TS472_06 [STMICROELECTRONICS]

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode; 非常低的噪声麦克风前置放大器偏压2.0V输出低电平待机模式
TS472_06
型号: TS472_06
厂家: ST    ST
描述:

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode
非常低的噪声麦克风前置放大器偏压2.0V输出低电平待机模式

放大器
文件: 总24页 (文件大小:625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS472  
Very low noise microphone preamplifier with  
2.0V bias output and active low standby mode  
Features  
Flip-chip - 12 bumps  
Low noise: 10nV/Hz typ. equivalent input  
noise @ F = 1kHz  
Fully differential input/output  
2.2V to 5.5V single supply operation  
Low power consumption @20dB: 1.8mA  
Fast start up time @ 0dB: 5ms typ.  
Low distortion: 0.1% typ.  
Pin Connections (top view)  
C1  
C2  
VCC  
OUT-  
STDBY  
OUT+  
GND  
40kHz bandwidth regardless of the gain  
Active low standby mode function (1μA max)  
Low noise 2.0V microphone bias output  
OUTPUT  
BIAS  
GS  
Available in flip-chip lead-free package and in  
IN+  
BYPASS  
IN-  
QFN24 4x4mm package  
ESD protection (2kV)  
QFN24  
Description  
The TS472 is a differential-input microphone  
preamplifier optimized for high-performance, PDA  
and notebook audio systems.  
This device features an adjustable gain from 0dB  
to 40dB with excellent power-supply and  
common-mode rejection ratios. In addition, the  
TS472 has a very low-noise microphone bias  
generator of 2V.  
Pin Connection (top view)  
It also includes a complete shutdown function,  
with active low standby mode.  
Applications  
Video and photo cameras with sound input  
Sound acquisition & voice recognition  
Video conference systems  
Notebook computers and PDAs  
September 2006  
Rev 4  
1/24  
www.st.com  
24  
Contents  
TS472  
Contents  
1
2
3
4
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low-noise microphone bias source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.10 Demo board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
Flip-chip package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
QFN24 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/24  
TS472  
Ordering information  
1
Ordering information  
Table 1.  
Order codes  
Temperature  
Part number  
Package  
Packing  
Marking  
range  
TS472EIJT  
TS472IQT  
-40°C, +85°C  
-40°C, +85°C  
Flip-chip  
Tape & reel  
Tape & reel  
472  
QFN24 4x4mm  
K472  
3/24  
Typical application schematic  
TS472  
2
Typical application schematic  
Figure 1 shows a typical application schematic for the TS472.  
Figure 1. Application schematic (flip-chip)  
Table 2.  
External component descriptions  
Functional description  
Components  
Input coupling capacitors that block the DC voltage at the amplifier input  
terminal.  
Cin+, Cin-  
Output coupling capacitors that block the DC voltage coming from the  
amplifier output terminal (pins C2 and D2) and determine Lower cut-off  
frequency.  
Cout+, Cout-  
Output load resistors used to charge the output coupling capacitors Cout  
.
Rout+, Rout-  
These output resistors can be represented by an input impedance of a  
following stage.  
Rpos, Rneg  
Cs  
Polarizing resistors for biasing of a microphone.  
Supply bypass capacitor that provides power supply filtering.  
Bypass pin capacitor that provides half-supply filtering.  
Low pass filter capacitors allowing to cut the high frequency.  
Cb  
C1, C2  
4/24  
TS472  
Absolute maximum ratings  
3
Absolute maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vi  
Supply voltage (1)  
6
V
V
Input voltage  
