TS4999 [STMICROELECTRONICS]

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects; 无滤波器立体声2.8胜类音频功率放大器,具有可选的3D音效
TS4999
型号: TS4999
厂家: ST    ST
描述:

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
无滤波器立体声2.8胜类音频功率放大器,具有可选的3D音效

放大器 功率放大器
文件: 总36页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4999  
Filter-free stereo 2.8 W class D audio power amplifier  
with selectable 3D sound effects  
Features  
Flip chip 18-bump package  
Operates from V = 2.4 to 5.5 V  
CC  
Dedicated standby mode active low/channel  
Output power per channel: 2.8 W at 5 V into  
4 Ωwith 10% THD+N or 0.7 W at 3.6 V into 8 Ω  
with 1% THD+N max.  
Selectable 3D sound effect  
Four gain setting steps: 3.5, 6, 9.5 and 12 dB  
Low current consumption  
Pin connections (top view)  
PSSR: 63 dB typical at 217 Hz.  
Fast start up phase: 7.8 ms  
Short-circuit and thermal shutdown protection  
Flip chip 18-bump lead-free package  
LOUT-  
ROUT-  
PGND  
LPVCC  
RPVCC  
LOUT+  
G1  
G0  
ROUT+  
Applications  
AVCC  
RIN-  
AGND  
LIN-  
Cellular phones  
STDBYR  
PDAs  
STDBYL  
LIN+  
Notebook PCs  
3D  
RIN+  
Description  
The TS4999 is a stereo fully-differential class D  
power amplifier. It can drive up to 1.35 W into a  
8 Ω load at 5 V per channel. The device has four  
different gain settings utilizing two discrete pins,  
G0 and G1.  
Pop and click reduction circuitry provides low  
on/off switch noise while allowing the device to  
start within 8 ms. 3D enhancement effects are  
selected through one digital input pin that allows  
more amazing stereo audio sound.  
Two standby pins (active low) allow each channel  
to be switched off separately.  
The TS4999 is available in a flip chip, 18-bump,  
lead-free package.  
December 2008  
Rev 1  
1/36  
www.st.com  
36  
Contents  
TS4999  
Contents  
1
2
3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3D effect enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Circuit decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wakeup (tWU) and shutdown (tSTBY) times . . . . . . . . . . . . . . . . . . . . . . . 26  
Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.10 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.11 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
5.2  
Flip chip package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Tape and reel package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2/36  
TS4999  
Absolute maximum ratings  
1
Absolute maximum ratings  
Table 1.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter  
Value  
Unit  
Supply voltage(1)  
Input voltage(2)  
VCC  
Vin  
6
V
V
GND to VCC  
-40 to + 85  
-65 to +150  
150  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
Maximum junction temperature  
°C  
Thermal resistance junction to ambient (3)  
Power dissipation  
Rthja  
200  
°C/W  
Internally Limited(4)  
2
Pd  
HBM: human body model(5)  
MM: machine model(6)  
ESD  
ESD  
kV  
200  
200  
V
mA  
V
Latch-up Latch-up immunity  
VSTBY  
GND to VCC  
Standby pin voltage maximum voltage  
Lead temperature (soldering, 10 secs)  
260  
°C  
Output short-circuit protection(7)  
1. All voltages values are measured with respect to the ground pin.  
2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V  
3. Device is protected in case of over temperature by a thermal shutdown active at 150° C.  
4. Exceeding the power derating curves during a long period, involves abnormal operating condition.  
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between  
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin  
combinations with other pins floating.  
7. Implemented short-circuit protection protects the amplifier against damage by short-circuit between  
positive and negative outputs of each channel and between outputs and ground.  
3/36  
Absolute maximum ratings  
TS4999  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vin  
Supply voltage(1)  
2.4 to 5.5  
V
Input voltage range  
GND to VCC  
Standby voltage input(2)  
VSTBY  
V
Device ON  
Device OFF  
1.4 VSTBY VCC  
GND VSTBY 0.4(3)  
RL  
VIH  
VIL  
Load resistor  
4  
Ω
V
G0, G1, 3D, High Level Input Voltage(4)  
G0, G1, 3D, Low Level Input Voltage  
Thermal Resistance Junction to Ambient (5)  
1.4 VIH VCC  
GND VIL 0.4  
90  
V
Rthja  
°C/W  
1. For VCC from 2.4 to 2.5 V, the operating temperature range is reduced to 0° C Tamb 70° C  
2. Without any signal on VSTBY, the device will be in standby (internal 300 kΩ (+/-20 %) pull down resistor)  
3. Minimum current consumption is obtained when VSTBY = GND  
4. Between G0, G1, 3D pins and GND, there is an internal 300 kΩ (+/-20 %) pull-down resistor. When pins  
are floating, the gain is 3.5 dB and 3D effect is off. In full standby (left and right channels OFF), these  
resistors are disconnected (HiZ input).  
5. With a 4-layer PCB.  
Table 3.  
3D  
3D effect pin and STANDBY pins setting truth table  
STBYL  
STBYR  
3D Effect  
Left channel Right channel  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
STDBY  
STDBY  
ON  
STDBY  
ON  
OFF  
OFF  
OFF  
X
STDBY  
ON  
ON  
STDBY  
N/A  
STDBY  
N/A  
N/A  
N/A  
ON  
N/A  
N/A  
ON  
ON  
Note:  
When the 3D effect is switched on, both channels must be in operation or in shutdown mode  
at the same time.  
4/36  
 
TS4999  
Application information  
2
Application information  
Figure 1.  
Typical application schematic  
Cs  
0.1uF  
CsR  
1uF  
CsL  
VCC  
VCC  
VCC  
1uF  
Gain Select  
Control  
3D Effect  
Control  
Differential  
Left Input  
TS4999  
AVCC  
RPVCC  
LPVCC  
Left IN+  
Cin  
Cin  
A1 Lin+  
B2 Lin-  
Lout+ A5  
H
Gain  
PWM  
Select  
Lout- A7  
Bridge  
Left IN-  
Left speaker  
C3 G0  
C5 G1  
Oscillator  
PWM  
Differential  
Right Input  
E1 Rin+  
D2 Rin-  
Rout+ E5  
H
Right IN+  
Gain  
Cin  
Cin  
Select  
Rout- E7  
Bridge  
Right speaker  
Right IN-  
A3 STBYL  
E3 STBYR  
Standby  
Control  
Protection  
Circuit  
AGND  
PGND  
Standby Control  
Note:  
See Section 4.9: Output filter considerations on page 29.  
Table 4.  
External component description  
Components  
Functional description  
CS, CSL, CSR Supply capacitor that provides power supply filtering.  
Input coupling capacitors that block the DC voltage at the amplifier input terminal.  
The capacitors also form a high pass filter with Zin  
(Fcl = 1 / (2 x π x Zin x Cin)). Note that the value of Zin changes with each gain setting.  
Cin  
These coupling capacitors are mandatory.  
5/36  
Application information  
TS4999  
Table 5.  
Bump  
Pin description  
Name  
Function  
A1  
B2  
C1  
E1  
D2  
A3  
C3  
E3  
B4  
D4  
A5  
C5  
E5  
B6  
D6  
A7  
C7  
E7  
LIN+  
LIN-  
Left channel positive differential input  
Left channel negative differential input  
3D  
3D effect digital input pin  
RIN+  
Right channel positive differential input  
Right channel negative differential input  
Standby input pin (active low) for left channel output  
Gain select input pin (LSB)  
RIN-  
STBYL  
G0  
STBYR  
AGND  
AVCC  
LOUT+  
G1  
Standby input pin (active low) for right channel output  
Analog ground  
Analog supply voltage  
Left channel negative output  
Gain select input pin (MSB)  
ROUT+  
LPVCC  
RPVCC  
LOUT-  
PGND  
ROUT-  
Right channel positive output  
Left channel power supply voltage  
Right channel power supply voltage  
Left channel negative output  
Power ground  
Right channel negative output  
Table 6.  
Truth table for output gain settings  
G0  
G1  
Gain value (dB)  
0
0
1
1
0
1
0
1
3.5  
6
9.5  
12  
Note:  
See Table 3 on page 4.  
Table 7.  
Truth table for 3D effects pin settings  
3D  
3D effect  
0
1
OFF  
ON  
6/36  
 
TS4999  
Electrical characteristics  
3
Electrical characteristics  
.
Table 8.  
Symbol  
V
= +5 V, GND = 0 V, T  
= 25° C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
ICC  
Supply current  
No input signal, no load, both channels  
No input signal, Vstdby = GND  
5
1
7
2
mA  
ISTANDBY Standby current  
μA  
Floating inputs, RL = 8Ω, G = 3.5dB,  
Voo  
Po  
Output offset voltage  
Output power  
20  
mV  
W
3D effect off  
THD = 1% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
2.25  
1.35  
2.8  
W
W
1.7  
Total harmonic distortion + Po = 0.9W/Ch, G = 6dB, F=1kHz,  
THD+N  
0.2  
%
%
noise  
RL = 8Ω  
Po = 2.3 WRMS, RL = 4Ω +15µH  
Po = 1.4 WRMS, RL = 8Ω + 15µH  
Cin = 1µF (1),3D effects off  
82  
89  
Efficiency Efficiency per channel  
Power supply rejection ratio  
PSRR  
65  
dB  
F = 217Hz, RL = 8Ω, gain = 6dB,  
Vripple = 200mVpp, Inputs grounded  
with inputs grounded  
F = 1kHz, RL = 8Ω,  
Crosstalk Channel separation  
100  
57  
dB  
dB  
3D effects off  
Common mode rejection  
Cin=1µF, F = 217Hz, RL = 8Ω, gain = 6dB,  
ΔVIC = 200mVpp, 3D effects OFF  
CMRR  
ratio  
G1 = G0 = "0"  
3
5.5  
9
3.5  
6
4
G1 = "0" & G0 = "1"  
G1 = "1" & G0 = "0"  
G1 = G0 = "1"  
6.5  
10  
Gain  
Gain value with no load  
dB  
9.5  
12  
11.5  
12.5  
G1 = G0 = 3D = "0" or  
G1 = "0" & G0 = "1" & 3D = "0" or  
G1 = "1" & G0 = "0" & 3D = "0"  
24  
12  
30  
15  
36  
18  
kΩ  
kΩ  
kΩ  
G1 = "1" & G0 = "1" & 3D = "0"  
Single-ended input  
impedance referred to GND  
ZIN  
G1 = G0 = "0" & 3D = "1" or  
G1 = "0" & G0 = "1" & 3D = "1" or  
G1 = "1" & G0 = "0" & 3D = "1"  
13.5 17.1 20.5  
G1 = "1" & G0 = "1" & G3D = "1"  
6.5  
8.6  
10.5  
370  
Pulse width modulator  
base frequency  
FPWM  
190  
280  
kHz  
Po = 1.3W, A-weighting, RL = 8Ω,  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
99  
13  
dB  
ms  
Gain = 6dB, 3D effects OFF  
Total wake-up time(2)  
9
16.5  
7/36  
 
Electrical characteristics  
TS4999  
Table 8.  
Symbol  
V
= +5 V, GND = 0 V, T  
= 25° C (unless otherwise specified) (continued)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
tSTBY  
Standby time  
Standby time(2)  
11  
15.8  
20  
ms  
F = 20Hz to 20kHz, A-weighted,  
Gain = 3.5dB  
Filterless, 3D effect off, RL = 4Ω  
Filterless, 3D effect on, RL = 4Ω  
With LC output filter, 3D effect off, RL = 4Ω  
With LC output filter, 3D effect on, RL = 4Ω  
Filterless, 3D effect off, RL = 8Ω  
Filterless, 3D effect on, RL = 8Ω  
With LC output filter, 3D effect off, RL = 8Ω  
With LC output filter, 3D effect on, RL = 8Ω  
31  
50  
30  
48  
32  
51  
31  
50  
VN  
Output voltage noise  
μVRMS  
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the super-imposed sinus signal to VCC at f = 217 Hz  
with fixed Cin cap (input decoupling capacitor).  
2. See Section 4.6: Wakeup (tWU) and shutdown (tSTBY) times on page 26.  
8/36  
TS4999  
Electrical characteristics  
.
Table 9.  
Symbol  
V
= +3.6V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
ICC  
Supply current  
No input signal, no load, both channels  
No input signal, Vstdby = GND  
3.5  
1
5.5  
2
mA  
ISTANDBY Standby current  
μA  
Floating inputs, RL = 8Ω, G = 3.5dB,  
Voo  
Po  
Output offset voltage  
Output power  
20  
mV  
W
3D effect off  
THD = 1% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
1.15  
0.7  
1.45  
0.86  
W
W
Total harmonic distortion + Po = 0.45W/Ch, G = 6dB, F=1kHz,  
THD+N  
0.15  
%
%
noise  
RL = 8Ω  
Po = 1.15 WRMS, RL = 4Ω +15µH  
Po = 0.7 WRMS, RL = 8Ω + 15µH  
Cin = 1µF (1),3D effects off  
82  
89  
Efficiency Efficiency per channel  
Power supply rejection ratio  
PSRR  
64  
dB  
F = 217Hz, RL = 8Ω, gain = 6dB,  
Vripple = 200mVpp, inputs grounded  
with inputs grounded  
F = 1kHz, RL = 8Ω,  
Crosstalk Channel separation  
102  
55  
dB  
dB  
3D effects off  
Common mode rejection  
Cin=1µF, F = 217Hz, RL = 8Ω, gain = 6dB,  
ΔVIC = 200mVpp, 3D effects off  
CMRR  
ratio  
G1 = G0 = "0"  
3
5.5  
9
3.5  
6
4
G1 = "0" & G0 = "1"  
G1 = "1" & G0 = "0"  
G1 = G0 = "1"  
6.5  
10  
Gain  
Gain value with no load  
dB  
9.5  
12  
11.5  
12.5  
G1 = G0 = 3D = "0" or  
G1 = "0" & G0 = "1" & 3D = "0" or  
G1 = "1" & G0 = "0" & 3D = "0"  
24  
12  
30  
15  
36  
18  
kΩ  
kΩ  
kΩ  
G1 = "1" & G0 = "1" & 3D = "0"  
Single-ended input  
impedance referred to GND  
ZIN  
G1 = G0 = "0" & 3D = "1" or  
G1 = "0" & G0 = "1" & 3D = "1" or  
G1 = "1" & G0 = "0" & 3D = "1"  
13.5 17.1 20.5  
G1 = "1" & G0 = "1" & G3D = "1"  
6.5  
8.6  
10.5  
370  
kΩ  
Pulse width modulator  
base frequency  
FPWM  
190  
280  
kHz  
Po = 0.67W, A-weighting, RL = 8Ω,  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
97  
dB  
ms  
Gain = 6dB, 3D effects OFF  
Total wake-up time(2)  
7.5  
11.3  
15  
9/36  
 
Electrical characteristics  
TS4999  
Table 9.  
Symbol  
V
= +3.6V, GND = 0V, T  
= 25°C (unless otherwise specified) (continued)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
tSTBY  
Standby time  
Standby time(2)  
10  
13.8  
18  
ms  
F = 20Hz to 20kHz, A-Weighted,  
Gain = 3.5dB  
Filterless, 3D effect off, RL = 4Ω  
Filterless, 3D effect on, RL = 4Ω  
With LC output filter, 3D effect off, RL = 4Ω  
With LC output filter, 3D effect on, RL = 4Ω  
Filterless, 3D effect off, RL = 8Ω  
Filterless, 3D effect on, RL = 8Ω  
With LC output filter, 3D effect off, RL = 8Ω  
With LC output filter, 3D effect on, RL = 8Ω  
29  
49  
28  
48  
29  
50  
29  
50  
VN  
Output voltage noise  
μVRMS  
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the super-imposed sinus signal to VCC at f = 217 Hz  
with fixed Cin cap (input decoupling capacitor).  
2. See Section 4.6: Wakeup (tWU) and shutdown (tSTBY) times on page 26.  
10/36  
TS4999  
Electrical characteristics  
Table 10.  
Symbol  
V
= +2.5 V, GND = 0V, T  
= 25° C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
ICC  
Supply current  
No input signal, no load, both channels  
No input signal, Vstdby = GND  
2.8  
1
4
2
mA  
ISTANDBY Standby current  
μA  
Floating inputs, RL = 8Ω, G = 3.5dB,  
Voo  
Po  
Output offset voltage  
Output power  
20  
mV  
W
3D effect off  
THD = 1% max, F = 1kHz, RL = 4Ω  
THD = 1% max, F = 1kHz, RL = 8Ω  
THD = 10% max, F = 1kHz, RL = 4Ω  
THD = 10% max, F = 1kHz, RL = 8Ω  
0.53  
0.33  
0.67  
0.4  
W
W
Total harmonic distortion + Po = 0.2W/Ch, G = 6dB, F=1kHz,  
THD+N  
0.07  
%
%
noise  
RL = 8Ω  
Po = 0.52 WRMS, RL = 4Ω +15µH  
Po = 0.33 WRMS, RL = 8Ω + 15µH  
Cin = 1µF (1),3D effects off  
81  
88  
Efficiency Efficiency per channel  
Power supply rejection ratio  
PSRR  
63  
dB  
F = 217Hz, RL = 8Ω, gain = 6dB,  
Vripple = 200mVpp, Inputs grounded  
with inputs grounded  
F = 1kHz, RL = 8Ω,  
Crosstalk Channel separation  
104  
55  
dB  
dB  
3D effects off  
Common mode rejection  
Cin=1µF, F = 217Hz, RL = 8Ω, gain = 6dB,  
ΔVIC = 200mVpp, 3D effects off  
CMRR  
ratio  
G1 = G0 = "0"  
3
5.5  
9
3.5  
6
4
G1 = "0" & G0 = "1"  
G1 = "1" & G0 = "0"  
G1 = G0 = "1"  
6.5  
10  
Gain  
Gain value with no load  
dB  
9.5  
12  
11.5  
12.5  
G1 = G0 = 3D = "0" or  
G1 = "0" & G0 = "1" & 3D = "0" or  
G1 = "1" & G0 = "0" & 3D = "0"  
24  
12  
30  
15  
36  
18  
kΩ  
kΩ  
kΩ  
G1 = "1" & G0 = "1" & 3D = "0"  
Single-ended input  
impedance referred to GND  
ZIN  
G1 = G0 = "0" & 3D = "1" or  
G1 = "0" & G0 = "1" & 3D = "1" or  
G1 = "1" & G0 = "0" & 3D = "1"  
13.5 17.1 20.5  
G1 = "1" & G0 = "1" & G3D = "1"  
6.5  
8.6  
10.5  
370  
kΩ  
Pulse width modulator  
base frequency  
FPWM  
190  
280  
kHz  
Po = 0.3W, A-weighting, RL = 8Ω,  
SNR  
tWU  
Signal to noise ratio  
Wake-up time  
94  
dB  
ms  
Gain = 6dB, 3D effects OFF  
Total wake-up time(2)  
3
7.8  
12  
11/36  
 
Electrical characteristics  
TS4999  
= 25° C (unless otherwise specified) (continued)  
Table 10.  
Symbol  
V
= +2.5 V, GND = 0V, T  
Parameter  
CC  
amb  
Conditions  
Min. Typ. Max. Unit  
tSTBY  
Standby time  
Standby time(2)  
8
12  
16  
ms  
F = 20Hz to 20kHz, A-Weighted,  
Gain = 3.5dB  
Filterless, 3D effect off, RL = 4Ω  
Filterless, 3D effect on, RL = 4Ω  
With LC output filter, 3D effect off, RL = 4Ω  
With LC output filter, 3D effect on, RL = 4Ω  
Filterless, 3D effect off, RL = 8Ω  
Filterless, 3D effect on, RL = 8Ω  
With LC output filter, 3D effect off, RL = 8Ω  
With LC output filter, 3D effect on, RL = 8Ω  
28  
47  
27  
45  
28  
48  
28  
47  
VN  
Output voltage noise  
μVRMS  
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the super-imposed sinus signal to VCC at f = 217 Hz  
with fixed Cin cap (input decoupling capacitor).  
2. See Section 4.6: Wakeup (tWU) and shutdown (tSTBY) times on page 26.  
12/36  
TS4999  
Electrical characteristics  
3.1  
Electrical characteristic curves  
The graphs shown in this section use the following abbreviations.  
R + 15 µH or 30 µH = pure resistor + very low series resistance inductor.  
L
Filter = LC output filter (1 µF+ 30 µH for 4 Ω and 0.5 µF+15 µH for 8 Ω).  
All measurements are done with C = C =1 µF and C = 100 nF (see Figure 2), except  
SL  
SR  
S
for the PSRR where C , C is removed (see Figure 3).  
SL  
SR  
Figure 2.  
Measurement test diagram  
CsL  
(CsR)  
Cs  
VCC  
μ
1 F  
100nF  
GND  
GND  
RL  
4 or 8  
Cin  
Cin  
Ω
Out+  
In+  
5th order  
50kHz  
μ
μ
15 H or 30 H  
1/2 TS4999  
or  
low-pass filter  
LC Filter  
In-  
Out-  
GND  
Audio Measurement  
Bandwith < 30kHz  
13/36  
 
Electrical characteristics  
Figure 3.  
TS4999  
PSRR measurement test diagram  
Cs  
100nF  
VCC  
20Hz to 20kHz  
Vripple  
Vcc  
GND  
GND  
μ
1 F  
RL  
4 or 8  
Cin  
Ω
Out+  
In+  
5th order  
50kHz  
μ
μ
15 H or 30 H  
1/2 TS4999  
or  
low-pass filter  
LC Filter  
In-  
Out-  
Cin  
μ
1 F  
GND  
GND  
5th order  
50kHz  
RMS Selectiv e Meas urement  
Bandwith =1% of Fm eas  
reference  
low-pass filter  
14/36  
TS4999  
Electrical characteristics  
Figure 4.  
Current consumption vs. power  
supply voltage  
Figure 5.  
Current consumption vs. standby  
voltage (one channel)  
6
3
No load  
Tamb = 25  
Vcc=5V  
°
C
5
4
3
2
1
0
Both channels active  
Vcc=3.6V  
2
1
One channel active  
One channel active  
Vcc=2.5V  
No load  
Tamb = 25  
°C  
0
0
1
2
3
4
5
0
1
2
3
4
5
Standby Voltage (V)  
Power Supply Voltage (V)  
Figure 6.  
Standby current consumption vs. Figure 7.  
power supply voltage  
Efficiency vs. output power  
(one channel)  
1.4  
100  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
No load  
VSTBYL = VSTBYR = GND  
Tamb = 25  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
°
C
80  
60  
40  
20  
0
Efficiency  
Power dissipation  
Vcc = 5V  
RL = 4  
F = 1kHz  
Ω
+ 15μH  
THD+N  
10%  
2.8  
0
1
2
3
4
5
0.0  
0.4  
0.8  
1.2  
1.6  
2.0 2.4  
Output Power (W)  
Power Supply Voltage (V)  
Figure 8.  
Efficiency vs. output power  
(one channel)  
Figure 9.  
Efficiency vs. output power  
(one channel)  
100  
80  
60  
40  
20  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
100  
80  
60  
40  
20  
0
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
Efficiency  
Efficiency  
Power dissipation  
Power dissipation  
Vcc = 2.5V  
RL = 4 + 15  
F = 1kHz  
THD+N  
Vcc = 3.6V  
RL = 4 + 15  
F = 1kHz  
Ω
μH  
Ω
μH  
10%  
THD+N  
10%  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6 0.7  
Output Power (W)  
Output Power (W)  
15/36  
Electrical characteristics  
TS4999  
Figure 10. Efficiency vs. output power  
(one channel)  
Figure 11. Efficiency vs. output power  
(one channel)  
100  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
100  
0.15  
0.10  
0.05  
80  
80  
Efficiency  
Efficiency  
60  
60  
Power dissipation  
Power dissipation  
40  
40  
Vcc = 5V  
Vcc = 3.6V  
RL = 8 + 15  
F = 1kHz  
20  
20  
RL = 8  
Ω + 15μH  
Ω
μH  
F = 1kHz  
THD+N  
1.4  
10%  
THD+N  
10%  
0
0
0.00  
0.9  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.6  
1.8  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6 0.7  
0.8  
Output Power (W)  
Output Power (W)  
Figure 12. Efficiency vs. output power  
(one channel)  
Figure 13. THD+N vs. output power  
10  
100  
80  
0.08  
0.06  
0.04  
0.02  
0.00  
F = 1kHz  
RL = 4  
Ω + 15μH  
Vcc=5V  
Vcc=3.6V  
G = +6dB  
BW < 30kHz  
Tamb = 25°C  
Efficiency  
60  
1
Power dissipation  
40  
Vcc=2.5V  
Vcc = 2.5V  
20  
RL = 8  
F = 1kHz  
THD+N  
Ω
+ 15  
μH  
0.1  
10%  
0
0.01  
0.1  
Output power (W)  
1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45  
Output Power (W)  
Figure 14. THD+N vs. output power  
Figure 15. THD+N vs. output power  
10  
10  
F = 1kHz  
F = 1kHz  
Vcc=5V  
RL = 4  
Ω
+ 30  
μ
H
RL = 8Ω + 15μH  
Vcc=5V  
Vcc=3.6V  
G = +6dB  
BW < 30kHz  
Tamb = 25  
G = +6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=2.5V  
°
C
1
1
Vcc=2.5V  
0.1  
0.1  
0.01  
0.1  
Output power (W)  
1
0.01  
0.1  
1
Output power (W)  
16/36  
TS4999  
Electrical characteristics  
Figure 16. THD+N vs. output power  
Figure 17. THD+N vs. frequency  
10  
10  
Vcc = 5V  
RL = 4  
G = +6dB  
BW < 30kHz  
Tamb = 25  
F = 1kHz  
Vcc=5V  
Ω
+ 15μH  
RL = 8  
Ω + 30μH  
G = +6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=2.5V  
°
C
Po=1500mW  
1
1
0.1  
0.01  
Po=750mW  
10000  
0.1  
0.01  
0.1  
1
20  
100  
1000  
Output power (W)  
Frequency (Hz)  
Figure 18. THD+N vs. frequency  
Figure 19. THD+N vs. frequency  
10  
10  
Vcc = 3.6V  
Vcc = 2.5V  
RL = 4  
Ω
+ 15  
μ
H
RL = 4Ω + 15μH  
G = +6dB  
G = +6dB  
BW < 30kHz  
BW < 30kHz  
Tamb = 25°C  
Po=400mW  
Tamb = 25  
°
C
Po=800mW  
1
1
0.1  
0.1  
Po=400mW  
Po=200mW  
0.01  
0.01  
20  
20  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
v
Figure 20. THD+N vs. frequency  
Figure 21. THD+N vs. frequency  
10  
10  
Vcc = 5V  
Vcc = 3.6V  
RL = 4Ω + 30μH  
G = +6dB  
RL = 4Ω + 30μH  
G = +6dB  
BW < 30kHz  
BW < 30kHz  
Tamb = 25°C  
Po=1500mW  
Tamb = 25°C  
1
1
Po=800mW  
0.1  
0.1  
Po=400mW  
Po=750mW  
0.01  
0.01  
20  
20  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
17/36  
Electrical characteristics  
TS4999  
Figure 22. THD+N vs. frequency  
Figure 23. THD+N vs. frequency  
10  
10  
Vcc = 5V  
Vcc = 5V  
RL = 4  
Ω
+ 30  
μ
H
RL = 8Ω + 15μH  
G = +6dB  
G = +6dB  
BW < 30kHz  
BW < 30kHz  
Tamb = 25  
°
C
Po=1500mW  
Tamb = 25°C  
Po=900mW  
1
1
0.1  
0.1  
Po=750mW  
Po=450mW  
0.01  
0.01  
20  
20  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. THD+N vs. frequency  
Figure 25. THD+N vs. frequency  
10  
10  
Vcc = 3.6V  
Vcc = 2.5V  
RL = 8  
Ω
+ 15  
μ
H
RL = 8Ω + 15μH  
G = +6dB  
G = +6dB  
BW < 30kHz  
BW < 30kHz  
Tamb = 25  
°
C
Tamb = 25°C  
1
1
Po=450mW  
Po=200mW  
0.1  
0.1  
Po=225mW  
Po=100mW  
0.01  
0.01  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
10000  
Frequency (Hz)  
Figure 26. THD+N vs. frequency  
Figure 27. THD+N vs. frequency  
10  
10  
Vcc = 5V  
Vcc = 3.6V  
RL = 8Ω + 30μH  
G = +6dB  
RL = 8Ω + 30μH  
G = +6dB  
BW < 30kHz  
Tamb = 25°C  
BW < 30kHz  
Tamb = 25°C  
Po=900mW  
1
1
Po=450mW  
0.1  
0.1  
Po=450mW  
Po=225mW  
0.01  
0.01  
20  
20  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
18/36  
TS4999  
Electrical characteristics  
Figure 28. THD+N vs. frequency  
Figure 29. Output power vs. power supply  
voltage  
10  
2.8  
2.6  
Vcc = 2.5V  
F = 1kHz  
RL = 8  
Ω + 30μH  
BW < 30kHz  
2.4  
G = +6dB  
BW < 30kHz  
Tamb = 25°C  
Tamb = 25°C  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1
Po=200mW  
RL=4  
Ω +15μH  
0.1  
Po=100mW  
RL=8  
Ω
+
15  
μ
H
0.01  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
20  
100  
1000  
10000  
Supply voltage (V)  
Frequency (Hz)  
Figure 30. Output power vs. power supply  
voltage  
Figure 31. Crosstalk vs. frequency  
(3D effect off)  
3.4  
0
F = 1kHz  
BW < 30kHz  
Tamb = 25°C  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vcc = 5V  
-10  
RL = 4  
Ω +15μH  
-20  
-30  
G = +6dB  
Cin = 1  
Tamb = 25  
μ
F
°
C
-40  
RL=4  
Ω
+
15  
μ
H
-50  
-60  
-70  
-80  
Po=500mW  
Po=1000mW  
-90  
RL=8  
Ω +15μH  
-100  
-110  
-120  
Po=1500mW  
Po=1800mW  
1000  
20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
100  
10000  
Supply voltage (V)  
Frequency (Hz)  
Figure 32. Crosstalk vs. frequency  
(3D effect off)  
Figure 33. Crosstalk vs. frequency  
(3D effect off)  
0
0
Vcc = 3.6V  
Vcc = 2.5V  
-10  
-10  
RL = 4  
Ω +15μH  
RL = 4  
Ω +15μH  
-20  
-30  
-20  
-30  
G = +6dB  
Cin = 1  
Tamb = 25  
G = +6dB  
Cin = 1  
Tamb = 25  
μ
F
μ
F
°
C
°
C
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
Po=125mW  
-80  
-80  
Po=500mW  
Po=250mW  
Po=750mW  
Po=325mW  
Po=250mW  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
Po=900mW  
1000  
Po=450mW  
20  
20  
100  
10000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
19/36  
Electrical characteristics  
TS4999  
Figure 34. Crosstalk vs. frequency  
(3D effect off)  
Figure 35. Crosstalk vs. frequency  
(3D effect off)  
0
0
Vcc = 5V  
Vcc = 3.6V  
-10  
-10  
RL = 8  
Ω +15μH  
RL = 8  
Ω +15μH  
-20  
-30  
-20  
-30  
G = +6dB  
Cin = 1  
Tamb = 25  
G = +6dB  
Cin = 1  
Tamb = 25  
μ
F
μ
F
°
C
°
C
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
Po=160mW Po=320mW  
Po=500mW  
Po=600mW  
Po=600mW  
Po=300mW  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
Po=1100mW  
1000  
Po=900mW  
100  
20  
20  
10000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
Figure 36. Crosstalk vs. frequency  
(3D effect off)  
Figure 37. Gain vs. frequency  
(3D effect off)  
0
5
4
3
Vcc = 2.5V  
no load  
-10  
RL = 8  
Ω +15μH  
-20  
-30  
G = +6dB  
Cin = 1  
Tamb = 25  
μ
F
°
C
-40  
-50  
-60  
RL=8  
RL=8  
RL=4  
Ω
+15  
μ
H
-70  
Po=75mW  
Po=225mW  
Po=270mW  
2
1
0
Ω
+30  
μ
H
-80  
-90  
Ω
+15μH  
Gain = 3.5dB  
Vin = 400mVrms  
Po=150mW  
100  
-100  
-110  
-120  
RL=4  
Ω
+30  
μ
H
Cin = 10  
Tamb = 25  
100  
μF  
°
C
20  
1000  
10000  
20k  
20  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 38. Gain vs. frequency  
(3D effect off)  
Figure 39. Gain vs. frequency  
(3D effect off)  
8
7
6
12  
11  
10  
9
no load  
no load  
5
4
3
2
RL=8  
Ω
+15  
μ
H
RL=8  
Ω
+15  
μ
H
8
7
6
5
RL=8  
Ω
+30  
μ
H
RL=8  
Ω
+30  
μH  
RL=4  
Ω
+15  
μ
H
RL=4  
Ω
+15  
μH  
Gain = 6dB  
Vin = 300mVrms  
Gain = 9.5dB  
Vin = 200mVrms  
RL=4  
Ω
+30  
μ
H
RL=4  
Ω+30μH  
Cin = 10  
Tamb = 25  
100  
μ
F
Cin = 10  
Tamb = 25  
100  
μF  
°
C
°C  
20k  
20k  
20  
1k  
Frequency (Hz)  
10k  
20  
1k  
Frequency (Hz)  
10k  
20/36  
TS4999  
Electrical characteristics  
Figure 40. Gain vs. frequency  
(3D effect off)  
Figure 41. PSRR vs. frequency  
(3D effect off)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
14  
13  
12  
Inputs grounded  
Vcc = 5V, 3D effect off  
Vripple = 200mVpp  
Cin = 10μF  
RL = 8Ω +15μH  
Tamb = 25°C  
no load  
11  
10  
9
RL=8  
Ω
+15  
μ
H
G=+9.5dB  
G=+12dB  
G=+6dB  
RL=8  
Ω
+30  
μH  
RL=4  
Ω
+15  
μH  
Gain = 12dB  
Vin = 150mVrms  
RL=4  
Ω
+30μH  
Cin = 10  
Tamb = 25  
100  
μF  
G=+3.5dB  
°
C
8
20k  
20  
1k  
Frequency (Hz)  
10k  
20  
100  
1000  
Frequency (Hz)  
10000  
10000  
10000  
Figure 42. PSRR vs. frequency  
(3D effect off)  
Figure 43. PSRR vs. frequency  
(3D effect off)  
0
0
Inputs grounded  
Inputs grounded  
Vcc = 2.5V, 3D effect off  
Vripple = 200mVpp  
Cin = 10μF  
RL = 8Ω +15μH  
Tamb = 25°C  
-10  
-10  
Vcc = 3.6V, 3D effect off  
Vripple = 200mVpp  
-20  
-20  
Cin = 10μF  
RL = 8  
Ω +15μH  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Tamb = 25  
°
C
G=+9.5dB  
G=+3.5dB  
G=+12dB  
G=+6dB  
G=+12dB  
G=+9.5dB  
G=+3.5dB  
G=+6dB  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
Figure 44. PSRR vs. frequency  
(3D effect on)  
Figure 45. PSRR vs. frequency  
(3D effect on)  
0
0
Inputs grounded  
Vcc = 5V, 3D effect on  
Vripple = 200mVpp  
Inputs grounded  
Vcc = 3.6V, 3D effect on  
Vripple = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Cin = 10  
RL = 8  
Tamb = 25  
μF  
Cin = 10  
RL = 8  
Tamb = 25  
μF  
+15μH  
°
Ω
+
15  
C
μ
H
Ω
°
C
G=+12dB  
G=+6dB  
G=+12dB  
G=+6dB  
G=+9.5dB  
G=+9.5dB  
G=+3.5dB  
G=+3.5dB  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
21/36  
Electrical characteristics  
TS4999  
Figure 46. PSRR vs. frequency  
(3D effect on)  
Figure 47. CMRR vs. frequency  
(3D effect off)  
0
0
Vcc = 5V, 3D effect off  
Inputs grounded  
ΔVic = 200mVpp  
Vcc = 2.5V, 3D effect on  
Vripple = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
Cin = 10μF  
-20 RL = 8Ω +15μH  
Tamb = 25°C  
-30  
Cin = 10  
RL = 8  
Tamb = 25  
μF  
+15μH  
°
Ω
C
G=+9.5dB  
G=+12dB  
-40  
-50  
-60  
-70  
-80  
G=+12dB  
G=+6dB  
G=+9.5dB  
G=+3.5dB  
G=+6dB  
G=+3.5dB  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 48. CMRR vs. frequency  
(3D effect off)  
Figure 49. CMRR vs. frequency  
(3D effect off)  
0
0
Vcc = 3.6V, 3D effect off  
Vcc = 2.5V, 3D effect off  
Δ
Vic = 200mVpp  
Cin = 10  
RL = 8  
Tamb = 25  
ΔVic = 200mVpp  
Cin = 10μF  
-20 RL = 8Ω +15μH  
Tamb = 25°C  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
μ
F
Ω
+15μH  
°
C
G=+9.5dB  
G=+12dB  
G=+9.5dB  
G=+12dB  
-40  
-50  
-60  
G=+3.5dB  
G=+6dB  
G=+3.5dB  
G=+6dB  
-70  
-80  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 50. CMRR vs. frequency  
(3D effect on)  
Figure 51. CMRR vs. frequency  
(3D effect on)  
0
0
Vcc = 3.6V, 3D effect on  
Vcc = 5V, 3D effect on  
Δ
Vic = 200mVpp  
Cin = 10  
RL = 8  
Tamb = 25  
Δ
Vic = 200mVpp  
Cin = 10  
-20 RL = 8  
Tamb = 25  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
μ
F
μ
F
Ω
+15μH  
Ω
+15μH  
°
C
°
C
-30  
-40  
-50  
-60  
-70  
-80  
G=+12dB  
G=+12dB  
G=+9.5dB  
G=+9.5dB  
G=+6dB  
G=+6dB  
G=+3.5dB  
G=+3.5dB  
20  
20  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
22/36  
TS4999  
Electrical characteristics  
Figure 52. CMRR vs. frequency  
(3D effect on)  
Figure 53. Power derating curves  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vcc = 2.5V, 3D effect on  
Δ
Vic = 200mVpp  
Cin = 10  
-20 RL = 8  
Tamb = 25  
-10  
μ
F
With a 4-layer PCB  
Ω
+15μH  
°
C
-30  
-40  
-50  
-60  
-70  
-80  
G=+12dB  
G=+9.5dB  
G=+3.5dB  
G=+6dB  
No Heat sink  
AMR value  
0
25  
50  
75  
100  
C)  
125  
150  
20  
100  
1000  
Frequency (Hz)  
10000  
Ambiant Temperature (  
°
Figure 54. Startup and shutdown phase  
= 5 V, G= 6 dB, C = 1 µF,  
Figure 55. Startup and shutdown phase  
= 5 V, G= 6 dB, C = 1 µF, inputs  
V
V
CC  
CC  
in  
in  
V = 2 V , F= 500 Hz  
grounded  
in  
pp  
Out+  
Out-  
Out+  
Out-  
Standby  
Standby  
Out+ - Out-  
Out+ - Out-  
23/36  
Application information  
TS4999  
4
Application information  
4.1  
Differential configuration principle  
The TS4999 is a monolithic fully-differential input/output class D stereo power amplifier. The  
TS4999 also features 3D effect enhancement that can be switched on or off by one digital  
pin. Additionally, since the load is connected differentially compared to a single-ended  
topology, the output is four times higher for the same power supply voltage.  
A fully-differential amplifier offers the following advantages.  
A high PSRR (power supply rejection ratio).  
A high common mode noise rejection.  
Virtually zero pop with no additional circuitry, giving a faster start-up time compared to  
conventional single-ended input amplifiers.  
Easier interfacing with differential output audio DACs.  
4.2  
Gain settings  
In the flat region of the frequency-response curve (no input coupling capacitor or internal  
feedback loop + load effect), the differential gain can be set to 3.5, 6, 9.5 or 12 dB,  
depending on the logic level of the G0 and G1 pins, as shown in Table 11.  
Table 11. Gain settings with G0 and G1 pins  
G1  
G0  
Gain (dB)  
Gain (V/V)  
0
0
1
1
0
1
0
1
3.5  
6
1.5  
2
9.5  
12  
3
4
Note:  
Between pins G0, G1 and GND there is an internal 300 kΩ (+/-20%) resistor. When the pins  
are floating, the gain is 6 dB. In full standby (left and right channels OFF), these resistors  
are disconnected (HiZ input).  
4.3  
3D effect enhancement  
The TS4999 features 3D audio effects which can be switched off and switched on through  
input pin 3D when used as a digital interface. The relation between the logic level of this pin  
and the on/off 3D effect is shown in Table 3 on page 4 and Table 7 on page 6.  
The 3D audio effect evokes the perception of spatial hearing of stereo audio signals and  
improves this effect in cases where the stereo speakers are too close to each other, such as  
in small or portable devices.  
The perceived amount of 3D effect also depends on many factors such as speaker position,  
distance between speakers, listener/frequency spectrum of the audio signal, as well as the  
difference of signal between the left and right channel.  
24/36  
 
TS4999  
Application information  
In some cases, the speaker volume can increase when the 3D effect is switched on. This  
factor is dependent on the composition and frequency spectrum of listened stereo audio  
signal.  
Note:  
1
2
When the 3D effect is switched on, both channels must be in operation or shutdown mode at  
the same time.  
Between pin 3D and GND there is an internal 300 kΩ (+/-20%) resistor. When the pin is  
floating, the 3D effect is off. In full standby (left and right channels OFF), this resistor is  
disconnected (HiZ input).  
4.4  
Low frequency response  
If a low frequency bandwidth limitation is required, input coupling capacitors can be used. In  
the low frequency region, the input coupling capacitor C starts to have an effect. C forms,  
in  
in  
with the input impedance Z , a first order high-pass filter with a -3 dB cut-off frequency.  
in  
1
FCL = --------------------------------------------  
2 ⋅ π Zin Cin  
So, for a desired cut-off frequency F , C is calculated as follows:  
CL  
in  
1
Cin = ---------------------------------------------  
2 ⋅ π Zin FCL  
with F in Hz, Z in Ω and C in F.  
CL  
in  
in  
The input impedance Z is for the whole power supply voltage range and changes with the  
in  
gain setting. There is also a tolerance around the typical values (see Table 8, Table 9 and  
Table 10.  
Figure 56. Cut-off frequency vs. input capacitor  
Tamb=25°C  
G=12dB, 3D on  
Zin=8.6k  
Ω typ.  
100  
10  
1
G=12dB, 3D off  
Zin=15k typ.  
Ω
G=3.5dB, 6dB, 9.5dB  
3D off, Zin=30k  
Ω typ.  
G=3.5dB, 6dB, 9.5dB  
3D on, Zin=17.1k typ.  
Ω
0.1  
1
Input Capacitor Cin (μF)  
25/36  
Application information  
TS4999  
4.5  
Circuit decoupling  
Power supply capacitors, referred to as C , C and C , are needed to correctly bypass the  
S
SL  
SR  
TS4999.  
The TS4999 has a typical switching frequency of 280 kHz and an output fall and rise time of  
approximately 5 ns. Due to these very fast transients, careful decoupling is mandatory.  
A 1 µF ceramic capacitor between each PVCC and PGND (C , C ) and one additional  
SL  
SR  
ceramic capacitor between AVCC and AGND 0.1 µF (C ) are sufficient, but they must be  
S
located as close as possible to the TS4999 in order to avoid any extra parasitic inductance  
or resistance created by a long track wire. Parasitic loop inductance, in relation to di/dt,  
introduces overvoltage that decreases the global efficiency of the device and may cause, if  
this parasitic inductance is too high, the device to break down.  
In addition, even if a ceramic capacitor has an adequate high frequency ESR (equivalent  
series resistance) value, its current capability is also important. A 0603 size is a good  
compromise, particularly when a 4 Ω load is used.  
Another important parameter is the rated voltage of the capacitor. A 1 µF/6.3 V capacitor  
used at 5 V, loses about 50% of its value. With a power supply voltage of 5 V, the decoupling  
value, instead of 1 µF, could be reduced to 0.5 µF. As C has particular influence on the  
S
THD+N in the medium-to-high frequency region, this capacitor variation becomes decisive.  
In addition, less decoupling means higher overshoots which can be problematic if they reach  
the power supply AMR value (6 V).  
4.6  
Wakeup (tWU) and shutdown (tSTBY) times  
During the wake-up sequence, there is a delay when the standby is released to switch the  
device ON. The wake-up sequence of the TS4999 consists of two phases. During the first  
phase t  
phase t  
, a digitally-generated delay, mutes the outputs. Then, the gain increasing-  
begins. The gain increases smoothly from the mute state to the preset gain  
WU-A  
WU-A  
selected by the digital pins G0 and G1. This startup sequence avoid any pop noise during  
startup of the amplifier. See Figure 57: Wake-up phase  
26/36  
TS4999  
Application information  
Figure 57. Wake-up phase  
STBY  
Level  
STBY  
HI  
STBY  
LO  
Time  
Gain increasing Preset gain  
Gain  
Mute  
tWU-A  
Mute  
Time  
tWU-B  
tWU  
When the standby command is set, the time required to set the output stage to high  
impedance and to put the internal circuitry in shutdown mode is called the standby time.  
This time is used to decrease the gain from its nominal value set by the digital pins G0 and  
G1 to mute and avoid any pop noise during shutdown. The gain decreases smoothly until  
the outputs are muted. See Figure 58: Shutdown phase.  
Figure 58. Shutdown phase  
STBY  
Level  
STBY  
HI  
STBY  
LO  
Time  
Preset gain  
Gain  
Gain decreasing  
Mute  
Mute  
Time  
tSTBY  
27/36  
 
Application information  
TS4999  
4.7  
Consumption in shutdown mode  
Between the shutdown pin and GND there is an internal 300 kΩ (+-/20%) resistor. This  
resistor forces the TS4999 to be in shutdown mode when the shutdown input is left floating.  
However, this resistor also introduces additional shutdown power consumption if the  
shutdown pin voltage is not at 0 V.  
With a 0.4 V shutdown voltage pin for example, you must add 0.4 V/300 kΩ = 1.3 µA typical  
(0.4 V/240 kΩ = 1.66 µA in maximum) for each shutdown pin to the standby current  
specified in Table 8, Table 9 and Table 10.  
Of course, this current will be provided by the external control device for standby pins.  
4.8  
Single-ended input configuration  
It is possible to use the TS4999 in a single-ended input configuration. Input coupling  
capacitors are also mandatory in this configuration. The schematic diagram in Figure 59  
shows a typical single-ended input application.  
Figure 59. Typical single-ended input application  
Cs  
0.1uF  
CsR  
1uF  
CsL  
1uF  
VCC  
VCC  
VCC  
Gain Select  
Control  
3D Effect  
Control  
Left Input  
TS4999  
AVCC  
RPVCC  
LPVCC  
H
Cin  
Cin  
A1 Lin+  
B2 Lin-  
Lout+ A5  
Lout- A7  
Gain  
PWM  
Select  
Bridge  
Left speaker  
C3 G0  
C5 G1  
Oscillator  
PWM  
Right Input  
E1 Rin+  
D2 Rin-  
Rout+ E5  
Rout- E7  
H
Gain  
Cin  
Cin  
Select  
Bridge  
Right speaker  
A3 STBYL  
E3 STBYR  
Standby  
Control  
Protection  
Circuit  
AGND  
PGND  
Standby Control  
28/36  
 
TS4999  
Application information  
4.9  
Output filter considerations  
The TS4999 is designed to operate without an output filter. However, due to very sharp  
transients on the TS4999 output, EMI-radiated emissions may cause some standard  
compliance issues.  
These EMI standard compliance issues can appear if the distance between the TS4999  
outputs and loudspeaker terminal are long (typically more than 50 mm, or 100 mm in both  
directions, to the speaker terminals). Because the PCB layout and internal equipment  
device are different for each configuration, it is difficult to provide a one-size-fits-all solution.  
However, to decrease the probability of EMI issues, there are several simple rules to follow.  
Reduce, as much as possible, the distance between the TS4999 output pins and the  
speaker terminals.  
Use a ground plane for "shielding" sensitive wires.  
Place, as close as possible to the TS4999 and in series with each output, a ferrite bead  
with a rated current of at least 2.5 A and impedance greater than 50-Ω at frequencies  
above 30 MHz. If, after testing, these ferrite beads are not necessary, replace them by  
a short-circuit.  
Allow extra footprint to place, if necessary, a capacitor to short perturbations to ground  
(see Figure 60).  
Figure 60. Ferrite chip bead placement  
Ferrite chip bead  
From output  
to speaker  
about 100pF  
gnd  
In the case where the distance between the TS4999 output and the speaker terminals is too  
long, it is possible to encounter low frequency EMI issues due to the fact that the typical  
operating PWM frequency is 280 kHz and that the fall and rise time of the output signal is  
less than or equal to 5 ns. In this configuration, it is necessary to use the output filter  
represented in Figure 61 on page 30, which consists of L1, C1, L2 and C2 being placed as  
close as possible to the TS4999 outputs.  
In particular cases where the output filter is used and there is the possibility to disconnect a  
load, we recommended using an RC network that consists of C3 and R, as shown in  
Figure 61. In this case, when the output filter is connected without any load, the filter acts as  
a short-circuit for frequencies above 10 kHz in the output frequency spectrum of the  
amplifier. The RC network corrects the frequency response of the output filter and  
compensates this limitation.  
29/36  
 
Application information  
TS4999  
Table 12. Example of component selection  
Component  
RL = 4 Ω  
RL = 8 Ω  
L1  
L2  
C1  
C2  
C3  
R
15μH / 1.4A  
15μH / 1.4A  
2μF / 10V  
30μH / 0.7A  
30μH / 0.7A  
1μF / 10V  
2μF / 10V  
1μF / 10V  
1μF / 10V  
1μF / 10V  
22Ω/ 0.25W  
47Ω / 0.25W  
Figure 61. LC output filter with RC network  
LC Output Filter  
OUT+  
RC network  
L1  
C1  
C3  
R
R
L
L2  
C2  
OUT-  
4.10  
4.11  
Short-circuit protection  
The TS4999 includes an output short-circuit protection. This protection prevents the device  
from being damaged when faults occur on the amplifier outputs.  
When a channel is in operating mode and a short-circuit occurs between two outputs of the  
channel or between an output and ground, the short-circuit protection detects this situation  
and puts the appropriate channel into standby mode. To put the channel back into operating  
mode, it is necessary to put the channel’s standby pin to logical LO and then back to logical  
HI and wake-up the channel.  
Thermal shutdown  
The TS4999 device has an internal thermal shutdown protection mechanism to protect the  
device from overheating in the event of extreme temperatures. The thermal shutdown  
mechanism is activated when the device reaches 150° C. When the temperature decreases  
to safe levels (around 135° C), the circuit switches back to normal operation.  
30/36  
TS4999  
Package mechanical data  
5
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
5.1  
Flip chip package  
Figure 62. Flip chip package  
2420 μm  
Die size: 2.42x2.28 mm 100µm  
Die height (including bumps): 600µm  
Bumps diameter: 315µm 50µm  
2280 μm  
Bump diameter before reflow: 300µm 10µm  
Bumps height: 250µm 40µm  
Die height: 350µm 20µm  
Pitch: 500µm 50µm  
750μm  
500μm  
Coplanarity: 50µm max  
Optional*: Back coating height: 40µm  
866μm  
866μm  
40 μm*  
600 μm  
31/36  
Package mechanical data  
Figure 63. Pinout (top view)  
TS4999  
LOUT-  
LOUT+  
STDBYL  
ROUT-  
PGND  
7
LPVCC  
RPVCC  
6
5
G1  
G0  
ROUT+  
AVCC  
RIN-  
AGND  
LIN-  
4
3
STDBYR  
2
1
LIN+  
3D  
RIN+  
A
B
C
D
E
Figure 64. Marking (top view)  
ST Logo  
Symbol for lead-free: E  
E
Two first product code: K9  
third X: Assembly Line Plant code  
K9 X  
Three digits date code: Y for year - WW for week  
The dot is for marking pin A1  
YWW  
32/36  
TS4999  
Package mechanical data  
5.2  
Tape and reel package  
Figure 65. Schematic (top view)  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
Figure 66. Recommended footprint data  
33/36  
Ordering information  
TS4999  
6
Ordering information  
Table 13. Order codes  
Temperature  
Part number  
Package  
Packing  
Marking  
K9  
range  
TS4999EIJT  
-40°C to +85°C  
Flip chip 18  
Tape & reel  
34/36  
TS4999  
Revision history  
7
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
18-Dec-2008  
1
Initial release.  
35/36  
TS4999  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
36/36  

相关型号:

TS4999EIJT

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4A

Modular Jacks
YAMAICHI

TS4B

Modular Jacks
YAMAICHI

TS4B01G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_1

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_10

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B02G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B03G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B04G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B05G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B05G

Single-phase Silicon Bridge Rectifier
PFS

TS4B06G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC