTJHA × TotalPdissmax  
Therefore, the maximum allowable value for T  
is:  
amb  
T
= 150 - 85 x 2 x 1.266=42.4°C  
amb  
If a 4-layer PCB with vias is used, R  
QFN16 = 45°C/W and the maximum allowable  
THJA  
value for T  
in this case is:  
amb  
T
= 150 - 45 x 2 x 1.266 = 93°C  
amb  
24/33  
TS4998  
Application information  
4.7  
Footprint recommendation  
Footprint soldering pad dimensions are given in Figure 72 on page 30. As discussed in the  
previous section, the maximum allowable value for ambient temperature is dependent on  
the thermal resistance junction to ambient R  
power dissipation.  
. Decreasing the R  
value causes better  
THJA  
THJA  
Based on best thermal performance, it is recommended to use 4-layer PCBs with vias to  
effectively remove heat from the device. It is also recommended to use vias for 2-layer PCBs  
to connect the package exposed pad to heatsink cooper areas placed on another layer.  
For proper thermal conductivity, the vias must be plated through and solder-filled. Typical  
thermal vias have the following dimensions: 1.2mm pitch, 0.3mm diameter.  
Figure 65. QFN16 footprint recommendation  
4.8  
Decoupling of the circuit  
Two capacitors are needed to correctly bypass the TS4998: a power supply bypass  
capacitor C and a bias voltage bypass capacitor C .  
S
b
The C capacitor has particular influence on the THD+N at high frequencies (above 7kHz)  
S
and an indirect influence on power supply disturbances. With a value for C of 1µF, one can  
S
expect THD+N performance similar to that shown in the datasheet.  
In the high frequency region, if C is lower than 1µF, then THD+N increases and  
S
disturbances on the power supply rail are less filtered.  
On the other hand, if C is greater than 1µF, then those disturbances on the power supply  
S
rail are more filtered.  
The C capacitor has an influence on the THD+N at lower frequencies, but also impacts  
b
PSRR performance (with grounded input and in the lower frequency region).  
25/33  
 
 
Application information  
TS4998  
4.9  
Standby control and wake-up time tWU  
The TS4998 has two dedicated standby pins (STBYL, STBYR). These pins allow to put  
each channel in standby mode or active mode independently. The amplifier is designed to  
reach close to zero pop when switching from one mode to the other.  
When both channels are in standby (V  
= V  
= GND), the circuit is in shutdown  
STBYR  
STBYL  
mode. When at least one of the two standby pins is released to put the device ON, the  
bypass capacitor C starts to be charged. Because C is directly linked to the bias of the  
b
b
amplifier, the bias will not work properly until the C voltage is correct. The time to reach this  
b
voltage is called the wake-up time or t  
and is specified in Table 4 on page 5, with C =1µF.  
WU  
b
During the wake-up phase, the TS4998 gain is close to zero. After the wake-up time, the  
gain is released and set to its nominal value. If C has a value different from 1µF, then refer  
b
to the graph in Figure 66 to establish the corresponding wake-up time.  
When a channel is set to standby mode, the outputs of this channel are in high impedance  
state.  
Figure 66. Typical startup time vs. bypass capacitor  
100  
Tamb=25°C  
90  
80  
70  
60  
50  
40  
30  
Vcc=2.7V  
Vcc=3.3V  
Vcc=5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
3.5  
F)  
4.0  
4.5  
Bypass Capacitor Cb (  
μ
4.10  
Note:  
4.11  
Shutdown time  
When the standby command is activated (both channels put into standby mode), the time  
required to put the two output stages of each channel in high impedance and the internal  
circuitry in shutdown mode is a few microseconds.  
In shutdown mode when both channels are in standby, the Bypass pin and L +, L -, R +,  
IN  
IN  
IN  
R - pins are shorted to ground by internal switches. This allows a quick discharge of C and  
IN  
IN  
b
C
capacitors.  
Pop performance  
Due to its fully differential structure, the pop performance of the TS4998 is close to perfect.  
However, due to mismatching between internal resistors R , external resistors R and  
feed  
IN  
26/33  
 
 
 
