STW81103 [STMICROELECTRONICS]

Multi-band RF frequency synthesizer with integrated VCOs; 多频段RF频率合成器与集成的VCO
STW81103
型号: STW81103
厂家: ST    ST
描述:

Multi-band RF frequency synthesizer with integrated VCOs
多频段RF频率合成器与集成的VCO

文件: 总53页 (文件大小:1344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STW81103  
Multi-band RF frequency synthesizer with integrated VCOs  
Features  
Integer-N frequency synthesizer  
Dual differential integrated VCOs with  
automatic center frequency calibration:  
– 2500 - 3050 MHz (direct output)  
– 4350 - 5000 MHz (direct output)  
– 1250 - 1525 MHz (internal divider by 2)  
– 2175 - 2500 MHz (internal divider by 2)  
– 625 - 762.5 MHz (internal divider by 4)  
– 1087.5 - 1250 MHz (internal divider by 4)  
Applications  
2.5G and 3G Cellular infrastructure equipment  
CATV equipment  
Excellent integrated phase noise  
Fast lock time: 150µs  
Instrumentation and test equipment  
Other wireless communication systems  
Dual modulus programmable prescaler  
(16/17 or 19/20)  
2 programmable counters to achieve a  
feedback division ratio from 256 to 65551  
(prescaler 16/17) and from 361 to 77836  
(prescaler 19/20).  
Description  
The STMicroelectronics STW81103 is an  
integrated RF synthesizer with voltage controlled  
oscillators (VCOs). Showing high performance,  
high integration, low power, and multi-band  
performances, STW81103 is a low cost one chip  
alternative to discrete PLL and VCOs solutions.  
Programmable reference frequency divider  
(10 bits)  
Phase frequency comparator and charge pump  
Programmable charge pump current  
Digital lock detector  
Dual digital bus interface: SPI and I2C bus (fast  
mode) with 3 bit programmable address  
(1100A2A1A0)  
STW81103 includes an Integer-N frequency  
synthesizer and two fully integrated VCOs  
featuring low phase noise performance and a  
noise floor of -155dBc/Hz. The combination of  
wide frequency range VCOs (thanks to center-  
frequency calibration over 32 sub-bands) and  
multiple output options (direct output, divided by 2  
or divided by 4) allows to cover the  
3.3 V power supply  
Power down mode (hardware and software)  
Small size exposed pad VFQFPN28 package  
625 MHz-762.5 MHz, the 1087.5 MHz-1525 MHz,  
the 2175 MHz-3050 MHz and the  
4350 MHz-5000 MHz bands.  
5 mm x 5 mm x 1.0 mm  
Process: BICMOS 0.35 µm SiGe  
The STW81103 is designed with  
STMicroelectronics advanced 0.35 µm SiGe  
process.  
March 2008  
Rev 3  
1/53  
www.st.com  
1
Contents  
STW81103  
Contents  
1
Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3
4
5
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.8.1  
5.8.2  
5.8.3  
VCO selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
VCO frequency calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
VCO voltage amplitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.9  
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.9.1 Output buffer control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.10 External VCO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2
6
I C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1  
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/53  
STW81103  
Contents  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current byte address read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.2  
6.3  
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2
I C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.1  
6.3.2  
6.3.3  
Write-only registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Read-only register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4  
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.4.1 VCO calibration auto-restart feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1  
7.2  
7.3  
General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bit tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.3.1  
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.4.1 VCO calibration auto-restart feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.4  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.1  
8.2  
8.3  
8.4  
Direct output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Divided by 2 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Divided by 4 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10  
11  
12  
3/53  
List of tables  
STW81103  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Current value vs. selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
VCO A performances versus amplitude setting (Freq = 2.8 GHz) . . . . . . . . . . . . . . . . . . . 24  
VCO B performances vs. amplitude setting (Freq = 4.7 GHz) . . . . . . . . . . . . . . . . . . . . . . 25  
EXT_PD pin function setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current byte address read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data and clock timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Start and stop timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Ack timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Write-only registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SPI data structure (MSB is sent first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Address decoder and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SPI timing specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bits at 00h and ST1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Bits at 01h and ST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Order code of the evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
4/53  
STW81103  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
VCO A (direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VCO B (direct output) open loop phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VCO A (direct output) closed loop phase noise at 2.775 GHz  
(FSTEP=200 kHz; FPFD=200 kHz; ICP=2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 6. VCO B (direct output) closed loop phase noise at 4.675 GHz  
(FSTEP=200 kHz; FPFD=200 kHz; ICP=3 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7. VCO A (div. by 2 output) closed loop phase noise at 1.3876 GHz  
(FSTEP=200 kHz; FPFD=400 kHz; ICP=1.5 mA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 8. VCO B (div. by 2 output) closed loop phase noise at 2.3376 GHz  
(FSTEP=200 kHz; FPFD=400 kHz; ICP=2 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9. VCO A (div. by 4 output) closed loop phase noise at 693.8 MHz  
(FSTEP=200 kHz; FPFD=800 kHz; ICP=1 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. VCO B (div. by 4 output) closed loop phase noise at 1168.8 MHz  
(FSTEP=200 kHz; FPFD=800 kHz; ICP=1.5 mA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. PFD frequency spurs (direct output; FPFD=200 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12. PFD frequency spurs (div. by 2 output; FPFD=400 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 13. PFD frequency spurs (div. by 4 output; FPFD=800 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14. Settling time (final frequency=2.4 GHz; FPFD=400 kHz; ICP=2.5 mA) . . . . . . . . . . . . . . . 17  
Figure 15. Reference frequency input buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 16. VCO divider diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17. PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 18. Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 19. VCO sub-bands frequency characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 20. Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 21. START and STOP conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 22. Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 23. Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 24. Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 25. Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 26. SPI input and output bit order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 27. SPI timing specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 28. Differential/single-ended output network (MATCH_LC_LUMP_4G_DIFF.dsn) . . . . . . . . . 41  
