TS472 [STMICROELECTRONICS]

Very Low Noise Microphone Preamplifier with 2V Biased Output and Active Low Standby Mode; 超低噪声麦克风前置放大器, 2V偏置输出和低电平有效待机模式
TS472
型号: TS472
厂家: ST    ST
描述:

Very Low Noise Microphone Preamplifier with 2V Biased Output and Active Low Standby Mode
超低噪声麦克风前置放大器, 2V偏置输出和低电平有效待机模式

放大器
文件: 总20页 (文件大小:613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS472  
Very Low Noise Microphone Preamplifier  
with 2V Biased Output and Active Low Standby Mode  
Low noise: 10nV/Hz typ. equivalent input  
Flip-chip - 12 bumps  
noise @ F = 1kHz  
Fully differential input/output  
2.2V to 5.5V single supply operation  
Low power consumption @20dB: 1.8mA  
Fast start up time @ 0dB: 5ms typ.  
Low distortion: 0.1% typ.  
Pin Connections (top view)  
40kHz bandwidth @ -3dB and adjustable  
Active low standby mode function (1µA max)  
Low noise 2.0V microphone bias output  
Available in flip-chip lead-free package  
ESD protection (2kV)  
C1  
C2  
VCC  
OUT-  
STDBY  
OUT+  
GND  
OUTPUT  
BIAS  
GS  
IN+  
BYPASS  
IN-  
Description  
The TS472 is a differential-input microphone  
preamplifier optimized for high-performance, PDA  
and notebook audio systems.  
This device features an adjustable gain from 0dB  
to 40dB with excellent power-supply and  
common-mode rejection ratios. In addition, the  
TS472 has a very low-noise microphone bias  
generator of 2V.  
Applications  
Video and photo cameras with sound input  
Sound acquisition & voice recognition  
Video conference systems  
It also includes a complete shutdown function,  
with active low standby mode.  
Notebook computers and PDAs  
Order Codes  
Part Number  
TS472EIJT  
Temperature Range  
Package  
Packing  
Marking  
-40, +85°C  
Flip-Chip  
Tape & Reel  
472  
Rev 2  
1/20  
October 2005  
www.st.com  
20  
Typical Application Schematic  
TS472  
1
Typical Application Schematic  
Figure 1 shows a typical application schematic for the TS472 with gain = 20dB. To change the  
gain see Chapter 4.5: Gain settings on page 14.  
Figure 1. Application schematic  
Optional  
C1  
VCC  
Cs  
1uF  
C2  
C3  
1uF  
Rpos  
U1  
TS472  
Vcc  
Rout+  
Rout-  
Cout+  
Cout-  
Cin+  
Cin-  
A1 IN+  
B1 IN-  
OUT+ C2  
Positive Output  
Negative Output  
+
OUT-  
D2  
Electret Mic  
GAIN  
SELECT B2  
Rneg  
G
BYPASS  
A2 BIAS  
D1  
Bias  
2.0V  
Cb  
1uF  
Standby Control  
Table 1.  
External component descriptions  
Functional Description  
Components  
Input coupling capacitors which blocks the DC voltage at the amplifier input terminal  
and determine Lower cut-off frequency.  
Cin+, Cin-  
Output coupling capacitors which blocks the DC voltage coming from the amplifier  
output terminal (pins C2 and D2) and determine Lower cut-off frequency.  
Cout+, Cout-  
Output load resistors which allow to charged the output coupling capacitors Cout.  
Rout+, Rout-  
These output resistors can be represented by an input impedance of a following  
stage.  
Rpos, Rneg  
Microphone biasing resistors  
Cs  
Cb  
Supply Bypass capacitor which provides power supply filtering.  
Bypass pin capacitor which provides half supply filtering.  
Low pass filter capacitors which can determine Higher cut-off frequency.  
Bias output capacitor which keeps voltage stabilized and provides 2.0V bias filtering.  
C1, C2  
C3  
2/20  
TS472  
Absolute Maximum Ratings  
2
Absolute Maximum Ratings  
Table 2.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter  
