TS482ID [STMICROELECTRONICS]

100mW STEREO HEADPHONE AMPLIFIER; 100mW的立体声耳机放大器
TS482ID
型号: TS482ID
厂家: ST    ST
描述:

100mW STEREO HEADPHONE AMPLIFIER
100mW的立体声耳机放大器

放大器
文件: 总24页 (文件大小:599K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS482  
100mW STEREO HEADPHONE AMPLIFIER  
Operating from Vcc=2V to 5.5V  
PIN CONNECTIONS (top view)  
100mW into 16at 5V  
38mW into 16at 3.3V  
TS482ID, TS482IDT - SO8  
11.5mW into 16at 2V  
Switch ON/OFF click reduction circuitry  
1
2
3
4
8
7
6
5
VCC  
O
UT (1)  
High Power Supply Rejection Ratio: 85dB at  
O
UT (2)  
VIN- (1)  
VIN+ (1)  
GND  
5V  
VIN- (2)  
VIN+ (2)  
High Signal-to-Noise ratio: 110dB(A) at 5V  
High Crosstalk immunity: 100dB (F=1kHz)  
Rail to Rail input and output  
TS482IST - MiniSO8  
Unity-Gain Stable  
Available in SO8, MiniSO8 & DFN8  
1
2
3
4
8
7
6
5
VCC  
O
UT (1)  
DESCRIPTION  
O
UT (2)  
VIN- (1)  
VIN+ (1)  
GND  
The TS482 is a dual audio power amplifier able to  
drive a 16 or 32stereo headset down to low volt-  
ages.  
VIN- (2)  
VIN+ (2)  
TS482IQT - DFN8  
It’s delivering up to 100mW per channel (into 16Ω  
loads) of continuous average power with 0.1%  
THD+N from a 5V power supply.  
1
OUT (1)  
Vcc  
8
7
6
5
2
3
4
VIN - (1)  
VIN + (1)  
OUT (2)  
The unity gain stable TS482 can be configured by  
external gain-setting resistors.  
VIN - (2)  
GND  
VIN + (2)  
APPLICATIONS  
TYPICAL APPLICATION SCHEMATIC  
Stereo Headphone Amplifier  
Optical Storage  
Computer Motherboard  
Rfeed1  
PDA, organizers & Notebook computers  
High end TV, Set Top Box, DVD Players  
Sound Cards  
1µF  
Vcc  
3.9k  
Rpol  
+
Vcc  
100k  
Cs  
3.9k  
Right In  
Cin1  
8
220µF  
+
2
3
RL=32Ohms  
RL=32Ohms  
-
+
1
+
+
+
Rin1  
2.2µF  
Cb  
ORDER CODE  
Cout1  
TS482  
+
-
+
+
Cout2  
5
6
2.2µF  
7
1µF  
Rin2  
Package  
Temperature  
+
220µF  
Part Number  
Marking  
3.9k  
4
Left In Cin2  
Range  
100k  
Rpol  
D
S
Q
3.9k  
TS482ID/DT  
TS482IST  
TS482IQT  
Rfeed2  
-40, +85°C  
482I  
MiniSO & DFN only available in Tape & Reel with T suffix,  
SO is available in Tube (D) and in Tape & Reel (DT))  
June 2003  
1/24  
TS482  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
V
6
V
V
Supply voltage  
Input Voltage  
CC  
V
-0.3 to VCC +0.3  
-40 to + 85  
-65 to +150  
150  
i
T
Operating Free Air Temperature Range  
Storage Temperature  
°C  
°C  
°C  
oper  
T
stg  
T
Maximum Junction Temperature  
j
Thermal Resistance Junction to Ambient  
R
thja  
SO8  
175  
215  
70  
MiniSO8  
DFN8  
°C/W  
W
2)  
Power Dissipation  
0.71  
0.58  
1.79  
SO8  
MiniSO8  
DFN8  
Pd  
ESD  
ESD  
Human Body Model (pin to pin)  
2
kV  
V
Machine Model - 220pF - 240pF (pin to pin)  
200  
200  
250  
Latch-up Latch-up Immunity (All pins)  
Lead Temperature (soldering, 10sec)  
Output Short-Circuit Duration  
mA  
°C  
3)  
see note  
1. All voltages values are measured with respect to the ground pin.  
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.  
3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause exces-  
sive heating and the destruction of the device.  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
Unit  
V
Supply Voltage  
Load Resistor  
Load Capacitor  
2 to 5.5  
>= 16  
V
CC  
R
L
R = 16 to 100Ω  
C
400  
100  
pF  
V
L
L
R > 100Ω  
L
V
G
to V  
CC  
Common Mode Input Voltage Range  
ICM  
ND  
Thermal Resistance Junction to Ambient  
SO8  
MiniSO8  
150  
190  
41  
R
