TS4657 [STMICROELECTRONICS]

Single supply stereo digital audio line driver with 2.2 Vrms capless outputs; 2.2 Vrms的无电容输出单电源供电的立体声数字音频线路驱动器
TS4657
型号: TS4657
厂家: ST    ST
描述:

Single supply stereo digital audio line driver with 2.2 Vrms capless outputs
2.2 Vrms的无电容输出单电源供电的立体声数字音频线路驱动器

驱动器
文件: 总26页 (文件大小:1414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4657  
Single supply stereo digital audio line driver  
with 2.2 Vrms capless outputs  
Features  
Single 3.0 to 5.5 V supply for DAC and line  
driver  
Audio line output: 2.2 Vrms for all V range  
CC  
16- to 24-bit audio data format stereo DAC, 32  
Pin connections (top view)  
to 48 kHz sample rate  
I²S, right- or left-justified compatible digital  
16  
20  
audio interface  
GNDD  
NC  
1
15  
GNDA  
VREGA  
VCCA  
95 dB SNR A-weighted at 48 kHz, V =5 V  
CC  
LRCLK  
SDAT  
BCLK  
7.4 mA current consumption at V = 3.0 V,  
CC  
VOUTL  
VOUTR  
full operation  
5
11  
6
10  
Internal negative power supply to ensure  
ground-referenced, capless outputs  
No external capacitor needed for the negative  
power supply generation  
Description  
Integrated structure to suppress pop and click  
noise  
The TS4657 is a stereo DAC that integrates a  
high-performance audio line driver capable of  
generating a 2.2 Vrms output level from a single  
3.0 to 5.5 V supply.  
Available in thin QFN20 4 mm x 4 mm package  
Applications  
One single supply is sufficient for the digital and  
analog parts of the circuit, thus eliminating the  
need for external regulators.  
Digital set-top boxes  
DVD players  
Digital TVs  
The TS4657 is a low-power consumption device.  
It features only 22 mW power dissipation at a  
3.0 V power supply in full operation.  
Notebooks  
Portable audio equipment  
Sound cards  
A 16-bit multi-bit sigma delta DAC is used,  
operating at 256xFs with oversampling digital  
interpolation filters. The digital audio data can be  
16-to 24-bit long and sample rates from 32 to  
48 kHz are supported.  
The output stage signal is ground-referenced by  
using an internal self-generated negative power  
supply, and as such external bulky output  
coupling capacitors are not necessary.  
The TS4657 is packaged in a small 4 x 4 mm  
QFN20 package, ideal for portable applications.  
March 2009  
Rev 1  
1/26  
www.st.com  
26  
Contents  
TS4657  
Contents  
1
2
3
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
3.3  
Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DAC and output stage performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.3.1  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4  
3.5  
Digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.1  
DAC digital filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical measurement curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1.1  
4.1.2  
Master clock and data clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Digital audio input format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.2  
4.3  
Power-management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Recommended power-up and power-down sequences . . . . . . . . . . . . . . 21  
4.3.1  
4.3.2  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
QFN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/26  
TS4657  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
VREGD  
VREGA  
VCCA  
VCCD  
Power  
management unit  
MCLK  
BCLK  
VOUTR  
VOUTL  
DAC  
DAC  
Digital  
Audio  
Interface  
Digital  
filters  
LRCLK  
SDAT  
Control  
interface  
FORMAT1  
FORMAT2 STDBY  
GNDD  
GNDA  
Table 1.  
Pin name  
Pin description  
Pin  
I/O  
Function  
GNDD  
NC  
1
2
Supply  
Digital ground, connected to GND  
Non-connected  
pin  
This pin must remain non-connected.  
LRCLK  
SDAT  
3
4
5
6
7
8
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Channel select clock input  
Serial audio data input  
BCLK  
Bit clock input  
MCLK  
Master clock input  
FORMAT2  
FORMAT1  
Selection of the digital data audio format.  
Selection of the digital data audio format.  
Input for Standby pin. STDBY=VIL: the TS4657 is in  
shutdown mode.  
STDBY  
9
Digital input  
Supply  
GNDA  
VOUTR  
VOUTL  
VCCA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Analog ground, connect to GND.  
Analog output Right channel analog output  
Analog output Left channel analog output  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Main analog power supply, connected to VCCD  
VREGA  
GNDA  
GNDA  
GNDD  
VREGD  
VCCD  
Decoupling pin for the analog part  
Analog ground, connected to GND  
Analog ground, connect to GND  
Digital ground, connected to GND  
Decoupling pin for the digital part  
Main digital power supply. Connect to VCCA  
Non-connected  
pin  
NC  
20  
This pin must remain non-connected.  
3/26  
Block diagram and pin description  
TS4657  
Figure 2.  
Typical application schematics  
VCCD VCCA  
C2  
C3  
J5  
VCCA VCCD  
10uF/6V3  
1uF  
1uF  
VCC  
3v to 5V5  
1
1
C1  
C4  
C5  
J6  
GND  
1uF  
1uF  
IC1  
C6  
3
4
5
6
820  
R5  
2nF2  
LRCLK  
SDAT  
BCLK  
MCLK  
J4  
J2  
LRCLK  
SDAT J3  
BCLK  
Digital  
Filters  
and  
12  
11  
SMB OUT L  
VOUTL  
VOUTR  
Digital  
Audio  
J7  
Digital Input  
J8  
DACs  
R7  
820  
Interface  
SMB OUT R  
C7  
MCLK J1  
2nF2  
Control  
Interface  
TS4657  
Optional  
Epad  
VCCD  
JP1  
JP2  
JP3  
/Stdby  
Format1 Format2  
User Control  
Figure 3.  
Typical test schematics  
VCCD VCCA  
C2  
C3  
J5  
J6  
VCCA VCCD  
10uF/6V3  
1uF  
1uF  
VCC  
GND  
1
1
C1  
C4  
C5  
1uF  
1uF  
IC1  
J4  
LRCLK  
3
4
5
6
LRCLK  
SDAT  
BCLK  
MCLK  
Digital  
Filters  
and  
12  
11  
SMB  
J7  
OUT L  
VOUTL  
VOUTR  
Digital  
Audio  
SDAT J3  
BCLK J2  
MCLK J1  
J8  
DACs  
Interface  
SMB OUT R  
Control  
Interface  
TS4657  
Epad  
VCCD  
JP1  
JP2  
JP3  
/Stdby  
Format1 Format2  
4/26  
TS4657  
Absolute maximum ratings  
2
Absolute maximum ratings  
Table 2.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vi  
Supply voltage (1)  
5.5  
V
Digital input voltage  
GND to VCC  
V
MCLK, BCLK, LRCLK, SDAT, FORMAT1, FORMAT2, STDBY  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
-40 to + 85  
-65 to +150  
150  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient  
Human body model  
°C  
Rthja  
ESD  
ESD  
100  
°C/W  
kV  
2
Machine model  
200  
V
Latch-up immunity  
Class A  
260  
Lead temperature (soldering, 10 secs)  
°C  
1. All voltage values are measured with respect to ground.  
5/26  
Electrical characteristics  
TS4657  
3
Electrical characteristics  
3.1  
Power characteristics  
Table 3.  
Symbol  
VCC = 3.3 V T = 25° C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Unit  
VCC  
Power supply  
3.0  
5.5  
V
Total supply current.  
Full operation, RL = 10 KΩ, vstdby 2.0 V  
ICC  
mA  
7.4  
8
9.5  
9.8  
VCC = 3.0 V  
VCC = 5.0 V  
Standby current consumption. VCC = 3 V to VCC = 5.5 V  
ICCstby  
25  
50  
1000  
2000  
nA  
Vstdby = 0 V  
Vstdby = 0.8 V  
3.2  
Package thermal characteristics  
Table 4.  
Symbol  
Operating conditions  
Parameter  
Thermal resistance junction to ambient for QFN20(1)  
Min. Typ. Max. Unit  
40 °C/W  
Rthja  
1. With heat sink surface = 125 mm2.  
6/26  
TS4657  
Electrical characteristics  
3.3  
DAC and output stage performances  
Table 5.  
V
= 3.0 V to Vcc = 5.5 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C  
CC  
(unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Operating conditions  
Audio data input format  
16  
32  
5
24  
48  
bits  
kHz  
kΩ  
-
Fs  
Sampling frequency  
Load resistor  
RL  
CL  
10  
Load capacitance  
100  
150  
0.8  
pF  
Digital input characteristics  
VIL  
Low-level input voltage  
High-level input voltage  
V
V
VIH  
2
Dynamic parameters  
Full-scale output voltage swing  
in at 0 dBFS; RL RLmin; CL=100 pF  
VoutRMS  
Vrms  
V
2.1  
2.2  
Table 6.  
Symbol  
V
= 3.3 V, Rload = 10 kΩ Cload = 100 pF, T = 25° C (unless otherwise specified)  
CC  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Dynamic parameters  
Dynamic range. A-weighted  
DR  
dB  
dB  
16-bit data; Vin at -60 dBFS, FS = 48 kHz, Fin = 1 kHz  
88  
93  
Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to  
output  
SNR  
Vin at -6 dBFS; A-weighted, 18-bit data input  
Vin at -6 dBFS; unweighted, 18-bit data input  
Vin at 0 dBFS; A-weighted, 16-bit data input  
89  
87  
87  
94.5  
92.5  
93  
Total harmonic distortion and noise. Fin = 1 kHz  
V
V
in at -20 dBFS, 18-bit data input  
in at -6 dBFS, 18-bit data input  
72  
82  
81  
THD+N  
PSRR  
dB  
dB  
74  
Vin at 0 dBFS, 16-bit data input  
Power supply rejection ratio, Vripple = 200 mVpp  
F= 217 Hz  
F= 1 kHz  
20 Hz < F < 20 kHz  
80  
71  
46  
LRiso  
Voo  
Channel separation. 1 kHz, Vin at 0 dBFS  
Output offset voltage  
100  
dB  
mV  
dB  
-20  
20  
Gain channel balance  
-0.2  
0.01  
4.5  
0.2  
twu  
Wake-up time  
ms  
7/26  
Electrical characteristics  
TS4657  
Table 7.  
Symbol  
V
= 5 V, Rload = 10 kΩ, Cload = 100 pF, T = 25° C (unless otherwise specified)  
CC  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Dynamic range; A-weighted  
DR  
dB  
16-bit data; measured at -60 dBFS, FS = 48 kHz, Fin = 1 kHz  
88  
93  
Signal-to-noise ratio, FS = 48 kHz, Fin = 1 kHz, referred to  
output  
SNR  
dB  
Vin at -6 dBFS; A-weighted, 18-bit data input  
Vin at -6 dBFS; unweighted, 18-bit data input  
Vin at 0 dBFS; A-weighted, 16-bit data input  
89  
74  
95  
93  
93  
Total harmonic distortion and noise. Fin = 1 kHz  
Vin at -20 dBFS  
Vin at -6 dBFS  
Vin at 0 dBFS  
72  
82.5  
81.5  
THD+N  
PSRR  
dB  
dB  
Power supply rejection ratio, Vripple = 200 mVpp  
F= 217 Hz  
F= 1 kHz  
20 Hz < F < 20 kHz  
80  
73  
48  
LRiso  
Voo  
Channel separation. 1 kHz, Vin at 0 dBFS  
Output offset voltage  
100  
dB  
mV  
dB  
-20  
-0.2  
3
20  
0.2  
6
Gain channel balance  
0.01  
4.5  
twu  
Wake-up time(1)  
ms  
1. See timing diagram in application information.  
3.3.1  
Terminology  
SNR: signal-to-noise ratio is expressed in dB. The theoretical formula is:  
2
VH1  
-------------------  
2
SNRdB = 10log  
Vnoise  
where V  
signal.  
is the integrated noise from 20 Hz to 20 kHz and VH is the fundamental of the  
1
noise  
For unweighted measurements, the SNR is given by:  
2
VH1  
----------------------------------------------------------------------  
SNRdB = 10log  
20kHz  
u(f)(vnoise(f)) 2df  
20Hz  
where v  
is the noise spectral density and u(f) is the unweighted filter transfer function  
noise  
(20 Hz, 20 kHz).  
For A-weighted measurements:  
2
VH1  
----------------------------------------------------------------------  
SNRdB = 10log  
20kHz  
A
A(f)(vnoise(f)) 2df  
20Hz  
where v  
is the noise spectral density and A(f) is the A-weighted filter transfer function.  
noise  
8/26  
TS4657  
Electrical characteristics  
THD+N: total harmonic distortion and noise-to signal-ratio is expressed in dB. It is given by:  
k
2
VHi2 + Vnoise  
i = 2  
------------------------------------------------  
THD + NdB = 10log  
2
Voutrms  
where VH is the rms value of the harmonic components.  
i
SINAD: signal and noise distortion is expressed in dB. The equation is given by:  
2
Voutrms  
------------------------------------------------  
SINADdB = 10log  
k
2
VHi2 + Vnoise  
i = 2  
DR: dynamic range is expressed in dB, with the following equation:  
k
VHi2  
i = 1  
----------------------  
2
DRdB = 10log  
Vnoise  
3.4  
Digital filter characteristics  
Table 8.  
Symbol  
V
= 3.3 V T= 25° C (unless otherwise specified)  
CC  
Parameter  
Min.  
Typ.  
Max.  
Unit  
-
-
-
Passband edge (-3 dB)  
0.48Fs  
Passband ripple f < 0.45 Fs  
Stopband attenuation f > 0.55 Fs  
+/- 0.1  
dB  
dB  
-50  
9/26  
Electrical characteristics  
TS4657  
3.4.1  
DAC digital filter response  
Figure 4.  
DAC digital filter frequency  
response from 32 to 48 kHz  
Figure 5.  
DAC digital filter transition band  
from 32 to 48 kHz  
Figure 6.  
DAC digital filter ripple from 32 to  
48 kHz  
10/26  
TS4657  
Electrical characteristics  
3.5  
Electrical measurement curves  
Figure 7.  
Crosstalk vs. frequency  
Figure 8.  
Crosstalk vs. frequency  
FS=48kHz  
FS=48kHz  
FS=44.1kHz  
FS=32kHz  
FS=44.1kHz  
FS=32kHz  
FS=44.1kHz  
FS=32kHz  
FS=32kHz  
FS=48kHz  
FS=48kHz  
R
L = 10kΩ  
RL = 10k  
VCC = 5V  
VIN = 0dBFS  
TAMB = 25°C  
Ω
VCC = 3V  
VIN = 0dBFS  
TAMB = 25°C  
FS=44.1kHz  
Figure 9.  
Frequency response  
Figure 10. Frequency response  
FS=48kHz  
FS=48kHz  
FS=44.1kHz  
FS=44.1kHz  
RL = 10k  
Ω
VCC = 3V  
VIN = 0dBFS  
TAMB = 25°C  
RL = 10k  
VCC = 5V  
VIN = 0dBFS  
Ω
FS=32kHz  
FS=32kHz  
TAMB = 25°C  
Figure 11. Current consumption vs. power  
supply voltage  
Figure 12. Current consumption vs. standby  
voltage  
FS=48kHz  
FS = 48kHz  
FIN = 1kHz  
FS=32kHz  
VIN = 0dBFS  
RL = 100k  
TAMB = 25  
Ω
FS = 32kHz  
FIN = 1kHz  
VIN = 0dBFS  
°C  
Serial Bus = ON (I2S)  
RL = 100k  
Ω
FIN = 1kHz  
Serial Bus = OFF  
VIN = 0dBFS  
TAMB = 25°C  
11/26  
Electrical characteristics  
TS4657  
Figure 13. Output swing vs. power supply  
voltage  
Figure 14. Power dissipation vs. frequency  
VCC = 5V  
VCC = 3V3  
VCC = 3V  
RL = 5kΩ, 10kΩ or 100kΩ  
RL = 10k  
FIN = 1kHz  
Ω
FS = 32kHz, 44.1kHz or 48kHz  
FIN = 1kHz  
VIN = 0dBFS  
VIN = 0dBFS  
TAMB = 25°C  
TAMB = 25°C  
Figure 15. Power supply rejection ratio vs.  
frequency  
Figure 16. Power supply rejection ratio vs.  
frequency  
0
-10  
-20  
-30  
0
-10  
-20  
-30  
-40  
-40  
-50  
-60  
-70  
-80  
-90  
Ω
Ω
Ω
Ω
Ω
Ω
°
°
-50  
-60  
-70  
-80  
-90  
20  
20  
100  
1000  
10000 20k  
100  
1000  
10000 20k  
Figure 17. Power supply rejection ratio vs.  
frequency  
Figure 18. Signal to noise ratio vs. input level  
0
-10  
-20  
-30  
-40  
VCC = 3V  
A-Weighted  
RL = 5k  
Ω
FS = 32kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
TAMB = 25°C  
Ω
Ω
Ω
Unweighted  
-50  
-60  
°
-70  
-80  
-90  
-100  
20  
100  
1000  
10000 20k  
12/26  
TS4657  
Electrical characteristics  
Figure 19. Signal to noise ratio vs. input level Figure 20. Signal to noise ratio vs. input level  
VCC = 3V  
RL = 5k  
VCC = 3V  
RL = 5k  
A-Weighted  
A-Weighted  
Ω
Ω
FS = 32kHz  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25  
°
C
TAMB = 25°C  
Unweighted  
Unweighted  
Figure 21. Signal to noise ratio vs. input level Figure 22. Signal to noise ratio vs. input level  
VCC = 3V  
RL = 5k  
VCC = 5V  
RL = 5k  
A-Weighted  
A-Weighted  
Ω
Ω
FS = 48kHz  
FS = 32kHz  
Input Data = 18bits  
FIN = 1kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25  
°
C
TAMB = 25°C  
Unweighted  
Unweighted  
Figure 23. Signal to noise ratio vs. input level Figure 24. Signal to noise ratio vs. input level  
VCC = 5V  
RL = 5k  
VCC = 5V  
RL = 5k  
A-Weighted  
A-Weighted  
Ω
Ω
FS = 32kHz  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25  
°
C
TAMB = 25°C  
Unweighted  
Unweighted  
13/26  
Electrical characteristics  
TS4657  
Figure 25. Signal to noise ratio vs. input level Figure 26. Signal to noise ratio vs. input level  
VCC = 3V  
VCC = 5V  
RL = 5k  
RL = 10k  
Ω
A-Weighted  
A-Weighted  
Ω
FS = 32kHz  
Input Data = 16bits  
FIN = 1kHz  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
Unweighted  
Unweighted  
Figure 27. Signal to noise ratio vs. input level Figure 28. Signal to noise ratio vs. input level  
VCC = 3V  
VCC = 3V  
RL = 10k  
Ω
RL = 10kΩ  
A-Weighted  
A-Weighted  
FS = 32kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 48kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
Unweighted  
Unweighted  
Figure 29. Signal to noise ratio vs. input level Figure 30. Signal to noise ratio vs. input level  
VCC = 3V  
VCC = 5V  
RL = 10k  
Ω
RL = 10kΩ  
A-Weighted  
A-Weighted  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 32kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
Unweighted  
Unweighted  
14/26  
TS4657  
Electrical characteristics  
Figure 31. Signal to noise ratio vs. input level Figure 32. Signal to noise ratio vs. input level  
VCC = 5V  
VCC = 5V  
RL = 10k  
Ω
RL = 10kΩ  
A-Weighted  
A-Weighted  
FS = 32kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 48kHz  
Input Data = 16bits  
FIN = 1kHz  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25  
°
C
TAMB = 25°C  
Unweighted  
Unweighted  
Figure 33. Signal to noise ratio vs. input level Figure 34. Total harmonic distortion and noise  
vs. frequency  
VCC = 5V  
RL = 10k  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
LPF = 20kHz  
VCC = 3V  
RL = 10k  
FS = 32kHz  
Input Data = 16bits  
VIN = -6dBFS  
Unweighted  
Ω
A-Weighted  
Ω
TAMB = 25°C  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
20  
20k  
Figure 35. Total harmonic distortion and noise Figure 36. Total harmonic distortion and noise  
vs. frequency vs. frequency  
VCC = 3V  
RL = 10k  
VCC = 3V  
RL = 10k  
Ω
Ω
FS = 48kHz  
FS = 32kHz  
Input Data = 16bits  
VIN = -6dBFS  
Unweighted  
Input Data = 18bits  
VIN = -6dBFS  
Unweighted  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
20  
20k  
20  
20k  
15/26  
Electrical characteristics  
TS4657  
Figure 37. Total harmonic distortion and noise Figure 38. Total harmonic distortion and noise  
vs. frequency vs. frequency  
VCC = 5V  
RL = 10k  
Ω
FS = 32kHz  
Input Data = 16bits  
VIN = -6dBFS  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
20  
20k  
Figure 39. Total harmonic distortion and noise Figure 40. Total harmonic distortion and noise  
vs. frequency vs. frequency  
VCC = 5V  
RL = 10k  
VCC = 5V  
RL = 10k  
Ω
Ω
FS = 48kHz  
FS = 32kHz  
Input Data = 16bits  
VIN = -6dBFS  
Unweighted  
Input Data = 18bits  
VIN = -6dBFS  
Unweighted  
LPF = 20kHz  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
20  
20k  
20  
20k  
Figure 41. Total harmonic distortion and noise Figure 42. Total harmonic distortion and noise  
vs. frequency vs. input level  
VCC = 3V  
VCC = 5V  
RL = 10k  
FS = 48kHz  
Input Data = 18bits  
VIN = -6dBFS  
Unweighted  
RL = 10k  
Ω
Ω
FS = 32kHz  
Input Data = 16bits  
FIN = 1kHz  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
LPF = 20kHz  
TAMB = 25°C  
20  
20k  
16/26  
TS4657  
Electrical characteristics  
Figure 43. Total harmonic distortion and noise Figure 44. Total harmonic distortion and noise  
vs. input level vs. input level  
VCC = 3V  
VCC = 3V  
RL = 10k  
Ω
RL = 10k  
Ω
FS = 32kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 48kHz  
Input Data = 16bits  
FIN = 1kHz  
Unweighted  
LPF = 20kHz  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
Figure 45. Total harmonic distortion and noise Figure 46. Total harmonic distortion and noise  
vs. input level vs. input level  
VCC = 3V  
VCC = 5V  
RL = 10k  
Ω
RL = 10kΩ  
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 32kHz  
Input Data = 16bits  
FIN = 1kHz  
Unweighted  
LPF = 20kHz  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
Figure 47. Total harmonic distortion and noise Figure 48. Total harmonic distortion and noise  
vs. input level vs. input level  
VCC = 5V  
VCC = 5V  
RL = 10k  
Ω
RL = 10k  
Ω
FS = 32kHz  
Input Data = 18bits  
FIN = 1kHz  
FS = 48kHz  
Input Data = 16bits  
FIN = 1kHz  
Unweighted  
LPF = 20kHz  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
TAMB = 25°C  
17/26  
Electrical characteristics  
TS4657  
Figure 49. Total harmonic distortion and noise  
vs. input level  
VCC = 5V  
RL = 10k  
Ω
FS = 48kHz  
Input Data = 18bits  
FIN = 1kHz  
Unweighted  
LPF = 20kHz  
TAMB = 25°C  
18/26  
TS4657  
Application information  
4
Application information  
4.1  
Serial audio interface  
4.1.1  
Master clock and data clocks  
Three external clock signals are applied to the TS4657. The MCLK is the external master  
clock applied by the audio data processor. The LRCLK is the channel frequency, also called  
LEFT/RIGHT clock, at which the digital words for each channel are input to the device. The  
LRCLK clock is the sample rate of the audio data. The ratio MCLK/LRCLK must be an  
integer as shown in Table 9.  
The BCLK is the bit clock and represents the clock at which the audio data is serially shifted  
into the audio port. BCLK is linked to LRCLK. The minimum required BCLK frequency is  
twice the audio sample rate times the number of bits in each audio word. Refer to Table 10  
for the BCLK/LRCLK ratio.  
MCLK, LRCLK and BCLK must be synchronous clock signals.  
Table 9.  
Audio data sampling rates  
LRCLK (kHz)  
MCLK (MHz)  
256x  
32  
44.1  
48  
8.192  
11.2896  
12.288  
4.1.2  
Digital audio input format  
The TS4657 receives serial digital audio data through a 3-wire interface. SDAT is the serial  
audio data input. The data is entered MSB first and is a two’s complement. The data can be  
2
I S, right or left justified. The data format is chosen with the control pins FORMAT1 and  
FORMAT2 as detailed in Table 10.  
Figure 50 on page 20 summarizes the implementation of the audio data format.  
Table 10. Digital audio data formats supported by the TS4657  
BCLK/LRCLK ratio  
Min  
FORMAT2  
FORMAT1  
Data Format  
Max  
Right-justified, 16-bit data  
Data valid on rising edge of BCLK  
0
0
1
1
0
1
0
1
32  
48  
256  
Right-justified, 24-bit data  
Data valid on rising edge of BCLK  
256  
256  
256  
Left-Justified, 16-bit up to 24-bit data  
Data valid on rising edge of BCLK  
2 x number of bits of data  
2 x number of bits of data  
I²S, 16-bit up to 24-bit data  
Data valid on rising edge of BCLK  
19/26  
Application information  
Figure 50. Audio interface formats managed by the TS4657  
16-bit Right justified data format: pin FORMAT1 = VIL, FORMAT2 = VIL  
TS4657  
RIGHT  
LRCLK  
SDAT  
LEFT  
15  
0
1
0
1
14 15  
LSB  
14  
MSB  
16-bit word right data  
MSB  
16-bit word left data  
LSB  
BCLK  
24-bit right-justified data format: pin FORMAT1 = VIH, FORMAT2 = VIL  
RIGHT  
LRCLK  
SDAT  
LEFT  
n-1  
0
1
0
1
n-2 n-1  
LSB  
n-2  
MSB  
n-bit word left data  
LSB  
MSB  
n-bit word right data  
BCLK  
Up to 24-bit left-justified data format: pin FORMAT1 = VIL, FORMAT2 = VIH  
RIGHT  
LRCLK  
SDAT  
LEFT  
0
1
n-1  
0
1
n-2 n-1  
LSB  
n-2  
MSB  
n-bit word left data  
LSB  
MSB  
n-bit word right data  
BCLK  
Up to 24-bit I²S data format: pin FORMAT1 = VIH, FORMAT2 = VIH  
RIGHT  
LRCLK  
SDAT  
LEFT  
0
1
0
1
n-1  
n-2 n-1  
LSB  
n-2  
MSB  
MSB  
32-bit word left data  
LSB  
32-bit word right data  
BCLK  
4.2  
Power-management unit  
The TS4657 utilizes a power-management unit to supply its internal structures.  
A self-generated negative supply enables the drivers to be powered from positive and  
negative supplies, therefore increasing the amplitude of the output signal. This internal  
negative supply switches at a higher frequency than traditional architectures, derived from  
the master clock MCLK. This structure uses an original design that enables one to suppress  
the flying or floating capacitors. Therefore, only four small ceramic X5R 10V 1-µF  
decoupling capacitors are necessary for VCCA/VCCD and VREGA/VREGD.  
Furthermore, the self-generated negative supply allows the amplifier outputs to be centered  
around zero, thus the bulky output coupling capacitors can be removed.  
20/26  
TS4657  
Application information  
4.3  
Recommended power-up and power-down sequences  
4.3.1  
Power-up  
It is recommended to power-up the TS4657 prior to applying logical data in order to ensure  
correct ESD protection biasing.  
When the STDBY pin is in a low state (VIL,) the circuit is in standby; when the pin is in a high  
state (VIH), the circuit is enabled. An internal pull-down resistor will force the STDBY pin to  
ground if no signal is applied to this pin.  
The standby signal can be delayed from the power-up phase but simultaneous stimuli are  
possible, as shown in Figure 51.  
Figure 51. Standby signal delayed from power-up phase  
VCCA VCCD  
t=0µs min  
STDBY  
t=0µs min  
MCLK BCLK  
LRCLK  
t=0µs min  
SDAT  
80%  
VOUTR VOUTL  
Twu  
The wake-up time (Twu) of the TS4657 is defined as the time between the settlement of the  
digital input signals STDBY, MCLK, BCLK, LRCLK, SDAT and 80% of the VOUTR/VOUTL  
amplitude. The Twu of the circuit is typically 4.5 ms.  
If all digital input signals are settled and an ON/OFF sequence is applied quickly on the  
STDBY pin, the internal capacitors remain charged and the Twu is around 1 ms.  
4.3.2  
Power-down  
As described in Section 4.2, the MCLK is internally used to supply some blocks. It is  
therefore recommended not to switch off the MCLK during normal operation.  
To properly power-down the device, MCLK, BCLK and LRCLK should be switched off after  
the STDBY signal.  
The power-down time is very short and can be considered as zero.  
21/26  
Package information  
TS4657  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
22/26  
TS4657  
Package information  
5.1  
QFN20 package information  
Figure 52. QFN20 package mechanical drawing  
Table 11. QFN20 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
b
0.80  
0.90  
0.02  
0.65  
0.25  
0.23  
4.00  
2.10  
4.00  
2.10  
0.50  
0.55  
1.00  
0.05  
1.00  
0.031  
0.035  
0.0008  
0.026  
0.010  
0.009  
0.157  
0.083  
0.157  
0.083  
0.020  
0.022  
0.040  
0.002  
0.040  
0.18  
3.85  
1.95  
3.85  
1.95  
0.45  
0.35  
0.30  
4.15  
2.25  
4.15  
2.25  
0.55  
0.75  
0.08  
0.007  
0.152  
0.077  
0.152  
0.077  
0.018  
0.014  
0.012  
0.163  
0.089  
0.163  
0.089  
0.022  
0.030  
0.003  
D
D2  
E
E2  
e
L
ddd  
23/26  
Ordering information  
TS4657  
6
Ordering information  
Table 12. Order codes  
Order code  
Temperature range  
-40°C, +85°C  
Package  
Packing  
Marking  
K657  
TS4657IQT  
QFN20  
Tape & reel  
24/26  
TS4657  
Revision history  
7
Revision history  
Table 13. Document revision history  
Date  
Revision  
Changes  
02-Mar-2009  
1
Initial release.  
25/26  
TS4657  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

TS4657IQT

Single supply stereo digital audio line driver with 2.2 Vrms capless outputs
STMICROELECTR

TS46D/1000/F/A/B/FS/EE/4

SENSORKANTEN SYSTEM 1M
ETC

TS46D/1500/F/A/B/FS/EE/4

SENSORKANTEN SYSTEM 1.5
ETC

TS46D/2000/F/A/B/FS/EE/4

SENSORKANTEN SYSTEM 2M
ETC

TS46D/2500/F/A/B/FS/EE/4

SENSORKANTEN SYSTEM 2.5
ETC

TS471CD

Analog IC
ETC

TS472

Very Low Noise Microphone Preamplifier with 2V Biased Output and Active Low Standby Mode
STMICROELECTR

TS472EIJT

Very Low Noise Microphone Preamplifier with 2V Biased Output and Active Low Standby Mode
STMICROELECTR

TS472IQT

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode
STMICROELECTR

TS472_06

Very low noise microphone preamplifier with 2.0V bias output and active low standby mode
STMICROELECTR

TS480T13IEB

Parallel - 3Rd Overtone Quartz Crystal, 48MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS482

100mW STEREO HEADPHONE AMPLIFIER
STMICROELECTR