Value  
Unit  
(1)  
V
6
V
CC  
Supply voltage  
Input Voltage  
V
GND-0.3 to V +0.3  
V
i
CC  
T
Operating Free Air Temperature Range  
Storage Temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
°C  
oper  
T
stg  
T
Maximum Junction Temperature  
j
R
Flip-chip Thermal Resistance Junction to Ambient  
Human Body Model  
180  
2
°C/W  
kV  
thja  
ESD  
ESD  
Machine Model  
200  
250  
V
Lead Temperature (soldering, 10sec)  
°C  
1. All voltages values are measured with respect to the ground pin.  
Table 3.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
V
Supply Voltage  
2.2 to 5.5  
V
CC  
Typical Differential Gain (GS connected to 4.7kor  
Bias)  
G
20  
dB  
V
Standby Voltage Input:  
1.5 V  
V  
CC  
V
STB  
Device ON  
STB  
GND V  
0.4  
Device OFF  
STB  
T
Operational Free Air Temperature Range  
-40 to +85  
150  
°C  
OP  
R
Flip-chip Thermal Resistance Junction to Ambient  
°C/W  
thja  
3/20  
Electrical Characteristics  
TS472  
3
Electrical Characteristics  
Table 4.  
Symbol  
V
= 3V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Equivalent Input Noise Voltage Density  
=100at 1KHz  
Min.  
Typ.  
Max.  
Unit  
nV  
-----------  
e
10  
n
R
Hz  
EQ  
Total Harmonic Distortion + Noise  
20Hz F20kHz, Gain=20dB, Vin=50mV  
THD+N  
0.1  
10  
%
RMS  
V
mV  
RMS  
Input Voltage, Gain=20dB  
70  
IN  
Bandwidth @ -3dB  
Bandwidth @ -1dB  
pin A3, B3 floating  
40  
20  
B
kHz  
W
Overall Output Voltage Gain (Rgs variable)  
Minimum Gain, Rgs infinite  
Maximum Gain, Rgs=0  
G
-3  
39.5  
-1.5  
41  
0
42.5  
dB  
Z
Input impedance referred to GND  
Resistive load  
80  
10  
100  
120  
kΩ  
kΩ  
pF  
IN  
R
LOAD  
C
Capacitive load  
100  
2.4  
1
LOAD  
I
Supply current, Gain=20dB  
Standby current  
1.8  
mA  
µA  
CC  
I
STANDBY  
Power Supply Rejection Ratio, Gain=20dB, F=217Hz,  
Vripple=200mVpp, Inputs grounded  
Differential Output  
PSRR  
dB  
-70  
-46  
Single-Ended Outputs,  
Table 5.  
Symbol  
Bias output: V  
= 3V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Min.  
1.9  
80  
Typ.  
2
Max.  
2.1  
Unit  
V
V
No load condition  
Output resistance  
OUT  
R
100  
2
120  
OUT  
I
Output Bias Current  
mA  
OUT  
Power Supply Rejection Ratio, F=217Hz,  
Vripple=200mVpp  
PSRR  
70  
80  
dB  
4/20  
TS472  
Electrical Characteristics  
Table 6.  
Gain  
Differential RMS noise voltage  
Input Referred Noise Voltage  
Output Noise Voltage  
(µV  
)
(µV  
)
RMS  
RMS  
(dB)  
Unweighted Filter  
A-weighted Filter Unweighted Filter A-weighted Filter  
0
15  
3.4  
1.4  
10  
2.3  
0.9  
15  
34  
10  
23  
91  
20  
40  
141  
Table 7.  
Bias output RMS noise voltage  
Unweighted Filter  
(µV  
A-weighted Filter  
Cout  
(µF)  
)
(µV  
)
RMS  
RMS  
1
5
4.4  
1.2  
10  
2.2  
Table 8.  
Gain  
SNR (signal to noise ratio), THD+N < 0.5%  
Unweighted Filter  
(dB)  
A-weighted Filter  
(dB)  
(dB)  
Vcc=2.2V  
Vcc=3V  
Vcc=5.5V  
Vcc=2.2V  
Vcc=3V  
Vcc=5.5V  
0
75  
82  
70  
76  
83  
72  
76  
83  
74  
79  
89  
80  
80  
90  
82  
80  
90  
84  
20  
40  
Note:  
Unweighted filter = 20Hz F 20kHz  
5/20  
Electrical Characteristics  
TS472  
Table 9.  
Index of graphics  
Description  
Figure  
Page  
Current consumption vs. power supply voltage  
Standby threshold voltage vs. power supply voltage  
Frequency response  
Figure 2 to 3  
Figure 4  
page 7  
page 7  
page 7  
page 7  
page 7  
page 8  
page 8  
page 8  
page 9  
page 9  