THJA  
°C/W  
1)  
DFN8  
1. When mounted on a 4-layer PCB.  
Components  
Functional Description  
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also  
forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))  
Rin  
Cin  
Rfeed  
Cs  
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal  
Feed back resistor which sets the closed loop gain in conjunction with Rin  
Supply Bypass capacitor which provides power supply filtering  
Bypass capacitor which provides half supply filtering  
Cb  
Output coupling capacitor which blocks the DC voltage at the load input terminal  
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout))  
Cout  
Rpol  
Av  
These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers.  
Closed loop gain = -Rfeed / Rin  
2/24  
TS482  
ELECTRICAL CHARACTERISTICS  
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
mA  
CC  
No input signal, no load  
5.5  
1
7.2  
5
V
Input Offset Voltage (V  
= V /2)  
ICM CC  
mV  
nA  
IO  
I
Input Bias Current (V  
= V /2)  
CC  
200  
500  
IB  
ICM  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
65  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
60  
95  
67.5  
100  
107  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
1)  
Total Harmonic Distortion + Noise (A =-1)  
v
THD + N  
PSRR  
0.03  
0.03  
R = 32Ω, P = 60mW, 20Hz F 20kHz  
R = 16Ω, P = 90mW, 20Hz F 20kHz  
L
out  
L
out  
Power Supply Rejection Ratio (A =1), inputs floating  
v
85  
dB  
F = 100Hz, Vripple = 100mVpp  
Max Output Current  
I
106  
120  
mA  
O
THD +N < 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.4  
4.6  
0.55  
4.4  
0.48  
0.65  
: R = 32Ω  
V
4.45  
4.2  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
Signal-to-Noise Ratio (Filter Type A, A =-1)  
v
SNR  
95  
110  
dB  
(R = 32Ω, THD +N < 0.2%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω  
L
F = 1kHz  
F = 20Hz to 20kHz  
100  
80  
Crosstalk  
dB  
Channel Separation, R = 16Ω  
L
100  
80  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.35  
0.45  
2.2  
0.7  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
L
1. Fig. 68 to 79 show dispersion of these parameters.  
3/24  
TS482  
ELECTRICAL CHARACTERISTICS  
VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
2)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
mA  
CC  
No input signal, no load  
5.3  
1
7.2  
5
V
Input Offset Voltage (V  
= V /2)  
ICM CC  
mV  
nA  
IO  
I
Input Bias Current (V  
= V /2)  
CC  
200  
500  
IB  
ICM  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
27  
28  
38  
42  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
23  
36  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
1)  
Total Harmonic Distortion + Noise (A =-1)  
v
THD + N  
PSRR  
0.03  
0.03  
R = 32Ω, P = 16mW, 20Hz F 20kHz  
R = 16Ω, P = 35mW, 20Hz F 20kHz  
L
out  
L
out  
Power Supply Rejection Ratio (A =1), inputs floating  
v
80  
75  
dB  
F = 100Hz, Vripple = 100mVpp  
Max Output Current  
I
64  
mA  
O
THD +N < 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.3  
3
0.45  
2.85  
0.38  
0.52  
: R = 32Ω  
V
2.85  
2.68  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
Signal-to-Noise Ratio (Filter Type A, A =-1)  
v
SNR  
92  
107  
dB  
(R = 32Ω, THD +N < 0.2%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω  
L
F = 1kHz  
F = 20Hz to 20kHz  
100  
80  
Crosstalk  
dB  
Channel Separation, R = 16Ω  
L
100  
80  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
2
pF  
I
Gain Bandwith Product (R = 32Ω)  
GBP  
SR  
1.2  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
0.45  
0.7  
L
1. Fig. 68 to 79 show dispersion of these parameters.  
2. All electrical values are guaranted with correlation measurements at 2V and 5V  
4/24  
TS482  
ELECTRICAL CHARACTERISTICS  
VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
2)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
mA  
CC  
No input signal, no load  
5.1  
1
7.2  
5
V
Input Offset Voltage (V  
= V /2)  
ICM CC  
mV  
nA  
IO  
I
Input Bias Current (V  
= V /2)  
CC  
200  
500  
IB  
ICM  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
13.5  
14.5  
20.5  
22  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
12.5  
17.5  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
1)  
Total Harmonic Distortion + Noise (A =-1)  
v
THD + N  
PSRR  
0.03  
0.03  
R = 32Ω, P = 10mW, 20Hz F 20kHz  
R = 16Ω, P = 16mW, 20Hz F 20kHz  
L
out  
L
out  
Power Supply Rejection Ratio (A =1), inputs floating  
v
75  
56  
dB  
F = 100Hz, Vripple = 100mVpp  
Max Output Current  
I
45  
mA  
O
THD +N < 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.25  
2.25  
0.35  
2.15  
0.325  
0.45  
: R = 32Ω  
V
2.14  
1.97  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
Signal-to-Noise Ratio (Filter Type A, A =-1)  
v
SNR  
89  
102  
dB  
(R = 32Ω, THD +N < 0.2%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω  
L
F = 1kHz  
F = 20Hz to 20kHz  
100  
80  
Crosstalk  
dB  
Channel Separation, R = 16Ω  
L
100  
80  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
2
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.2  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
0.45  
0.7  
L
1. Fig. 68 to 79 show dispersion of these parameters.  
2. All electrical values are guaranted with correlation measurements at 2V and 5V  
5/24  
TS482  
ELECTRICAL CHARACTERISTICS  
V
CC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
mA  
CC  
No input signal, no load  
5
1
7.2  
5
V
Input Offset Voltage (V  
= V /2)  
ICM CC  
mV  
nA  
IO  
I
Input Bias Current (V  
= V /2)  
CC  
200  
500  
IB  
ICM  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
8
9
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
7
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
11.5  
13  
L
9.5  
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
1)  
Total Harmonic Distortion + Noise (A =-1)  
v
THD + N  
PSRR  
0.02  
0.025  
R = 32Ω, P = 6.5mW, 20Hz F 20kHz  
L
out  
R = 16Ω, P = 8mW, 20Hz F 20kHz  
L
out  
Power Supply Rejection Ratio (A =1), inputs floating  
v
75  
dB  
F = 100Hz, Vripple = 100mVpp  
Max Output Current  
I
33  
41.5  
mA  
O
THD +N < 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.24  
1.73  
0.33  
1.63  
0.295  
0.41  
: R = 32Ω  
V
1.67  
1.53  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
Signal-to-Noise Ratio (Filter Type A, A =-1)  
v
SNR  
88  
101  
dB  
(R = 32Ω, THD +N < 0.2%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω  
L
F = 1kHz  
F = 20Hz to 20kHz  
100  
80  
Crosstalk  
dB  
Channel Separation, R = 16Ω  
L
100  
80  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
2
pF  
I
Gain Bandwith Product (R = 32Ω)  
GBP  
SR  
1.2  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
0.42  
0.65  
L
1. Fig. 68 to 79 show dispersion of these parameters.  
6/24  
TS482  
Index of Graphs  
Description  
Figure  
Page  
Open Loop Gain  
1 to 10  
11 to 20  
21 to 23  
23 to 27  
28 to 31  
32  
8, 9  
9 to 11  
11  
Phase and Gain Margin vs Power Supply Voltage  
Output Power vs Power Supply Voltage  
Output Power vs Load Resistance  
Power Dissipation vs Output Power  
Power Derating Curves  
11, 12  
12, 13  
13  
Current Consumption vs Power Supply Voltage  
PSRR vs Frequency  
33  
13  
34  
13  
THD + N vs Output Power  
35 to 49  
50 to 54  
55 to 58  
59  
13 to 16  
16  
THD + N vs Frequency  
Signal to Noise Ratio vs Power Supply Voltage  
Equivalent Input Noise voltage vs Frequency  
Output Voltage Swing vs Supply Voltage  
Crosstalk vs Frequency  
17  
17  
60  
17  
61 to 65  
66, 67  
68 to 79  
18  
Lower Cut Off Frequency Curves  
Statistical Results on THD+N  
18, 19  
19 to 21  
7/24  
TS482  
Fig. 1 : Open Loop Gain and Phase vs  
Frequency  
Fig. 2 : Open Loop Gain and Phase vs  
Frequency  
80  
180  
160  
140  
120  
100  
80  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Gain  
Vcc = 2V  
Gain  
RL = 8  
RL = 8Ω  
60  
40  
20  
0
60  
40  
20  
0
Tamb = 25  
°C  
Tamb = 25°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 3 : Open Loop Gain and Phase vs  
Frequency  
Fig. 4 : Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
RL = 16Ω  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Gain  
Gain  
RL = 16  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 5 : Open Loop Gain and Phase vs  
Frequency  
Fig. 6 : Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
RL = 32Ω  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Gain  
Gain  
RL = 32  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
8/24  
TS482  
Fig. 7 : Open Loop Gain and Phase vs  
Frequency  
Fig. 8 : Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
RL = 600  
Tamb = 25  
Vcc = 2V  
RL = 600  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Gain  
Gain  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 9 : Open Loop Gain and Phase vs  
Frequency  
Fig. 10 : Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
RL = 5k  
Tamb = 25  
Vcc = 2V  
RL = 5k  
Tamb = 25  
80  
80  
Gain  
Gain  
°C  
°C  
60  
40  
20  
0
60  
40  
20  
0
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 11 : Phase Margin vs Power Supply  
Voltage  
Fig. 12 : Gain Margin vs Power Supply Voltage  
50  
50  
RL=8Ω  
RL=8Ω  
Tamb=25°C  
Tamb=25°C  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
CL= 0 to 500pF  
CL=0 to 500pF  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
9/24  
TS482  
Fig. 13 : Phase Margin vs Power Supply  
Voltage  
Fig. 14 : Gain Margin vs Power Supply Voltage  
50  
40  
50  
RL=16  
Tamb=25  
°C  
40  
30  
20  
10  
0
30  
20  
10  
0
CL= 0 to 500pF  
CL=0 to 500pF  
RL=16  
Tamb=25  
°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.0  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 15 : Phase Margin vs Power Supply  
Voltage  
Fig. 16 : Gain Margin vs Power Supply Voltage  
50  
50  
RL=32  
Tamb=25  
°
C
40  
40  
30  
20  
10  
0
CL= 0 to 500pF  
30  
20  
10  
CL=0 to 500pF  
RL=32  
Tamb=25  
°
C
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 17 : Phase Margin vs Power Supply  
Voltage  
Fig. 18 : Gain Margin vs Power Supply Voltage  
70  
60  
50  
20  
CL=0pF  
CL=100pF  
CL=0pF  
CL=500pF  
CL=200pF  
40  
30  
20  
10  
0
10  
CL=500pF  
RL=600  
Tamb=25  
RL=600  
Tamb=25  
°C  
°C  
0
2.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
10/24  
TS482  
Fig. 19 : Phase Margin vs Power Supply  
Voltage  
Fig. 20 : Gain Margin vs Power Supply Voltage  
70  
60  
50  
20  
CL=0pF  
CL=100pF  
CL=0pF  
CL=300pF  
CL=500pF  
40  
30  
20  
10  
0
CL=200pF  
10  
CL=500pF  
RL=5k  
Tamb=25  
RL=5kΩ  
°C  
Tamb=25°C  
0
2.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 21 : Output Power vs Power Supply  
Voltage  
Fig. 22 : Output Power vs Power Supply  
Voltage  
250  
200  
Av = -1  
Av = -1  
175  
225  
RL = 8  
RL = 16  
THD+N=1%  
THD+N=1%  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
200  
175  
150  
125  
100  
75  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
150  
125  
100  
75  
THD+N=10%  
THD+N=10%  
50  
50  
THD+N=0.1%  
THD+N=0.1%  
25  
25  
0
2.0  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Fig. 23 :Output Power vs Power Supply  
Voltage  
Fig. 24 : Output Power vs Load Resistance  
200  
Av = -1  
RL = 32  
F = 1kHz  
BW < 125kHz  
Av = -1  
180  
Vcc = 5V  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
100  
75  
50  
25  
0
THD+N=1%  
THD+N=1%  
160  
140  
120  
100  
80  
Tamb = 25°C  
THD+N=10%  
THD+N=10%  
60  
THD+N=0.1%  
40  
THD+N=0.1%  
20  
0
2.0  
2.5  
3.0  
3.5  
Vcc (V)  
4.0  
4.5  
5.0  
5.5  
8
16  
24  
32  
40  
48  
)
56  
64  
Load Resistance (  
11/24  
TS482  
Fig. 25 : Output Power vs Load Resistance  
Fig. 26 : Output Power vs Load Resistance  
50  
70  
60  
50  
40  
30  
20  
10  
0
Av = -1  
Vcc = 3.3V  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
Av = -1  
Vcc = 2.6V  
F = 1kHz  
45  
THD+N=1%  
40  
35  
30  
25  
20  
15  
10  
5
BW < 125kHz  
Tamb = 25°C  
THD+N=1%  
THD+N=10%  
THD+N=10%  
THD+N=0.1%  
THD+N=0.1%  
0
8
16  
24  
32  
40  
48  
56  
64  
8
16  
24  
32  
40  
48  
56  
64  
Load Resistance (ohm)  
Load Resistance (ohm)  
Fig. 27 : Output Power vs Load Resistance  
Fig. 28 : Power Dissipation vs Output Power  
25  
160  
140  
120  
100  
80  
Vcc=5V  
F=1kHz  
THD+N<1%  
Av = -1  
Vcc = 2V  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
20  
15  
10  
5
RL=8Ω  
THD+N=1%  
THD+N=10%  
60  
RL=16Ω  
40  
20  
RL=32Ω  
THD+N=0.1%  
0
0
0
20  
40  
60  
80  
100  
120  
140  
8
16  
24  
32  
40  
48  
56  
64  
Output Power (mW)  
Load Resistance (ohm)  
Fig. 29 : Power Dissipation vs Output Power  
Fig. 30 : Power Dissipation vs Output Power  
70  
Vcc=2.6V  
F=1kHz  
THD+N<1%  
Vcc=3.3V  
F=1kHz  
THD+N<1%  
40  
60  
RL=8Ω  
RL=8Ω  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
RL=16  
RL=16  
RL=32  
RL=32  
0
5
10  
15  
20  
25  
30  
0
10  
20  
30  
40  
50  
60  
Output Power (mW)  
Output Power (mW)  
12/24  
TS482  
Fig. 31 : Power Dissipation vs Output Power  
Fig. 32 : Power Derating vs Ambiant  
Temperature  
25  
Vcc=2V  
F=1kHz  
THD+N<1%  
20  
15  
10  
5
RL=8Ω  
RL=16  
RL=32  
0
0
2
4
6
8
10  
12  
14  
Output Power (mW)  
Fig. 33 : Current Consumption vs Power  
Supply Voltage  
Fig. 34 : Power Supply Rejection Ration vs  
Frequency  
6
No load  
Vcc=5V  
100  
5
80  
4
Ta=85°C  
Ta=-40°C  
Vcc=3.3V  
Vcc=2.6V & 2V  
60  
40  
20  
0
3
Ta=25°C  
Vripple=100mVpp  
Vpin3,5=Vcc/2 (forced bias)  
RL >= 8  
0db=70mVrms  
2
1
0
Tamb=25  
°C  
20  
100  
1000  
10000  
100000  
0
1
2
3
4
5
Frequency (Hz)  
Power Supply Voltage (V)  
Fig. 35 : THD + N vs Output Power  
Fig. 36 : THD + N vs Output Power  
10  
10  
RL = 8  
RL = 16Ω  
F = 20Hz  
Av = -1  
BW < 125kHz  
F = 20Hz  
Av = -1  
BW < 125kHz  
1
0.1  
1
0.1  
Tamb = 25  
°C  
Tamb = 25°C  
Vcc=2V  
Vcc=2V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
0.01  
1E-3  
Vcc=5V  
100  
Vcc=3.3V  
10  
Vcc=5V  
0.01  
1
10  
1
100  
Output Power (mW)  
Output Power (mW)  
13/24  
TS482  
Fig. 37 : THD + N vs Output Power  
Fig. 38 : THD + N vs Output Power  
10  
10  
RL = 32  
F = 20Hz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
RL = 600  
F = 20Hz  
Av = -1  
BW < 125kHz  
Tamb = 25  
Vcc=2V  
1
0.1  
1
0.1  
Vcc=2.6V  
Vcc=3.3V  
°
C
Vcc=2V  
Vcc=5V  
Vcc=2.6V  
0.01  
0.01  
1E-3  
Vcc=3.3V  
10  
Vcc=5V  
1E-3  
1
100  
0.01  
0.1  
Output Voltage (Vrms)  
1
Output Power (mW)  
Fig. 39 : THD + N vs Output Power  
Fig. 40 : THD + N vs Output Power  
10  
10  
RL = 8  
F = 1kHz  
Av = -1  
BW < 125kHz  
RL = 5k  
F = 20Hz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
Vcc=2V  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
1
0.1  
Tamb = 25°C  
Vcc=2V  
Vcc=5V  
Vcc=2.6V  
Vcc=3.3V  
0.01  
Vcc=5V  
100  
1E-3  
0.01  
1
10  
0.01  
0.1  
Output Voltage (Vrms)  
1
Output Power (mW)  
Fig. 41 : THD + N vs Output Power  
Fig. 42 : THD + N vs Output Power  
10  
10  
RL = 32  
F = 1kHz  
Av = -1  
BW < 125kHz  
RL = 16  
F = 1kHz  
Av = -1  
BW < 125kHz  
1
0.1  
1
0.1  
Tamb = 25°C  
Tamb = 25°C  
Vcc=2V  
Vcc=2V  
Vcc=2.6V  
Vcc=2.6V  
0.01  
1E-3  
0.01  
1E-3  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=3.3V  
10  
Vcc=5V  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
14/24  
TS482  
Fig. 43 : THD + N vs Output Power  
Fig. 44 : THD + N vs Output Power  
10  
10  
RL = 600  
F = 1kHz  
Av = -1  
BW < 125kHz  
Tamb = 25  
RL = 5kΩ  
F = 1kHz  
Av = -1  
BW < 125kHz  
Vcc=2V  
Vcc=2V  
1
0.1  
1
0.1  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2.6V  
Vcc=3.3V  
°
C
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
Output Voltage (Vrms)  
1
0.01  
0.1  
Output Voltage (Vrms)  
1
Fig. 45 : THD + N vs Output Power  
Fig. 46 : THD + N vs Output Power  
10  
10  
RL = 16  
RL = 8  
F = 20kHz  
Av = -1  
F = 20kHz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
BW < 125kHz  
Tamb = 25°C  
1
0.1  
1
0.1  
Vcc=2V  
Vcc=2V  
Vcc=2.6V  
Vcc=2.6V  
Vcc=5V  
Vcc=3.3V  
Vcc=3.3V  
10  
Vcc=5V  
0.01  
0.01  
1
10  
Output Power (mW)  
100  
1
100  
Output Power (mW)  
Fig. 47 : THD + N vs Output Power  
Fig. 48 : THD + N vs Output Power  
10  
10  
RL = 32  
F = 20kHz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
RL = 600  
F = 20kHz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
Vcc=2V  
1
0.1  
Vcc=2.6V  
Vcc=3.3V  
1
0.1  
Vcc=2V  
Vcc=5V  
Vcc=2.6V  
0.01  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
1
100  
0.01  
0.1  
Output Voltage (Vrms)  
1
Output Power (mW)  
15/24  
TS482  
Fig. 49 : THD + N vs Output Power  
Fig. 50 : THD + N vs Frequency  
0.1  
10  
RL=8Ω  
Av=-1  
Bw < 125kHz  
Tamb=25°C  
RL = 5k  
F = 20kHz  
Av = -1  
BW < 125kHz  
Tamb = 25°C  
Vcc=2V  
Vcc=2.6V  
Vcc=3.3V  
Vcc=2V, Po=10mW  
Vcc=2.6V, Po=20mW  
Vcc=3.3V, Po=40mW  
Vcc=5V, Po=100mW  
1
0.1  
Vcc=5V  
0.01  
0.01  
20  
100  
1000  
10000 20k  
0.01  
0.1  
Output Voltage (Vrms)  
1
Frequency (Hz)  
Fig. 51 : THD + N vs Frequency  
Fig. 52 : THD + N vs Frequency  
0.1  
0.1  
RL=16Ω  
RL=32Ω  
Av=-1  
Av=-1  
Bw < 125kHz  
Tamb=25°C  
Bw < 125kHz  
Tamb=25°C  
Vcc=2V, Po=6.5mW  
Vcc=2.6V, Po=12mW  
Vcc=2V, Po=8mW  
Vcc=2.6V, Po=18mW  
Vcc=3.3V, Po=35mW  
Vcc=5V, Po=90mW  
Vcc=3.3V, Po=16mW  
Vcc=5V, Po=60mW  
0.01  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Fig. 53 : THD + N vs Frequency  
Fig. 54 : THD + N vs Frequency  
0.1  
0.1  
RL=600Ω  
Av=-1  
RL=5k  
Av=-1  
Bw < 125kHz  
Tamb=25°C  
Bw < 125kHz  
Tamb=25  
Vcc=5V, Vo=1.4Vrms  
Vcc=3.3V, Vo=1Vrms  
°C  
Vcc=5V, Vo=1.4Vrms  
Vcc=3.3V, Vo=1Vrms  
Vcc=2.6V, Vo=0.75Vrms  
Vcc=2V, Vo=0.55Vrms  
0.01  
0.01  
1E-3  
Vcc=2.6V, Vo=0.75Vrms  
Vcc=2V, Vo=0.55Vrms  
1E-3  
20  
100  
1000  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
16/24  
TS482  
Fig. 55 : Signal to Noise Ratio vs Power Supply  
VoltagewithUnweightedFilter(20Hzto20kHz)  
Fig. 56 : Signal to Noise Ratio vs Power Supply  
Voltage with Unweighted Filter (20Hz to 20kHz)  
110  
110  
Av = -1  
THD+N < 0.2%  
Av = -1  
108  
108  
THD+N < 0.2%  
Tamb = 25°C  
Tamb = 25°C  
106  
104  
102  
100  
98  
106  
104  
102  
100  
98  
RL=32  
RL=600Ω  
RL=5kΩ  
96  
96  
RL=8Ω  
94  
94  
RL=16  
92  
92  
90  
2.0  
90  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply (V)  
Power Supply (V)  
Fig. 57 : Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
Fig. 58 : Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
120  
120  
Av = -1  
Av = -1  
THD+N < 0.2%  
Tamb = 25°C  
THD+N < 0.2%  
Tamb = 25°C  
115  
115  
110  
110  
105  
100  
95  
RL=32  
105  
RL=600Ω  
RL=5kΩ  
100  
RL=8Ω  
RL=16  
95  
90  
2.0  
90  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply (V)  
Power Supply (V)  
Fig. 59 : Equivalent Input Noise Voltage vs  
Frequency  
Fig. 60 : Output Voltage Swing vs Power  
Supply Voltage  
25  
5.0  
Tamb=25°C  
Vcc=5V  
Rs=100Ω  
Tamb=25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
RL=32  
RL=16  
RL=8  
0.02  
0.1  
1
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Frequency (kHz)  
17/24  
TS482  
Fig. 61 : Crosstalk vs Frequency  
Fig. 62 : Crosstalk vs Frequency  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
ChB to ChA  
ChA to ChB  
ChB to ChA  
ChA to ChB  
RL=16  
Vcc=5V  
Pout=90mW  
Av=-1  
Bw < 125kHz  
RL=8  
Vcc=5V  
Pout=100mW  
Av=-1  
Bw < 125kHz  
Tamb=25°C  
Tamb=25°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Fig. 63 : Crosstalk vs Frequency  
Fig. 64 : Crosstalk vs Frequency  
120  
100  
100  
80  
60  
40  
20  
ChB to ChA & ChA to Chb  
80  
60  
40  
20  
0
ChB to ChA & ChA to Chb  
RL=32  
Vcc=5V  
Pout=60mW  
Av=-1  
Bw < 125kHz  
RL=600  
Vcc=5V  
Vout=1.4Vrms  
Av=-1  
Bw < 125kHz  
Tamb=25°C  
Tamb=25  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Fig. 65 : Crosstalk vs Frequency  
Fig. 66 : Lower Cut Off Frequency vs Output  
Capacitor  
120  
100  
1000  
RL=8Ω  
80  
60  
40  
20  
0
100  
10  
1
ChB to ChA & ChA to Chb  
RL=16  
RL=32  
RL=5k  
Vcc=5V  
Vout=1.5Vrms  
Av=-1  
Bw < 125kHz  
Tamb=25  
°C  
20  
100  
1000  
10000 20k  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Frequency (Hz)  
Output Capacitor Cout ( F)  
18/24  
TS482  
Fig. 67 : Lower Cut Off Frequency vs Input  
Capacitor  
Fig. 68 : Typical Distribution of THD+N  
40  
1000  
Vcc=5V  
36  
RL=16  
Rin=3.9k  
32  
28  
24  
20  
16  
12  
8
Av=-1  
Rin=10k  
Pout=90mW  
20Hz 20kHz  
Tamb=25  
F≤  
100  
10  
1
Rin=22k  
°C  
4
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
Input Capacitor Cin ( F)  
THD+N (%)  
Fig. 69 : Best Case Distribution of THD+N  
Fig. 70 : Worst Case Distribution of THD+N  
40  
40  
Vcc=5V  
Vcc=5V  
36  
36  
RL=16  
RL=16  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
Av=-1  
Av=-1  
Pout=90mW  
20Hz 20kHz  
Tamb=25  
Pout=90mW  
20Hz 20kHz  
Tamb=25  
F≤  
F≤  
°C  
°C  
4
4
0
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
THD+N (%)  
Fig. 71 : Typical Distribution of THD+N  
Fig. 72 : Best Case Distribution of THD+N  
40  
40  
Vcc=2V  
Vcc=2V  
36  
36  
RL=16  
RL=16  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
Av=-1  
Av=-1  
Pout=8mW  
20Hz 20kHz  
Tamb=25  
Pout=8mW  
20Hz 20kHz  
Tamb=25  
F≤  
F≤  
°C  
°C  
4
4
0
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
THD+N (%)  
19/24  
TS482  
Fig. 73 : Worst Case Distribution of THD+N  
Fig. 74 : Typical Distribution of THD+N  
40  
20  
Vcc=5V  
Vcc=2V  
36  
18  
RL=32  
RL=16  
32  
28  
24  
20  
16  
12  
8
16  
14  
12  
10  
8
Av=-1  
Av=-1  
Pout=60mW  
20Hz 20kHz  
Tamb=25  
Pout=8mW  
20Hz 20kHz  
Tamb=25  
F≤  
F≤  
°C  
°C  
6
4
4
2
0
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
THD+N (%)  
Fig. 75 : Best Case Distribution of THD+N  
Fig. 76 : Worst Case Distribution of THD+N  
20  
20  
Vcc=5V  
Vcc=5V  
RL=32Ω  
18  
18  
RL=32  
16  
16  
14  
12  
10  
8
Av=-1  
Av=-1  
Pout=60mW  
20HzF20kHz  
Tamb=25°C  
Pout=60mW  
20Hz 20kHz  
Tamb=25  
14  
F≤  
12  
°C  
10  
8
6
6
4
4
2
2
0
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
THD+N (%)  
Fig. 77 : Typical Distribution of THD+N  
Fig. 78 : Best Case Distribution of THD+N  
40  
40  
Vcc=2V  
Vcc=2V  
36  
36  
RL=32  
RL=32  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
Av=-1  
Av=-1  
Pout=6.5mW  
20Hz 20kHz  
Tamb=25  
Pout=6.5mW  
20Hz 20kHz  
Tamb=25  
F≤  
F≤  
°C  
°C  
4
4
0
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
THD+N (%)  
20/24  
TS482  
Fig. 79 : Worst Case Distribution of THD+N  
40  
Vcc=2V  
36  
RL=32  
32  
28  
24  
20  
16  
12  
8
Av=-1  
Pout=6.5mW  
20Hz 20kHz  
Tamb=25  
F≤  
°C  
4
0
0.012 0.018 0.024 0.030 0.036 0.042 0.048  
THD+N (%)  
21/24  
TS482  
PACKAGE MECHANICAL DATA  
SO-8 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
MIN.  
MAX.  
A
A1  
A2  
B
1.35  
1.75  
0.053  
0.069  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
22/24  
TS482  
PACKAGE MECHANICAL DATA  
23/24  
TS482  
PACKAGE MECHANICAL DATA  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia  
24/24  

相关型号:

TS482IDT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IQT

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482IS

Amplifier. Other
ETC

TS482IST

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR

TS482_05

100mW Stereo Headphone Amplifier
STMICROELECTR

TS4851

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4851EIJT

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4851IJT

MONO 1 W SPEAKER AND STEREO 160 mW HEADSET BTL DRIVERS WITH DIGITAL VOLUME CONTROL
STMICROELECTR

TS4855

LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL
STMICROELECTR

TS4855EIJT

LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL
STMICROELECTR

TS4855IJT

LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL
STMICROELECTR

TS4855_04

LOUDSPEAKER & HEADSET DRIVER WITH VOLUME CONTROL
STMICROELECTR