-0.3 to VCC+0.3  
-40 to + 85  
-65 to +150  
150  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
°C  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient:  
180  
110  
Rthja  
°C/W  
Flip-chip  
QFN24  
ESD  
ESD  
Human body model  
2
kV  
V
Machine model  
200  
250  
Lead temperature (soldering, 10sec)  
°C  
1. All voltages values are measured with respect to the ground pin.  
Table 4.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
A
Supply voltage  
2.2 to 5.5  
20  
V
Typical differential gain (GS connected to 4.7kΩ or bias)  
Standby voltage input:  
dB  
VSTBY  
1.5 VSTBY VCC  
GND VSTBY 0.4  
V
Device ON  
Device OFF  
Top  
Operational free air temperature range  
-40 to +85  
°C  
Thermal resistance junction to ambient:  
150  
60  
Rthja  
°C/W  
Flip-chip  
QFN24  
5/24  
Electrical characteristics  
TS472  
4
Electrical characteristics  
Table 5.  
Electrical characteristics at V = 3V  
CC  
with GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Equivalent input noise voltage density  
REQ=100Ω at 1KHz  
nV  
en  
10  
-----------  
Hz  
Total harmonic distortion + noise  
20Hz F 20kHz, Gain=20dB, Vin=50mVRMS  
THD+N  
Vin  
0.1  
10  
%
Input voltage, Gain=20dB  
70  
mVRMS  
Bandwidth @ -3dB  
Bandwidth @ -1dB  
pin A3, B3 floating  
40  
20  
BW  
kHz  
dB  
Overall output voltage gain (Rgs variable):  
G
Minimum gain, Rgs infinite  
Maximum gain, Rgs=0  
-3  
39.5  
-1.5  
41  
0
42.5  
Zin  
Input impedance referred to GND  
80  
10  
100  
120  
kΩ  
kΩ  
pF  
RLOAD Resistive load  
CLOAD Capacitive load  
100  
2.4  
1
ICC  
Supply current, Gain=20dB  
1.8  
mA  
μA  
ISTBY  
Standby current  
Power supply rejection ratio, Gain=20dB, F=217Hz,  
V
ripple=200mVpp, inputs grounded  
PSRR  
dB  
Differential output  
Single-ended outputs,  
-70  
-46  
Table 6.  
Symbol  
Bias output: V = 3V, GND = 0V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Min.  
Typ. Max.  
Unit  
Vout  
Rout  
Iout  
No load condition  
Output resistance  
Output bias current  
1.9  
80  
2
100  
2
2.1  
V
W
120  
mA  
Power supply rejection ratio, F=217Hz,  
Vripple=200mVpp  
PSRR  
70  
80  
dB  
6/24  
TS472  
Electrical characteristics  
Output noise voltage  
Table 7.  
Differential RMS noise voltage  
Input referred noise voltage  
Gain  
(dB)  
(μVRMS  
)
(μVRMS  
)
Unweighted filter  
A-weighted filter  
Unweighted filter A-weighted filter  
0
15  
3.4  
1.4  
10  
2.3  
0.9  
15  
34  
10  
23  
91  
20  
40  
141  
Table 8.  
Bias output RMS noise voltage  
Cout  
Unweighted filter  
A-weighted filter  
(μF)  
(μVRMS  
)
(μVRMS)  
1
5
4.4  
1.2  
10  
2.2  
Table 9.  
SNR (signal to noise ratio), THD+N < 0.5%  
Unweighted filter  
(dB)  
A-weighted filter  
(dB)  
Gain  
(dB)  
VCC=2.2V  
VCC=3V  
VCC=5.5V  
VCC=2.2V  
VCC=3V  
VCC=5.5V  
0
75  
82  
70  
76  
83  
72  
76  
83  
74  
79  
89  
80  
80  
90  
82  
80  
90  
84  
20  
40  
Note:  
Unweighted filter = 20Hz F 20kHz  
7/24  
Electrical characteristics  
TS472  
Table 10. Index of graphics  
Description  
Figure  
Current consumption vs. power supply voltage  
Current consumption vs. standby voltage  
Standby threshold voltage vs. power supply voltage  
Frequency response  
Figure 2 and Figure 3  
Figure 4 and Figure 5  
Figure 6  
Figure 7  
Bias output voltage vs. bias output current  
Bias output voltage vs. power supply voltage  
Bias PSRR vs. frequency  
Figure 8  
Figure 9  
Figure 10 and Figure 11  
Figure 12 to Figure 15  
Figure 16  