page 9  
page 9  
page 9  
page 10  
page 11  
page 11  
Figure 5  
Bias output voltage vs. bias output current  
Bias output voltage vs. power supply voltage  
Bias PSRR vs. frequency  
Figure 6  
Figure 7  
Figure 8 to 9  
Figure 10 to 11  
Figure 12 to 13  
Figure 14  
Differential output PSRR vs. frequency  
Differential output PSRR vs. frequency  
Single-ended output PSRR vs. frequency  
Equivalent input noise voltage density  
D gain vs. power supply voltage  
Dgain vs. ambient temperature  
Figure 15  
Figure 16  
Figure 17  
Maximum input voltage vs. gain, THD+N<1%  
THD+N vs. input voltage  
Figure 18 to 19  
Figure 20 to 25  
Figure 26 to 27  
Figure 28 to 29  
THD+N vs. frequency  
Transient response  
6/20  
TS472  
Electrical Characteristics  
Figure 2. Current consumption vs. power  
supply voltage  
Figure 3. Current consumption vs. power  
supply voltage  
3.0  
3.0  
No Loads, Maximum Gain  
No Loads, Minimum Gain  
2.5  
2.0  
1.5  
1.0  
2.5  
2.0  
1.5  
1.0  
TAMB=25°C  
TAMB=85°C  
TAMB=-40°C  
TAMB=85°C  
TAMB=-40°C  
TAMB=25°C  
0.5  
0.0  
0.5  
0.0  
2.2  
3
4
Power Supply Voltage (V)  
5
3
4
Power Supply Voltage (V)  
5
5.5  
5.5  
2.2  
Figure 4. Standby threshold voltage vs.  
power supply voltage  
Figure 5. Frequency response  
30  
1.0  
0.8  
0.6  
0.4  
Cb=1µF, TAMB=25°C, Gain=20dB, Rout=100kΩ  
20  
10  
0
no C1,C2  
C1,C2=100pF  
Cin,Cout=100nF  
C1,C2=220pF  
0.2  
-10  
-20  
Cin,Cout=10nF  
No Loads  
Tamb = 25°C  
0.0  
2.2  
3
4
5
5.5  
10  
100  
1000  
10000  
100000  
Power Supply Voltage (V)  
Frequency (Hz)  
Figure 6. Bias output voltage vs. bias output Figure 7. Bias output voltage vs. power  
current supply voltage  
2.2  
2.0  
1.8  
1.6  
1.4  
2.2  
2.0  
1.8  
1.6  
1.4  
Tamb=25°C  
Ibias=0mA  
Ibias=2mA  
Ibias=4mA  
Tamb=85°C  
Tamb=-40°C  
Tamb=25°C  
5.5  
0
1
2
3
4
3
4
5
2.2  
Bias Output Current (mA)  
Power Supply Voltage (V)  
7/20  
Electrical Characteristics  
TS472  
Figure 8. Bias PSRR vs. frequency  
Figure 9. Bias PSRR vs. frequency  
0
0
Vripple=200mVpp  
Vripple=200mVpp  
Vcc=5V  
-20  
Cb=1µF  
Vcc=3V  
-20  
Cb=1µF  
Tamb=25°C  
Tamb =25  
°C  
-40  
-60  
Bias=1kto GND  
-40  
-60  
Bias floating or 1k  
to GND  
-80  
-80  
Bias floating  
-100  
-100  
50  
20k  
100  
1k  
Frequency (Hz)  
10k  
50  
20k  
100  
1k  
Frequency (Hz)  
10k  
Figure 10. Differential output PSRR vs.  
frequency  
Figure 11. Differential output PSRR vs.  
frequency  
0
0
VRIPPLE=200mVPP, Inputs grounded  
VRIPPLE=200mVPP, Inputs grounded  
VCC=5V, Cb=Cin=1µF, TAMB =25°C  
VCC=3V, Cb=Cin=1µF, TAMB =25°C  
-20  
-40  
-20  
-40  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Gain=20dB  
-60  
-60  
Minimum Gain  
Gain=20dB  
-80  
-80  
-100  
-100  
100  
1k  
Frequency (Hz)  
10k  
100  
1k  
Frequency (Hz)  
10k  
50  
20k  
50  
20k  
Figure 12. Differential output PSRR vs.  
frequency  
Figure 13. Differential output PSRR vs.  
frequency  
0
0
VRIPPLE=200mVPP, Inputs grounded  
VRIPPLE=200mVPP, Inputs grounded  
VCC=3V, Minimum Gain, Cin=1µF, TAMB =25°C  
VCC=3V, Gain=20dB, Cin=1µF, TAMB =25°C  
-20  
-20  
-40  
-40  
Cb=1µF  
Cb=1µF  
No Cb  
-60  
Cb=100nF  
No Cb  
-60  
-80  
-80  
Cb=100nF  
-100  
-100  
50  
100  
1k  
10k  
100  
1k  
10k  
50  
20k  
20k  
Frequency (Hz)  
Frequency (Hz)  
8/20  
TS472  
Electrical Characteristics  
Figure 14. Single-ended output PSRR vs.  
frequency  
Figure 15. Equivalent input noise voltage  