TS4998  
Application information  
external input capacitors C , some noise might remain at startup. To eliminate the effect of  
IN  
mismatched components, the TS4998 includes pop reduction circuitry. With this circuitry,  
the TS4998 is close to zero pop for all possible common applications.  
In addition, when the TS4998 is in standby mode, due to the high impedance output stage in  
this configuration, no pop is heard.  
4.12  
Single-ended input configuration  
It is possible to use the TS4998 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The schematic diagram in Figure 67  
shows an example of this configuration for a gain of +6dB set by the input resistors.  
Figure 67. Typical single-ended input application  
VCC  
Cs  
1uF  
U1  
Diff. input L- Cin1  
P1  
Rin1  
25k  
TS4998  
Vcc  
330nF  
1
2
4
3
LIN-  
LOUT-  
LOUT+  
ROUT-  
12  
11  
9
Left Speaker  
-
Cin2  
Rin2  
25k  
LEFT  
LIN+  
RIN-  
RIN+  
+
-
8 Ohms  
330nF  
Diff. input R- Cin3  
P2  
Rin3  
25k  
Right Speaker  
RIGHT  
330nF  
ROUT+ 10  
+
8 Ohms  
Cin4  
Rin4  
25k  
330nF  
14  
Bypass  
BIAS  
STBY  
GND  
GND  
TS4998 - QFN16  
1uF  
Cb  
The component calculations remain the same for the gain. In single-ended input  
configuration, the formula is:  
V
O+ VO-  
--------------------------  
=
Rfeed  
= -------------- = -------------  
RIN RIN  
50kΩ  
AvSE  
Ve  
with R expressed in kΩ.  
IN  
27/33  
 
Application information  
TS4998  
4.13  
Notes on PSRR measurement  
What is the PSRR?  
The PSRR is the power supply rejection ratio. The PSRR of a device is the ratio between a  
power supply disturbance and the result on the output. In other words, the PSRR is the  
ability of a device to minimize the impact of power supply disturbance to the output.  
How is the PSRR measured?  
The PSRR is measured as shown in Figure 68.  
Figure 68. PSRR measurement  
Vripple  
Vcc  
U1  
Cin1  
Rin1  
Rin2  
Rin3  
Rin4  
TS4998  
Vcc  
4.7uF  
Cin2  
1
2
4
3
LIN-  
LOUT-  
LOUT+  
ROUT-  
12  
11  
9
-
RL  
8Ohms  
LEFT  
LIN+  
RIN-  
RIN+  
+
-
4.7uF  
Cin3  
RL  
8Ohms  
RIGHT  
4.7uF  
Cin4  
ROUT+ 10  
+
4.7uF  
14  
Bypass  
BIAS  
STBY  
GND  
GND  
TS4998 - QFN16  
1uF  
Cb  
Principles of operation  
The DC voltage supply (V ) is fixed  
CC  
The AC sinusoidal ripple voltage (V  
) is fixed  
ripple  
No bypass capacitor C is used  
S
The PSRR value for each frequency is calculated as:  
RMS(Output)  
RMS(Vripple)  
PSRR = 20 × Log  
(dB)  
----------------------------------  
RMS is an rms selective measurement.  
28/33  
 
TS4998  
QFN16 package information  
5
QFN16 package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a Lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Figure 69. QFN16 package  
Figure 70. QFN16 pinout (top view)  
29/33  
 
QFN16 package information  
TS4998  
Figure 71. QFN16 4x4mm package mechanical data  
Dimensions  
Millimeters (mm)  
Ref  
Min  
Typ  
0.9  
Max  
A
A1  
A3  
b
0.8  
1.0  
0.02  
0.20  
0.25  
4.0  
0.05  
0.18  
3.85  
2.1  
0.30  
4.15  
2.6  
D
*
D2  
E
3.85  
2.1  
4.0  
4.15  
2.6  
E2  
e
* The Exposed Pad is connected to Ground.  
0.65  
0.40  
K
0.2  
L
0.30  
0.11  
0.50  
r
Figure 72. QFN16 footprint soldering pad  
Footprint data  
Ref  
mm  
A
B
C
D
E
F
4.2  
4.2  
0.65  
0.35  
0.65  
2.70  
30/33  
TS4998  
Ordering information  
6
Ordering information  
Table 8.  
Order code  
TS4998IQT  
Order codes  
Temperature range  
-40°C to +85°C  
Package  
Packaging  
Tape & reel  
Marking  
QFN16 4x4mm  
K998  
31/33  
 
Revision history  
TS4998  
7
Revision history  
Table 9.  
Date  
20-Dec-2007  
Document revision history  
Revision  
Changes  
1
Initial release.  
32/33  
 
TS4998  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
33/33  

相关型号:

TS4999

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4999EIJT

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4A

Modular Jacks
YAMAICHI

TS4B

Modular Jacks
YAMAICHI

TS4B01G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_1

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_10

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B02G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B03G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B04G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B05G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B05G

Single-phase Silicon Bridge Rectifier
PFS