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) . . . . . . . . . . . . . . 42  
Figure 30. Evaluation board (EVB4G) matching network (MATCH_EVB4G.dsn) . . . . . . . . . . . . . . . . 43  
Figure 31. Differential/single-ended output network (MATCH_LC_LUMP_2G_DIFF.dsn) . . . . . . . . . 43  
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) . . . . . . . . . . . . . . 44  
Figure 33. Evaluation board (EVB2G) matching network (MATCH_EVB2G.dsn) . . . . . . . . . . . . . . . . 44  
Figure 34. LC lumped balun for divided by 4 output (MATCH_LC_LUMP_1G.dsn) . . . . . . . . . . . . . . 45  
Figure 35. Evaluation board (EVB1G) matching network (MATCH_EVB1G.dsn) . . . . . . . . . . . . . . . . 46  
Figure 36. Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 37. Ping-pong architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 38. Application diagram with external VCO (LO output from STW81103) . . . . . . . . . . . . . . . . 49  
Figure 39. Application diagram with external VCO (LO output from VCO) . . . . . . . . . . . . . . . . . . . . . 49  
Figure 40. VFQFPN28 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5/53  
Block diagram and pin configuration  
STW81103  
1
Block diagram and pin configuration  
1.1  
Block diagram  
Figure 1.  
Block diagram  
6$$?/54"5&  
633?/54"5&  
"5&  
6$$?$)6ꢀ  
633?$)6ꢀ  
633?#0  
6$$?#0  
6$$?$)6ꢁ  
633?$)6ꢁ  
2%&  
$IVIDER  
0
&
$
50  
$.  
#
0
)#0  
6$$?"5&6#/  
633?"5&6#/  
6#/  
"5&  
$IVIDER  
,/#+?$%4  
$"53?3%,  
%846#/?).0  
%846#/?)..  
%84  
6#/  
"5&  
3#, ꢄ #,+  
3$! ꢄ $!4!  
$"53  
!$$ꢃ ꢄ ,/!$  
!$$ꢂ  
!$$ꢁ  
6#/  
"5&&  
6$$?6#/!  
633?6#/!  
6$$?6#/"  
633?6#/"  
6#/  
#ALIBRATOR  
6$$?$"53  
633?$"53  
6$$?%3$  
633?%3$  
6/53  
STW81103  
Block diagram and pin configuration  
1.2  
Pin configuration  
Figure 2.  
Pin connection (top view)  
VDD_VCOA  
VDD_DIV2  
DBUS_SEL  
VDD_BUFVCO  
VDD_OUTBUF  
OUTBUFP  
EXTVCO_INP  
EXTVCO_INN  
QFN 28  
VDD_PLL  
REF_CLK  
TEST2  
OUTBUFN  
VDD_DIV4  
VDD_VCOB  
Table 1.  
Pin No  
Pin description  
Name  
Description  
Observation  
1
2
3
4
5
6
7
8
9
VDD_VCOA  
VDD_DIV2  
VDD_OUTBUF  
OUTBUFP  
OUTBUFN  
VDD_DIV4  
VDD_VCOB  
VDD_ESD  
VCTRL  
VCO A power supply  
Divider by 2 power supply  
Output buffer power supply  
LO buffer positive output  
LO buffer negative output  
Divider by 4 power supply  
VCO B power supply  
Open collector  
Open collector  
ESD positive rail power supply  
VCO control voltage  
7/53  
Block diagram and pin configuration  
STW81103  
Table 1.  
Pin No  
Pin description (continued)  
Name Description  
ICP PLL charge pump output  
Observation  
10  
11  
12  
External resistance connection for PLL  
charge pump  
REXT  
VDD_CP  
Power supply for charge pump  
For test purposes only;  
must be connected to  
GND  
13  
14  
15  
TEST1  
Test input 1  
CMOS output  
(IOUT=4mA)  
LOCK_DET  
TEST2  
Lock detector  
Test input 2  
For test purposes only;  
must be connected to  
GND  
16  
17  
REF_CLK  
VDD_PLL  
Reference clock input  
PLL digital power supply  
For test purposes only;  
must be connected to  
GND  
18  
19  
EXTVCO_INN  
EXTVCO_INP  
External VCO negative input  
External VCO positive input  
For test purposes only;  
must be connected to  
GND  
20  
21  
22  
VDD_BUFVCO VCO buffer power supply  
DBUS_SEL  
VDD_DBUS  
Digital Bus Interface select  
CMOS input  
SPI and I2C bus power supply  
Power down hardware  
23  
24  
EXT_PD  
CMOS input  
‘0’ device ON; ‘1’ device OFF  
CMOS Bidir Schmitt  
triggered (IOUT=4mA)  
SDA/DATA  
I2CBUS/SPI data line  
CMOS input Schmitt  
triggered  
25  
26  
SCL/CLK  
I2CBUS/SPI clock line  
ADD0/LOAD  
I2CBUS address select pin/ SPI load line  
CMOS input  
CMOS input; must be  
connected to GND in SPI  
mode  
27  
28  
ADD1  
ADD2  
I2CBUS address select pin  
I2CBUS address select pin  
CMOS input; must be  
connected to GND in SPI  
mode  
8/53  
STW81103  
Electrical specifications  
2
Electrical specifications  
2.1  
Absolute maximum ratings  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Values  
Unit  
AVCC  
DVCC  
Tstg  
Analog supply voltage  
Digital supply voltage  
Storage temperature  
0 to 4.6  
0 to 4.6  
+150  
V
V
°C  
Electrical static discharge  
- HBM(1)  
4
ESD  
- CDM-JEDEC standard  
- MM  
1.5  
0.2  
kV  
1. The maximum rating of the ESD protection circuitry on pin 4 and pin 5 is 800 V.  
2.2  
Operating conditions  
Table 3.  
Symbol  
Operating conditions (1)  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Units  
AVCC  
DVCC  
Analog supply voltage  
Digital supply voltage  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
VDD1 current  
consumption  
IVDD1  
IVDD2  
Tamb  
Tj  
90  
12  
mA  
mA  
°C  
VDD2 current  
consumption  
Operating ambient  
temperature  
-40  
85  
Maximum junction  
temperature  
125  
°C  
Junction to ambient  
package thermal  
resistance  
Rth j-a  
Rth j-b  
Rth j-c  
Multilayer JEDEC board  
Multilayer JEDEC board  
Multilayer JEDEC board  
44  
26.3  
6.3  
°C/W  
°C/W  
°C/W  
Junction to board  
package thermal  
resistance  
Junction to case  
package thermal  
resistance  
1. Refer to Figure 36: Typical application diagram.  
9/53  
Electrical specifications  
STW81103  
2.3  
Digital logic levels  
Table 4.  
Symbol  
Digital logic levels  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Units  
Vil  
Low-level input voltage  
High-level input voltage  
Schmitt trigger hysteresis  
Low-level output voltage  
High-level output voltage  
0.2*Vdd  
V
V
V
V
V
Vih  
0.8*Vdd  
0.8  
Vhyst  
Vol  
0.4  
Voh  
0.85*Vdd  
2.4  
Electrical specifications  
All electrical specifications are intended for a 3.3 V supply voltage.  
l
Table 5.  
Symbol  
Electrical specifications  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Output frequency range  
Direct output  
2500  
1250  
625  
3050  
1525  
762.5  
5000  
2500  
1250  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Output frequency range with  
VCOA  
FOUTA  
Divider by 2  
Divider by 4  
Direct output  
Divider by 2  
Divider by 4  
4350  
2175  
1087.5  
Output frequency range with  
VCOB  
FOUTB  
VCO dividers  
VCO divider ratio  
Prescaler 16/17  
Prescaler 19/20  
256  
361  
65551  
77836  
N
Reference clock and phase frequency detector  
Fref  
Reference input frequency  
Reference input sensitivity(1)  
Reference divider ratio  
PFD input frequency  
10  
0.35  
2
200  
1.5  
MHz  
1
Vpeak  
R
1023  
16  
FPFD  
MHz  
FOUT  
65551  
/
FOUT  
256  
/
Prescaler 16/17  
Prescaler 19/20  
Hz  
Hz  
FSTEP  
Frequency step(2)  
FOUT  
/
FOUT  
/
77836  
361  
10/53  
STW81103  
Electrical specifications  
Table 5.  
Symbol  
Electrical specifications (continued)  
Parameter Condition  
Min.  
Typ.  
Max.  
Unit  
Charge pump  
ICP  
ICP sink/source(3)  
3-bit programmable  
5
mA  
V
Output voltage compliance  
range  
VOCP  
0.4  
V
dd-0.3  
Direct output (FPFD=200 kHz)  
Divider by 2 (FPFD=400 kHz)  
Divider by 4 (FPFD=800 kHz)  
-76  
-82  
-88  
dBc  
dBc  
dBc  
Spurious(4)  
VCOs  
Lower frequency range  
Intermediate frequency range  
Higher frequency range  
Lower frequency range  
Intermediate frequency range  
Higher frequency range  
VCO A  
45  
60  
65  
80  
85  
105  
145  
85  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
MHz/V  
°C  
KVCOA  
VCOA sensitivity(5)  
VCOB sensitivity(5)  
85  
105  
65  
45  
KVCOB  
60  
80  
100  
130  
85  
100  
Maximum temperature  
variation for continuous  
lock(5) (6)  
125  
ΔTLK  
VCO B  
95  
°C  
VCOA pushing(5)  
4
7
21  
3
MHz/V  
MHz/V  
V
VCOB pushing(5)  
15  
VCTRL  
VCO control voltage(5)  
LO harmonic spurious(5)  
0.4  
-20  
dBc  
mA  
F
VCO=2.8 GHz; amplitude[11]  
30  
16  
24  
13  
15  
17  
14  
IVCOA  
VCOA current consumption  
VCOB current consumption  
FVCO=2.8 GHz; amplitude[00]  
mA  
F
F
VCO=4.7 GHz; amplitude[11]  
VCO=4.7 GHz; amplitude[00]  
mA  
IVCOB  
mA  
IVCOBUF VCO buffer consumption  
mA  
IDIV2  
IDIV4  
Divider by 2 consumption  
Divider by 4 consumption  
mA  
mA  
LO output buffer  
PLO  
RL  
Output level  
Return loss  
0
dBm  
dB  
Matched to 50 ohms  
DIV4 Buff  
15  
26  
23  
39  
mA  
mA  
mA  
IOUTBUF Current consumption  
DIV2 Buff  
Direct output  
11/53  
Electrical specifications  
STW81103  
Unit  
Table 5.  
Symbol  
Electrical specifications (continued)  
Parameter  
Condition  
Min.  
Typ.  
Max.  
External VCO  
Frequency range  
0.625  
-10  
5.0  
+6  
GHz  
dBm  
mA  
Input level  
Current consumption  
VCO internal buffer  
28  
PLL miscellaneous  
Input buffer, prescaler, digital  
dividers, misc.  
IPLL  
tlock  
Current consumption  
Lockup time(5) (7)  
12  
mA  
25 kHzPLLbandwidth;within  
1 ppm of frequency error  
150  
μs  
1. In order to achieve best phase noise performance 1 V peak level is suggested.  
2. The frequency step is related to the PFD input frequency as follows:  
- F  
- F  
- F  
= F  
= F  
= F  
for direct output  
/2 for divided by 2 output  
/4 for divided by 4 output  
step  
step  
step  
PFD  
PFD  
PFD  
3. See relationship between ICP and REXT in Section 5.7: Charge pump.  
4. The level of the spurs may change depending on PFD frequency, charge pump current, selected channel and PLL loop  
BW.  
5. Guaranteed by design and specification.  
6. When setting a specified output frequency, the VCO calibration procedure must be run in order to select the best sub-range  
for the VCO covering the desired frequency. Once programmed at the initial temperature T inside the operating  
0
temperature range (-40 ° C to +85 ° C), the synthesizer is able to maintain the lock status only if the temperature drift (in  
either direction) is within the limit specified by ΔT , provided that the final temperature T is still inside the nominal range.  
LK  
1
If higher ΔT are required the ”VCO calibration auto-restart“ feature can be enabled, thus allowing to re-start the VCO  
calibration procedure automatically when the part loose the lock condition (trigger on lock detector signal).  
7. Frequency jump from 2250 to 2400 MHz; it includes the time required by the VCO calibration procedure (7 F  
cycles with  
PFD  
F
=400 kHz).  
PFD  
12/53  
STW81103  
Electrical specifications  
2.5  
Phase noise specification  
Table 6.  
Phase noise specification (1)  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
In-band phase noise floor – closed loop(2)  
Normalized inband phase noise  
floor  
-222  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Inband phase noise floor  
direct output  
-222+20log(N)+10log(FPFD  
-228+20log(N)+10log(FPFD  
-234+20log(N)+10log(FPFD  
)
)
)
ICP=4 mA, PLL BW=50 kHz;  
including reference clock contribution  
Inband phase noise floor  
divider by 2  
Inband phase noise floor  
divider by 4  
PLL integrated phase noise – direct output  
-34.6  
1.5  
dBc  
F
OUT=4.675 GHz,  
Integrated phase noise  
100 Hz to 40 MHz  
FPFD=200 kHz, FSTEP=200 kHz,  
PLL BW = 15 kHz, ICP=3 mA  
° rms  
PLL integrated phase noise – divider by 2  
F
OUT=2.3376 GHz,  
-42.6  
0.6  
dBc  
Integrated phase noise  
100 Hz to 40 MHz  
FPFD=400 kHz, FSTEP=200 kHz,  
PLL BW=25 kHz, ICP=2 mA  
° rms  
PLL integrated phase noise – divider by 4  
FOUT=1.1688 GHz,  
FPFD=800 kHz, FSTEP=200 kHz,  
PLL BW=35 kHz, ICP=1.5 mA  
-49.5  
0.27  
dBc  
Integrated phase noise  
100 Hz to 40 MHz  
° rms  
VCO A direct (2500 MHz-3050 MHz) – open loop(3)  
Phase noise @ 1 kHz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise @ 40 MHz  
-59  
-87  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-109  
-131  
-151  
-161  
VCO B direct (4350 MHz-5000 MHz) – open loop(3)  
Phase noise @ 1 kHz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise @ 40 MHz  
-54  
-82  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-105  
-127  
-147  
-157  
13/53  
Electrical specifications  
STW81103  
Table 6.  
Phase noise specification (1) (continued)  
Parameter Test conditions  
Min.  
Typ.  
Max.  
Unit  
VCO A with divider by 2 (1250 MHz-1525 MHz) – open loop(3)  
Phase noise @ 1 kHz  
-65  
-93  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
-115  
-137  
-153  
-155  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise floor @ 40 MHz  
VCO B with divider by 2 (2175 MHz-2500 MHz) – open loop(3)  
Phase noise @ 1 kHz  
-60  
-88  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
-111  
-132  
-150  
-154  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise floor @ 40 MHz  
VCO A with divider by 4 (625 MHz-762.5 MHz) – open loop(3)  
Phase noise @ 1 kHz  
-71  
-99  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
-121  
-142  
-154  
-155  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise floor @ 40 MHz  
VCO B with divider by 4 (1087.5 MHz-1250 MHz) – open loop(3)  
Phase noise @ 1 kHz  
-66  
-94  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase noise @ 10 kHz  
Phase noise @ 100 kHz  
-117  
-138  
-153  
-154  
Phase noise @ 1 MHz  
Phase noise @ 10 MHz  
Phase noise floor @ 40 MHz  
1. Phase Noise SSB. VCO amplitude setting to value [11]. All closed-loop performances are specified using a reference clock  
signal at 76.8 MHz with a phase noise of -135 dBc/Hz @1 kHz offset, -145dBc/Hz @10kHz offset and -149.5 dBc/Hz of  
noise floor.  
2. Normalized PN = Measured PN – 20log(N) – 10log(F  
comparison frequency at the PFD input.  
), where N is the VCO divider ratio (N=B*P+A) and F  
is the  
PFD  
PFD  
3. Typical phase noise at centre band frequency.  
An evaluation kit is available upon request, including a powerful simulation tool  
(STWPLLSim) that allows a very accurate estimation of the device’s phase noise according  
to the desired project parameters (VCO frequency, selected output stage, reference clock,  
frequency step, and so on); refer to Section 8: Application information for more details.  
14/53  
STW81103  
Typical performance characteristics  
3
Typical performance characteristics  
Phase noise is measured with the Agilent E5052A Signal Source Analyzer. All closed-loop  
measurements are done with FSTEP=200 kHz, with the FPFD and charge pump current  
properly set. The loop filter configuration is depicted in Figure 36: Typical application  
diagram, and the reference clock signal is at 76.8 MHz with a phase noise of -135 dBc/Hz  
@1 kHz offset, -145 dBc/Hz @10 kHz offset and -149.5 dBc/Hz of noise floor.  
Figure 3.  
VCO A (direct output) open loop  
phase noise  
Figure 4.  
VCO B (direct output) open loop  
phase noise  
Figure 5.  
VCO A (direct output) closed loop Figure 6.  
phase noise at 2.775 GHz  
VCO B (direct output) closed loop  
phase noise at 4.675 GHz  
(FSTEP=200 kHz; FPFD=200 kHz;  
(FSTEP=200 kHz; FPFD=200 kHz;  
ICP=2 mA)  
ICP=3 mA)  
1.5° rms  
1.0° rms  
15/53  
Typical performance characteristics  
STW81103  
Figure 7.  
VCO A (div. by 2 output) closed  
loop phase noise at 1.3876 GHz  
(FSTEP=200 kHz; FPFD=400 kHz;  
Figure 8.  
VCO B (div. by 2 output) closed  
loop phase noise at 2.3376 GHz  
(FSTEP=200 kHz; FPFD=400 kHz;  
ICP=1.5 mA)  
ICP=2 mA)  
0.6° rms  
0.4° rms  
Figure 9.  
VCO A (div. by 4 output) closed  
loop phase noise at 693.8 MHz  
(FSTEP=200 kHz; FPFD=800 kHz;  
Figure 10. VCO B (div. by 4 output) closed  
loop phase noise at 1168.8 MHz  
(FSTEP=200 kHz; FPFD=800 kHz;  
ICP=1 mA)  
ICP=1.5 mA)  
0.19° rms  
0.27° rms  
16/53  
STW81103  
Typical performance characteristics  
Figure 11. PFD frequency spurs (direct  
output; FPFD=200 kHz)  
Figure 12. PFD frequency spurs (div. by 2  
output; FPFD=400 kHz)  
-84 dBc  
@400KHz  
-76 dBc  
@200KHz  
Figure 13. PFD frequency spurs (div. by 4  
output; FPFD=800 kHz)  
Figure 14. Settling time (final frequency=2.4  
GHz; FPFD=400 kHz; ICP=2.5 mA)  
< -90 dBc  
@800KHz  
17/53  
General description  
STW81103  
4
General description  
Figure 1: Block diagram shows the separate blocks that, when integrated, form an Integer-N  
PLL frequency synthesizer.  
The STW81103 consists of two internal low-noise VCOs with buffer blocks, a divider by 2, a  
divider by 4, a low-noise PFD (phase frequency detector), a precise charge pump, a 10-bit  
programmable reference divider, two programmable counters and a programmable dual-  
modulus prescaler. The 5-bit A-counter and 12-bit B-counter, in conjunction with the dual-  
modulus prescaler P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P  
+A. The division ratio of both reference and VCO dividers is controlled through the selected  
digital interface (I2C bus or SPI).  
The digital interface type is selected through the proper hardware connection of pin  
DBUS_SEL (0 V for I2C bus, 3.3 V for SPI).  
All devices operate with a power supply of 3.3 V, and can be powered down when not in use.  
18/53  
STW81103  
Circuit description  
5
Circuit description  
5.1  
Reference input stage  
The reference input stage is shown in Figure 15. The resistor network feeds a DC bias at the  
ref input, while the inverter used as the frequency reference buffer is AC coupled.  
F
Figure 15. Reference frequency input buffer  
VDD  
F
ref  
INV  
BUF  
Power Down  
5.2  
5.3  
Reference divider  
The 10-bit programmable reference counter allows division of the input reference frequency  
to produce the input clock to the PFD. The division ratio is programmed through the digital  
interface.  
Prescaler  
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it  
down to a manageable frequency for the CMOS A and B counters. The modulus P is  
programmable and can be set to 16 or 19. The prescaler is based on a synchronous 4/5  
core whose division ratio depends on the state of the modulus input.  
19/53  
Circuit description  
STW81103  
5.4  
A and B counters  
The 5-bit A-counter and 12-bit B-counter, in conjunction with the selected dual modulus  
(16/17 or 19/20) prescaler, allow the generation of output frequencies that are spaced only  
by the reference frequency divided by the reference division ratio. The division ratio and the  
VCO output frequency are given by the following formulas:  
N = B x P + A  
(B × P + A)  
-----------------------------  
× F  
F
=
VCO  
ref  
R
where  
F
VCO: output frequency of VCO  
P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface)  
B: division ratio of the main counter  
A: division ratio of the swallow counter  
Fref: input reference frequency  
R: division ratio of the reference counter  
N: division ratio of the PLL  
For the VCO divider to work correctly, B absolutely must be greater than A, which can take  
any value ranging from 0 to 31. The value range of N is either from 256 to 65551 (if P=16) or  
from 361 to 77836 (P=19).  
Figure 16. VCO divider diagram  
VCOBUF-  
Prescaler  
16/17 or 19/20  
VCOBUF+  
To PFD  
modulus  
5-bit  
12-bit  
A-counter  
B-counter  
20/53  
STW81103  
Circuit description  
5.5  
Phase frequency detector (PFD)  
The PFD takes inputs from the reference and the VCO dividers and produces an output  
proportional to the phase error. The PFD includes a delay gate that controls the width of the  
anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer  
function.  
Figure 17 is a simplified schematic of the PFD.  
Figure 17. PFD diagram  
VDD  
Up  
D FF  
R
F
ref  
Delay  
R
F
ref  
VDD  
D FF  
Down  
ABL  
5.6  
5.7  
Lock detect  
This signal indicates that the difference between rising edges of both UP and DOWN PFD  
signals is found to be shorter than the fixed delay (roughly 5 ns). The Lock Detect signal is  
high when the PLL is locked and low when the PLL is unlocked. Lock Detect consumes  
current only during PLL transients.  
Charge pump  
This block drives two matched current sources, IUP and IDOWN, which are controlled  
respectively by UP and DOWN PFD outputs. The nominal value of the output current is  
controlled by an external resistor (connected to the REXT input pin) and a 3-bit word that  
allows selection among 8 different values.  
The minimum value of the output current is: IMIN = 2*VBG/REXT (VBG~1.17 V)  
21/53  
Circuit description  
Table 7.  
STW81103  
Current value vs. selection  
CPSEL2  
CPSEL1  
CPSEL0  
Current  
Value for REXT=4.7 KΩ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IMIN  
0.5 mA  
1.0 mA  
1.5 mA  
2.0 mA  
2.5 mA  
3.0 mA  
3.5 mA  
4.0 mA  
2*IMIN  
3*IMIN  
4*IMIN  
5*IMIN  
6*IMIN  
7*IMIN  
8*IMIN  
Note:  
The current is output on pin ICP. During VCO auto-calibration, the ICP and VCTRL pins are  
forced to VDD/2.  
Figure 18. Loop filter connection  
VDD  
VCTRL  
BUF  
C3  
R3  
Charge  
Pump  
ICP  
R1  
C1  
C2  
BUF  
Cal bit  
22/53  
STW81103  
Circuit description  
5.8  
Voltage controlled oscillators  
5.8.1  
VCO selection  
The STW81103 integrates two low-noise VCOs to cover a wide band from:  
2500 MHz to 3050 MHz and from 4350 MHz to 5000 MHz (direct output)  
1250 MHz to 1525 MHz and from 2175 MHz to 2500 MHz (selecting divider by 2)  
625 MHz to 762.5 MHz and from 1087.5 MHz to 1250 MHz (selecting divider by 4)  
The frequency range is 2500 MHz-3050 MHz for VCO A, and 4350 MHz-5000 MHz for VCO  
B.  
5.8.2  
VCO frequency calibration  
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting  
capacitors from the resonator. These frequency ranges are intended to cover the wide band  
of operation and compensate for process variation on the VCO center frequency.  
The range is automatically selected when the SERCAL bit is set to 1. The charge pump is  
inhibited, and the ICP and VCTRL pins are at VDD/2 volts. The ranges are then tested with  
this VCO input voltage to select the one nearest to the desired output frequency  
(FOUT = N*Fref/R).  
After this selection, the SERCAL bit is automatically reset to 0 and the charge pump is once  
again enabled. To enable a fast settle, the PLL needs only to perform fine adjustments  
around VDD/2 on the loop filter to reach FOUT  
.
Figure 19. VCO sub-bands frequency characteristics  
23/53  
Circuit description  
STW81103  
The SERCAL bit should be set to “1” at each division ratio change. The VCO calibration  
procedure takes approximately 7 periods of the PFD frequency.  
The maximum allowed FPFD to perform the calibration process is 1 MHz. When using a  
higher FPFD, follow the steps below:  
1. Calibrate the VCO at the desired frequency with an FPFD less than 1 MHz.  
2. Set the ratio of the A, B and R dividers for the desired FPFD  
.
VCO calibration auto-restart feature  
The VCO calibration auto-restart feature, once activated, allows to restart the calibration  
procedure when the lock detector reports that the PLL has moved to an unlock condition  
(trigger on ‘1’ to ‘0’ transition of lock detector signal).  
This situation could happen if the device experiences a significant temperature variation.  
Once programmed at the initial temperature T0 inside the operating temperature range  
(-40 °C to +85 °C), the synthesizer is able to maintain the lock status only if the temperature  
drift (in either direction) is within the limit specified by the ΔTLK parameter, provided that the  
final temperature T1 is still inside the nominal range.  
Each VCO featured by STW81103 has its specific ΔTLK parameter reported in Table 5, that  
is typically lower than the maximum allowable drift (ΔTMAX=125; from -40 °C to +85 °C and  
vice versa).  
By enabling the VCO calibration auto-restart feature (through the CAL_AUTOSTART_EN  
bit), the part will be able to select again the proper VCO frequency sub-range if the  
temperature drift exceeds the ΔTLK limit, without any external user command.  
5.8.3  
VCO voltage amplitude control  
The voltage swing of the VCOs can be adjusted over four levels by means of two dedicated  
programming bits (PLL_A1 and PLL_A0). Higher amplitudes provide best phase noise,  
whereas lower amplitudes save power.  
Table 8 gives the voltage swing level expected on the resonator nodes, the current  
consumption, and the phase noise at 1 MHz.  
Table 8.  
VCO A performances versus amplitude setting (Freq = 2.8 GHz)  
Differential  
voltage swing (Vp)  
Current  
consumption (mA)  
PLL_A[1:0]  
PN @1 MHz (dBc/Hz)  
00  
01  
10  
11  
1.1  
1.3  
1.9  
2.1  
16  
19  
27  
30  
-126  
-127  
-130  
-131  
24/53  
STW81103  
Circuit description  
Table 9.  
VCO B performances vs. amplitude setting (Freq = 4.7 GHz)  
Differential  
voltage swing (Vp)  
Current  
consumption (mA)  
PN at 1 MHz  
(dBc/Hz)  
PLL_A[1:0]  
00  
01  
10  
11  
1.1  
1.3  
1.9  
2.1  
13  
15  
22  
24  
-121  
-122  
-126  
-127  
5.9  
Output stage  
The differential output signal of the synthesizer can be selected by software among three  
different signal paths (direct, divider by 2 and divider by 4) providing multi-band capability.  
The selection of the output stage is done by programming properly the PD[4:0] bits.  
The output stage is an open-collector structure which is able to meet different requirements  
over the desired output frequency range by proper connections on the PCB. Refer to  
Section 8: Application information for more details on PCB connections.  
5.9.1  
Output buffer control mode  
This control mode allows to enable/disable the output stage by a hardware control pin  
(EXT_PD, pin#23) while the PLL stays locked at the desired frequency; in such a way a very  
fast switching time is achieved.  
This feature can be useful in designing a ping-pong architecture saving the cost of an  
external RF switch.  
The function of pin#23 (EXT_PD) is set with the OUTBUF_CTRL_EN bit as shown in  
Table 10.  
Table 10. EXT_PD pin function setting  
OUTBUF_CTRL_EN  
Function of the EXT_PD pin  
EXT_PD pin settings  
EXT_PD = 0 V Î Device ON  
0
Device hardware power down  
EXT_PD = 3.3 V Î Device OFF  
EXT_PD = 0 V Î Output Stage ON  
EXT_PD = 3.3 V Î Output Stage OFF  
1
Output Buffer control  
25/53  
Circuit description  
STW81103  
5.10  
External VCO buffer  
Although the main benefits of the STW81103 are the two wideband and low-noise VCOs,  
the capability to use an external VCO is also provided.  
The external VCO buffer is able to manage a signal coming from an external VCO in order to  
build a synthesizer using the STW81103 only as PLL IC. The output signal of the  
synthesizer can also be taken from the output section of the STW81103 (direct, divided by 2  
or divided by 4 by) by properly setting the PD[4:0] bits, thus providing additional flexibility.  
The external VCO signal can range from 625 MHz up to 5 GHz and its minimum power level  
must be -10 dBm.  
26/53  
STW81103  
I2C bus interface  
6
I2C bus interface  
The I2C bus interface is selected by hardware connection of pin #21 (DBUS_SEL) to 0 V.  
Data is transmitted from microprocessor to the STW81103 through the 2-wire (SDA and  
SCL) I2C bus interface. The STW81103 is always a slave device.  
The I2C bus protocol defines any device that sends data on the bus as a transmitter, and  
any device that reads the data as a receiver. The device controlling the data transfer is the  
master, and the others are slaves. The master always initiates the transfer and provides the  
serial clock for synchronization.  
The STW81103 I2C bus supports Fast Mode operation (clock frequency up to 1MHz).  
6.1  
General features  
6.1.1  
Data validity  
Data changes on the SDA line must only occur when the SCL is low. SDA transitions while  
the clock is high are used to identify a START or STOP condition.  
Figure 20. Data validity  
SDA  
SCL  
Data line  
Stable data  
Valid  
Change  
data  
allowed  
6.1.2  
START and STOP conditions  
START condition  
A START condition is identified by a transition of the data bus SDA from high to low while the  
clock signal SCL is stable in the high state. A START condition must precede any data  
transfer command.  
STOP condition  
A STOP condition is identified by a transition of the data bus SDA from low to high while the  
clock signal SCL is stable in the high state. A STOP condition terminates communications  
between the STW81103 and the bus master.  
27/53  
I2C bus interface  
Figure 21. START and STOP conditions  
STW81103  
SCL  
SDA  
START  
STOP  
6.1.3  
Byte format and acknowledge  
Every byte put on the SDA line must be 8 bits long, starting with the most significant bit  
(MSB), and be followed by an acknowledge bit to indicate a successful data transfer.  
The transmitter releases the SDA line after sending 8 bits of data. During the 9th clock  
pulse, the receiver pulls the SDA line low to acknowledge the receipt of 8 bits of data.  
Figure 22. Byte format and acknowledge  
SCL  
SDA  
1
2
3
7
8
9
//  
//  
MSB  
Acknowledgement  
from receiver  
START  
6.1.4  
Device addressing  
The master must first initiate with a START condition to communicate with the STW81103,  
and then send 8 bits (MSB first) on the SDA line which correspond to the device select  
address and the read or write mode.  
The first seven MSBs are the device address identifier, which corresponds to the I2C bus  
definition. For the STW81103, the address is set at “1100A2A1A0”, 3 bits programmable.  
The 8th bit (LSB) is the read or write (RW) operation bit, which is set to 1 in read mode and  
to 0 in write mode.  
Following a START condition, the STW81103 identifies the device address on the bus and, if  
matched, acknowledges the identification on the SDA bus during the 9th clock pulse.  
28/53  
STW81103  
I2C bus interface  
6.1.5  
Single-byte write mode  
Following a START condition, the master sends a device select code with the RW bit set to  
0. The STW81103 sends an acknowledge and waits for the 1-byte internal sub-address that  
provides access to the internal registers.  
After receiving the sub-address internal byte, the STW81103 again responds with an  
acknowledge. A single-byte write to sub-address 00H changes the FUNCTIONAL_MODE  
register, a single-byte write with sub-address 04H changes the CONTROL register, and so  
on.  
Table 11. Single-byte write mode  
S
1100A2A1A0  
0
ack  
sub-address byte  
ack  
DATA IN  
ack  
P
6.1.6  
Multi-byte write mode  
The multi-byte write mode can start from any internal address. The master sends the data  
bytes, and each one is acknowledged. The master terminates the transfer by generating a  
STOP condition.  
The sub-address decides the starting byte. For example, a multi-byte with sub-address 01H  
and 2 DATA_IN bytes changes the B_COUNTER and A_COUNTER registers (01H,02H),  
and a multi-byte with sub-address 00H and 6 DATA_IN bytes changes all the STW81103  
registers.  
Table 12. Multi-byte write mode  
S
1100A2A1A0  
0
ack sub-address byte ack DATA IN ack ……. DATA IN ack  
P
6.1.7  
Current byte address read mode  
In the current byte address read mode, following a START condition, the master sends the  
device address with the RW bit set to 1. Note that no sub-address is needed since there is  
only one read register. The STW81103 acknowledges this and outputs the data byte. The  
master does not acknowledge the received byte, and terminates the transfer with a STOP  
condition.  
Table 13. Current byte address read mode  
S
1100A2A1A0  
1
ack  
DATA OUT  
No ack  
P
29/53  
I2C bus interface  
STW81103  
6.2  
Timing specification  
Figure 23. Data and clock  
SDA  
SCL  
t
cwl  
ch  
t
t
t
cs  
cwh  
Table 14. Data and clock timing specifications  
Symbol  
Parameter  
Data to clock setup time  
Minimum time  
Units  
tcs  
tch  
tcwh  
tcwl  
2
2
ns  
ns  
ns  
ns  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
10  
5
Figure 24. Start and stop  
SDA  
SCL  
t
t
start  
stop  
30/53  
STW81103  
I2C bus interface  
Table 15. Start and stop timing specifications  
Symbol  
Parameter  
Clock to data start time  
Minimum time  
Units  
tstart  
tstop  
2
2
ns  
ns  
Data to clock down stop time  
Figure 25. Ack  
SDA  
8
9
SCL  
t
t
d2  
d1  
Table 16. Ack timing specifications  
Symbol  
Parameter  
Minimum time  
Units  
td1  
td2  
Ack begin delay  
Ack end delay  
2
2
ns  
ns  
31/53  
I2C bus interface  
2
STW81103  
6.3  
I C registers  
The STW81103 has 6 write-only registers and 1 read-only register.  
6.3.1  
Write-only registers  
Table 17 gives a short description of the write-only registers.  
Table 17. Write-only registers  
HEX code  
DEC code  
Description  
FUNCTIONAL_MODE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0
1
2
3
4
5
B_COUNTER  
A_COUNTER  
REF_DIVIDER  
CONTROL  
CALIBRATION  
FUNCTIONAL_MODE  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
PD0  
b0  
OUTBUF_CTRL_EN CAL_AUTOSTART_EN PD4  
PD3  
PD2  
PD1  
B11  
OUTBUF_CTRL_EN:  
Output buffer control mode enable (0 = Off; 1 = ON)  
CAL_AUTOSTART_EN: VCO calibration auto-restart enable (0 = Off; 1 = ON)  
The bits PD[4:0] allow to select different functional modes for the STW81103 synthesizer  
according to the Table 18.  
Table 18. Functional modes  
Decimal value PD[6:0] Description  
0
1
2
3
4
5
6
7
8
9
Power down mode  
Enable VCO A, output frequency divided by 2  
Enable VCO B, output frequency divided by 2  
Enable external VCO, output frequency divided by 2  
Enable VCO A, output frequency divided by 4  
Enable VCO B, output frequency divided by 4  
Enable external VCO, output frequency divided by 4  
Enable VCO A, direct output  
Enable VCO B, direct output  
Enable external VCO, direct output  
32/53  
STW81103  
I2C bus interface  
B_COUNTER  
MSB  
LSB  
b7  
b6  
b5  
b4  
B7  
b3  
B6  
b2  
B5  
b1  
b0  
B3  
B10  
B9  
B8  
B4  
B[10:3]. B counter value (bit B11 in the previous register, bits B[2:0] in the next register)  
A_COUNTER  
MSB  
LSB  
b7  
B2  
b6  
b5  
b4  
A4  
b3  
A3  
b2  
A2  
b1  
b0  
A0  
B1  
B0  
A1  
Bits B[2:0] for B_COUNTER, A_COUNTER values.  
REF_DIVIDER  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
Reference clock divider ratio R[9:1] (bits R1, R0 in the next register).  
CONTROL  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
R1  
R0  
PLL_A1  
PLL_A0  
CPSEL2  
CPSEL1  
CPSEL0 PSC_SEL  
The CONTROL register is used to set the charge pump current, the VCO output voltage  
amplitude and the prescaler modulus:  
PLL_A[1:0]: VCO amplitude  
CPSEL[2:0]: charge pump output current  
PSC_SEL:  
prescaler modulus select ('0' for P=16, '1' for P=19)  
The LO output frequency is programmed by setting the proper values for A, B and R  
according to the following formula:  
F
REF CLK  
----------------------------------  
F
= D × (B × P + A) ×  
OUT  
R
R
1
for direct output  
where DR equals  
0.5 for output divided by 2  
0.25 for output divided by 4  
{
and P is the selected prescaler modulus.  
33/53  
I2C bus interface  
CALIBRATION  
STW81103  
LSB  
MSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
INITCAL SERCAL SELEXTCAL  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
This register controls the VCO calibrator using the following values:  
INITCAL:  
SERCAL:  
for test purposes only, must be set to 0  
at 1 starts the VCO auto-calibration (automatically reset to 0 at the end of calibration)  
SELEXTCAL: for test purposes only; must be set to 0  
CAL[4:0]: for test purposes only; must be set to 0  
6.3.2  
Read-only register  
MSB  
LSB  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
DEV_ID1 DEV_ID0 LOCK_DET INTCAL4 INTCAL3 INTCAL2 INTCAL1 INTCAL0  
This register is automatically addressed in the ‘current byte address read mode’, using the  
following values:  
DEV_ID[1:0]: device identifier bits; returns ‘10’  
LOCK_DET: 1 when PLL is locked  
INTCAL[4:0]: internal value of the VCO control word  
6.3.3  
Default configuration  
At power on, all the bits are set to '0'. Consequently the part starts in power down mode.  
34/53  
STW81103  
I2C bus interface  
6.4  
VCO calibration procedure  
Calibration of the VCO center frequency is activated when the SERCAL bit (CALIBRATION  
register bit[6]) is set to 1.  
To program the device properly while ensuring VCO calibration, perform the following steps  
before every channel change:  
1. Program all the registers using a multi-byte write sequence with the desired settings  
(functional mode, B and A counters, R counter, VCO amplitude, charge pump,  
prescaler modulus), and all the bits of the CALIBRATION register (05H) set to 0.  
2. Program the CALIBRATION register using a single-byte write sequence (subaddress  
05H) with the SERCAL bit set to 1.  
The maximum allowed PFD frequency (FPFD) during calibration is 1 MHz; if you want a FPFD  
higher than 1 MHz, perform the following additional steps:  
Perform all the steps of the calibration procedure, making sure to program the desired  
VCO frequency with proper settings for the R, B and A counters so that FPFD is 1 MHz.  
Program the device with the desired VCO and PFD frequency settings according to  
step 1) above.  
6.4.1  
VCO calibration auto-restart feature  
The VCO calibration auto-restart feature can be enabled in two steps:  
1. set the desired frequency ensuring VCO calibration as described above (section 6.4)  
2. program the FUNCTIONAL_MODE register (sub-address 00H) using a single-byte  
write sequence with the CAL_AUTOSTART_EN bit set to '1' while keeping unchanged  
the others.  
35/53  
SPI digital interface  
STW81103  
7
SPI digital interface  
7.1  
General features  
The SPI digital interface is selected by hardware connection of pin #21 (DBUS_SEL) to  
3.3 V.  
The STW81103 IC is programmed by means of a high-speed serial-to-parallel interface with  
write option only. The 3-wire bus can be clocked at a frequency as high as 100 MHz to allow  
fast programming of the registers containing the data for RF IC configuration.  
The chip is programmed through serial words with a full length of 26 bits. The first 2 MSBs  
represent the address of the registers, and the 24 LSBs represent the value of the registers.  
Each data bit is stored in the internal shift register on the rising edge of the CLOCK signal.  
The outputs of the selected register are sent to the device on the rising edge of the LOAD  
signal.  
Figure 26. SPI input and output bit order  
Last bit sent  
(LSB)0  
2
23  
25(MSB)  
24  
1
DATA  
A1  
LOAD  
Address  
decoder  
D23 (MSB)  
LOAD #4  
D0 (LSB)  
Reg.#0  
Reg.#1  
Reg.#4  
36/53  
STW81103  
SPI digital interface  
LSB  
Table 19. SPI data structure (MSB is sent first)  
MSB  
Address  
Data for register (24 bits)  
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Table 20. Address decoder and outputs  
Address  
Outputs  
Function  
A1  
A0  
DATABITS D23-D0 No  
Name  
Reference divider, VCO amplitude, VCO calibration,  
charge pump current, prescaler modulus  
0
0
24  
0
ST1  
0
1
1
1
0
1
24  
24  
24  
1
2
3
ST2  
ST3  
ST4  
Functional modes, VCO dividers  
Reserved  
Reserved  
7.2  
Timing specification  
Figure 27. SPI timing specification  
tsetup thold  
MSB  
MSB-1  
LSB  
Data  
t
clk_loadf  
Clock  
tdk  
Load  
t
clk_loadr  
tload  
Table 21. SPI timing specification  
Symbol Parameter  
tsetup DATA to CLOCK setup time  
Min.  
Typ.  
Max.  
Units  
0.8  
0.2  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
thold  
DATA to CLOCK hold time  
CLOCK cycle period  
tclk  
tload  
LOAD pulse width  
tclk_loadr  
tclk_loadf  
CLOCK to LOAD rising edge  
CLOCK to LOAD falling edge  
2
0.5  
37/53  
SPI digital interface  
STW81103  
7.3  
Bit tables  
Table 22. Bits at 00h and ST1  
Serial interface address = 00h  
Register name = ST1  
Description  
Bit  
Name  
[23]  
[22]  
[21]  
[20]  
[19]  
[18]  
[17]  
[16]  
[15]  
[14]  
[13]  
[12]  
[11]  
[10]  
[9]  
R9  
R8  
R7  
R6  
R5  
Reference clock divider ratio  
R4  
R3  
R2  
R1  
R0  
PLL_A1  
PLL_A0  
CPSEL2  
CPSEL1  
CPSEL0  
PSC_SEL  
INITCAL  
SERCAL  
SELEXTCAL  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
VCO amplitude control  
Charge pump output current control  
[8]  
Prescaler modulus select (0 for P=16, 1 for P=19)  
For test purposes only; must be set to 0  
Enable VCO calibration (see Section 7.4)  
For test purposes only; must be set to ‘0’  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
For test purposes only; must be set to ‘0’  
[1]  
[0]  
38/53  
STW81103  
SPI digital interface  
Table 23. Bits at 01h and ST2  
Serial interface address = 01h  
Register name = ST2  
Bit  
[23]  
[22]  
[21]  
[20]  
[19]  
[18]  
Name  
Description  
OUTBUF_CTRL_EN  
Output buffer control mode enable (0 = Off, 1 = On)  
VCO calibration auto restart enable (0 = Off, 1 = On)  
CAL_AUTOSTART_EN  
Device functional modes:  
PD4  
PD3  
PD2  
PD1  
0. Power down  
1. Enable VCO A, output frequency divided by 2  
2. Enable VCO B, output frequency divided by 2  
3. Enable external VCO, output frequency divided by 2  
4. Enable VCO A, output frequency divided by 4  
5. Enable VCO B, output frequency divided by 4  
6. Enable external VCO, output frequency divided by 4  
7. Enable VCO A, direct output  
[17]  
PD0  
8. Enable VCO B, direct output  
9. Enable external VCO, direct output  
[16]  
[15]  
[14]  
[13]  
[12]  
[11]  
[10]  
[9]  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A4  
A3  
A2  
A1  
A0  
B_COUNTER bits  
[8]  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
A_COUNTER bits  
[1]  
[0]  
39/53  
SPI digital interface  
STW81103  
The LO output frequency is programmed by setting the proper value for A, B and R  
according to the following formula:  
F
REF CLK  
----------------------------------  
= D × (B × P + A) ×  
F
OUT  
R
R
1
for direct output  
where D equals  
0.5 for output divided by 2  
0.25 for output divided by 4  
R
{
and P is the selected prescaler modulus.  
7.3.1  
Default configuration  
At power on, all the bits are set to '0'. Consequently the part starts in power down mode.  
7.4  
VCO calibration procedure  
Calibration of the VCO center frequency is activated when the SERCAL bit (ST1 register  
bit[6]) is set to 1.  
To program the device properly while ensuring VCO calibration, perform the following steps  
before every channel change:  
1. Program the ST2 register with the desired settings (functional mode, B and A  
counters).  
2. Program the ST1 register with the desired settings (R counter, VCO amplitude, charge  
pump, prescaler modulus) and with the SERCAL bit set to 1.  
The maximum allowed PFD frequency (FPFD) during calibration is 1 MHz; if you want a FPFD  
higher than 1 MHz, perform the following additional steps:  
Perform all the steps (step 1 and 2 above) of the calibration procedure, making sure to  
program the desired VCO frequency with proper settings of the R, B and A counters so  
that FPFD is 1 MHz.  
Program the device with the desired VCO and PFD frequency settings as per steps 1  
and 2 above with SERCAL bit set to 0.  
7.4.1  
VCO calibration auto-restart feature  
The VCO calibration auto-restart feature can be enabled in two steps:  
1. Set the desired frequency ensuring VCO calibration as described above (Section 7.4)  
2. Program the ST2 register with the CAL_AUTOSTART_EN bit set to '1' while keeping  
unchanged the others.  
40/53  
STW81103  
Application information  
8
Application information  
The STW81103 features three different alternately selectable bands: direct output (2.5 to  
3.05 GHz and 4.35 to 5.0 GHz), divided by 2 (1.25 to 1.525 GHz and 2.175 to 2.5 GHz) and  
divided by 4 (625 to 762.5 MHz and 1087.5 to 1250 MHz). To achieve a suitable power level,  
a good matching network is necessary to adapt the output stage to a 50Ω load. Moreover,  
since most commercial RF components have single-ended input and output terminations, a  
differential to single-ended conversion may be required.  
The different matching configurations shown below for each of the three bands are  
suggested as a guideline when designing your own application board.  
Inside the evaluation kit is the ADS design for each matching configuration suggested in this  
chapter. The name of the corresponding ADS design is given in each figure.  
The ADS designs provide only a first indication of the output stage matching, and should be  
reworked according to the choices of layout, board substrate, components and so on.  
The ADS designs of the evaluation boards are provided with a complete electromagnetic  
modelling (board, components, and so on).  
8.1  
Direct output  
If you do not need a differential to single conversion, you can match the output buffer of the  
STW81103 in the simple way shown in Figure 28. This illustrates the differential to single-  
ended output network in the 2.5 - 5.0 GHz range (MATCH_LC_LUMP_4G_DIFF.dsn).  
Figure 28. Differential/single-ended output network  
(MATCH_LC_LUMP_4G_DIFF.dsn)  
Vcc  
100 ohm  
5.5nH  
50 ohm  
10pF  
10pF  
RF  
OUTP  
RF  
OUTN  
50 ohm  
100 ohm  
5.5nH  
Vcc  
Since most discrete components for microwave applications are single-ended, you can  
easily use one of the two outputs and terminate the other one to 50Ωwith a 3 dB power loss.  
41/53  
Application information  
STW81103  
Alternatively, you can combine the two outputs in other ways. A first topology for the direct  
output (2.5 to 5.0 GHz) is suggested in Figure 29. It basically consists of a simple LC balun  
and a matching network to adapt the output to a 50Ωload. The two LC networks shift output  
signal phase of -90° and +90°, thus combining the two outputs. This topology, designed for a  
center frequency of 4 GHz, is intrinsically narrow-band since the LC balun is tuned at a  
single frequency. If the application requires a different sub-band, the LC combiner can be  
easily tuned to the frequency of interest.  
Figure 29. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn)  
Vcc  
0.8pF  
50 ohm  
1.9nH  
1.9nH  
RF  
OUTP  
0.8pF  
1.9nH  
2.5pF  
50 ohm  
RF  
OUTN  
0.8pF  
50 ohm  
1.9nH  
0.8pF  
Vcc  
The 1.9 nH shunt inductor works as a DC feed for one of the open collector terminals as well  
as a matching element along with the other components. The 1.9 nH series inductors are  
used to resonate the parasitic capacitance of the chip.  
For optimum output matching, it is recommended to use 0402 Murata or AVX capacitors and  
0403 or 0604 HQ Coilcraft inductors. It is also advisable to use short interconnection paths  
to minimize losses and undesired impedance shift.  
An alternative topology that permits a more broadband matching as well as balanced to  
unbalanced conversion, is shown in Figure 30.  
42/53  
STW81103  
Application information  
Figure 30. Evaluation board (EVB4G) matching network (MATCH_EVB4G.dsn)  
Vcc  
50 ohm  
5.5nH  
12pF  
12pF  
4.7pF  
RF  
OUTP  
2:1  
12pF  
1pF  
1pF  
1.2pF  
1.2pF  
50 ohm  
RF  
OUTN  
50 ohm  
5.5nH  
Vcc  
For differential to single conversion, the 50 to 100Ω Johanson balun is recommended  
(3700BL15B100).  
8.2  
Divided by 2 output  
If your application does not require a balanced to unbalanced conversion, the output  
matching reduces to the simple circuit shown below (Figure 31), which illustrates a  
differential to single-ended output network in the 1.25 - 2.5 GHz range  
(MATCH_LC_LUMP_2G_DIFF.dsn). You can easily use this solution to provide one single-  
ended output that terminates the other output at 50Ω with a 3 dB power loss.  
Figure 31. Differential/single-ended output network  
(MATCH_LC_LUMP_2G_DIFF.dsn)  
Vcc  
50 ohm  
22nH  
50 ohm  
10pF  
10pF  
RF  
OUTP  
RF  
OUTN  
50 ohm  
50 ohm  
22nH  
Vcc  
43/53  
Application information  
STW81103  
A first solution to combine the differential outputs is the lumped LC type balun tuned in the  
2 GHz band (Figure 32).  
Figure 32. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn)  
Vcc  
2pF  
50 ohm  
2.7nH  
2.7nH  
RF  
OUTP  
2pF  
3pF  
2.7nH  
50 ohm  
3nH  
RF  
OUTN  
2pF  
50 ohm  
2.7nH  
2pF  
Vcc  
The same recommendation for the SMD components also applies to the divided by 2 output.  
Another topology suited to combining the two outputs for the divided by 2 frequencies is  
represented in Figure 33.  
Figure 33. Evaluation board (EVB2G) matching network (MATCH_EVB2G.dsn)  
Vcc  
50 ohm  
5.5nH  
22pF  
22pF  
1.9nH  
RF  
OUTP  
2:1  
22pF  
1.2pF  
50 ohm  
RF  
OUTN  
50 ohm  
5.5nH  
Vcc  
44/53  
STW81103  
Application information  
For differential to single conversion, the 50 to 100Ω Johanson balun (1600BL15B100) is  
recommended.  
8.3  
Divided by 4 output  
The topology, components, values and considerations of Figure 31 also apply to the divided  
by 4 output (MATCH_LC_LUMP_1G_DIFF.dsn).  
As for the previous sections, a solution to combine the differential outputs is the lumped LC  
type balun tuned in the 1 GHz band (Figure 34).  
Figure 34. LC lumped balun for divided by 4 output (MATCH_LC_LUMP_1G.dsn)  
Vcc  
25 ohm  
4pF  
5.5nH  
5.5nH  
RF  
OUTP  
4pF  
6pF  
5.5nH  
14nH  
50 ohm  
RF  
OUTN  
4pF  
25 ohm  
4pF  
5.5nH  
Vcc  
If you prefer to use an RF balun, you can adapt the topology depicted in Figure 33, and  
change the balun and the matching components (Figure 35). The suggested balun for the  
0.625 - 1.25 GHz frequency range is the 1:1 Johanson 900BL15C050.  
45/53  
Application information  
STW81103  
Figure 35. Evaluation board (EVB1G) matching network (MATCH_EVB1G.dsn)  
Vcc  
25 ohm  
18nH  
8.2pF  
22pF  
2.1nH  
RF  
OUTP  
1:1  
8.2pF  
18nH  
0.5pF  
50 ohm  
RF  
OUTN  
25 ohm  
Vcc  
8.4  
Evaluation kit  
An evaluation kit can be delivered upon request, including the following:  
Evaluation board  
GUI (graphical user interface) to program the device  
Measured S parameters of the RF output  
ADS2005 schematics providing guidelines for application board design  
STWPLLSim software for PLL loop filter design and noise simulation  
Application programming interface (API)  
Three different evaluation kits are available, each optimized for one of the following  
frequency ranges:  
1 GHz  
2 GHz  
4 GHz  
When ordering, please specify one of the following order codes:  
Table 24. Order code of the evaluation kit  
Part number  
STW81103-EVB1G  
Description  
1 GHz frequency range - divider by 4 output optimized  
2 GHz frequency range - divider by 2 output optimized  
4 GHz frequency range - direct output optimized  
STW81103-EVB2G  
STW81103-EVB4G  
The three evaluation kits differ only for the output stage network and can be adapted from  
one frequency band variant to a different one replacing properly the matching components  
and the balun.  
46/53  
STW81103  
Application diagram  
9
Application diagram  
Figure 36. Typical application diagram  
From/to microcontroller  
100  
100  
100  
15p  
15p  
15p  
I2C  
VDD  
1
1n  
22p  
10P  
VDD_VCOA  
VDD_DIV2  
DBUS_SEL  
VDD_BUFVCO  
SPI  
VDD  
2
VDD  
1
VDD_OUTBUF  
OUTBUFP  
EXTVCO_INP  
EXTVCO_INN  
RF Out  
1n  
22p  
10P  
STW81103  
VDD_PLL  
OUTBUFN  
ref clk  
REF_CLK  
VDD_DIV4  
VDD  
1.8n  
51  
1
VDD_VCOB  
TEST2  
VDD  
1
1n  
22p  
10P  
4.7K  
VDD  
1
2.2K  
2.7n  
8.2K  
68p  
1n  
22p  
10µ  
270p  
loop filter  
to microcontroller  
Note:  
1
See Section 8: Application information for further information on output matching topology.  
2
EXT_PD, ADD2, ADD1 (and ADD0 when the I2C bus is selected) can be hard wired directly  
on the board.  
3
4
Loop filter values are for FSTEP = 200 kHz.  
For best performance VDD1 must be a low noise supply (20 µVRMS in 10 Hz-100 kHz BW).  
47/53  
Application diagram  
Figure 37. Ping-pong architecture diagram  
STW81103  
ORRSꢂILOWHUꢂ ꢃ  
WRꢂPLFURFRQWUROOHU  
Q  
ꢄꢄꢋ S  
ꢄꢄꢋ S  
ꢀꢁN  
QꢂꢄSꢂꢃM  
9''ꢁBꢁ  
ꢉN  
QꢍꢂꢄSꢂꢃM  
9''ꢁBꢁ  
9''  
ꢂ7(67ꢄ  
ꢂ9''B9&2%  
ꢂ9''B',9ꢇ  
ꢃꢁ ꢀQ  
ꢂ5()B&/.  
ꢂ9''B3//  
ꢂ287%8)1  
ꢂ287%8)3  
67:ꢀꢁꢁꢂꢃ  
ꢂ(;79&2B,11  
'HYLFH/RFNHGꢆDWꢆ)UHT )  
2XWSXWꢆ%XIIHUꢆ&RQWUROꢆ0RGHꢆHQDEOHG  
9''  
ꢂ9''B287%8)  
ꢂ(;79&2B,13  
QꢂꢄSꢍꢂ ꢃM  
QSM  
ꢂ9''B',9ꢄ  
ꢂ9''B9&2$  
ꢂ9''B%8)9&2  
'%86B6(/  
63,  
,&  
9''ꢁBꢁ  
9''  
ꢂ9''B'%86  
UHIꢆFON  
5)ꢆ2XW  
QSꢍꢂꢃM  
ꢃꢎ ꢄ  
9''ꢄBꢁ  
9''ꢄBꢄ  
2XWSXWꢆ%XIIHUꢆ  
+:ꢆ&RQWURO  
PLFURFRQWUROOHU  
QꢍꢂꢄSꢂꢃM  
9''  
9''B  
,ꢄ&  
ꢄꢄꢁꢂ 9''B'%86  
ꢂ'%86B6(/  
ꢃꢁꢂ 9''B9&2$  
ꢄꢁꢂ 9''B',9ꢄ  
63,  
ꢂ9''B%8)9&2  
QꢂꢄSꢍꢂ ꢃM  
ꢃQꢍꢂ ꢄSꢍꢂ ꢃM  
9''  
ꢈꢁꢂ 9''B287%8)  
ꢂ(;79&2 B,13  
ꢂ (;79&2B,11  
67:ꢀꢁꢁꢂꢃ  
ꢇꢁꢂ 287%8)3  
'HYLFHꢄꢅꢆ/RFNHGꢆDWꢆ)UHT )  
2XWSXWꢆ%XIIHUꢆ&RQWUROꢆ0RGHꢆHQDEOHG  
ꢂ9''B3//  
ꢃꢊꢁ5()B&/.  
ꢅꢁꢂ 287%8)1  
9''  
9''ꢁBꢄ  
ꢊꢁꢂ 9''B',9ꢇ  
ꢃꢁ ꢀQ  
ꢉꢁꢂ 9''B9&2%  
ꢃꢅꢁ7(67ꢄ  
QꢂꢄSꢂꢃM  
ꢉN  
ꢀꢁN  
ꢄꢄꢋ S  
9''ꢁBꢄ  
ꢄꢄꢋ S  
QꢂꢄSꢂꢃM  
Q  
ORRSꢂILOWHUꢄ  
WRꢂPLFURFRQWUROOHU  
Note:  
1
2
See Section 8: Application information for further information on output matching topology.  
EXT_PD, ADD2, ADD1 (and ADD0 when the I2C bus is selected) can be hard wired directly  
on the board.  
3
4
Loop filter values are for FSTEP = 200 kHz.  
For best performance VDD1_1 and VDD1_2 must be low noise supplies  
(20 μVRMS in 10 Hz-100 KHz BW).  
48/53  
STW81103  
Application diagram  
Figure 38. Application diagram with external VCO (LO output from STW81103)  
)URPꢆWR PLFURFRQWUROOHU  
QSꢋ  
M
9''  
,ꢄ&  
63,  
9''B9&2$  
'%86B6(/  
9''B%8)9&2  
9''B',9ꢄ  
9''  
QꢂꢄSꢍꢂ ꢃꢋ  
M
9''  
9''B287%8)  
(;79&2B,13  
(;79&2B,11  
9''B3//  
/2ꢆ2XW  
ꢃꢎ ꢄ  
287  
287%8)3  
287%8)1  
67:ꢀꢁꢁꢂꢃ  
9&75/  
9''  
UHIꢆFON  
9''  
5()B&/.  
7(67 ꢄ  
9''B',9ꢇ  
9''B9&2%  
ꢃꢁ ꢀQ  
9''  
&ꢈ  
5ꢈ  
&ꢃ  
QꢂꢄSꢂꢃꢋ  
M
ꢉN  
9''  
&ꢄ  
QꢍꢂꢄSꢂꢃꢋ  
M
WR PLFURFRQWUROOHU  
ORRSꢂILOWHU  
Note:  
See Section 8: Application information for further information on output matching topology.  
Figure 39. Application diagram with external VCO (LO output from VCO)  
)URPꢆWR PLFURFRQWUROOHU  
QꢂꢄSꢍꢂ ꢃꢋ  
M
9''  
/2ꢆ2XW  
,ꢄ&  
63,  
9''B9&2$  
9''B',9ꢄ  
'%86B6(/  
9''B%8)9&2  
ꢃꢀ  
ꢃꢀ  
9''B287%8)  
(;79&2B,13  
(;79&2B,11  
9''B3//  
ꢅꢃ  
287%8)3  
287%8)1  
67:ꢀꢁꢁꢂꢃ  
287  
9&75/  
9''  
UHIꢆFON  
5()B&/.  
7(67ꢄ  
9''B',9ꢇ  
ꢀQ  
9''B9&2%  
&ꢈ  
&ꢄ  
5ꢈ  
&ꢃ  
ꢇꢁN  
9''  
QSꢋ  
M
WR PLFURFRQWUROOHU  
ORRSꢂILOWHU  
49/53  
Package mechanical data  
STW81103  
10  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages, which have a lead-free second level interconnect. The category of second level  
interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: http://www.st.com.  
Figure 40. VFQFPN28 mechanical drawing  
Note:  
1
2
VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead.  
(Very thin: A=1.00 Max)  
Details of the terminal 1 identifier are optional, but if given, must be located on the top  
surface of the package by using either a mold or marked features.  
50/53  
STW81103  
Package mechanical data  
Table 25. Package dimensions  
Ref.  
Min.  
Typ.  
Max.  
Unit  
A
A1  
A2  
A3  
b
0.800  
0.900  
0.020  
0.650  
0.200  
0.250  
5.000  
4.750  
3.100  
5.000  
4.750  
3.100  
0.500  
0.550  
1.000  
0.050  
1.000  
mm  
mm  
mm  
mm  
0.180  
4.850  
0.300  
5.150  
mm  
D
mm  
D1  
D2  
E
mm  
2.950  
4.850  
3.250  
5.150  
mm  
mm  
E1  
E2  
e
mm  
2.950  
0.350  
3.250  
mm  
mm  
L
0.750  
0.600  
14  
mm  
P
mm  
K
degrees  
mm  
ddd  
0.080  
51/53  
Ordering information  
STW81103  
11  
Ordering information  
Table 26. Order codes  
Part number  
Temp range, ° C  
Package  
VFQFPN28  
VFQFPN28  
Packing  
STW81103AT  
-40 to 85  
-40 to 85  
Tray  
Tape and reel  
STW81103ATR  
12  
Revision history  
Table 27. Document revision history  
Date  
Revision  
Changes  
18-Jul-2007  
1
Initial release.  
Added Chapter 8: Application information. Modified Section 6.4:  
VCO calibration procedure, and pin #23 description in Table 1.  
14-Aug-2007  
2
Updated Table 1: Pin description.  
Updated Table 2: Absolute maximum ratings, Table 3: Operating  
conditions, Table 5: Electrical specifications and Table 6: Phase  
noise specification.  
Updated Section 5.8.2: VCO frequency calibration.  
Added VCO calibration auto-restart feature.  
Updated Section 5.8.3: VCO voltage amplitude control.  
Added Section 5.9: Output stage and Section 5.10: External VCO  
buffer.  
Updated FUNCTIONAL_MODE and CALIBRATION registers.  
Added Section 6.3.3: Default configuration.  
28-Mar-2008  
3
Updated Section 6.4: VCO calibration procedure and added  
Section 6.4.1: VCO calibration auto-restart feature.  
Updated Table 23: Bits at 01h and ST2.  
Added Section 7.3.1: Default configuration.  
Updated Section 7.4: VCO calibration procedure and added  
Section 7.4.1: VCO calibration auto-restart feature.  
Added ‘Application program interface API’ item in Section 8.4.  
Modified notes after Figure 36.  
Added Figure 37, Figure 38 and Figure 39.  
Modified Figure 40.  
52/53  
STW81103  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
53/53  

相关型号:

STW81103AT

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81103ATR

Multi-band RF frequency synthesizer with integrated VCOs
STMICROELECTR

STW81200

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW81200T

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW81200TR

Wideband RF PLL fractional/integer frequency synthesizer with integrated VCOs and LDOs
STMICROELECTR

STW82100B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82101B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82102B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW82103B

RF down converter with embedded integer-N synthesizer
STMICROELECTR

STW88N65M5

N-channel 650 V, 0.024 Ω typ., 84 A, MDmesh™ V Power MOSFET in TO-247 and TO-247 long leads packages
STMICROELECTR

STW8A2N

DuroSite? LED Area Light
DIALIGHT

STW8C2N

DuroSite? LED Area Light
DIALIGHT