density  
0
1000  
Vripple=200mVpp  
Cin=100nF  
-10 Inputs grounded  
REQ=100  
Cb=1  
Cin=100nF  
Tamb=25  
µF  
Vcc=3V  
TAMB=25  
°
C
-20  
-30  
-40  
-50  
-60  
-70  
-80  
°
C
100  
10  
1
Vcc=2.2V  
100  
Vcc=5V  
10000  
10  
100  
1k  
10k  
100k  
50  
20k  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 16. gain vs. power supply voltage  
Figure 17. gain vs. ambient temperature  
1.0  
0.50  
F=1kHz  
F=1kHz  
Vin=5mV  
Tamb=25°C  
VIN=5mV  
0.8  
0.6  
0.25  
Maximum Gain  
0.00  
0.4  
-0.25  
Maximum Gain  
0.2  
-0.50  
Gain=20dB  
0.0  
Minimum Gain  
Gain=20dB  
-0.75  
-0.2  
-0.4  
Minimum Gain  
-1.00  
5.5  
3
4
5
-40  
-20  
0
20  
40  
60  
80  
2.2  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
Figure 18. Maximum input voltage vs. gain,  
THD+N<1%  
Figure 19. Maximum input voltage vs. power  
supply voltage, THD+N<1%  
150  
TAMB=25°C, F=1kHz, THD+N<1%  
140  
120  
100  
80  
Gain=0dB  
TAMB=25°C  
VCC=5.5V  
F=1kHz  
THD+N<1%  
100  
60  
Gain=30dB  
Gain=20dB  
50  
Gain=40dB  
40  
VCC=3V  
20  
VCC=2.2V  
0
0
3
4
5
5.5  
2.2  
0
10  
20  
30  
40  
Power Supply Voltage (V)  
Gain (dB)  
9/20  
Electrical Characteristics  
TS472  
Figure 20. THD+N vs. input voltage  
Figure 21. THD+N vs. input voltage  
10  
10  
Minimum Gain  
Minimum Gain  
Gain=20dB  
1
Gain=20dB  
1
0.1  
0.1  
Maximum Gain  
Maximum Gain  
Tamb=25°C, Vcc=3V, F=100Hz,  
Tamb=25°C, Vcc=5V, F=100Hz,  
0.01  
1E-3  
0.01  
1E-3  
Cb=1  
µ
F, RL=10k  
, BW=100Hz-120kHz  
Cb=1  
µ
F, RL=10k  
, BW=100Hz-120kHz  
0.3  
0.3  
0.01  
0.1  
0.01  
0.1  
Input Voltage  
(
VRMS  
)
Input Voltage (VRMS)  
Figure 22. THD+N vs. input voltage  
Figure 23. THD+N vs. input voltage  
10  
10  
Minimum Gain  
Minimum Gain  
Gain=20dB  
Gain=20dB  
1
1
0.1  
0.1  
Maximum Gain  
Maximum Gain  
Tamb=25°C, Vcc=5V, F=1kHz,  
Cb=1 F, RL=10k , BW=100Hz-120kHz  
Tamb=25°C, Vcc=3V, F=1kHz,  
Cb=1 F, RL=10k , BW=100Hz-120kHz  
0.01  
1E-3  
0.01  
µ
µ
0.3  
0.3  
0.01  
Input Voltage  
0.1  
1E-3 0.01  
Input Voltage  
0.1  
(
VRMS)  
(
VRMS)  
Figure 24. THD+N vs. input voltage  
Figure 25. THD+N vs. input voltage  
10  
10  
Minimum Gain  
Minimum Gain  
Maximum Gain  
Maximum Gain  
1
1
Gain=20dB  
Gain=20dB  
0.1  
0.1  
TAMB=25°C, VCC=3V, F=20kHz,  
0.01  
Tamb=25°C, Vcc=5V, F=20kHz,  
0.01  
Cb=1  
µ
F, RL=10k  
, BW=100Hz-120kHz  
0.01  
Cb=1  
µ
F, RL=10k  
, BW=100Hz-120kHz  
0.01  
0.3  
0.3  
1E-3  
0.1  
1E-3  
0.1  
Input Voltage (VRMS)  
Input Voltage (VRMS)  
10/20  
TS472  
Electrical Characteristics  
Figure 27. THD+N vs. frequency  
Figure 26. THD+N vs. frequency  
10  
10  
Tamb=25°C, Vcc=3V, RL=10k  
Cb=1 F, BW=100Hz-120kHz  
Tamb=25  
°C, Vcc=5V, RL=10kΩ  
µ
Cb=1 F, BW=100Hz-120kHz  
µ
Maximum Gain, Vin=15mVRMS  
Maximum Gain, Vin=15mVRMS  
Minimum Gain, Vin=100mVRMS  
1
0.1  
1
Minimum Gain, Vin=100mVRMS  
Gain=20dB, Vin=50mVRMS  
Gain=20dB, Vin=50mVRMS  
0.1  
0.01  
0.01  
50  
100  
1000  
10000 20k  
50  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 28. Transient response  
Figure 29. Transient response  
11/20  
Application Information  
TS472  
4
Application Information  
4.1  
Differential configuration principle  
The TS472 is a full-differential input/output microphone preamplifier. The TS472 also includes a  
common mode feedback loop that controls the output bias value to average it at Vcc/2. This  