Differential output PSRR vs. frequency  
Single-ended output PSRR vs. frequency  
Equivalent input noise voltage density  
Δgain vs. power supply voltage  
Figure 17  
Figure 18  
Dgain vs. ambient temperature  
Figure 19  
Maximum input voltage vs. gain, THD+N<1%  
Maximum input voltage vs. power supply voltage, THD+N<1%  
THD+N vs. input voltage  
Figure 20  
Figure 21  
Figure 22 to Figure 27  
Figure 28 to Figure 29  
Figure 30 to Figure 31  
THD+N vs. frequency  
Transient response  
8/24  
TS472  
Electrical characteristics  
Figure 2.  
Current consumption vs. power  
supply voltage  
Figure 3.  
Current consumption vs. power  
supply voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Tamb=85°C  
Tamb=25°C  
Tamb=85°C  
Tamb=25°C  
Tamb=-40°C  
Tamb=-40°C  
No Loads  
No Loads  
GS grounded  
GS floating  
0.0  
0
0.0  
0
1
2
3
4
5
6
1
2
3
4
5
6
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Figure 4.  
Current consumption vs. standby Figure 5.  
voltage  
Current consumption vs. standby  
voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
2.5  
2.0  
1.5  
Vcc=5V  
Vcc=3V  
Vcc=3V  
Vcc=5V  
1.0  
0.5  
0.0  
No Loads  
GS floating  
Tamb = 25°C  
No Loads  
GS grounded  
Tamb = 25°C  
0.0  
0
1
2
3
4
5
0
1
2
3
4
5
Standby Voltage (V)  
Standby Voltage (V)  
Figure 6.  
Standby threshold voltage vs.  
power supply voltage  
Figure 7.  
Frequency response  
30  
1.0  
0.8  
0.6  
0.4  
0.2  
Cb=1μF, TAMB=25°C, Gain=20dB, Rout=100kΩ  
20  
10  
0
no C1,C2  
C1,C2=100pF  
Cin,Cout=100nF  
C1,C2=220pF  
-10  
Cin,Cout=10nF  
No Loads  
Tamb = 25°C  
0.0  
2.2  
-20  
10  
3
4
5
5.5  
100  
1000  
10000  
100000  
Power Supply Voltage (V)  
Frequency (Hz)  
9/24  
Electrical characteristics  
TS472  
Figure 8.  
Bias output voltage vs. bias output Figure 9.  
current  
Bias output voltage vs. power  
supply voltage  
2.2  
2.2  
2.0  
1.8  
1.6  
1.4  
Vcc=2.5-6V  
Tamb=25°C  
Ibias=0mA  
Ibias=2mA  
Ibias=4mA  
2.0  
1.8  
1.6  
1.4  
Tamb=85°C  
Tamb=-40°C  
Tamb=25°C  
5.5  
3
4
5
0
1
2
3
4
2.2  
Bias Output Current (mA)  
Power Supply Voltage (V)  
Figure 10. Bias PSRR vs. frequency  
Figure 11. Bias PSRR vs. frequency  
0
0
Vripple=200mVpp  
Vcc=5V  
Vripple=200mVpp  
Vcc=3V  
-20  
-40  
Cb=1  
Tamb=25  
μF  
-20  
-40  
Cb=1  
Tamb =25  
μF  
°
C
°
C
Bias = 1k  
Ω to GND  
Bias floating or 1k  
Ω to GND  
-60  
-60  
-80  
-80  
Bias floating  
-100  
-100  
50  
20k  
100  
1000  
Frequency (Hz)  
10000  
50  
20k  
100  
1000  
Frequency (Hz)  
10000  
Figure 12. Differential output PSRR vs.  
frequency  
Figure 13. Differential output PSRR vs.  
frequency  
0
0
Vripple=200mVpp  
Vripple=200mVpp  
Inputs grounded  
Vcc=3V  
Inputs grounded  
Vcc=5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Cb=1  
Cin=100nF  
Tamb=25  
μ
F
Cb=1  
Cin=100nF  
Tamb=25°C  
μF  
°
C
GS grounded  
GS=bias  
GS floating  
GS grounded  
GS=bias  
GS floating  
50  
20k  
50  
20k  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
10/24  
TS472  
Electrical characteristics  
Figure 14. Differential output PSRR vs.  
frequency  
Figure 15. Differential output PSRR vs.  
frequency  
0
0
-20  
VRIPPLE=200mVPP, Inputs grounded  
VRIPPLE=200mVPP, Inputs grounded  
VCC=3V, Minimum Gain, Cin=1μF, TAMB =25°C  
VCC=3V, Gain=20dB, Cin=1μF, TAMB =25°C  
-20  
-40  
-40  
Cb=1μF  
Cb=1μF  
Cb=100nF  
No Cb  
No Cb  
-60  
-60  
-80  
-80  
Cb=100nF  
-100  
-100  
50  
100  
1k  
Frequency (Hz)  
10k  
20k  
50  
100  
1k  
Frequency (Hz)  
10k  
20k  
Figure 16. Single-ended output PSRR vs.  
frequency  
Figure 17. Equivalent input noise voltage  
density  
0
1000  
Vripple=200mVpp  
Cin=100nF  
-10 Inputs grounded  
REQ=100  
Ω
Cb=1  
Cin=100nF  
Tamb=25  
μF  
Vcc=3V  
TAMB=25  
°
C
-20  
-30  
-40  
-50  
-60  
-70  
-80  
°
C
100  
10  
1
Vcc=2.2V  
100  
Vcc=5V  
10000  
10  
100  
1k  
10k  
100k  
50  
20k  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 18. Δgain vs. power supply voltage  
Figure 19. Δgain vs. ambient temperature  
1.0  
0.50  
F=1kHz  
F=1kHz  
Vin=5mV  
Tamb=25°C  
VIN=5mV  
0.8  
0.6  
0.25  
Maximum Gain  
0.00  
0.4  
-0.25  
Maximum Gain  
0.2  
-0.50  
Gain=20dB  
0.0  
Minimum Gain  
Gain=20dB  
-0.75  
-0.2  
-0.4  
Minimum Gain  
-1.00  
5.5  
3
4
5
-40  
-20  
0
20  
40  
60  
80  
2.2  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
11/24  
Electrical characteristics  
TS472  
Figure 20. Maximum input voltage vs. gain,  
THD+N<1%  
Figure 21. Maximum input voltage vs. power  
supply voltage, THD+N<1%  
150  
TAMB=25°C, F=1kHz, THD+N<1%  
140  
120  
100  
80  
Gain=0dB  
TAMB=25°C  
VCC=5.5V  
F=1kHz  
THD+N<1%  
100  
60  
Gain=30dB  
Gain=20dB  
50  
Gain=40dB  
40  
VCC=3V  
20  
VCC=2.2V  
0
0
3
4
Power Supply Voltage (V)  
5
5.5  
2.2  
0
10  
20  
30  
40  
Gain (dB)  
Figure 22. THD+N vs. input voltage  
Figure 23. THD+N vs. input voltage  
10  
10  
GS floating  
GS floating  
GS=bias  
GS=bias  
1
1
0.1  
0.1  
GS grounded  
GS grounded  
Tamb=25°C, Vcc=3V, F=100Hz,  
Tamb=25°C, Vcc=5V, F=100Hz,  
0.01  
1E-3  
0.01  
1E-3  
Cb=1  
μ
F, RL=10k  
Ω
, BW=100Hz-120kHz  
Cb=1  
μ
F, RL=10k  
Ω
, BW=100Hz-120kHz  
0.3  
0.3  
0.01  
0.1  
0.01  
0.1  
Input Voltage (V)  
Input Voltage (V)  
Figure 24. THD+N vs. input voltage  
Figure 25. THD+N vs. input voltage  
10  
10  
GS floating  
GS floating  
GS=bias  
GS=bias  
1
1
0.1  
0.1  
GS grounded  
GS grounded  
Tamb=25°C, Vcc=5V, F=1kHz,  
Tamb=25°C, Vcc=3V, F=1kHz,  
Cb=1 F, RL=10k , BW=100Hz-120kHz  
0.01  
1E-3  
0.01  
1E-3  
Cb=1  
μ
F, RL=10k  
Ω
, BW=100Hz-120kHz  
μ
Ω
0.3  
0.3  
0.01  
Input Voltage (V)  
0.1  
0.01  
0.1  
Input Voltage (V)  
12/24  
TS472  
Electrical characteristics  
Figure 26. THD+N vs. input voltage  
Figure 27. THD+N vs. input voltage  
10  
10  
GS floating  
GS floating  
GS grounded  
GS=bias  
GS=bias  
1
1
0.1  
0.1  
0.01  
GS grounded  
Tamb=25°C, Vcc=5V, F=20kHz,  
Tamb=25°C, Vcc=3V, F=20kHz,  
0.01  
Cb=1  
μ
F, RL=10k  
Ω
, BW=100Hz-120kHz  
Cb=1  
μ
F, RL=10k  
Ω
, BW=100Hz-120kHz  
0.01  
0.3  
0.3  
1E-3  
0.1  
1E-3  
0.01  
0.1  
Input Voltage (V)  
Input Voltage (V)  
Figure 28. THD+N vs. frequency  
Figure 29. THD+N vs. frequency  
10  
10  
Tamb=25°C  
Vcc=3V  
Tamb=25  
Vcc=5V  
°C  
GS=bias, Vin=100mV  
RL=10k  
Cb=1  
BW=100Hz-120kHz  
Ω
RL=10k  
Cb=1  
BW=100Hz-120kHz  
Ω
μ
F
μ
F
GS=bias, Vin=100mV  
GS grounded, Vin=20mV  
1
1
GS grounded, Vin=20mV  
GS floating, Vin=100mV  
GS floating, Vin=100mV  
0.1  
0.1  
50  
100  
1000  
10000 20k  
50  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 30. Transient response  
Figure 31. Transient response  
13/24  
Application information  
TS472  
5
Application information  
5.1  
Differential configuration principle  
The TS472 is a full-differential input/output microphone preamplifier. The TS472 also  
includes a common mode feedback loop that controls the output bias value to average it at  
/2. This allows the device to always have a maximum output voltage swing, and by  
V
CC  
consequence, maximize the input dynamic voltage range.  
The advantages of a full-differential amplifier are:  
Very high PSRR (power supply rejection ratio).  
High common mode noise rejection.  
In theory, the filtering of the internal bias by an external bypass capacitor is not  
necessary. But, to reach maximum performance in all tolerance situations, it is better to  
keep this option.  
5.2  
Higher cut-off frequency  
The higher cut-off frequency F of the microphone preamplifier depends on the external  
CH  
capacitors C , C .  
1
2
TS472 has an internal first order low pass filter (R=40kΩ, C=100pF) to limit the highest cut-  
off frequency on 40kHz (with a 3dB attenuation). By connecting C , C you can decrease  
1
2
F
by applying the following formula:  
CH  
1
FCH = ---------------------------------------------------------------------------------------------  
2π ⋅ 40× 103 ⋅ (C1, 2 + 100× 1012  
)
Figure 32 below indicates directly the higher cut-off frequency in Hz versus the value of the  
output capacitors C , C in nF.  
1
2
Figure 32. Higher cut-off frequency vs. output  
capacitors  
40  
10  
1
200  
400  
600  
800  
1000  
C1, C2 (pF)  
For example, F is almost 20kHz with C =100pF.  
CH  
1,2  
14/24  
TS472  
Application information  
5.3  
Lower cut-off frequency  
The lower cut-off frequency F of the microphone preamplifier depends on the input  
CL  
capacitors C and output capacitors C . These input and output capacitors are mandatory  
in  
out  
in an application because of DC voltage blocking.  
The input capacitors C in series with the input impedance of the TS472 (100kΩ) are  
in  
equivalent to a first order high pass filter. Assuming that F is the lowest frequency to be  
CL  
amplified (with a 3dB attenuation), the minimum value of C is:  
in  
1
Cin = ------------------------------------------------------  
2π ⋅ FCL 100× 103  
The capacitors C in series with the output resistors R (or an input impedance of the  
out  
out  
next stage) are also equivalent to a first order high pass filter. Assuming that F is the  
CL  
lowest frequency to be amplified (with a 3dB attenuation), the minimum value of C is:  
out  
1
C
out= ------------------------------------------  
2π ⋅ FCL Rout  
Figure 33. Lower cut-off frequency vs. input  
capacitors  
Figure 34. Lower cut-off frequency vs. output  
capacitors  
1000  
1000  
Rout=10k  
Ω
ZinMAX  
Typical Zin  
100  
100  
ZinMIN  
Rout=100k  
Ω
10  
10  
1
10  
Cin (nF)  
100  
1
10  
100  
1000  
Cout (nF)  
Figure 33 and Figure 34 give directly the lower cut-off frequency (with 3dB attenuation)  
versus the value of the input or output capacitors  
Note:  
In case F is kept the same for calculation, take into account that the 1st order high-pass  
CL  
filter on the input and the 1st order high-pass filter on the output create a 2nd order high-  
pass filter in the audio signal path with an attenuation of 6dB on F and a rolloff of  
CL  
40dBdecade.  
5.4  
Low-noise microphone bias source  
The TS472 provides a very low noise voltage and power supply rejection BIAS source  
designed for biasing an electret condenser microphone cartridge. The BIAS output is  
typically set at 2.0 V (no load conditions), and can typically source 2mA with respect to  
DC  
drop-out, determined by the internal resistance 100Ω (for detailed load regulation curves  
see Figure 8).  
15/24  
Application information  
TS472  
5.5  
Gain settings  
The gain in the application depends mainly on:  
the sensitivity of the microphone  
the distance to the microphone  
the audio level of the sound  
the desired output level  
The sensitivity of the microphone is generally expressed in dB/Pa, referenced to 1V/Pa. For  
example, the microphone used in testing had an output voltage of 6.3mV for a sound  
pressure of 1 Pa (where Pa is the pressure unit, Pascal). Expressed in dB, the sensitivity is:  
20Log(0.0063) = -44 dB/Pa  
To facilitate the first approach, Table 11 below gives voltages and gains used with a low cost  
omnidirectional electret condenser microphone of -44dB/Pa.  
Table 11. Typical TS472 gain vs. distance to the microphone (sensitivity -44dB/Pa)  
Distance to microphone  
Microphone output voltage  
TS472 Gain  
1cm  
30mVRMS  
3mVRMS  
20  
20cm  
100  
The gain of the TS472 microphone preamplifier can be set:  
1. From -1.5 dB to 41 dB by connecting an external grounded resistor R to the GS pin.  
GS  
It allows to adapt more precisely the gain to each application.  
Table 12. Selected gain vs. gain select resistor  
Gain (dB)  
GS (Ω)  
0
10  
20  
30  
1k  
40  
68  
R
470k  
27k  
4k7  
Figure 35. Gain in dB vs. gain select resistor  
Figure 36. Gain in V/V vs. gain select resistor  
50  
Tamb=25°C  
Tamb=25°C  
100  
10  
1
40  
30  
20  
10  
0
-10  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
RGS (Ω)  
RGS (Ω)  
2. To 20dB by applying V > 1V on Gain Select (GS) pin. This setting can help to  
GS  
DC  
reduce a number of external components in an application, because 2.0 V is  
DC  
provided by TS472 itself on BIAS pin.  
16/24  
TS472  
Application information  
Figure 37 below gives other values of the gain vs. voltage applied on GS pin.  
Figure 37. Gain vs. gain select voltage  
Tamb=25°C  
40  
20  
0
-20  
-40  
-60  
-80  
0
0.2  
0.4  
0.6  
0.8  
4
5
VGS (V)  
5.6  
Wake-up time  
When the standby is released to put the device ON, a signal appears on the output a few  
microseconds later, and the bypass capacitor C is charged in a few milliseconds. As C is  
b
b
directly linked to the bias of the amplifier, the bias will not work properly until the C voltage  
b
is correct.  
In the typical application, when a biased microphone is connected to the differential input via  
the input capacitors (C ), (and the output signal is in line with the specification), the wake-up  
in  
time will depend upon the values of the input capacitors C and the gain. When gain is  
in  
lower than 0dB, the wake-up time is determined only by the bypass capacitor C , as  
b
described above. For a gain superior to 0dB, see Figure 38 below.  
Figure 38. Wake-up time in the typical application vs. input capacitors  
60  
Tamb = 25°C  
Vcc=3V  
Cb=1μF  
50  
40  
30  
20  
10  
0
Maximum Gain  
Gain=20dB  
20  
40  
60  
80  
100  
Input capacitors CIN (nF)  
17/24  
Application information  
TS472  
5.7  
Standby mode  
When the standby command is set, the time required to set the output stages (differential  
outputs and 2.0V bias output) in high impedance and the internal circuitry in shutdown mode  
is a few microseconds.  
5.8  
Layout considerations  
The TS472 has sensitive pins to connect C1, C2 and Rgs. To obtain high power supply  
rejection and low noise performance, it is mandatory that the layout track to these  
component is as short as possible.  
Decoupling capacitors on V and bypass pin are needed to eliminate power supply drops.  
CC  
In addition, the capacitor location for the dedicated pin should be as close to the device as  
possible.  
5.9  
Single-ended input configuration  
It’s possible to use the TS472 in a single-ended input configuration. The schematic in  
Figure 39 provides an example of this configuration.  
Figure 39. Single ended input typical application  
Optional  
C1  
VCC  
Cs  
1uF  
C2  
C3  
1uF  
Rpos  
U1  
TS472  
Vcc  
Rout+  
Rout-  
Cout+  
Cout-  
Cin+  
Cin-  
IN+  
OUT+  
OUT-  
A1  
B1  
C2  
D2  
Positive Output  
Negative Output  
+
IN-  
Electret Mic  
GAIN  
SELECT  
B2  
D1  
G
BYPASS  
BIAS  
2.0V  
A2  
Bias  
Cb  
1uF  
Standby Control  
18/24  
TS472  
Application information  
5.10  
Demo board  
A demo board for the TS472 is available. For more information about this demo board,  
please refer to Application Note AN2240, which can be found on www.st.com.  
Figure 40. PCB top layer  
Figure 41. PCB bottom layer  
Figure 42. Component location  
19/24  
Package mechanical data  
TS472  
6
Package mechanical data  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a Lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
6.1  
Flip-chip package  
Figure 43. TS472 footprint recommendation  
75µm min.  
100μm max.  
500μm  
500μm  
Φ=250μm  
Track  
Φ=400μm typ.  
Φ=340μm min.  
150μm min.  
Non Solder mask opening  
Pad in Cu 18μm with Flash NiAu (2-6μm, 0.2μm max.)  
Figure 44. Pin-out (top view)  
C1  
C2  
VCC  
OUT-  
STDBY  
OUT+  
GND  
3
2
1
OUTPUT  
BIAS  
GS  
IN+  
IN-  
BYPASS  
B
D
C
A
Balls are underneath  
20/24  
TS472  
Package mechanical data  
Figure 45. Marking (top view)  
ST logo  
E
Part number: 472  
E Lead free bumps  
Three digits datecode: YWW  
The dot indicates pin A1  
472  
YWW  
Figure 46. Flip-chip - 12 bumps  
Die size: 2.1mm x 1.6mm ± 30µm  
Die height (including bumps): 600µm  
Bumps diameter: 315µm ±50µm  
Bump diameter before reflow: 300µm ±10µm  
Bump height: 250µm ±40µm  
Die height: 350µm ±20µm  
2.1 mm  
1.6 mm  
0.5mm  
0.5mm  
0.315mm  
Pitch: 500µm ±50µm  
Coplanarity: 50µm max  
600µm  
Figure 47. Tape & reel specification (top view)  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
21/24  
Package mechanical data  
TS472  
6.2  
QFN24 package  
Figure 48. QFN24 package mechanical data  
22/24  
TS472  
Revision history  
7
Revision history  
Table 13. Document revision history  
Date  
Revision  
Changes  
1-Jul-05  
1-Oct-05  
1
2
Initial release corresponding to product preview version.  
First release of fully mature product datasheet.  
Added single-ended input operation in Section 5: Application  
information.  
1-Dec-05  
3
4
Added QFN package information. Updated curves, added new ones  
in Section 4: Electrical characteristics.  
12-Sep-2006  
23/24  
TS472  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
24/24  

相关型号:

TS480T13IEB

Parallel - 3Rd Overtone Quartz Crystal, 48MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS482

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482ID

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IDT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IQT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IS

Amplifier. Other
ETC

TS482IST

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482_05

100mW Stereo Headphone Amplifier
STMICROELECTR

TS4851

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4851EIJT

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4851IJT

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4855

LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL
STMICROELECTR