TS4995EIJT [STMICROELECTRONICS]

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain; 1.2 W全差分音频功率放大器可选择待机和6分贝固定增益
TS4995EIJT
型号: TS4995EIJT
厂家: ST    ST
描述:

1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain
1.2 W全差分音频功率放大器可选择待机和6分贝固定增益

消费电路 商用集成电路 音频放大器 视频放大器 功率放大器
文件: 总26页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4995  
1.2 W fully differential audio power amplifier  
with selectable standby and 6 dB fixed gain  
Features  
TS4995 - Flip chip 9  
Differential inputs  
90 dB PSRR @ 217 Hz with grounded inputs  
Operates from V = 2.5 V to 5.5 V  
Pin connections (top view)  
CC  
1.2 W rail-to-rail output power @ V =5 V,  
CC  
THD+N=1%, F=1 kHz, with an 8 Ω load  
Gnd  
6 dB integrated fixed gain  
VO-  
Bypass  
VIN+  
VO+  
7
6
9
5
Ultra-low consumption in standby mode  
(10 nA)  
Stdby  
VIN-  
4
3
8
1
Selectable standby mode (active low or active  
high)  
Ultra-fast startup time: 10 ms typ. at V =3.3 V  
CC  
2
Available in 9-bump flip chip (300 mm bump  
VCC  
Stdby Mode  
diameter)  
Ultra-low pop and click  
Applications  
The TS4995 features an internal fixed gain at 6dB  
which reduces the number of external  
components on the application board.  
Mobile phones (cellular / cordless)  
PDAs  
The device is equipped with common mode  
feedback circuitry allowing outputs to be always  
Laptop / notebook computers  
Portable audio devices  
biased at V /2 regardless of the input common  
CC  
mode voltage.  
Description  
The TS4995 is specifically designed for high  
quality audio applications such as mobile phones  
and requires few external components.  
The TS4995 is an audio power amplifier capable  
of delivering 1.2 W of continuous RMS output  
power into an 8 Ω load at 5 V. Thanks to its  
differential inputs, it exhibits outstanding noise  
immunity.  
An external standby mode control reduces the  
supply current to less than 10 nA. A STBY MODE  
pin allows the standby pin to be active high or  
low. An internal thermal shutdown protection is  
also provided, making the device capable of  
sustaining short-circuits.  
March 2008  
Rev 3  
1/26  
www.st.com  
26  
Contents  
TS4995  
Contents  
1
2
3
4
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Wake-up time tWU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/26  
TS4995  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings (AMR)  
Parameter  
Value  
Unit  
VCC  
Vin  
Supply voltage (1)  
Input voltage (2)  
6
GND to VCC  
-40 to + 85  
-65 to +150  
150  
V
V
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
°C  
°C/W  
W
Maximum junction temperature  
Thermal resistance junction to ambient (3)  
Power dissipation  
MM: machine model (4)  
HBM: human body model (5)  
Rthja  
Pdiss  
200  
Internally limited  
200  
V
ESD  
1.5  
kV  
mA  
°C  
Latch-up Latch-up immunity  
200  
-
Lead temperature (soldering, 10sec)  
260  
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V.  
3. The device is protected in case of over temperature by a thermal shutdown activated at 150° C.  
4. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device  
with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.  
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin  
combinations with other pins floating.  
Table 2.  
Symbol  
VCC  
Operating conditions  
Parameter  
Value  
Unit  
Supply voltage  
2.5 to 5.5  
V
Standby mode voltage input:  
VSM  
V
V
Standby Active LOW  
Standby Active HIGH  
VSM=GND  
VSM=VCC  
Standby voltage input:  
VSTBY  
Device ON (VSM=GND) or Device OFF (VSM=VCC  
Device OFF (VSM=GND) or Device ON (VSM=VCC  
)
)
1.5 VSTBY VCC  
GND VSTBY 0.4 (1)  
TSD  
RL  
Thermal shutdown temperature  
Load resistor  
150  
4  
°C  
Ω
Rthja  
Thermal resistance junction to ambient  
100  
°C/W  
1. The minimum current consumption (ISTBY) is guaranteed when VSTB Y= GND or VCC (the supply rails) for the whole  
temperature range.  
3/26  
Typical application schematics  
TS4995  
2
Typical application schematics  
Table 3.  
Component  
Cs  
External component descriptions  
Functional description  
Supply bypass capacitor that provides power supply filtering.  
Bypass capacitor that provides half supply filtering.  
Cb  
Optional input capacitor that forms a high pass filter together with Rin.  
Cin  
(Fcl = 1 / (2 x π x Rin x Cin)  
Figure 1.  
Typical application  
VCC  
Cs1  
1uF  
TS4995 FlipChip  
TS4995  
Optional  
Cin1  
Vin-  
P1  
Vo-  
3
Vin-  
7
5
330nF  
Cin2  
Vo+  
P2  
1
8
Vin+  
8 Ohms  
+
Vin+  
330nF  
BYPASS  
BIAS  
1uF  
STBY  
STDBY  
STDBY MODE  
Cbypass1  
VCC  
4/26  
TS4995  
Electrical characteristics  
3
Electrical characteristics  
Table 4.  
Symbol  
V
= +5V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
mA  
ICC  
Supply current  
No input signal, no load  
4
7
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
ISTBY Standby current  
10 1000 nA  
Differential output offset  
voltage  
Voo  
No input signal, RL = 8Ω  
0.1  
10  
mV  
VIC  
Po  
Input common mode voltage  
Output power  
0
4.5  
V
THD = 1% Max, F= 1kHz, RL = 8Ω  
0.8  
1.2  
0.5  
W
Total harmonic distortion +  
noise  
THD + N  
PSRRIG  
Po = 850mW rms, 20Hz F 20kHz, RL = 8Ω  
%
dB  
dB  
Power supply rejection ratio F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF  
with inputs grounded(1)  
ripple = 200mVPP  
75(2) 90  
60  
V
F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF  
Vic = 200mVPP  
CMRR Common mode rejection ratio  
A-weighted filter  
SNR Signal-to-noise ratio  
dB  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
100  
2
GBP Gain bandwidth product  
RL = 8Ω  
MHz  
20Hz F 20kHz, RL = 8Ω  
Unweighted  
A-weighted  
11  
7
VN  
Output voltage noise  
µVRMS  
Unweighted, standby  
A-weighted, standby  
3.5  
1.5  
Zin  
-
Input impedance  
Gain mismatch  
15  
20  
6
25  
kΩ  
dB  
ms  
5.5  
6.5  
tWU Wake-up time(3)  
Cb =1µF  
15  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Guaranteed by design and evaluation.  
.
3. Transition time from standby mode to fully operational amplifier.  
5/26  
Electrical characteristics  
TS4995  
Table 5.  
V
= +3.3V (all electrical values are guaranteed with correlation measurements at  
CC  
2.6V and 5V), GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
mA  
ICC  
Supply current  
No input signal, no load  
3
7
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
ISTBY Standby current  
10 1000 nA  
Differential output offset  
voltage  
Voo  
No input signal, RL = 8Ω  
0.1  
10  
mV  
VIC  
Po  
Input common mode voltage  
Output power  
0.4  
2.3  
V
THD = 1% max, F= 1kHz, RL = 8Ω  
300 500  
0.5  
mW  
Total harmonic distortion +  
noise  
THD + N  
PSRRIG  
Po = 300mW rms, 20Hz F 20kHz, RL = 8Ω  
%
dB  
dB  
Power supply rejection ratio F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF  
75(2) 90  
60  
with inputs grounded(1)  
Vripple = 200mVPP  
F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF  
CMRR Common mode rejection ratio  
Vic = 200mVPP  
A-weighted filter  
SNR Signal-to-noise ratio  
dB  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
100  
2
GBP Gain bandwidth product  
RL = 8Ω  
MHz  
20Hz F 20kHz, RL = 8Ω  
Unweighted  
A weighted  
11  
7
VN  
Output voltage noise  
µVRMS  
Unweighted, standby  
A weighted, standby  
3.5  
1.5  
Zin  
-
Input impedance  
Gain mismatch  
15  
20  
6
25  
kΩ  
dB  
ms  
5.5  
6.5  
tWU Wake-up time(3)  
Cb =1µF  
10  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Guaranteed by design and evaluation.  
.
3. Transition time from standby mode to fully operational amplifier.  
6/26  
TS4995  
Electrical characteristics  
Table 6.  
Symbol  
V
= +2.6V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
ICC  
Supply current  
No input signal, no load  
3
7
mA  
nA  
No input signal, VSTBY = VSM = GND, RL = 8Ω  
No input signal, VSTBY = VSM = VCC, RL = 8Ω  
ISTBY Standby current  
10 1000  
Differential output offset  
voltage  
Voo  
No input signal, RL = 8Ω  
0.1  
10  
mV  
VIC  
Po  
Input common mode voltage  
Output power  
0.6  
1.5  
V
THD = 1% max, F= 1kHz, RL = 8Ω  
200 300  
0.5  
mW  
Total harmonic distortion +  
noise  
THD + N  
PSRRIG  
CMRR  
Po = 225mW rms, 20Hz F 20kHz, RL = 8Ω  
%
Power supply rejection ratio F = 217Hz, R = 8Ω, Cin = 4.7μF, Cb =1µF  
75(2) 90  
60  
dB  
dB  
with inputs grounded(1)  
Vripple = 200mVPP  
Common mode rejection  
ratio  
F = 217Hz, RL = 8Ω, Cin = 4.7μF, Cb =1µF  
Vic = 200mVPP  
A-weighted filter  
SNR Signal-to-noise ratio  
dB  
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz  
100  
2
GBP Gain bandwidth product  
RL = 8Ω  
MHz  
20Hz F 20kHz, RL = 8Ω  
Unweighted  
A weighted  
11  
7
VN  
Output voltage noise  
µVRMS  
Unweighted, standby  
A weighted, standby  
3.5  
1.5  
Zin  
-
Input impedance  
Gain mismatch  
Wake-up time(3)  
15  
20  
6
25  
kΩ  
dB  
ms  
5.5  
6.5  
tWU  
Cb =1µF  
10  
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC  
2. Guaranteed by design and evaluation.  
.
3. Transition time from standby mode to fully operational amplifier.  
7/26  
Electrical characteristics  
TS4995  
Figure 2.  
THD+N vs. output power  
Figure 3.  
THD+N vs. output power  
10  
10  
RL = 8  
G = 6dB  
Ω
RL = 8  
G = 6dB  
Ω
Vcc=5V  
Vcc=5V  
F = 20Hz  
F = 20Hz  
Cb = 0  
BW < 125kHz  
Cb = 1  
μF  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
BW < 125kHz  
Tamb = 25  
1
0.1  
1
0.1  
°
C
Tamb = 25°C  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 4.  
THD+N vs. output power  
Figure 5.  
THD+N vs. output power  
10  
10  
RL = 16  
G = 6dB  
F = 20Hz  
Cb = 1  
BW < 125kHz  
Ω
RL = 16  
G = 6dB  
F = 20Hz  
Cb = 0  
BW < 125kHz  
Ω
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
μ
F
Vcc=3.3V  
1
0.1  
1
0.1  
Tamb = 25  
°
C
Tamb = 25°C  
Vcc=2.6V  
Vcc=2.6V  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
Output power (W)  
1
Output power (W)  
Figure 6.  
THD+N vs. output power  
Figure 7.  
THD+N vs. output power  
10  
10  
RL = 4  
G = 6dB  
F = 1kHz  
Cb = 0  
BW < 125kHz  
Ω
RL = 4  
Ω
G = 6dB  
F = 1kHz  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=3.3V  
Tamb = 25°C  
°
C
1
1
Vcc=2.6V  
Vcc=2.6V  
0.1  
1E-3  
0.01  
0.1  
1
0.1  
1E-3  
0.01  
0.1  
1
Output power (W)  
Output power (W)  
8/26  
TS4995  
Electrical characteristics  
Figure 8.  
THD+N vs. output power  
Figure 9.  
THD+N vs. output power  
10  
10  
RL = 8  
Ω
G = 6dB  
F = 1kHz  
RL = 8Ω  
G = 6dB  
F = 1kHz  
Cb = 0  
BW < 125kHz  
Vcc=5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
1
0.1  
1
0.1  
°
C
Tamb = 25°C  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 10. THD+N vs. output power  
Figure 11. THD+N vs. output power  
10  
10  
RL = 16  
G = 6dB  
F = 1kHz  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
Ω
RL = 16Ω  
G = 6dB  
F = 1kHz  
Cb = 0  
BW < 125kHz  
Vcc=5V  
Vcc=3.3V  
Vcc=5V  
Vcc=3.3V  
1
0.1  
1
0.1  
°
C
Tamb = 25°C  
Vcc=2.6V  
Vcc=2.6V  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 12. THD+N vs. output power  
Figure 13. THD+N vs. output power  
10  
10  
RL = 4  
Ω
RL = 4Ω  
G = 6dB  
F = 20kHz  
G = 6dB  
F = 20kHz  
Cb = 0  
BW < 125kHz  
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
Vcc=3.3V  
Vcc=3.3V  
°
C
1
1
Vcc=2.6V  
Vcc=2.6V  
0.1  
1E-3  
0.1  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
9/26  
Electrical characteristics  
TS4995  
Figure 14. THD+N vs. output power  
Figure 15. THD+N vs. output power  
10  
10  
RL = 8  
G = 6dB  
F = 20kHz  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
RL = 8Ω  
G = 6dB  
F = 20kHz  
Cb = 0  
BW < 125kHz  
Vcc=5V  
Vcc=3.3V  
Vcc=5V  
Vcc=3.3V  
μF  
°
C
Tamb = 25°C  
1
1
Vcc=2.6V  
Vcc=2.6V  
0.1  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 16. THD+N vs. output power  
Figure 17. THD+N vs. output power  
10  
10  
RL = 16  
G = 6dB  
Ω
RL = 16Ω  
G = 6dB  
Vcc=5V  
Vcc=5V  
F = 20kHz  
Cb = 1μF  
BW < 125kHz  
Tamb = 25  
F = 20kHz  
Cb = 0  
BW < 125kHz  
Vcc=3.3V  
Vcc=3.3V  
1
0.1  
1
0.1  
°
C
Tamb = 25°C  
Vcc=2.6V  
Vcc=2.6V  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 18. THD+N vs. frequency  
Figure 19. THD+N vs. frequency  
10  
10  
RL = 4  
G = 6dB  
Cb = 1  
BW < 125kHz  
Tamb = 25  
Ω
RL = 4Ω  
G = 6dB  
Cb = 0  
BW < 125kHz  
μ
F
Vcc=5V, Po=1000mW  
Vcc=2.6V, Po=280mW  
Vcc=5V, Po=1000mW  
Vcc=2.6V, Po=280mW  
°
C
Tamb = 25°C  
1
1
0.1  
0.1  
Vcc=3.3V, Po=500mW  
Vcc=3.3V, Po=500mW  
0.01  
0.01  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
10/26  
TS4995  
Electrical characteristics  
Figure 20. THD+N vs. frequency  
Figure 21. THD+N vs. frequency  
10  
10  
RL = 8  
G = 6dB  
Cb = 1  
Ω
RL = 8Ω  
G = 6dB  
Cb = 0  
μ
F
BW < 125kHz  
Tamb = 25C  
BW < 125kHz  
Tamb = 25C  
Vcc=2.6V, Po=225mW  
Vcc=2.6V, Po=225mW  
1
1
Vcc=5V, Po=850mW  
Vcc=3.3V, Po=300mW  
Vcc=5V, Po=850mW  
Vcc=3.3V, Po=300mW  
0.1  
0.1  
0.01  
0.01  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 22. THD+N vs. frequency  
Figure 23. THD+N vs. frequency  
10  
10  
RL = 16  
G = 6dB  
Cb = 1  
Ω
RL = 16Ω  
G = 6dB  
Cb = 0  
μ
F
BW < 125kHz  
Tamb = 25C  
BW < 125kHz  
Tamb = 25C  
1
1
Vcc=5V, Po=500mW  
Vcc=5V, Po=500mW  
Vcc=2.6V, Po=125mW  
Vcc=2.6V, Po=125mW  
0.1  
0.1  
Vcc=3.3V, Po=225mW  
100  
Vcc=3.3V, Po=225mW  
100  
0.01  
0.01  
1000  
10000  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. Output power vs. power supply  
voltage  
Figure 25. Output power vs. power supply  
voltage  
10  
2,4  
Cb = 1μF  
F = 1kHz  
BW < 125 kHz  
RL = 16  
G = 6dB  
Cb = 1  
BW < 125kHz  
Tamb = 25C  
Ω
2,2  
2,0  
1,8  
1,6  
1,4  
1,2  
1,0  
0,8  
0,6  
0,4  
0,2  
0,0  
μ
F
Tamb = 25°C  
4
Ω
1
Vcc=5V, Po=500mW  
8
Ω
Vcc=2.6V, Po=125mW  
0.1  
16  
Ω
32  
Ω
Vcc=3.3V, Po=225mW  
100  
0.01  
2,5  
3,0  
3,5  
4,0  
4,5  
5,0  
5,5  
1000  
10000  
Vcc (V)  
Frequency (Hz)  
11/26  
Electrical characteristics  
TS4995  
Figure 26. Output power vs. power supply  
voltage  
Figure 27. Power derating curves  
2,0  
Cb = 1μF  
1.2  
1.0  
1,8  
1,6  
1,4  
1,2  
1,0  
0,8  
0,6  
0,4  
0,2  
0,0  
F = 1kHz  
BW < 125 kHz  
Tamb = 25°C  
Heat sink surface 100mm2  
4
Ω
0.8  
0.6  
0.4  
0.2  
0.0  
8
Ω
16  
Ω
No Heat sink  
25  
32  
Ω
0
50  
75  
100  
125  
2,5  
3,0  
3,5  
4,0  
Vcc (V)  
4,5  
5,0  
5,5  
Ambiant Temperature (°C)  
Figure 28. Output power vs. load resistance  
Figure 29. Power dissipation vs. output power  
1.4  
2000  
Vcc=5V  
F=1kHz  
THD+N<1%  
THD+N = 1%  
F = 1kHz  
Vcc=5.5V  
Vcc=5V  
Vcc=4.5V  
Vcc=4V  
Vcc=3.3V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1.2  
Cb = 1  
BW < 125kHz  
Tamb = 25  
μF  
RL=4Ω  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
°
C
Vcc=2.6V  
RL=8Ω  
RL=16  
Ω
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Load Resistance (  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Ω
)
Output Power (W)  
Figure 30. Power dissipation vs. output power Figure 31. Power dissipation vs. output power  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Vcc=3.3V  
F=1kHz  
THD+N<1%  
Vcc=2.6V  
F=1kHz  
THD+N<1%  
RL=4Ω  
RL=4Ω  
RL=8  
Ω
RL=8  
Ω
RL=16  
Ω
RL=16  
Ω
0.0  
0.1  
0.2  
Output Power (W)  
0.3  
0.4  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Output Power (W)  
12/26  
TS4995  
Electrical characteristics  
Figure 32. PSSR vs. frequency  
Figure 33. PSSR vs. frequency  
0
0
-10  
Vcc = 2.6V  
Vripple = 200mVpp  
Vcc = 2.6V  
Vripple = 200mVpp  
-10  
-20  
-20  
RL  
8Ω  
RL  
8Ω  
-30  
-30  
G = 6dB  
Inputs floating  
Tamb = 25°C  
G = 6dB, Cin = 4.7  
Inputs grounded  
Tamb = 25°C  
μF  
-40  
-40  
Cb=0  
-50  
-50  
Cb=0  
-60  
-60  
-70  
-70  
Cb=1  
100  
μF, 0.47μF, 0.1μF  
-80  
-80  
-90  
-90  
-100  
-110  
-100  
-110  
Cb=1  
μ
F, 0.47  
μ
F, 0.1  
μF  
20  
20  
1000  
Frequency (Hz)  
10000  
10000  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 34. PSSR vs. frequency  
Figure 35. PSSR vs. frequency  
0
0
Vcc = 3.3V  
Vripple = 200mVpp  
Vcc = 3.3V  
Vripple = 200mVpp  
-10  
-20  
-10  
-20  
RL  
8
Ω
RL 8Ω  
G = 6dB  
-30  
-30  
G = 6dB, Cin = 4.7  
Inputs grounded  
μ
F
Inputs floating  
Tamb = 25°C  
-40  
-40  
Tamb = 25  
°
C
Cb=0  
-50  
-50  
Cb=0  
-60  
-60  
-70  
Cb=1  
μ
F, 0.47  
μ
F, 0.1  
μ
F
-70  
-80  
-80  
-90  
-90  
Cb=1  
1000  
μF, 0.47μF, 0.1μF  
-100  
-110  
-100  
-110  
20  
20  
100  
1000  
Frequency (Hz)  
100  
10000  
Frequency (Hz)  
Figure 36. PSSR vs. frequency  
Figure 37. PSSR vs. frequency  
0
0
Vcc = 5V  
-10  
Vcc = 5V  
-10  
-20  
Vripple = 200mVpp  
Vripple = 200mVpp  
-20  
RL  
8Ω  
RL  
8Ω  
-30  
-40  
-30  
G = 6dB, Cin = 4.7  
Inputs grounded  
μ
F
G = 6dB  
Inputs floating  
Tamb = 25°C  
-40  
Cb=0  
Tamb = 25  
°
C
-50  
-50  
Cb=0  
-60  
-60  
Cb=1μF, 0.47μF, 0.1μF  
-70  
-70  
-80  
-80  
-90  
-90  
Cb=1, 0.47, 0.1μF  
-100  
-110  
-100  
-110  
20  
20  
100  
1000  
Frequency (Hz)  
100  
1000  
10000  
Frequency (Hz)  
13/26  
Electrical characteristics  
TS4995  
Figure 38. PSSR vs. common mode input  
voltage  
Figure 39. PSSR vs. common mode input  
voltage  
20  
20  
0
Vcc = 5V  
Vripple = 200mVpp  
F = 217Hz  
Vcc = 3.3V  
Vripple = 200mVpp  
F = 217Hz  
0
G = 6dB  
G = 6dB  
-20  
-40  
-20  
-40  
-60  
-80  
-100  
RL  
8
Ω
RL 8Ω  
Tamb = 25°C  
Tamb = 25°C  
Cb=0.1  
Cb=0.47  
Cb=1  
μ
F
Cb=0.1  
Cb=0.47  
Cb=1  
μ
F
μ
F
μ
F
Cb=0  
Cb=0  
μ
F
μ
F
-60  
-80  
-100  
0
1
2
3
4
5
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
Figure 40. PSSR vs. common mode input  
voltage  
Figure 41. CMRR vs. frequency  
20  
0
Vcc = 2.6V  
Vcc = 5V  
G = 6dB  
Vic = 200mVpp  
Vripple = 200mVpp  
F = 217Hz  
G = 6dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
RL  
Cin = 470  
Tamb = 25  
8Ω  
Cb=1  
μF  
-20  
-40  
RL  
8Ω  
μ
F
Cb=0.47  
μ
F
Tamb = 25°C  
°
C
Cb=0.1  
Cb=0  
μ
F
Cb=0.1  
Cb=0.47  
Cb=1  
μ
F
Cb=0  
μ
F
-60  
μ
F
-80  
-100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
100  
1000  
10000  
Common Mode Input Voltage (V)  
Frequency (dB)  
Figure 42. CMRR vs. frequency  
Figure 43. CMRR vs. frequency  
0
0
Vcc = 3.3V  
Vcc = 2.6V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
G = 6dB  
Vic = 200mVpp  
G = 6dB  
Vic = 200mVpp  
RL  
Cin = 470  
Tamb = 25  
8
Ω
RL  
Cin = 470  
Tamb = 25  
8Ω  
Cb=1  
Cb=0.47  
Cb=0.1  
Cb=0  
μ
F
Cb=1  
Cb=0.47  
Cb=0.1  
Cb=0  
μF  
μ
F
μF  
μ
F
F
μ
F
F
°
C
°
C
μ
μ
100  
1000  
10000  
100  
1000  
10000  
Frequency (dB)  
Frequency (dB)  
14/26  
TS4995  
Electrical characteristics  
Figure 44. CMRR vs. common mode input  
voltage  
Figure 45. CMRR vs. common mode input  
voltage  
20  
20  
Vic = 200mVpp  
F = 217Hz  
Vic = 200mVpp  
F = 217Hz  
10  
10  
Cb = 1  
μ
F
Cb = 0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
RL  
8
Ω
RL  
8Ω  
Tamb = 25°C  
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Vcc=2.6V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=3.3V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
Figure 46. Current consumption vs. power  
supply voltage  
Figure 47. Differential DC output voltage vs.  
common mode input voltage  
5.0  
G = 6dB  
No loads  
4.5  
Tamb = 25°C  
Tamb = 25°C  
0.1  
0.01  
1E-3  
1E-4  
1E-5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vcc=2.6V  
Vcc=3.3V  
Vcc=5V  
0
1
2
3
4
5
0
1
2
3
4
5
6
Common Mode Input Voltage (V)  
Power Supply Voltage (V)  
Figure 48. Current consumption vs. standby Figure 49. Current consumption vs. standby  
voltage voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Standby mode=0V  
Standby mode=0V  
Standby mode=3.3V  
Standby mode=5V  
Vcc = 5V  
No load  
Tamb = 25  
Vcc = 3.3V  
No load  
°
C
Tamb = 25  
°
C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
Standby Voltage (V)  
Standby Voltage (V)  
15/26  
Electrical characteristics  
TS4995  
Figure 50. Current consumption vs. standby Figure 51. Frequency response  
voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8
7
6
5
4
3
2
1
0
Cin=4.7μF  
Standby mode=0V  
Standby mode=2.6V  
Cin=330nF  
Vcc = 5V  
Gain = 6dB  
Vcc = 2.6V  
No load  
Tamb = 25°C  
ZL = 8  
Ω + 500pF  
Tamb = 25  
°
C
20  
20k  
10000  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
100  
1000  
Frequency (Hz)  
Standby Voltage (V)  
Figure 52. Frequency response  
Figure 53. Frequency response  
8
8
Cin=4.7  
μ
F
Cin=4.7μF  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Cin=330nF  
Cin=330nF  
Vcc = 3.3V  
Gain = 6dB  
Vcc = 2.6V  
Gain = 6dB  
ZL = 8 + 500pF  
Tamb = 25  
ZL = 8  
Ω
+ 500pF  
Ω
Tamb = 25  
°
C
°C  
20  
20k  
20  
20k  
10000  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
Figure 54. SNR vs. power supply voltage with Figure 55. SNR vs. power supply voltage with  
unweighted filter A-weighted filter  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
F = 1kHz  
G = 6dB  
Cb = 1μF  
THD + N < 0.7%  
Tamb = 25°C  
F = 1kHz  
G = 6dB  
Cb = 1μF  
THD + N < 0.7%  
Tamb = 25°C  
RL=16Ω  
RL=8Ω  
RL=8Ω  
RL=16Ω  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
16/26  
TS4995  
Application information  
4
Application information  
4.1  
Differential configuration principle  
The TS4995 is a monolithic full-differential input/ output power amplifier with fixed +6 dB  
gain. The TS4995 also includes a common mode feedback loop that controls the output bias  
value to average it at V /2 for any DC common mode input voltage. This allows maximum  
CC  
output voltage swing, and therefore, to maximize the output power. Moreover, as the load is  
connected differentially instead of single-ended, output power is four times higher for the  
same power supply voltage.  
The advantages of a full-differential amplifier are:  
Very high PSRR (power supply rejection ratio)  
High common mode noise rejection  
Virtually no pop and click without additional circuitry, giving a faster start-up time  
compared to conventional single-ended input amplifiers  
Easier interfacing with differential output audio DAC  
No input coupling capacitors required due to common mode feedback loop  
In theory, the filtering of the internal bias by an external bypass capacitor is not necessary.  
However, to reach maximum performance in all tolerance situations, it is recommended to  
keep this option.  
4.2  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
Due to the V limitation of the input stage (see Table 4 on page 5), the common mode  
IC  
feedback loop can fulfil its role only within the defined range.  
4.3  
Low frequency response  
The input coupling capacitors block the DC part of the input signal at the amplifier inputs. C  
in  
and R form a first-order high pass filter with -3 dB cut-off frequency.  
in  
1
FCL  
=
(Hz)  
2× π×Rin ×Cin  
Note:  
The input impedance for the TS4995 is typically 20kΩ and there is tolerance around this  
value.  
From Figure 56, you can easily establish the C value required for a -3 dB cut-off frequency.  
in  
17/26  
Application information  
TS4995  
Figure 56. -3 dB lower cut-off frequency vs. input capacitance  
All gain setting  
Tamb=25  
°
C
100  
Minimum Input  
Impedance  
Typical Input  
Impedance  
10  
Maximum Input  
Impedance  
0.1  
0.5  
1
Input Capacitor Cin (μF)  
4.4  
Power dissipation and efficiency  
Assumptions:  
Load voltage and current are sinusoidal (V and I  
)
out  
out  
Supply voltage is a pure DC source (V  
)
CC  
The output voltage is:  
Vout = Vpeak sinωt (V)  
and  
Vout  
------------  
(A)  
Iout  
=
RL  
and  
2
Vpeak  
--------------------  
(W)  
Pout  
=
2RL  
Therefore, the average current delivered by the supply voltage is:  
Equation 1  
Vpeak  
----------------  
(A)  
Icc  
= 2  
AVG  
πRL  
The power delivered by the supply voltage is:  
Equation 2  
Psupply = VCC IccAVG (W)  
18/26  
TS4995  
Application information  
Therefore, the power dissipated by each amplifier is:  
= P - P (W)  
P
diss  
supply  
out  
2 2VCC  
----------------------  
Pdiss  
=
P
outPout  
π RL  
and the maximum value is obtained when:  
and its value is:  
Pdiss  
--------------------  
= 0  
Pout  
Equation 3  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
Note:  
This maximum value is only dependent on the power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply:  
Equation 4  
Pout  
πVpeak  
4VCC  
------------------ --------------------  
η=  
=
Psupply  
The maximum theoretical value is reached when V  
= V , so:  
CC  
peak  
π
η= ---- = 78.5%  
4
The maximum die temperature allowable for the TS4995 is 125° C. However, in case of  
overheating, a thermal shutdown set to 150° C, puts the TS4995 in standby until the  
temperature of the die is reduced by about 5° C.  
To calculate the maximum ambient temperature T  
allowable, you need to know:  
amb  
The power supply voltage, V  
CC  
The load resistor value, R  
L
The package type, R  
thja  
2
Example: V =5 V, R =8 Ω, R  
= 100° C/W (100 mm copper heatsink).  
CC  
L
thja-flipchip  
Using the power dissipation formula given above in Equation 3, this gives a result of:  
= 633mW  
P
dissmax  
T
is calculated as follows:  
amb  
Equation 5  
T
amb= 125° C Rthja × Pdissmax  
Therefore, the maximum allowable value for T is:  
amb  
T
= 125-100x0.633=61.7° C  
amb  
19/26  
Application information  
TS4995  
4.5  
Decoupling of the circuit  
Two capacitors are needed to correctly bypass the TS4995: a power supply bypass  
capacitor C and a bias voltage bypass capacitor C .  
S
b
The C capacitor has particular influence on the THD+N at high frequencies (above 7 kHz)  
S
and an indirect influence on power supply disturbances. With a value for C of 1 µF, one can  
S
expect THD+N performance similar to that shown in the datasheet.  
In the high frequency region, if C is lower than 1 µF, then THD+N increases and  
S
disturbances on the power supply rail are less filtered.  
On the other hand, if C is greater than 1 µF, then those disturbances on the power supply  
S
rail are more filtered.  
The C capacitor has an influence on the THD+N at lower frequencies, but also impacts  
b
PSRR performance (with grounded input and in the lower frequency region).  
4.6  
Wake-up time tWU  
When the standby is released to put the device ON, the bypass capacitor C is not charged  
b
immediately. Because C is directly linked to the bias of the amplifier, the bias will not work  
b
properly until the C voltage is correct. The time to reach this voltage is called the wake-up  
b
time or t  
and is specified in Table 4 on page 5, with C =1 µF. During the wake-up phase,  
WU  
b
the TS4995 gain is close to zero. After the wake-up time, the gain is released and set to its  
nominal value.  
If C has a value different from 1 µF, then refer to the graph in Figure 57 to establish the  
b
corresponding wake-up time.  
Figure 57. Startup time vs. bypass capacitor  
15  
Tamb=25°C  
Vcc=5V  
10  
5
Vcc=3.3V  
Vcc=2.6V  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
Bypass Capacitor Cb (  
μ
F)  
20/26  
TS4995  
Application information  
4.7  
Shutdown time  
When the standby command is set, the time required to put the two output stages in high  
impedance and the internal circuitry in shutdown mode is a few microseconds.  
Note:  
In shutdown mode, the Bypass pin and V +, V - pins are shorted to ground by internal  
in in  
switches. This allows a quick discharge of C and C .  
b
in  
4.8  
Pop performance  
Due to its fully differential structure, the pop performance of the TS4995 is close to perfect.  
However, due to mismatching between internal resistors R , R , and external input  
in  
feed  
capacitors C , some noise might remain at startup. To eliminate the effect of mismatched  
in  
components, the TS4995 includes pop reduction circuitry. With this circuitry, the TS4995 is  
close to zero pop for all possible common applications.  
In addition, when the TS4995 is in standby mode, due to the high impedance output stage in  
this configuration, no pop is heard.  
4.9  
Single-ended input configuration  
It is possible to use the TS4995 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The schematic diagram in Figure 58  
shows an example of this configuration.  
21/26  
Application information  
TS4995  
Figure 58. Typical single-ended input application  
VCC  
Cs1  
1uF  
TS4995 FlipChip  
TS4995  
Ve  
P1  
Cin1  
Vo-  
3
Vin-  
7
5
330nF  
Cin2  
Vo+  
1
8
Vin+  
8 Ohms  
+
330nF  
BYPASS  
BIAS  
1uF  
STBY  
STDBY  
STDBY MODE  
Cbypass1  
VCC  
22/26  
TS4995  
Package information  
5
Package information  
To meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Figure 59. 9-bump flip-chip package mechanical drawing  
1.63 mm  
– Die size: 1.63mm x 1.63mm ± 30µm  
– Die height (including bumps): 600µm  
– Bumps diameter: 315µm ±50µm  
– Bump diameter before reflow: 300µm ±10µm  
– Bumps height: 250µm ±40µm  
– Die height: 350µm ±20µm  
1.63 mm  
0.5mm  
– Pitch: 500µm ±50µm  
0.5mm  
– Coplanarity: 60µm max  
0.25mm  
600µm  
Figure 60. Tape and reel schematics  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
23/26  
Package information  
Figure 61. Pin out (top view)  
Gnd  
TS4995  
Figure 62. Marking (top view)  
E
VO-  
Bypass  
VIN+  
VO+  
7
6
9
5
Stdby  
VIN-  
4
3
8
1
95
2
YWW  
VCC  
Stdby Mode  
– Balls are underneath  
24/26  
TS4995  
Ordering information  
6
Ordering information  
Table 7.  
Order code  
TS4995EIJT  
Order code  
Temperature  
Package  
Packing  
Marking  
range  
-40° C to +85° C  
Lead free flip chip 9  
Tape & reel  
95  
7
Revision history  
Table 8.  
Date  
Document revision history  
Revision  
Changes  
1-Jun-2006  
1
2
Final datasheet.  
Additional information for 4Ω load.  
25-Oct-2006  
Modified Figure 60: Tape and reel schematics to correct die  
orientation.  
25-Mar-2008  
3
25/26  
TS4995  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

TS4997

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR

TS4997IQT

2 x 1W differential input stereo audio amplifier with programmable 3D effects
STMICROELECTR

TS4998

2 x 1W differential input stereo audio amplifier
STMICROELECTR

TS4998IQT

2 x 1W differential input stereo audio amplifier
STMICROELECTR

TS4999

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4999EIJT

Filter-free stereo 2.8 W class D audio power amplifier with selectable 3D sound effects
STMICROELECTR

TS4A

Modular Jacks
YAMAICHI

TS4B

Modular Jacks
YAMAICHI

TS4B01G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_1

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B01G_10

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC

TS4B02G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers
TSC