allows the device to always have a maximum output voltage swing, and by consequence,  
maximize the input dynamic voltage range.  
The advantages of a full-differential amplifier are:  
Very high PSRR (Power Supply Rejection Ratio).  
High common mode noise rejection.  
In theory, the filtering of the internal bias by an external bypass capacitor is not necessary.  
But, to reach maximum performances in all tolerance situations, it’s better to keep this  
option.  
4.2  
Higher cut-off frequency  
The higher cut-off frequency F of the microphone preamplifier depends on an external  
CH  
capacitors C , C .  
1
2
TS472 has an internal first order low pass filter (R=40k, C=100pF) to limit the highest cut-off  
frequency on 40kHz (with a 3dB attenuation). By connecting C , C you can decrease F with  
1
2
CH  
regard to following formula:  
1
FCH = ---------------------------------------------------------------------------------  
2π 40×103 (C1, 2 + 100×10–12  
)
Figure 24, which follows, directly shows the higher cut-off frequency in Hz versus the value of  
the output capacitors C , C in nF:  
1
2
Figure 30. Higher cut-off frequency vs. output capacitors  
40  
10  
1
200  
400  
600  
800  
1000  
C1, C2 (pF)  
For example, F is almost 20kHz with C =100pF.  
CH  
1,2  
12/20  
TS472  
Application Information  
4.3  
Lower cut-off frequency  
The lower cut-off frequency F of the microphone preamplifier depends on the input  
CL  
capacitors C and output capacitors C . These input and output capacitors are mandatory in  
in  
out  
a application because of DC voltage blocking.  
The input capacitors C in serial with the input impedance of the TS472 (100k) are equivalent  
in  
to a first order high pass filter. Assuming that F is the lowest frequency to be amplified (with a  
CL  
3dB attenuation), the minimum value of C is:  
in  
1
Cin = ----------------------------------------------  
2π FCL 100×103  
The capacitors C in serial with the output resistors R (or an input impedance of the next  
out  
out  
stage) are also equivalent to a first order high pass filter. Assuming that F is the lowest  
CL  
frequency to be amplified (with a 3dB attenuation), the minimum value of C is:  
out  
1
C
out= -------------------------------------  
2π FCL Rout  
Figure 31. Lower cut-off frequency vs.  
input capacitors  
Figure 32. Lower cut-off frequency vs.  
output capacitors  
1000  
1000  
Rout=10k  
ZinMAX  
Typical Zin  
100  
100  
ZinMIN  
Rout=100k  
10  
10  
1
10  
Cin (nF)  
100  
1
10  
100  
1000  
Cout (nF)  
Figure 30 and Figure 32 give directly the lower cut-off frequency (with 3dB attenuation) versus  
the value of the input or output capacitors  
Note:  
In case F is kept the same for calculation, It must be taken in account that the 1st order high-  
CL  
pass filter on the input and the 1st order high-pass filter on the output create a 2nd order high-  
pass filter in the audio signal path with an attenuation of 6dB on F and a rolloff of  
CL  
40dbdecade.  
4.4  
Low-noise microphone bias source  
The TS472 provides a very low noise voltage and power supply rejection BIAS source designed  
for biasing an electret condenser microphone cartridges. The BIAS output is typically set at  
2.0 V (no load conditions), and can typically source 2mA with respect to drop-out,  
DC  
determined by the internal resistance 100(for detailed load regulation curves see Figure 6).  
13/20  
Application Information  
TS472  
4.5  
Gain settings  
The gain in the application depends mainly on:  
the sensitivity of the microphone,  
the distance to the microphone,  
the audio level of the sound,  
the desired output level.  
The sensitivity of the microphone is generally expressed in dB/Pa, referenced to 1V/Pa. For  
example, the microphone used in testing had an output voltage of 6.3 mV for a sound pressure  
of 1 Pa (where Pa is the pressure unit, Pascal). Expressed in dB, the sensitivity is:  
20Log(0.0063) = -44 dB/Pa  
To facilitate the first approach, the following table gives voltages and gains used with a low cost  
omnidirectional Electret Condenser Microphone of -44dB/Pa.  
Table 10. Typical TS472 gain vs. distance to the microphone (sensitivity -44dB/Pa)  
Distance to microphone  
Microphone output voltage  
TS472 Gain  
30 mV  
1 cm  
20  
RMS  
3 mV  
20 cm  
100  
RMS  
The gain of the TS472 microphone preamplifier can be set:  
1. From -1.5 dB to 41 dB by connecting an external grounded resistor R to the GS pin. It  
GS  
allows to adapt more precisely the gain to each application.  
Table 11. Selected gain vs. gain select resistor  
Gain (dB)  
0
10  
20  
30  
1k  
40  
68  
R
()  
470k  
27k  
4k7  
GS  
Figure 33. Gain in dB vs. gain select  
resistor  
Figure 34. Gain in V/V vs. gain select  
resistor  
50  
Tamb=25°C  
Tamb=25°C  
100  
40  
30  
20  
10  
0
10  
1
-10  
10  
100  
1k  
10k  
RGS ()  
100k  
1M  
10  
100  
1k  
10k  
RGS ()  
100k  
1M  
14/20  
TS472  
Application Information  
2. To 20dB by applying V > 1V on Gain Select (GS) pin. This setting can help to reduce  
GS  
DC  
a number of external components in an application, because 2.0 V is provided by  
DC  
TS472 itself on BIAS pin.  
Following Figure 26 gives other values of the gain vs. voltage applied on GS pin  
Figure 35. Gain vs. gain select voltage  
Tamb=25°C  
40  
20  
0
-20  
-40  
-60  
-80  
0
0.2  
0.4  
0.6  
0.8  
4
5
VGS (V)  
4.6  
Wake-up time  
When the standby is released to put the device ON, a signal appears on the output a few  
microseconds later, and the bypass capacitor Cb is charged in a few milliseconds. As Cb is  
directly linked to the bias of the amplifier, the bias will not work properly until the Cb voltage is  
correct.  
In the typical application, when a biased microphone is connected to the differential input via  
the input capacitors (Cin), (and the output signal is in line with the specification), the wake-up  
time will depend upon the values of the input capacitors Cin and the gain. When gain is lower  
than 0dB, the wake-up time is determined only by the bypass capacitor Cb, as described  
above. For a gain>0dB, see Figure 36  
Figure 36. Wake-up time in the typical application vs. input capacitors  
60  
Tamb = 25°C  
Vcc=3V  
Cb=1µF  
50  
40  
30  
20  
10  
0
Maximum Gain  
Gain=20dB  
20  
40  
60  
80  
100  
Input capacitors CIN (nF)  
15/20  
Application Information  
TS472  
4.7  
Standby mode  
When the standby command is set, the time required to set the output stages (differential  
outputs and 2.0V bias output) in high impedance and the internal circuitry in shutdown mode is  
a few microseconds.  
4.8  
Layout considerations  
The TS472 has sensitive pins to connect C1, C2 and Rgs. To obtain high power supply  
rejection and low noise performance, it is mandatory that the layout track to these component is  
as short as possible.  
Decoupling capacitors on Vcc and bypass pin are needed to eliminate power supply drops. In  
addition, the capacitor location for the dedicated pin should be as close to the device as  
possible.  
4.9  
Demoboard  
A demoboard for the TS472 is available.  
For more information about this demoboard, please refer to Application Note AN2240, which  
can be found on www.st.com.  
Figure 37. Top layer  
Figure 38. Bottom layer  
Figure 39. Component location  
16/20  
TS472  
Application Information  
Figure 40. Demoboard schematic  
Jumper J4  
P10  
Vx  
P11 Vbias  
P5  
VCC  
C1  
C9  
1
2
1
2
1
1
2
1
1
2
P2  
100pF  
100nF  
Vcc  
R9  
100k  
R10  
R6  
4
POS. OUTPUT  
NEG. OUTPUT  
C7  
1uF  
C6  
100nF  
3
2
1
Bias  
C2  
2
C8  
2
OUTPUT  
C10  
1uF  
100pF  
100nF  
R8  
100k  
TS472_FC_Adapter  
C4  
Vcc  
1
1
2
P1  
100nF  
4
3
2
1
6
8
IN+  
IN-  
OUT+ 13  
POS. INPUT  
NEG. INPUT  
Jumper J2  
OUT-  
12  
C5  
2
INPUT  
GAIN  
100nF  
5
P8  
SELECT  
BYPASS  
Gain  
Bias  
Bias  
20dB  
Min  
Max  
Rgs  
1
2
4
6
8
3
5
7
BIAS  
R7  
Bias 4  
10  
Gain Select  
C3  
1uF  
R1  
1
2
2
2
2
2
C11  
R11  
470k  
R2  
1
P9  
27k  
0dB  
1
3
5
7
9
2
4
6
8
10  
10dB  
20dB  
30dB  
40dB  
R3  
1
P6  
VCC  
4.7k  
Jumper J1  
1
2
3
R4  
1
Rgs  
1k  
StandBy  
R5  
1
68  
Jumper J3  
17/20  
Package Mechanical Data  
TS472  
5
Package Mechanical Data  
Figure 41. TS472 footprint recommendation  
75µmmin.  
100µm max.  
500µm  
500µm  
Φ=250µm  
Track  
Φ=400µm typ.  
Φ=340µm min.  
150µm min.  
Non Solder mask opening  
Pad in Cu 18µmwith Flash NiAu (2-6µm, 0. 2µm max. )  
Figure 42. Pin-out (top view)  
C1  
C2  
GS  
IN-  
VCC  
OUT-  
STDBY  
OUT+  
GND  
3
2
1
OUTPUT  
BIAS  
IN+  
BYPASS  
B
D
C
A
n
Balls are underneath  
Figure 43. Marking (top view)  
ST Logo  
E
Part number: 472  
E Lead free Bumps  
Three digits Datecode: YWW  
The dot is for marking pin A1  
4 7 2  
Y W  
W
18/20  
TS472  
Package Mechanical Data  
Figure 44. Flip-chip - 12 bumps  
2.1 mm  
Die size: 2.1mm x 1.6mm 30µm  
Die height (including bumps): 600µm  
Bumps diameter: 315µm 50µm  
Bump Diameter Before Reflow: 300µm 10µm  
Bumps Height: 250µm 40µm  
Die Height: 350µm 20µm  
1.6 mm  
0.5mm  
0.5mm  
0.315mm  
Pitch: 500µm 50µm  
Coplanarity: 50µm max  
Figure 45. Tape & reel specification (top view)  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
19/20  
Revision History  
TS472  
6
Revision History  
Date  
Revision  
Changes  
July 2005  
Oct. 2005  
1
2
First Release corresponding to the product preview version.  
First release of fully mature product datasheet.  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
20/20  

相关型号:

TS472EIJT

Very Low Noise Microphone Preamplifier with 2V Biased Output and Active Low Standby Mode
STMICROELECTR

TS472IQT

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode
STMICROELECTR

TS472_06

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode
STMICROELECTR

TS480T13IEB

Parallel - 3Rd Overtone Quartz Crystal, 48MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS482

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482ID

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IDT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IQT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IS

Amplifier. Other
ETC

TS482IST

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482_05

100mW Stereo Headphone Amplifier
STMICROELECTR

TS4851

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR